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Abst ract

Daily asset returns exhibit two key statistical properties. Returns are
not autocorrelated. But the absolute value of returns are strongly
autocorrel ated. Nonlinear processes can generate this type of behavior, while
| i near processes cannot. This paper investigates two types of nonlinear
processes. Additively nonlinear processes are consistent with the view that
expected returns are tinme varying. Wile nmuch effort has been applied to
nodel i ng expected returns, there has been little evidence to support the view
that time varying expected returns can account for the strong nonlinearity in
the observed returns data. Miltiplicatively nonlinear nodels are consistent
with the view that expected volatilities are tine varying. Evidence from
price changes as well as options inplied volatilities show that volatility is
time varying and nean reverting. In fact, nultiplicatively nonlinear nodels
have been able to explain a great deal of the nonlinearity in asset returns.
Thus, it is possible to forecast future volatility, even though it is
difficult to forecast the direction of price changes. This has inportant
inplications for short termfinancial risk managenent.



Daily price changes for a | arge nunber of assets exhibit two key
statistical features. There is very little autocorrelation in price changes,
but there is strong autocorrelation in the absolute value of price changes.
Evidence is provided in Table 1 (1a through 1h). Table la uses stock index
futures prices for the S&P, N kkei, DAX, FTSE, and CAC.

Notationally, let P, be the price of an asset at date t. Define

Xy = I n[ P/ Pi_4]
as the continuous rate of change between the price at dates t-1 and t. The
top panel of Table l1la provides the first ten autocorrelation coefficients of
X; and the Box-Pierce test for all these coefficients to be zero. It is clear
that the autocorrel ation coefficients of x; are not different fromzero. This
is in agreement with the evidence in the literature. What is striking,
however, is that the autocorrelation coefficients of |x{| are much larger in
t he bottom panel of Table la. Mbst of the first order autocorrel ation
coefficients are larger than 0.10, and quite a few are |larger than 0. 20.
These nmagni tudes are substantial, indicating that the log price differences
are definitely not random Specifically, a tine series is 'random if each
nunber is not predictable based on precedi ng nunbers and all nunbers have the
same statistical distribution. The precise statistical termfor a random
time series is that its nunbers are 'independent and identically
distribution.'’

The | ack of autocorrelation in x; and the |large autocorrelation in |xq|
are characteristic of high frequency (e.g. weekly, daily, hourly) data in
asset markets. They show up strongly in daily price changes of governnment
bond futures (Table 1b), short interest rate futures (Table 1c), currency
futures (Table 1d), and comodity futures (Table 1e through 1h). This finding
is not sensitive to the sanpling period. This paper focuses on the
characterization of these two features, and ignores other well known
characteristics of high frequency data, such as the |eptokurtic distribution

of returns.



Expl anati ons of Non- Random Behavi or

There are several competing explanations for the non-random behavi or of
asset price changes. 1In the first place, structural changes or regi me changes
in the econony can affect prices behavior in asset markets. A frequently
cited exanple is the increase in the variance of interest rates between 1979
and 1981, which has been attributed to the change in the Federal Reserve
policy fromtargeting interest rates to noney supplies. This nonstationarity
hypot hesi s i s nost persuasive for data spanning long periods of tinme (e.g.
annual data over nany decades), since the underlying structure of the econony
is unlikely to remain constant. But it is not an appealing explanation of the
non-random behavi or of asset returns in Table 1. The reason is that non-
random behavi or of asset returns is nost pronounced in high frequency (i.e.
weekly, daily, or hourly frequencies) data. As the sanpling interval is
| engt hened to a nmonthly or quarterly frequency, the autocorrelation of the
absol ute val ue of price changes declines. This is not consistent with
structural change hypothesis. Furthernore, if the structure of the econony
i ndeed changes at the rate of daily frequencies, it would be inpossible to
study the econony statistically, since nost economic tine series are avail able
only at nonthly or quarterly frequencies.

An alternative to the nonstationarity hypothesis is that the non-random
behavior is an intrinsic part of the dynam cs of asset prices. Mst of the
past literature on the enpirical behavior of price changes have focused on
linear time series nodels, such as autoregressive-noving average (ARMA)
nodel s. The evidence in Table 1 show that x; is not linear. No |inear nodel
can produce x; which is not autocorrelated but |x;| is autocorrelated. This
| eads naturally to nonlinear tine series nodels for x.

Theoretically, there is good reason for believing that x; is nonlinear

Modern finance theory suggests that the current price of an asset, P, is the
expect ed di scounted val ue of future payoffs:

Po = E My (D + Praa) | 1],

In this fundanental pricing equation, D is the net cash flow generated by
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hol di ng the asset between period t and t+1, and m . is a discount factor.
The expectation E[] is taken conditional on the information avail abl e at
period t, I;. Any asset pricing theory nust specify the information set I,
and the discount factor m . In a typical asset pricing nodel, such as the
consunption capital asset pricing nodel, m .+ is the ratio of the nmarginal
utility of consunption between tine t+1 and tine t. The asset payoff
(D +1tPi41) affects the anpbunt of consunption at tine t+1, and therefore the
di scount factor m 4+, So that the pricing equation is a nonlinear stochastic
di fference equation, for which there is no general solution available. One
thing, however, is clear. It is very likely that the asset price P, which
solves the pricing equation will be a nonlinear rather than a |inear
stochastic process. Thus the logarithm of price changes (x=In[P/P;4]) is
also likely to be a nonlinear stochastic process.

Enmpirically, the world of nonlinear processes is vastly richer than the
worl d of linear processes. Nonlinear processes can generate much nore
i nteresting dynam cs than |inear processes. Specifically, quite a few
nonl i near processes can generate x; which has no autocorrelation but |x¢| has
strong autocorrelation. But a strict discipline nmust be followed when fitting
nonl i near nodels to data. There are so many nonlinear processes that it is
very easy to overfit the data. This paper will adhere to the principle of
parsi nony --- sinple nodels are preferred to conpl ex nodels. Two cl asses of
si mpl e nonlinear stochastic nodels will be exam ned: additive and

mul tiplicative nodels.

Addi tively Nonlinear Mdels

Suppose x; is generated by the follow ng nodel:

Xe = F(l¢.1) + ey,
where e; i s random wth nean zero and finite variance, and ;.1 is the
information available at tinme t-1. For the purposes of this paper, 1.,
consi sts of the past history of x(.; and e;.;. The function F() is the

conditional nean function, which gives expected return of the asset between
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time t-1 and t using the information in I;.;. F() cannot be linear. If it
were, X; would exhibit serial correlation. Such a nodel is called an
additively nonlinear nodel, because the error terme; is added to the
nonlinear function F(). |If price changes are generated by such a nodel, it
means that nost of the nonlinear dynam cs are coming from changes in expected
returns.

In the time series literature, there are many exanples of additively
nonl i near nodel s: the nonlinear noving average nodel of Robinson (1977), the
bil i near nodel of Granger and Anderson (1978), and the threshold
aut or egressi ve nodel of Tong and Lim (1980). In addition, determnistic chaos
(e.g. the pseudo-random nunber generators used in npbst conputer simnulations)
is a special case in which the noise terme; vani shes.

If F() is known, the direction of price change is forecastable. This
has led to much excitenment in the finance conmunity. Since F() is unknown,
nonparanetri c nmethods (e.g. kernels, neural nets, nearest neighbors, and
seri es expansions) have been used to estimate F(). The results thus far have
proved di sappointing. Wite (1988), D ebold and Nason (1990), Hsieh (1991
1993a and 1993b), anong ot hers, have used various nonparanetric nethods to
estimate the conditional nean function for stocks and foreign currencies. The
out - of -sanpl e forecasts performuniformy worse than the naive nodel that
prices follow a random wal k.

The failure to find a statistically significant conditional mean
function inplies that the size and variation of the expected return of hol ding
assets over one trading day is quite snmall relative to the nagnitude of the
observed price changes. This is not a surprising result. Over |ong periods
of time, stock returns have averaged on the order of 10% per annumw th a
volatility of 20% per annum which translates to an average return of 0.04%
and a volatility of 1.26% per trading day. The average returns of the bonds,
currencies, and commodities, are typically even small. The strong evi dence of
non-random behavi or of asset returns is unlikely to be caused by the variation

of expected returns.



Mul tiplicatively Nonlinear Mdels

Suppose x; i s obtained by the foll owi ng nodel:

Xt = A1) ey,
where e, is random with nean zero and finite variance s? The function )
is known as the conditional variance function, and nust be positive. The
quantity Q(l..1)s®> can be interpreted as the expected variance of x, based on

information at time t-1. The expected value of x; is zero. Such a nodel is
called a nultiplicatively nonlinear nodel, because the error terme; is
multiplied to the function ). |If price changes are generated by such a
nodel , it neans that nost of the nonlinear dynanmics are com ng from changes in
expect ed vari ance.

Examples of nultiplicatively nonlinear nodels are the autoregressive
condi tional heteroskedasticity (ARCH) nodel of Engle (1982) and its
general i zed version (GARCH) of Bollerslev (1986). The ARCH type nodel s have
gai ned great popularity in the enpirical finance literature, as neasured by
t he nunber of articles surveyed by Bollerslev, Chow, and Kroner (1992). This
is due to the fact that ARCH type nodel s have been able to fit the
nonlinearity in asset returns, in the followi ng sense. After an ARCH type
nodel is estimated, it provides an estimate of the daily volatility, which can
be used to standardize the return series. The resulting series typica
exhibit little remaining nonlinearity.

In the past, researchers have di scovered evidence of volatility changes
at annual and nonthly frequencies. See, for exanple, Oficer (1973) and
French, Schwert, and Stanbaugh (1987). The evidence now i ndi cate that
vol atility changes occur even at daily frequencies. The tinme-varying nature
of volatility is corroborated by the inplied volatilities of options, which

can fluctuate quite a bit fromday to day.

The Dynamics of Volatility



In order to assess the inplication of volatility changes on the
application of finance theory, it is inportant to docunent the time series
properties of volatility. As early as Mandel brot (1963), researchers have
known that asset returns exhibit volatility clustering. |If the volatility is
hi gh one period, it tends to remain high the next period. |If volatility is
| ow one day, it tends to remain | ow the next day.

A second key feature of volatility is that it is strongly nean
reverting. This is confirmed in Hsieh (1994), who uses both price based and
option based information to neasure volatility, and finds that it is nmean
reverting. This observation is further confirmed by the behavior of the term
structure of inplied volatilities. Figures 1 and 2 are the inplied
volatilities of over-the-counter 1- and 6- nonth options on the US
Dol | ar/ German Mark exchange rate from 1985 to 1992. The 1-nmonth inplied
volatility is much nore volatile than the 6-nonth inplied volatility, and both
revert to a long run nean around 12% Mreover, these figures indicate that
volatility tends to revert fairly rapidly back to its long run average.

This |l ast observation directly contradicts the results of nost GARCH
nodel s, which have found very high persistence in volatility, to the point
that volatility appears to follow a random wal k process. \Whether or not
volatility follows a randomwal k or stationary process is not particularly
rel evant for one-day ahead forecasts of volatility, but it is critically
i mportant for mnulti-day ahead forecasts. This difference is dramatic in the
application to foll ow

To capture the nmean-reverting behavior of volatility, Hsieh (1993b)

proposed the autoregressive volatility (AV) nodel:
Xt = st €.
log st =a + S b log st.i + .
Here, (e, nt) isiid with zero nean (0, 0); e  has finite variance s, n has

finite variance g, and e; and n has correlation r.

There are two inportant differences between the AV nodel and the popul ar

-6-



GARCH nodel. In the first place, the AV nodel has found much less volatility
persi stence than the GARCH nodel. |In the second pl ace, the GARCH nodel have
been estimated using the maxi mum | i kel i hood net hod, which requires a specific
di stributional assunption on the error ternms e,. The AV nodel does not

requi re any distributional assunptions.

Applications to Financial R sk Managenent

Once the conditional variance function () has been estinated, whether
it be the popul ar GARCH nodel or the AV nodel, the conditional distribution of
future val ues of x; can be obtained using sinulation nmethods. The conditiona
distribution can be nore informative than the unconditional distribution
whi ch uses the histogramof x;, thus pretending that returns are random As
volatility is strongly mean reverting, the conditional distribution should
converge to the unconditional distribution over tinme. Thus, the conditiona
distribution is nost useful for assessing the distribution of short termprice
changes, probably up to a few weeks.

The conditional distribution of returns can provide useful information
on the market risk of asset and liability positions, as denonstrated in Hsieh
(1993b). Table 2 provides estimates of the capital requirenents for 90%
coverage probabilities of one German Mark (DM futures contract traded on the
Chi cago International Mney Market over different holding horizons, from1to
180 tradi ng days. Suppose the DMfutures is trading at $0.40 per DM One
futures contract is for the delivery of 125,000 DM or a total val ue of
$50, 000. Based on the AV nodel, a trader holding a |l ong position for one day
needs 0.72% of the value of the contract, or $360, to cover 90% of al
potential |osses the next day. The capital requirenment increases to 11.38%
or $5,690, if the trader wants to cover 90% of all possible |osses in the next
180 tradi ng days.

This table conpares the difference in capital requirenents using the AV
nmodel , the unconditional distribution (which pretends that asset returns are

iid), and a special variant of the GARCH nodel, called the exponential GARCH
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(EGARCH) nodel. When the holding period is short, the three nodels give
reasonably simlar results. However, as the holding period increases, the AV
and the unconditional distribution nodel yield sinmlar results, while the
EGARCH nodel gives dramatically different results. This is due to the strong
volatility persistence in the EGARCH nodel

It is straight forward to extend this risk managenent analysis from a
single asset to a portfolio of assets, provided that one is willing to nake
some assunptions regarding the correlation between asset returns. Such a
portfolio risk nanagenent systemis discussed in Hsieh (1993c) using the
uncondi tional distribution for nonthly returns. A simlar systemusing the
conditional distribution fromthe AV nodel for daily returns can be quite
easily inplenented. This portfolio risk assessment system can al so serve as

an asset allocation nodel for short hol di ng peri ods.

Summary and Concl usi on

Thi s paper docunments two interesting observations in asset markets, that
daily price changes are not autocorrelated, yet they are non-random \Vhile it
is possible that expected returns are changing over tine, they are not able to
explain the strong evidence of non-random behavior. A nmuch nore successfu
explanation is that volatility is time varying. Volatility tends to cluster
but it is strongly nmean reverting. Conditional variance nodels, such as ARCH
type nodel s, can explain a great deal of the non-random behavior in asset
returns. \Wile GARCH and EGARCH nodel s have a tendency to put too nuch
persistence in volatility, the autoregressive volatility (AV) nodel is much
better able to capture nean reversion in volatility. These conditiona
variance nodel s provide a way to simulate the future distribution of asset
returns, and yield some interesting applications to pricing of options and

financial risk managenent.
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Tabl e la
Aut ocorrel ation of x: and | xt|
St ock I ndex Futures

S&P Ni kkei DAX FTSE CAC

Aut ocorrel ati on of X;:

r( 1) -0.014 -0. 010 -0. 049 0. 018 -0.031
2) -0. 155 -0. 048 -0. 050 -0.028 0. 017
r( 3) -0. 026 -0. 020 -0. 049 0. 026 -0. 049
r( 4) -0.032 0. 050 0. 038 0. 050 0. 030
r( 5) 0. 070 -0. 030 0. 027 -0. 002 -0. 020
r( 6) 0. 006 -0. 009 -0. 027 -0. 007 -0.017
r¢ 7) 0. 012 0. 005 -0.013 0. 015 -0.012
r( 8) -0. 055 -0. 002 -0.081 0. 009 -0.034
r( 9) -0. 026 0. 069 0. 020 0. 022 0. 043
r(10) 0. 002 0. 043 -0. 026 0. 023 0. 020
Q(10) 3.97 12. 46 13. 23 4. 20 9.30
Aut ocorrel ation of |x|:
r( 1) 0.272 0.223 0. 139 0. 268 0.130
r( 2) 0. 311 0.234 0.123 0. 256 0. 107
r( 3) 0. 252 0.214 0.117 0. 200 0. 161
r( 4) 0. 147 0. 226 0. 079 0.143 0. 098
r( 5) 0. 206 0.244 0. 062 0. 166 0.181
r( 6) 0. 167 0. 189 0. 086 0. 158 0. 098
r¢ 7) 0.119 0. 230 0. 069 0.148 0. 060
r( 8) 0. 146 0. 165 0. 090 0.144 0. 139
r( 9) 0. 169 0. 231 0. 053 0. 169 0. 069
r(10) 0. 067 0. 165 0. 059 0.121 0. 145
Qx(10) 1041.9 878.9 97.2 886. 6 259.8
Not es:

r(k) is the autocorrelation coefficient at lag k

Q(10)

is the Box-Pierce statistic for n lags, adjusted for

het er oskedasticity.
Qx(10) is the Box-Pierce statistic for n lags, w thout adjustment for
het er oskedasticity.

S&P:
Ni kkei
DAX:

St andard & Poors 500 stock index futures, Mar 1985- Mar
Ni kkei stock index futures, Dec 1987- Mar 1995.

DAX stock index futures, Nov 1990- Mar 1995.

FTSE stock i ndex futures, Mar 1985- Mar 1995.

CAC stock index futures, Nov 1988- Mar 1995.
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Tabl e 1b
Aut ocorrel ation of x: and | xt|
Gover nment Bond Fut ures

USF J@&B Bund Glt Not i ona

Aut ocorrel ati on of X;:

r( 1) 0. 024 0. 004 0.014 -0.018 -0.019
r( 2) 0. 010 -0. 001 -0. 001 -0. 008 0. 027
r( 3) -0. 030 -0.021 0. 003 -0. 004 -0. 015
r( 4) -0. 020 0. 007 0. 048 0. 008 -0.016
r( 5) -0. 020 0. 056 -0. 003 0. 044 0. 018
r( 6) -0. 001 -0. 007 -0. 053 -0. 020 -0. 080
r¢ 7) 0. 023 0. 033 -0.011 -0.011 0.014
r( 8) 0. 002 0. 001 0. 032 0. 029 0. 018
r( 9) -0. 025 0. 022 -0.022 0. 049 0. 025
r(10) 0. 026 -0.018 -0.032 - 0. 005 -0.031
Q(10) 7.46 6. 43 6. 87 11.10 4.67
Aut ocorrel ation of |x|:
r( 1) 0. 076 0.180 0. 189 0.126 0. 295
r( 2) 0.104 0. 159 0. 230 0.114 0.298
r( 3) 0.113 0. 155 0. 187 0. 146 0. 363
r( 4) 0. 139 0. 157 0.190 0. 154 0. 283
r( 5) 0. 167 0.171 0. 207 0.122 0. 261
r( 6) 0. 137 0.134 0. 197 0. 137 0. 285
r¢ 7) 0. 096 0. 152 0.177 0.138 0. 267
r( 8) 0.115 0. 146 0.214 0. 132 0. 246
r( 9) 0.117 0.131 0.191 0.113 0.174
r(10) 0. 094 0.101 0. 187 0.141 0.214
Qx(10) 369.9 428.7 664. 8 466. 2 1776.4
Not es:

r(k) is the autocorrelation coefficient at lag k

Q(10) is the Box-Pierce statistic for n |ags, adjusted for

het er oskedasticity.

Qx(10) is the Box-Pierce statistic for n lags, w thout adjustment for
het er oskedasticity.

USF: US treasury bond futures, Mar 1985-Mar 1995.

JG&B: Japanese government bond futures, Jan 1988- Mar 1995.
Bund: Ger man government bond futures, Oct 1988- Mar 1995.
Glt: UK government bond futures, Mar 1985- Mar 1995.

Not i onal : French governnent bond futures, Feb 1986- Mar 1995.
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Tabl e 1c
Aut ocorrel ation of x: and | xt|
Short Interest Rate Futures

LI BOR SYN LI P LI D Pl BOR

Aut ocorrel ati on of Xx;:

r( 1) 0. 066 0. 036 0. 018 0. 004 0. 074
r( 2) 0. 022 0. 023 - 0. 040 0. 058 0. 009
r( 3) -0.011 0. 004 0. 055 -0.039 -0. 044
r( 4) -0. 009 0. 066 -0.024 0. 034 0. 027
r( 5) -0.014 0. 044 0. 046 -0. 015 -0.011
r( 6) 0. 002 0. 013 -0. 015 0. 010 -0. 030
r¢ 7) 0. 053 0. 044 0. 010 -0.023 0. 002
r( 8) -0. 007 -0. 010 0.014 0. 009 0. 007
r( 9) -0.042 -0.024 0. 005 0. 045 -0. 009
r(10) -0. 007 -0. 026 0. 021 0. 006 0. 053
Q(10) 11. 42 11. 87 7.38 7.59 5. 89
Aut ocorrel ation of |x|:
r( 1) 0. 139 0.142 0. 244 0.143 0. 357
r( 2) 0. 207 0. 100 0.183 0. 240 0. 303
r( 3) 0.191 0. 159 0.171 0. 135 0.283
r( 4) 0.173 0. 084 0. 169 0.119 0. 298
r( 5) 0.216 0. 091 0.119 0. 147 0. 286
r( 6) 0.116 0.128 0.111 0.101 0. 291
r¢ 7) 0.133 0.143 0. 100 0. 096 0.278
r( 8) 0. 162 0. 099 0. 099 0. 150 0. 267
r( 9) 0. 157 0. 105 0. 088 0. 061 0. 245
r(10) 0.128 0.118 0.136 0.103 0. 261
Qx(10) 723.5 202.5 590. 8 294.2 1429.0
Not es:

r(k) is the autocorrelation coefficient at lag k

Q(10) is the Box-Pierce statistic for n |ags, adjusted for

het er oskedasticity.

Qx(10) is the Box-Pierce statistic for n lags, w thout adjustment for
het er oskedasticity.

LI BOR: 90-day Eurodollar futures, Mar 1985- Mar 1995.

SYN: 90-day Euroyen futures, Nov 1989- Mar 1995.

LI P: 90-day Euromark futures, Mar 1985- Mar 1995.

LI D 90-day Eurosterling futures, Apr 1989- Mar 1995.

Pl BOR: 90-day Euro-French Franc futures, Sep 1988-Mar 1995
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Ta
Aut ocorrel ati
Curren
BPF CDF DV
Aut ocorrel ati on of X;:
r( 1) 0.014 0. 043 -0. 002
r( 2) 0.012 -0.034 -0. 006
r( 3) -0.011 -0. 030 0. 005
r( 4) 0. 006 0. 001 0. 000
r( 5) 0.011 0. 013 -0. 006
r( 6) -0. 003 -0. 015 -0. 004
r( 7) -0.031 0.021 -0. 020
r( 8) 0. 028 -0.021 0.034
r( 9) -0. 001 -0.018 0. 001
r(10) 0. 005 0. 000 0. 013
Q(10) 4,83 10. 93 3.91
Aut ocorrel ation of |x|:
r( 1) 0. 081 0. 090 0. 052
r( 2) 0. 094 0.076 0. 038
r( 3) 0. 100 0. 091 0. 064
r( 4) 0.114 0. 106 0. 060
r( 5) 0. 084 0.136 0. 050
r( 6) 0.128 0. 086 0. 115
r( 7) 0. 064 0.078 0. 064
r( 8) 0. 058 0. 080 0. 058
r( 9) 0. 090 0.103 0. 040
r(10) 0.111 0.073 0. 106
Qx(10) 237.5 231.5 125.9
Not es:

r(k) is the autocorrelation coefficie

ble 1d
on of xt¢ and | Xxt|

cy Futures

JPF SFF

-0.013 -0. 002
-0. 008 -0.014
0. 003 0. 000
0. 004 0. 000
0.011 -0. 007
-0. 020 -0.014
-0.012 -0. 015
0. 028 0. 040
0.014 -0. 020
0. 047 0. 030
9.31 7.80

0.116 0. 042
0. 058 0. 009
0. 093 0. 060
0. 036 0. 051
0. 080 0. 027
0. 106 0.104
0. 045 0. 080
0. 052 0. 048
0. 066 0. 007
0. 025 0. 087

142. 8 94. 4
nt at |lag k.

Q(10) is the Box-Pierce statistic for n |ags, adjusted for

het er oskedasticity.

Qx(10) is the Box-Pierce statistic for n lags, w thout

het er oskedasticity.

BPF: British Pound futures, M
CDF: Canadi an Dol |l ar futures,
DIVF: Deut schenark futures, Mar
JYF: Japanese Yen futures, Mar
SFF: Swi ss Franc futures, Nar

r 1985- Mar 1995.

Mar 1985- Mar 1995.
1985- Mar 1995.
1985- Mar 1995.

1985- Mar 1995.

-13-
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Tabl e le
Aut ocorrel ation of x: and | xt|
Commodi ty Futures

CR CcC JO KC PB

Aut ocorrel ati on of X;:

Aut ocorrel ation of |x|:

rElO
Qx (10)

Not es:

r(k) is the autocorrelation coefficient at |ag k.

Q(10)

het er oskedasticity.
Qx(10) is the Box-Pierce statistic for n lags, w thout
het er oskedasticity.

CRB i ndex futures, Jun 1986- Mar 1995.
Cocoa futures, Mar 1985-Mar 1995.
Orange juice futures, Mar 1985- Mar 1995.
Coffee futures, Mar 1985- Mar 1995.

Pork belly futures, Mar 1985- Mar 1995.

-14-

-0.071 0. 000 - 0. 007 0. 012 0. 053
-0. 020 -0. 046 -0. 027 0. 014 0.031
-0.048 -0. 005 0. 036 0. 018 0. 001
0. 043 -0.015 0. 051 0. 008 0. 015
0. 002 0. 014 0.021 -0. 030 -0. 005
-0. 030 -0. 009 0. 004 -0. 037 0.011
0. 007 -0.014 0. 000 0. 000 0. 006
-0.040 0. 005 -0.001 0. 040 0. 026
0. 033 -0.014 0. 043 0. 010 - 0. 007
-0. 046 0. 017 0. 000 0. 068 0.031
17. 37 7.47 11. 26 8.51 12.81
0. 164 0. 053 0. 150 0.191 0. 089
0. 149 0. 030 0. 141 0. 180 0. 050
0. 146 0. 068 0. 139 0.174 0. 049
0.172 0.074 0.128 0. 150 0. 079
0. 200 0.074 0. 094 0.170 0. 067
0. 135 0. 069 0. 089 0. 155 0. 093
0.129 0. 077 0.111 0.173 0. 082
0.161 0.072 0. 110 0. 139 0. 063
0. 137 0. 066 0.128 0. 149 0. 069
0. 146 0. 109 0.072 0. 216 0. 043
555. 8 135.9 373.2 773. 8 130.5

is the Box-Pierce statistic for n lags, adjusted for

adj ustment for



Tabl e 1f
Aut ocorrel ation of x: and | xt|
Commodi ty Futures

SB SY KW CL HO NG
Aut ocorrel ati on of X;:
r( 1) -0.078 0. 019 0. 047 0. 004 0. 044 0. 050
r( 2) -0. 050 -0.022 -0. 107 0. 005 0. 001 -0.028
r( 3) -0. 005 -0.012 -0. 005 -0.094 -0. 087 0. 057
r( 4) 0. 016 0. 013 0. 022 0. 033 -0.018 0. 028
r( 5) 0. 028 -0.023 -0. 015 -0. 010 -0. 030 -0. 002
r( 6) -0. 026 -0.042 -0. 001 -0. 008 -0.038 -0. 060
r¢ 7) 0. 040 0. 036 0. 005 0. 026 0. 009 -0. 007
r( 8) 0. 026 - 0. 040 0. 036 -0. 064 -0.068 0. 016
r( 9) -0. 030 0. 038 0. 056 0. 015 0. 017 0. 041
r(10) -0.034 -0.024 -0.013 -0. 007 0. 027 0. 009
Q(10) 11.50 10. 02 17. 68 8.13 11.77 12. 84
Aut ocorrel ation of |x|:
r( 1) 0. 233 0. 208 0. 243 0. 283 0.234 0. 098
r( 2) 0. 197 0. 189 0.192 0. 266 0. 240 0. 065
r( 3) 0. 189 0. 203 0. 149 0. 331 0. 268 0.121
r( 4) 0. 203 0. 225 0.129 0.214 0.170 0. 094
r( 5) 0. 150 0. 246 0. 205 0. 260 0. 196 0. 086
r( 6) 0.171 0. 205 0.190 0. 215 0. 156 0. 078
r¢ 7) 0. 155 0. 222 0. 166 0.216 0. 169 0.118
r( 8) 0.134 0.184 0.199 0.273 0. 195 0. 038
r( 9) 0.130 0. 159 0.188 0.212 0. 157 0. 079
r(10) 0. 085 0. 167 0. 156 0. 249 0.190 0. 071
Qx(10) 759.8 1082. 7 896. 7 1713.0 1063. 7 91. 98
Not es:
r(k) is the autocorrelation coefficient at lag k

Q(10) is the Box-Pierce statistic for n |ags,

het er oskedasticity.

adj usted for

Qx(10) is the Box-Pierce statistic for n lags, w thout adjustment for

het er oskedasticity.

SB: Worl d sugar futures, Mar 1985- Mar 1995.
SY: Soybean futures, Mar 1985- Mar 1995.
KW VWheat futures, Mar 1985- Mar 1995.

CL: Crude oil futures, Mar 1985-Mar 1995.
HL: Heating oil futures, Mar 1985-Mar 1995.
NG Nat ural gas futures, COct 1990- Mar 1995
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Tabl e 1g
Autocorrel ation of x: and | xt|
Commodi ty Futures

HG PL &C Sl ALU

Aut ocorrel ati on of X;:

r( 1) -0.038 -0. 005 -0. 065 -0.068 -0. 130
r( 2) 0. 008 -0.011 -0.022 -0. 004 -0.101
r( 3) -0.029 -0.024 -0.021 -0.013 0. 021
r( 4) -0.019 -0. 007 0. 026 0. 008 -0. 002
r( 5) -0. 004 -0. 010 0. 021 0. 003 0. 009
r( 6) 0. 027 -0. 010 -0. 044 -0. 047 -0. 008
r¢ 7) -0.011 -0.021 0. 007 -0. 005 0. 029
r( 8) -0. 030 0.011 0. 004 -0. 007 -0.003
r( 9) 0. 062 -0. 015 0. 027 0. 006 0. 010
r(10) 0. 034 0. 052 0. 012 -0. 026 -0.031
Q(10) 10. 23 7.61 13.73 5. 28 21. 89
Aut ocorrel ation of |x|:
r( 1) 0.123 0. 156 0. 166 0. 197 0.195
r( 2) 0. 075 0.123 0.102 0. 161 0. 196
r( 3) 0. 070 0.120 0.123 0.179 0.111
r( 4) 0. 077 0.111 0.119 0. 137 0. 095
r( 5) 0. 091 0.144 0. 154 0. 137 0. 069
r( 6) 0.134 0. 107 0.117 0. 136 0. 076
r¢ 7) 0. 088 0. 156 0.113 0.108 0. 072
r( 8) 0. 087 0. 153 0. 097 0. 040 0. 084
r( 9) 0.130 0.122 0. 099 0. 037 0. 094
r(10) 0. 064 0. 146 0. 127 0.129 0.141
Qx(10) 132.0 480. 1 404. 6 486. 4 394.3
Not es:

r(k) is the autocorrelation coefficient at lag k

Q(10) is the Box-Pierce statistic for n |ags, adjusted for

het er oskedasticity.

Qx(10) is the Box-Pierce statistic for n lags, w thout adjustment for
het er oskedasticity.

HG Copper futures, Nov 1989- Mar 1995.

PL: Pl ati num futures, Mar 1985- Mar 1995.

CC ol d, London afternoon fixing, Mar 1985-Mar 1995.
Sl Silver, Handy Harnon, Mar 1985- Mar 1995.

ALU: Al umi num New York, Mar 1985- Mar 1995.
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Tabl e 1h
Aut ocorrel ation of x: and | xt|
Commodi ty Futures

LEAD NI CKEL TI'N ZI NC

Aut ocorrel ati on of X;:

r( 1) -0. 061 0. 062 0.102 0.120
r( 2) -0.028 0. 026 -0. 045 -0. 048
r( 3) -0. 049 -0.029 -0. 005 -0.098
r( 4) 0. 016 -0.016 -0. 004 0. 017
r( 5) 0. 048 0. 007 0. 027 0. 020
r( 6) -0. 001 0. 023 0. 047 0. 023
r¢ 7) 0. 013 0. 033 -0. 009 -0.018
r( 8) 0. 029 0. 005 0. 035 0. 023
r( 9) -0. 004 0. 016 0. 021 0. 076
r(10) 0. 058 0. 028 0. 025 0. 045
Q(10) 18. 63 7.93 20. 30 40. 61
Aut ocorrel ation of |x|:
r( 1) 0. 189 0. 295 0.183 0.173
r( 2) 0. 154 0. 280 0.133 0. 127
r( 3) 0. 136 0. 215 0. 167 0. 105
r( 4) 0.141 0.178 0.164 0.130
r( 5) 0.125 0.198 0.173 0.119
r( 6) 0.121 0.170 0. 094 0.119
r¢ 7) 0. 162 0.179 0. 139 0.120
r( 8) 0.119 0.163 0.134 0.124
r( 9) 0. 094 0. 169 0.138 0.121
r(10) 0. 094 0.181 0.114 0. 137
Qx(10) 491.1 1138. 82 413. 4 275.5
Not es:

r(k) is the autocorrelation coefficient at lag k

Q(10) is the Box-Pierce statistic for n |ags, adjusted for

het er oskedasticity.

Qx(10) is the Box-Pierce statistic for n lags, w thout adjustment for
het er oskedasticity.

LEAD: Lead, cash, Mar 1985- Mar 1995.
NI CKEL: Ni ckel , cash, Mar 1985- Mar 1995.
TI N: Tin, cash, Mar 1985-Mar 1995.

ZI NC: Zinc, cash, NMar 1985- Mar 1995.
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Table 2
Capital Requirenment for 90% Coverage Probability
As a Percentage of the Value of One DM Futures Contract

No. Long Position Short Position

of

Days AV Uncond EGARCH AV Uncond EGARCH

1 0.72 0. 87 0.83 0. 89 1.00 0.95

5 1.89 2.18 2.34 2.23 2.70 2.91
10 2.77 3.14 3.93 3.40 4.12 5.03
15 3.52 3.86 5.37 4.36 5.30 6.92
20 4.05 4.45 6.54 5.19 6.14 8.91
25 4.55 4.90 7.86 6.14 7.21 10. 69
30 4.93 5.37 8.75 7.02 7.88 12. 36
60 7.16 7.24 13. 14 11. 36 12. 38 20. 86
90 8.87 8. 39 16. 06 14. 68 16. 16 27.75
180 11.38 10. 35 21.69 24. 25 26. 25 45. 68
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