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1.  Introduction 

 After the stock market crash of October 19, 1987, interest in nonlinear 

dynamics, especially deterministic chaotic dynamics, has increased in both the 

financial press and the academic literature.  This has come about because the 

frequency of large moves in stock markets is greater than would be expected 

under a normal distribution.  There are a number of possible explanations.  A 

popular one is that the stock market is governed by chaotic dynamics.  What 

exactly is chaos and how is it related to nonlinear dynamics?  How does one 

detect chaos?  Is there chaos in financial markets?  Are there other 

explanations of the movements of financial prices other than chaos?  The 

purpose of this paper is to explore these issues. 

 

2.  What is Chaos? 

 Chaos is a nonlinear deterministic process which "looks" random.  There 

is a very good description of chaos and its origins in the popular book by 

James Gleick (1987), entitled Chaos: Making a New Science.  Also, Baumol and 

Benhabib (1989) gives a good survey of economic models which produce chaotic 

behavior.   

 Chaos is interesting for several reasons.  In the business cycle 

literature, there are two ways to generate output fluctuations.  In the Box-

Jenkins times series models, the economy has a stable equilibrium, but is 

constantly facing external shocks (e.g. wars, weather) which perturb it from 

the equilibrium.  The economy fluctuates because of these external shocks, in 

the absence of which the economy will settle into a steady state.  In the 

chaotic growth models, the economy follows nonlinear dynamics, which are self-

generating and never die down.  External shocks are not needed to cause 
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economic fluctuations, which are part of the dynamics of the economy. 

 In the financial press, stock market analysts are always looking for 

explanations of large movements in asset prices, such as the October 19, 1987 

stock market crash.  One explanation of the crash was that there was some 

(unanticipated) news which caused investors to drastically mark down the value 

of equities.  Another explanation was that the stock market is a chaotic 

process which, as we shall see below, is characterized by occasional large 

movements. 

 To get some ideas about the behavior of chaotic processes, we can 

consider several examples. 

Tent Map 

 The simplest chaotic process is the tent map.  Pick a number x0 between 

0 and 1.  Then generate the sequence of numbers xt using the following rule: 

 xt = 2 xt-1,  if xt-1 < 0.5, 

 xt = 2 ( 1-xt-1 ), if xt-1 ≥ 0.5. 

The tent map is so named because the graph of xt versus xt-1 is shaped like a 

"tent", as shown in Figure 1.  Note that xt is a nonlinear function of xt-1.   

 Intuitively, the tent map takes the interval [0,1], stretches it to 

twice the length, and folds it in half, as illustrated in Figure 2.  Repeated 

application of stretching and folding pulls apart points close to each other. 

 This makes prediction difficult, thus creating the illusion of randomness. 

 There are four important properties of the tent map.  One, {xt} fills up 

the unit interval [0,1] uniformly as t→∞.  Technically, this means that the 

fraction of points in {xt} falling into an interval (a,b) is (b-a) for any 

0<a<b<1.  Two, any small error in measuring the initial x0 will be compounded 

in forecasts of xt exponentially fast.  Suppose we only know that x0 is in [a-
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δ,a+δ].  If we try to forecast xt into the future, all we know is that xt lies 

in [0,1] as t→∞.  Three, xt appears stochastic even though it is a 

deterministic process, in the sense that the empirical autocovariance function 

ρxx(k) = E[xtxt-k] = limT→∞ Σt0xtxt-k/T = 0, which is the same as that of white 

noise.  Four,  xt will have a series of small increases, and then it suddenly 

declines ("crashes?") sharply. 

Pseudo Random Number Generators 

 A more "random" chaotic system can be obtained using the ideas of the 

tent map.  Here is an example of a pseudo random number generator, which is 

very frequently used in computer programs.  Take a number A (say 75) and a 

large prime number P (say 232-1).  Pick any number z0, called a "seed", between 

0 and P.  Generate new seeds using the following rule: 

 zt = A zt-1  (mod P). 

Generate the sequence: 

 xt = zt/P. 

Then xt is "uniformly distributed" on the interval (0,1), in the same way as 

is the tent map. 

 It turns out that this method creates pseudo random numbers which are 

much more "random-looking" than the tent map.  This pseudo random number 

generator can be related to the tent map as follows.  First, we modify the 

"tent" pattern in Figure 1 to the "diadic map" in Figure 3.  This changes the 

"stretch and fold" action of the tent map to "stretch, cut, and stack," as 

illustrated in Figure 4.  Second, we increase the number of teeth from two to 

75.  By this time, the graph of this map appears to "fill up" the space in the 

unit square, and is the reason why it appears to be much more random. 
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Logistic Map 

 Other chaotic maps are frequently mentioned.  The logistic map is 

slightly more complex than the tent map.  Again, select x0 between 0 and 1, 

and generate the sequence of xt according to: 

 xt = A xt-1 (1-xt-1),    

where A is between 0 and 4.  For small values of A, the system is stable and 

well behaved.  But as the value of A approaches 4, the system becomes chaotic. 

 The logistic map adds a fifth property to chaotic behavior, that the dynamics 

of a system depends on a parameter (A in this case).  For some values of the 

parameter, the dynamics may be simple, while for other values, the dynamics 

may be chaotic. 

Hénon Map 

 Both the tent map and the logistic map are univariate chaotic systems.  

The Hénon map is a bivariate chaotic system, described by a pair of difference 

equations:   

 xt = yt-1 + 1 - A x-1,   A = 1.4 

 yt = B xt-1,    B = 0.3. 

Lorenz Map 

 The Lorenz map is a trivariate chaotic system.  Notice that it is a 

system of differential equations, rather than difference equations. 

  = a ( y - x ),   a = 10, 

  = - y - x z - b x,   b = 28, 

  = x y - c z,    c = 8/3. 

Mackey-Glass Equation 

 The above chaotic maps generate "low dimensional" chaos, which means 

that the nonlinear structure is easily detected, as we shall show later.  
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There are, however, "high dimensional" chaotic systems which are much harder 

to detect.  The Mackey-Glass equation is such an example.  It is a "delayed" 

differential equation, given by: 
      ax(t-c)     
 (t) = ________________ - bx(t)   a=0.2, b=0.1, c=100. 
   1 + x(t-c)10 

General Chaotic Maps 

 In general, chaotic maps are obtained by a deterministic rule: 

 xt = f(xt-1,xt-2,...). 

In order to generate chaotic behavior, f( ) must be a nonlinear function. 

 If f( ) is linear, then either xt will converge to a number (called a 

fixed point), or xt will cycle with a fixed period, or xt will explode.  

Therefore, if f( ) is a chaotic map, it must be nonlinear.  Note, however, 

that nonlinearity alone is not sufficient to generate chaotic behavior.  [For 

example, f(x) = x3 is a nonlinear map, but it is not chaotic.] 

 

3.  Detecting Chaos 

 An important reason for the interest in chaotic behavior is that it can 

potentially explain fluctuations in the economy and financial markets which 

appear to be random.  So there is need to test for the presence of chaos.  

Suppose we have a string of data, x1, x2, ..., xt, ..., xT.  [Say these are 

stock returns.]  How can we tell if the data are chaotic? 

 One way to detect chaos is to observe that chaotic maps do not "fill up" 

enough space in high dimension.  To make this concrete, consider two sets of 

data: at is generated by the tent map, and bt is a random variable which is 

uniform on the interval [0,1].  If we plot at in one dimension, the data is 

uniform over [0,1], and so they fill up as much space as does bt.  However, 
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consider the 2-vectors (at-1, at) and (bt-1, bt).  If we plot them in two 

dimensions, the data from the tent map will fall on the tent, while the data 

from the uniform random variable will fall uniformly in the unit square 

[0,1]×[0,1].  In other words, data from the tent map leave large "holes" in 

two dimensional space, while the random data do not. 

 Clearly it is not practical to do this exercise in higher dimensions.  

In order to do detect chaotic behavior, Grassberger and Procaccia (1983a) 

developed the notional of correlation dimension.  This is done in four steps. 

 Step 1.  Remove autocorrelation, if present.  Autocorrelation can effect 

some tests for chaos, so that we must remove it from the data.  This is 

typically done by filtering the raw data using an autoregression, where the 

lag length is selected based on either the Akaike (1974) or Schwarz (1978) 

information criterion. 

 Step 2.  Form n-histories of the filtered data.  These are denoted as 

follows: 

 1-history: x = xt. 

 2-history: x = (xt-1, xt). 

  . 

 n-history: x = (xt-n+1, ..., xt). 

An n-history is a point in n-dimensional space; n is called the "imbedding 

dimension." 

 Step 3.  Calculate the correlation integral: 

 Cn(ε) =  #{ (t,s), 0<t,s,<T:  x - x < ε } / T2,  

where   is the sup- or max- norm.  In words, the correlation integral, 

Cn(ε), is defined as the fraction of pairs, (x,x), which are "close" to each 

other, in the sense that: 
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 maxi=0,...,n-1 { |xs-i-xt-i| }  <  ε. 

 Step 4.  Calculate the slope of the graph of log Cn(ε) versus log ε for 

small values of ε.  More precisely, we want to calculate the following 

quantity: 

 vn = limε→0 log Cn(ε) / log ε. 

If vn does not increase with n, the data is consistent with chaotic behavior. 

 In fact, the Grassberger-Procaccia correlation dimension is defined as: 

 v = limn→∞ vn. 

 The meaning of the correlation dimension becomes clear when we consider 

the tent map.  Since the tent map is uniformly distributed on the interval 

(0,1),  C1(ε) doubles if ε doubles.  Thus, for small values of ε, 

 v1  =  log C1(ε) / log ε  =  1. 

But the 2-histories do not fill up the unit square [0,1]×[0,1].  In fact, all 

the points fall on the tent.  For small values of ε, C2(ε) doubles if ε 

doubles, and so  

 v2  =  log C2(ε) / log ε  =  1. 

This continues to be true for any n, i.e., 

 vn  =  log Cn(ε) / log ε  =  1. 

So, for the tent map, the correlation dimension, v, is 1. 

 Next, apply this to data generated from the random variable uniformly 

distributed on the interval [0,1].  Again, we would find that C1(ε) doubles if 

ε doubles, so 

 v1  =  log C1(ε) / log ε  =  1. 

However, C2(ε) quadruples if ε doubles, and so  

 v2  =  log C2(ε) / log ε  =  2. 

In fact,  
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 vn  =  log Cn(ε) / log ε  =  n. 

For the random process, the correlation dimension, v, is ∞. 

 The correlation dimension therefore is a measure of how much space is 

"filled up" by a string of data.  Here are the Grassberger-Procaccia 

correlation dimensions for the other chaotic maps, given in Grassberger and 

Procaccia (1983a): 

  Logistic  1.00 ± 0.02 

  Hénon   1.22 ± 0.01 

  Lorenz  2.05 ± 0.01 

  Mackey-Glass 7.50 ± 0.15 

 From this, we conclude that the chaotic maps do not full up enough 

space.  This is in fact a generic property of chaotic processes, whenever the 

imbedding dimension is more than twice the correlation dimension.1   

 Although this 4 step procedure sounds straight forward, and has been 

applied by scientists in many problems, a number of issues surface when 

dealing with economic and financial data. 

 

4. What do we find in the stock market? 

 Scheinkman and LeBaron (1989) used the Grassberger-Procaccia plots and 

calculated the correlation dimension of weekly stock returns.  They found that 

the slope of log Cn(ε) versus log ε appears to be around 6, even for 

dimensions as high as 25.  They, however, noted that this is not sufficient 

evidence of chaos in stock returns, because there are a number of problems 

with this graphical procedure. 

 Firstly, the characterization that chaotic processes have finite 

correlation dimension is not a sufficient and necessary condition.  There are 
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degenerate random processes which have finite correlation dimensions.  Also, 

some nonlinear stochastic model, such as Engle's (1982) autoregressive 

conditional heterskedasticity model, exhibit "dependence" in the sense that 

the slope of the graph of lognC(ε) versus log ε increases at a rate slower 

than n, as pointed out by Scheinkman and LeBaron (1989). 

 Secondly, we have only finite amounts of data, which means that there is 

no way to verify that a processes has an infinite correlation dimension.  

Scientists typically use 100,000 or more data points to detect low dimensional 

chaotic system.  Financial economists have substantially fewer points.  The 

largest data sets generally have 2,000 observations.  If we use the imbedding 

 dimension of 10, we have only 200 non-overlapping 10-histories.  It is very 

hard to say whether 200 10-histories "fill up" a 10-dimensional space.  In 

other words, there is no practical way to distinguish between a chaotic 

process with a high correlation dimension (say larger than 10) and a truly 

random process. 

 Thirdly, we have to worry about biases in small data sets.  Ramsey and 

Yuan (1989) show that the slope of the graph of lognC(ε) versus log ε is 

biased downward in small data sets (2,000 or fewer observations).  This biases 

the results in favor of finding chaos, even if there is none. 

 Fourthly, the graphical procedure is not a statistical test.  Ideally, 

we want a way to quantify the accuracy of the correlation dimension.  This is 

not readily available.2  

 

Statistical Test: the BDS Statistic 

 To deal with these problems, Brock, Dechert, and Scheinkman (1987) have 

devised a statistical test.  If {xt: t=1,...,T} is a random sample of 
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independent and identically distributed (IID) observations, then: 

 Cn(ε) = C1(ε)n. 

One can estimate C1(ε) and Cn(ε) by C1,T(ε) and Cn,T(ε), and show that: 

 Wn,T(ε)  =  √T [ Cn,T(ε) - C1,T(ε)n ] / σn,T(ε)   

has a limiting standard normal distribution.  Here, σn,T(ε) is an estimate of 

the asymptotic standard error of [ Cn,T(ε) - C1,T(ε)n ].  We shall refer to Wn,T(ε) 

as the BDS statistic. 

 Note that the statement Cn(ε) = C1(ε)n does not imply IID.  Dechert 

(1988) has several counter examples. 

 Since the BDS statistic is a relatively new procedure, it is useful to 

study its finite sample distribution using monte carlo simulations.  The first 

set of results measure how well the asymptotic distribution approximates the 

finite sample distribution of the BDS statistic.  We generate 1,000 IID 

observations (using a good pseudo random number), apply the BDS test, and 

repeat this 2,000 times.  If we use a 5% significance level, we should reject 

5% of the replications.  Most of these simulations were reported in Hsieh and 

LeBaron (1988).  Table 1 shows that the asymptotic distribution of the BDS 

test at dimension two is a reasonable approximation for IID data from four 

distributions (standard normal, Student t with 3 degrees of freedom, chi-

square with 4 degrees of freedom, and Cauchy), when ε is set between one half 

to two standard deviations of the data.  These distributions were selected 

with the following intentions: the standard normal is the base case; the 

Student t and the Cauchy have very fat tails; and the chi-square is strongly 

skewed.  We also added two unusual distributions: the uniform and the bimodal, 

for which the asymptotic distribution of the BDS does not seem to fit the 

finite sample distribution.  Fortunately, very little financial data look like 
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these two distributions.  The results for dimension five in Table 2 are 

similar with some slight deterioration.  We conclude that the BDS test avoids 

the biases of the correlation dimension estimates. 

 In a second set of simulations, we measure the ability of the BDS 

statistic to detect departures from IID.  Given that there are uncountable 

ways to generate non-IID data, we select models which are interesting 

alternatives, and report the results in Table 3.   

 The first two models represent time series data with linear dependence. 

 The AR1 is the first order autoregressive model, given by: 

 xt = ρ xt-1  +  ut. 

The MA1 is the first order moving average model, given by: 

 xt = θ ut-1  +  ut. 

In the simulations, ut is IID standard normal, ρ=.5, and θ=.5.  The point we 

wish to make here is that the BDS test can detect linear dependence easily.  

To employ BDS as a test for nonlinearity (whether chaotic or stochastic), we 

must remove any linear dependence in the data. 

 The next two models represent data which violate the assumptions of 

strict stationarity and ergodicity.  In the "2-mean" model, the data are 

independent and normally distributed, where the first 500 observations have 

mean -1 and variance 1, and the second 500 observations have mean +1 and 

variance 1.  In the "2-variance" model, the data are also independent and 

normally distributed, where the first 500 observations have mean 0 and 

variance 1, and the second 500 observations have mean 0 and variance 2.  These 

models are examples of "structural changes" or "regime changes".  Table 3 

shows that BDS also has no trouble in detecting them. 

 We consider two nonlinear time series models which have no 
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autocorrelation but non-zero conditional means.  Robinson (1977) proposed the 

nonlinear moving average (NMA) model: 

 xt = ut + α ut-1 ut-2, 

where ut is IID standard normal.
3  In the simulations, α=.5.  The other 

nonlinear time series model is the threshold autoregressive (TAR) model in 

Tong and Lim (1980): 

 xt = α xt-1  +  ut, if xt-1 < 1, 

 xt = β xt-1  +  ut, if xt-1 ≥ 1, 

where ut is IID standard normal.  In the simulations, α=-.4 and β=.5.  Table 3 

shows that BDS can detect the nonlinearity in both the NMA and the TAR. 

 Next, we examine nonlinear time series models with no autocorrelation 

and zero conditional means, but exhibits conditional heteroskedasticity.  As 

discussed earlier, Engle (1982) presented the autoregressive conditional 

heteroskedasticity (ARCH) model: 

 xt = σt ut, 

 σ = φ0 + φ x-1. 

In our simulations, φ0=1 and φ1=.5.  Bollerslev (1986) turned ARCH into 

Generalized ARCH (GARCH) by making σt a function of its own past: 

 σ = φ0 + φ x-1 + ψ σ-1. 

In our simulations, φ0=1 and φ=.1, and ψ=.8.  Nelson (1988) changed GARCH into 

exponential GARCH (EGARCH) by using log st instead of σ: 

 log σ = φ0 + φ |xt-1/σt-1| + ψ log σ-1 + γ xt-1/σt-1 . 

In our simulations, φ0=1 and φ=.1, ψ=.8, and γ=0.  Unlike simple ARCH and 

GARCH, EGARCH is able to capture asymmetric response of the variance to the 

direction of xt, e.g., a higher variance when xt is negative, and a lower 

variance when xt is positive, a phenomenon noted by Black [1976].  We refer to 
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all three as "ARCH-type" models.  These models have enjoyed a great deal of 

attention in the econometric literature, particularly in applications to 

financial time series.4  Table 3 shows that BDS can easily detect the simple 

ARCH and the GARCH models, but has trouble detecting EGARCH. 

 For a chaotic (i.e. nonlinear deterministic) process, we use the Mackey-

Glass equation.  The results for the tent map, logistic map, and Hénon maps 

are similar, and available upon request.  The Mackey-Glass is chosen, because 

it has the highest correlation dimension (7.5) among this group of chaotic 

processes, making it the most difficult to detect.  In addition, its 

correlation dimension is similar to that of weekly stock returns as measured 

by Scheinkman and LeBaron (1989).  To remove any evidence of linear 

dependence, we filter the data using an autoregression with three lags.  

Table 3 shows that BDS has no trouble in picking up the nonlinear dependence 

in the (filtered) Mackey-Glass data.  [We will discuss the "sine" model 

later.] 

 The third set of simulation address the issue of "nuisance" parameters. 

We have already pointed out that we must remove any linear dependence from our 

data before applying the BDS test for nonlinearity.  The question is: will 

linear filtering change either the asymptotic or the finite sample 

distribution of the test statistic?  Brock (1987) proves that the asymptotic 

distribution of the BDS test is not altered by using residuals instead of raw 

data in linear models.  In fact, Brock's theorem can be extended to residuals 

of some nonlinear models (such as the nonlinear moving average), but not to 

ARCH models.  This is confirmed by the simulations in Table 4.  The results 

show that the asymptotic distribution still approximates the finite sample 

distribution with the same degree of accuracy even when replacing raw data 
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with residuals of the AR1, the MA1, and the NMA.  The results also show that 

the BDS test may reject too infrequently in the case of standardized residuals 

from GARCH and EGARCH models. 

 We now apply the BDS test of IID to stock market returns.  Our data are 

 weekly stock returns provided by Peter Rossi using the data from the Center 

for Research in Securities Prices (CRSP) at the University of Chicago, 

beginning in 1963 and ending in 1987.  These data have been carefully 

constructed to include dividend as well as capital gains, and they have also 

been made into different portfolios.  We examine a value weighted index (VW) 

and an equally weighted index (EW).5  In addition, we use ten valued-weighted 

decile portfolios in which firms are ranked by size every quarter.  Results 

are reported for the first (smallest), fifth, and tenth (largest) decile 

portfolios, called DEC1, DEC5, and DEC10.6  All data were first filtered by an 

autoregression whose lag length was determined by the Akaike (1974) 

information criterion.7   

 Table 5 contains some descriptive statistics of these filtered series.  

The filtering procedure removes any nonzero mean from the data.  [The means in 

the raw data are small to begin with.]  The main point to note in this table 

is that all series are leptokurtic --- with the coefficients of kurtosis much 

larger than 3 --- a fact which is well known. 

 Table 6 gives the results of the BDS tests.  They strongly reject the 

hypothesis that stock returns are IID.  This is true for the market as a 

whole, as well as the decile portfolios. 

 What is the implication of the finding that returns are not IID?  

Firstly, it does not contradict market efficiency.  Market efficiency implies 

that forecast errors of returns are not predictable.  The fact that returns 
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themselves are not IID (and therefore potentially predictable) says nothing 

about forecast errors.   

 Secondly, when returns are not IID, it is not appropriate to estimate 

(unconditional) density.  A number of studies have fit leptokurtic 

distributions to stock returns.  For example, Blattberg and Gonedes (1974) 

found that the Student t distribution provides a better fit to stock returns 

than the symmetric stable paretian distribution of Mandelbrot (1963).  Since 

both the stable paretian and the Student t are leptokurtic, the probability of 

observing large returns (in absolute values) is much higher than that using 

the normal distribution.  One may therefore be tempted to "explain" crashes, 

such as that on October 19, 1987, as small but nonzero probability events.8   

 The fact that returns are not IID,9 however, makes this explanation for stock 

market crashes less plausible, because the parameters of these distributions 

were estimated assuming that returns are IID. 

 Thirdly, the rejection of IID does not provide direct evidence of chaos 

in the stock market.  Our simulations in Table 3 show that there are at least 

four types of non-IID behavior: linear dependence, nonstationarity, chaos, and 

nonlinear stochastic processes.  We can rule out linear dependence, since 

there is little of it in the raw returns, and since we have removed whatever 

correlation there is by filtering the return series.  We therefore concentrate 

on the remaining three causes. 

 The rejection of IID is consistent with the view that stock returns are 

nonstationary.  Over a long time period, it is difficult to make a case that 

the behavior of stock returns remains unchanged.  Shift in economic 

fundamentals, e.g. wars, can result in a different mean return (represented by 

the "2-mean" model).  Changes in the operating procedure of the Federal 
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Reserve, e.g. switching from an interest rate to a money supply target during 

1979-1982, can affect the volatility of financial markets (represented by the 

"2-variance" model). 

 The rejection of IID is also consistent with returns being generated by 

nonlinear stochastic systems, e.g. NMA, TAR, and ARCH-type models.  While 

there are few models in economics and finance which lead to nonlinear 

stochastic systems of these specific types, this observation does not imply 

that nonlinear stochastic models are not useful.  The nonlinear moving average 

model can be regarded as a second-order approximation of the Volterra 

representation, which all stationary (linear or nonlinear) time series 

possess.  The threshold autoregressive process can result from an endogenous 

regime switching model.10  The ARCH-type model can be thought of as 

approximating conditional variance changes.11 

 Finally the rejection of IID is also consistent with chaotic behavior in 

stock returns.  Regardless of whether determinism is aesthetically appealing 

or not, there are many ways to generate economic models with chaotic dynamics, 

summarized by Baumol and Benhabib (1989).  If a system is both chaotic and 

stochastic, we shall classify it (arbitrarily) as a stochastic system.  What 

remains for us to do is to try to eliminate two of the three explanations for 

non-IID behavior of stock returns. 

 

5. Is Nonstationarity Responsible for the Rejection of IID? 

 For financial economists, nonstationarity is synonymous with structural 

change.  There may be many reasons for structural changes --- technological 

and financial innovations, policy changes, etc.  It would be difficult to 

argue that the structure of the economic and financial system has remained 
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constant from 1962 to 1987.  So we must allow for the possibility that 

structural changes caused BDS to reject IID during this period.   

 In order to check this explanation, we look at the returns of the 

Standard & Poors 500 stock index (without dividends) for the following time 

periods:  weekly returns from 1962 to 1989 (SPW), daily returns from 1983 to 

1989 (SPD), and 15 minute returns during 1988 divided into 4 approximately 

equal subsamples (SPM1, SPM2, SPM3, SPM4).12  Implicitly, we are assuming that 

structural changes occur infrequently.  By going to higher and higher 

frequency data in shorter and shorter time periods, we should remove the 

effects of structural changes. 

 Table 6 indicates that the weekly S&P returns is not IID, the same as 

the value weighted index over the same period.  What is more interesting, 

however, is that the daily returns in 1982-1989 and the 15-minute returns in 

1988 are also not IID.13  This makes it unlikely that infrequent structural 

changes are causing the rejection of IID in weekly returns.  It is, of course, 

possible that structural changes happen so frequently that they occur in 

minute-to-minute intervals over the course of 3 months.  If this is the true, 

then econometric work on economic and financial data is almost impossible. 

 

6. Is Chaotic Dynamics Responsible for the Rejection of IID? 

 The rejection of IID is certainly consistent with the hypothesis that 

the stock market is governed by chaotic dynamics.  The issue we raise here is 

--- is there any direct evidence of chaotic behavior?  Before we proceed, we 

should point out that there is no way to distinguish complex chaotic dynamics 

(e.g. sophisticated pseudo random number generators) from truly random 

behavior.  But our task is a little bit simpler.  If stock returns are 
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governed by chaotic dynamics, the process generating these dynamics must have 

low complexity, as indicated by the strong rejection of IID by the BDS 

statistics, even at dimension 2. 

 The initial attempt we make is to see if the third order moments of 

stock returns are nonzero, following the suggestion in Hsieh (1989).  If xt is 

a chaotic process, then we can write: 

 xt = f(xt-1,...). 

This is a special case of a more general category of nonlinear processes: 

 xt = f(xt-1,...) + εt, 

where εt is satisfies the condition that E[εt|xt-1,...]=0.  For both models, we 

can consider f() as the mean of xt conditional on its own past.  Since f() is 

nonlinear, these models are "nonlinear-in-mean" (as opposed to "nonlinear-in-

variance", which will be discussed later).  The nonlinearity of f( ) can 

generate much richer dynamics than linear models, and can give rise to "large" 

moves, such as crashes, in stock markets. 

 To test for nonlinearity-in-mean, we pose the null hypothesis that f() 

is identically zero.  This implies that the unconditional third order moments, 

E[xtxt-ixt-j]=0, for i,j>0.  Hsieh (1989) proposes the following test: 

a) Define ρ(i,j) = E[xtxt-ixt-j]/σ3, where σ2=V[xt].  Estimate ρ(i,j) with the 

appropriate sample moments: r(i,j) = [Σ xtxt-ixt-j/T]/ [Σx/T]1.5. 

b) √[r(i,j)-ρ(i,j)] has a limiting distribution N(0,V(i,j)], where 

V(i,j) can be estimated by the method of moments: 

 [Σ {xtxt-ixt-j/T - r(i,j)}
2 ] / [Σx/T]3. 

Hsieh (1989) then tests the null hypothesis that ρ(i,j)=0 individually using a 

t-statistic.  The contribution of this paper is to recognize that one can test 

the composite null hypothesis that ρ(i,j)=0 for 0<i≤j≤m, for a given m, making 
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use of the fact that the asymptotic covariance between r(i,j) and r(i',j') can 

be estimated using the obvious sample cross moments: 

 [Σ {xtxt-ixt-j/T - r(i,j)}{xtxt-i'xt-j'/T - r(i',j')} ] / [Σx/T]3. 

Then the composite test can be conducted using the usual χ2 statistic.14 

 We point out that the test statistic is designed so that it will not 

reject models which are "nonlinear-in-variance": 

 xt = g(xt-1,...)εt.   

Since xt and εt take on both positive and negative values, we cannot take 

logarithms of both sides and transform this model to one having nonlinear-in-

mean.  However, the test should detect hybrid models, those which are 

"nonlinear-in-mean" as well as "nonlinear-in-variance": 

 xt = f(xt-1,...) + g(xt-1,...)εt. 

[The GARCH-in-mean model, where the conditional variance appears also in the 

conditional mean, is such an example.] 

 As in the case of the BDS test, we perform simulations to evaluate the 

finite sample distribution of the third order moment test as well as its 

ability to detect nonlinearity-in-mean.  The results are reported in Table 7. 

  The first 4 models use IID data generated by the standard normal, 

Student t with 3 degrees of freedom, Cauchy, and the chi-square with 4 degrees 

of freedom.  They show that the asymptotic distribution of third order moment 

test approximates the finite sample distribution for 1000 observations 

tolerably well for IID data generated by the standard normal and the χ2(4), 

but rather poorly for the t(3) and the Cauchy.  The latter two distributions 

do not have fourth or higher moments, which are assumed to exist in the 

derivation of the asymptotic distribution of the third order moment test 

statistic.  Thus care must be used when applying the third order moment test 
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to very fat tailed data. 

 The next 5 models have non-IID data, but do not have nonlinearity-in-

mean.  There is a slight tendency for the test to reject too infrequently.  

This is more so for the AR1, MA1, and 2-mean, and less so for the 2-variance 

and EGARCH.   

 The next 4 models (NMA, TAR, filtered Mackey-Glass, and GARCH-in-mean), 

generate non-IID data which have nonlinearity-in-mean and nonzero third order 

moments.  The third order moment test can detect the first 3 models nearly 

100% of the time,15 but the power against the GARCH-in-mean model is low, 

probably because the high order moments of the GARCH-in-mean model does not 

exist. 

 The last simulation uses a model which has nonlinearity-in-mean but zero 

third order moments: 

 xt = sin[xt-1] + εt, 

where εt is IID standard normal.  The simulation shows that the third order 

moment test, as expected, cannot pick up the nonlinearity in this model.  The 

reason is quite simple.  If the conditional means are zero, then the third 

order moments are zero.  However, the converse is not true:  if the third 

order moments are zero, it does not imply that the conditional means are zero. 

 This was first pointed out by Pemberton and Tong (1981).  Note, however, that 

BDS has no trouble in detecting this type of nonlinearity. (See the results in 

Table 3.) 

 We now apply the third order moment test to stock returns.  If we had 

found large test statistics, we would have concluded that stock returns have 

nonlinearity-in-mean.  But Table 8 shows that there is no evidence to reject 

the null hypothesis that stock returns have zero third order moments.  As 
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discussed above, this is not sufficient to rule out that stock returns have 

nonlinearity-in-mean. 

 We therefore turn to nonparametric regressions to try to capture the 

conditional mean directly.  Suppose returns are generated by the following 

model: 

 xt = f(xt-1,...) + εt, 

where f() is nonlinear and εt is IID.  This includes chaotic models as special 

cases, if we set εt=0.  When f() is a smooth function, Stone (1977) showed 

that a large class of nonparametric regressions can be used to fit f() 

consistently as the sample size increases.  There are many ways to implement 

nonparametric regression, for example, kernel estimation, series expansion, 

neural network, and nearest neighbor.  We select the method of locally 

weighted regression (LWR), which is a generalization of nearest neighbor.  LWR 

has been employed by Diebold and Nason (1990) in testing for nonlinearity-in-

mean in exchange rates, and LeBaron (1988) in stock returns. 

 Diebold and Nason (1990) gave a very good description of locally 

weighted regression.  Briefly, the idea is this.  Suppose we want to forecast 

xt+1=f(xt,...).  We have already observed xt, xt-1, etc.  Since the BDS statistic 

indicates that, whenever xt-i was close to xs-i, xt was also close to xs.  We can 

look at the history of returns, find those instances which are close to 

(xt,...), and run a regression to predict xt+1.  Locally weighted regressions 

uses the k nearest neighbors, and a scheme which gives more weight to closer 

observations and less weight to farther observations.  There are a number of 

parameters to be selected.  (a) We must pick the number of nearest neighbors 

to use.  We have tried 10% of all observations, up to 90%, increasing in steps 

of 10%.  (b) We have to select the number of lags of xt to use in 
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approximating f(xt,...).  We use 1 through 5.  (c) We have to choose a 

weighting scheme.  We use the "tricubic" scheme proposed by Cleveland and 

Devlin (1988).16  (d) We need to choose a period for out-of-sample forecasting. 

 For the weekly returns (VW, EW, DEC1, DEC5, DEC10, and SPW), we arbitrarily 

started the forecast at the 1001-st observation and continued through the end. 

 For the daily returns (SPD) we begin the forecast at the 1601-st observation. 

 For the 15-minute returns (SPM1, SPM2, SPM3, SPM4), we begin the forecast at 

the 1401-st observation.  This way, each series has at least 1000 observations 

for the locally weighted regression, and at least 300 observations for out-of-

sample forecasting.   

 Forecastability is measured in terms of root mean squared errors, which 

are reported in Table 9.  The locally weighted regression forecasts are 

compared to the bench mark forecast using a random walk model in prices.  In 

most cases, the random walk model achieves the lowest root mean squared error. 

 In certain instances, e.g., VW, EW, DEC1, and SPM4, some forecasts using 

locally weighted regressions were able to beat the random walk, but the 

reduction in root mean squared error is less than 5%.17  Given the wide range 

of parameter values in choosing the locally weighted regression, we would 

interpret this only as "data-mining" rather than "forecastability." 

 If stock returns are chaotic with low complexity, we should be able to 

use locally weighted regression to forecast returns much better than the 

random walk model of prices.  In addition, our forecasts should improve as the 

forecast horizon becomes shorter and shorter.  Neither of these implications 

seem to be born out by the data.  We do not observe consistently better 

forecasting performance by the locally weighted regressions, and we certainly 

do not improve our forecasting performance when we shorten the forecasting 
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horizon. 

 One possible explanation of the inability of LWR to outperform random 

walk forecasts is that LWR is unable to capture conditional mean changes.  We 

therefore perform a simulation using "2-mean", "2-variance", NMA, TAR, Sine, 

EGARCH, and Mackey-Glass.  We generate 500 observations of each series, and 

begin out-of-sample forecasting at the 451-st observations.  The tricubic 

weighting function is used.  Since the simulations are computationally 

intensive, we use only one choice of k --- 50 nearest neighbors (about 10% of 

the entire sample).  We compare the root mean squared error of the LWR 

forecasts with that of the "random walk" forecast for 2000 replications.  

Table 10 shows that LWR beat the random walk forecast 100% of the time in the 

Mackey-Glass equation, and 95% of the time for the "Sine" model, which was not 

detectable by the third order moment test.  In addition, LWR outperforms 

random walk in the TAR model, even though the f( ) function is not smooth.  

This indicates that LWR has the ability to pick up conditional mean changes. 

 While we did not experiment with different methods of nonparametric 

regressions, we note that other authors have had no more success.  White 

(1988) found that forecasts of IBM stock returns using neural network did not 

outperform the random walk model.  Prescott and Stengos (1988) found that 

forecasts of kernel estimators on gold and silver also could not outperform 

and random walk model. 

 The preponderance of the failure to outperform the random walk model in 

asset markets force us to conclude that there is no strong evidence that the 

movements in stock market is primarily due to conditional mean changes, when 

conditioning on past returns.18  In particular, there is no evidence of low 

complexity chaotic behavior in stock returns.19  Furthermore, this casts doubt 
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on models trying to explain stock price movements as conditional mean changes, 

e.g. time varying risk premium in expected stock returns. 

 

7. Is Conditional Heteroskedasticity Responsible for the Rejection of IID? 

 Next we proceed to consider whether stock returns have nonlinearity-in-

variance: 

 xt = g(xt-1,...) εt, 

where E[εt|xt-1,...]=0 and V[εt|xt-1,...]=1 (without loss of generality).  This is 

a general model of conditional heteroskedasticity, which contain ARCH-type 

models as special cases.   

 There is now growing evidence that stock market volatility is not only 

time-varying [e.g. French, Schwert, and Stambaugh (1987)] but is predictable 

[e.g. Schwert and Sequin (1990)].  A number of papers have used ARCH-type 

models to describe conditional heteroskedasticity [e.g. Bollerslev (1987) and 

Nelson (1988).]  We pose two questions in this section: (a) what is the 

evidence of conditional heteroskedasticity?  (b) Does the conditional 

heteroskedasticity captured by ARCH-type models account for all the 

nonlinearity in stock returns?   

 To answer the first question, observe that if we take the absolute 

values of the previous equation, we obtain: 

 |xt| = |g(xt-1,...)| |εt|. 

If g( ) is differentiable, a Taylor series expansion would yield the result 

that |xt| depends on |xt-i|.  Thus correlation of |xt| with |xt-i| is evidence of 

conditional heteroskedasticity (particularly when xt is not correlated with xt-

i).
20  Table 11 presents the autocorrelations of the absolute valued data. 

There is strong evidence of conditional heteroskedasticity in weekly and daily 
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returns, and somewhat weaker evidence in 15-minute returns.21 

 ARCH-type models have been used to capture conditional 

heteroskedasticity in stock returns, and the typical diagnostic tests (e.g. 

autocorrelation of absolute values and squares of standardized residuals) show 

that they do.  We are, however, interested in a deeper issue: does ARCH-type 

models capture all the nonlinear dependence in stock returns?  To answer this 

question, we fit an EGARCH model to the data: 

 xt ~ N(0,σ), 

 log σ = φ0 + φ |xt-1/σt-1| + ψ log σ-1 + γ xt-1/σt-1. 

EGARCH is chosen over the simpler ARCH or GARCH model for two reasons: (a) 

unlike the simple ARCH or GARCH model, EGARCH does not impose any restrictions 

on the signs of the parameters to guarantee that estimated variances are 

positive, and (b) EGARCH can accommodate conditional skewness discussed in 

Black [1976] which is not allowed in the less flexible ARCH and GARCH models. 

 We use a Berndt, Hall, Hall, and Hausman (1974) procedure with analytic 

derivatives to estimate this model. 

 If the EGARCH model is correctly specified, the standardized residuals: 

 zt = xt/t, 

should be IID in large samples.  Here, t is the fitted value of the standard 

deviation from the variance equation.  Thus BDS can be used as on the 

standardized residuals to test if EGARCH captures all nonlinear dependence in 

stock returns. 

 Table 12 shows that the BDS statistics on the standardized residuals are 

much smaller than those of the raw data.  Only a few statistics are 

significant, if we use the asymptotic distribution.  The trouble is that the 

asymptotic distribution of the BDS statistic cannot be used when dealing with 
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ARCH, GARCH, and EGARCH standardized residuals, a point made in Table 5.  

Therefore, we use the bootstrap critical values of the BDS statistic from the 

simulations.  The 2.5% and 97.5% critical values are given in Table 13.  Based 

on these critical values, the only series to pass the BDS diagnostic is the 

smallest decile portfolio, DEC1.  All the other series contain several BDS 

statistics which are outside the 5% critical range.  In particular, the daily 

S&P returns have the worst fit, failing the BDS diagnostic every time.  There 

is sufficient evidence here to indicate that the EGARCH model cannot 

completely account for all nonlinearity in stock returns.  

 One problem with ARCH-type models is that the variance equation does not 

contain an innovation.  To obtain a more general model, we add a stochastic 

term in the variance equation, leading to the following specification for 

stock returns: 

 xt = σt zt, 

where zt is an IID random variable, and σt evolves according to: 

 log σt = β0 + Σi βi log σt-i + vt, 

where vt is IID, independent of zt. 

 It is appropriate here to contrast this model with the mixture models in 

the earlier stock market literature.  Blattberg and Gonedes (1974) pointed out 

that the symmetric stable distribution is obtained from a normal distribution 

whose variance is drawn from a strictly positive stable distribution, that the 

Student t is obtained from a normal distribution whose variance is drawn from 

an inverted gamma distribution, and that Clark's (1973) model is a normal 

distribution whose variance is drawn from a log normal distribution.  Thus, 

all there mixture models can be written in the form: xt = σt zt, where zt is IID 

standard normal, and σt is another IID random variable.  In these cases, xt 
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exhibits neither conditional heteroskedasticity or nonlinear dependence.  Our 

more general specification allows for conditional heteroskedasticity (which is 

a form of nonlinear dependence). 

 To test the variance specification, we construct daily standard 

deviations of returns from April 21, 1982 to September 30, 1989, using the 15-

minute data, after removing the serial correlation.  Figure 5 is a plot of the 

logarithms of the daily standard deviations.  Note that, while the volatility 

on October 19 and 20, 1987, were considered to be "huge" at the time, they did 

not show up as "outliers" in the logarithms.  In fact, the volatility leading 

up to those days had been on the rise.  This is consistent with the 

diagnostics on the least squares residuals.  Using the Schwarz criterion, we 

determine the lag length to be 5 [the Akaike criterion led to very long lags.] 

 The least squares fit is as follows: 

log σt = - .8577 + .2385 log σt-1 + .1298 log σt-2 + .1129 log σt-3  

          (.1064) (.0229)          (.0236)          (.0236) 

         + .1515 log σt-4 + .1386 log σt-5 

          (.0236)          (.0229) 

          R2 = .4127. 

There is clearly mean reversion in volatility. 

 We ran the BDS test on the residuals to test for the appropriateness of 

the linear model.  Table 14 shows that the BDS statistics are very small, 

giving no evidence of nonlinearity.  Furthermore, it is interesting to note 

that the coefficient of kurtosis of the residuals is 3.49, not much higher 

than 3.  There does not appear to be extreme points. 

 In the last step we check whether this model of conditional 

heteroskedasticity can capture the nonlinear dependence in stock returns.  We 
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standardize daily returns with the fitted values t from the variance equation: 

 zt = xt/t.  [Note that xt here is the raw data, not the linearly filtered 

data.]  We then remove linear dependence in zt (possibly due to asynchronous 

trading) using an AR1.  This lag length was identified by both the Akaike and 

the Schwarz criterion.  Table 14 contains the final diagnostics of this model. 

 It shows that the BDS statistics are substantially lower than those in Table 

12 (for SPD).  If we use the asymptotic distribution of the BDS test, we do 

not reject the model.  Even if we apply a more stringent rejection criterion 

and use the critical values in Table 13, we could reject only 1 BDS statistic 

--- at dimension 2, when ε/σ=2.  In either case, we believe that the more 

flexible variance specification provides a much better description of the 

nonlinear dependence in daily stock returns.   

 This model gives rise to some interesting possibilities.  First, the 

more flexible model of conditional heteroskedasticity fits the data much 

better, in the sense that it captures all of the nonlinear dependence in daily 

stock returns.  Second, the mean reversion in volatility means that one can 

forecast future volatility based on past volatility.  Third, the standardized 

data (after dividing by expected volatility) still has fatter tails than the 

normal distribution, as indicated in Table 14.  Since these standardized data 

are IID, we can obtain a nonparametric estimate of their density, which can 

then be used to make probability statements that are useful in, say, setting 

margin requirements for stock returns. 

 

8. Concluding Remarks 

 We have found that stock returns are not IID.  The evidence points to 

conditional heteroskedasticity as the cause of the rejection of IID.  While we 
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 find that ARCH-type models do not fully describe the nonlinearity in stock 

returns, a more flexible model of conditional heteroskedasticity can.  These 

findings have many interesting implications.  One, we should not fit 

unconditional density functions on stock returns when these procedures assume 

that returns are IID.  We must first remove the nonlinear dependence.  Two, if 

we are interested to model nonlinearity in stock returns, we should direct our 

efforts not at modeling conditional mean changes (which include chaotic 

dynamics), but at modeling conditional heteroskedasticity.  Three, if the 

flexible conditional heteroskedasticity model holds up under future analysis, 

it can provide conditional volatility forecasts.  Those, together with a 

nonparametric estimate of the density of the standardized residuals, can give 

a conditional probability distribution, which would be useful in various 

contexts. 
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Notes  
1.  See the discussion in Brock (1986) and the proof in Takens (1980). 

2.  Denker and Keller (1986) and Brock and Baek (1990) provide ways to do this. 

3.  The nonlinear moving average is very similar to the bilinear model in 
Granger and Andersen (1978). 

4.  See the survey article by Bollerslev, et. al. (1990). 

5.  We also examined the value and equally weighted indices in excess of a 
Treasury bill return.  The results did not differ from the raw indices, and so 
were not reported. 

6.  The results are the same using equally weighted decile portfolios. 

7.  The Schwarz (1978) information criterion was also used.  The lags 
identified by the Akaike (Schwarz) information criterion are: 
VW 1 (1), EW 2 (1), DEC1 7 (1), DEC5 2 (1), DEC10 1 (0).  Since there are large 
numbers of degrees of freedom in our data, we used the longer lags identified 
by the Akaike information criterion. 

8.  Table 1 in Fama and Roll (1968) shows that the probability of observing an 
outcome in excess of 6 standardized units is 5.36% for the Cauchy distribution, 
compared to almost 0% for the normal distribution. In fact, the probability of 
an outcome in excess of 20 standardized units is 1.59% for the Cauchy 
distribution! 

9.  Note that the Cauchy distribution is a member of the stable paretian 
family.  The simulations in Table 1 show that the asymptotic distribution of 
the BDS statistic can still approximate the finite distribution well, even 
though the Cauchy distribution has no moments. 
  

10.  See Hsieh (1990). 

11.  See Nelson (1989) for a discussion. 

12.  These are logarithmic differences of price changes.  They are filtered by 
an autoregression whose lags are chosen by the Akaike (Schwarz) criterion to 
be:  weekly returns, 6 (0), daily returns, 5 (0), and 15 minute returns, 4 (1). 
 Since we have a large number of degrees of freedom, we use the longer lag 
lengths. 

13.  It is possible that the 15-minute return is capturing some nonlinear 
dynamics from the micromarket structure.  This will have to be studied in the 
future. 
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14.  We note that this test can fail to detect a chaotic process whose odd 
product moments are zero.  This can happen if the function f() is anti-
symmetric.  This is not true for any of the chaotic models in this paper. 

15.  We also reject 100% of the replications using the tent map, the Hénon map, 
and the logistic map (when α=4). 

16.  We have experiment briefly with nearest neighbor, which is a rectangular 
weighting scheme.  The results are similar to those using the tricubic 
weighting function. 

17.  These results are consistent with the findings in LeBaron (1988). 

18.  These results could change if we increase the information set to include 
variables other than past returns. 

19.  Even if we had found evidence of chaotic behavior, estimating the unknown 
 parameters of a chaotic map is next to impossible.  See Geweke (1989) for a 
discussion. 

20.  The same argument shows that x would be correlated with x-i under 
conditional heteroskedasticity.  See Engle (1982) and McLeod and Li (1983). 

21.  We point out here that the evidence is consistent with conditional 
heteroskedasticity.  But it does not rule out even higher order dependence 
(e.g. conditional skewness, conditional kurtosis).   
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Figure 1.  Tent Map 
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Figure 2. Stretch and Fold 



 

 

Figure 3.  Diadic Map 
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Figure 4.  Stretch, Cut, and Stack 



Figure 5.  Logarithm of Daily Standard Deviation of S&P500 Index 


