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1. Introduction

After the stock market crash of Cctober 19, 1987, interest in nonlinear
dynam cs, especially determnistic chaotic dynam cs, has increased in both the
financial press and the academic literature. This has cone about because the
frequency of large noves in stock markets is greater than would be expected
under a nornmal distribution. There are a nunber of possible explanations. A
popul ar one is that the stock market is governed by chaotic dynam cs. Wat
exactly is chaos and howis it related to nonlinear dynam cs? How does one
detect chaos? |Is there chaos in financial markets? Are there other
expl anati ons of the novenents of financial prices other than chaos? The

purpose of this paper is to explore these issues.

2. \What is Chaos?

Chaos is a nonlinear determnistic process which "looks" random There
is a very good description of chaos and its origins in the popul ar book by
James deick (1987), entitled Chaos: Making a New Science. Also, Baunol and

Benhabi b (1989) gives a good survey of econom ¢ nodels which produce chaotic

behavi or.
Chaos is interesting for several reasons. In the business cycle
literature, there are two ways to generate output fluctuations. In the Box-

Jenkins tinmes series nodels, the econony has a stable equilibrium but is
constantly facing external shocks (e.g. wars, weather) which perturb it from
the equilibrium The econony fluctuates because of these external shocks, in
t he absence of which the econony will settle into a steady state. 1In the
chaotic growt h nodels, the econony follows nonlinear dynam cs, which are self-
generating and never die down. External shocks are not needed to cause
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econom ¢ fluctuations, which are part of the dynam cs of the econony.

In the financial press, stock nmarket analysts are always | ooking for
expl anations of |arge novenents in asset prices, such as the Cctober 19, 1987
stock market crash. One explanation of the crash was that there was sone
(unantici pated) news which caused investors to drastically mark down the val ue
of equities. Another explanation was that the stock market is a chaotic
process which, as we shall see below, is characterized by occasional |arge
novenent s.

To get sone ideas about the behavior of chaotic processes, we can
consi der several exanples.
Tent Map

The sinpl est chaotic process is the tent map. Pick a nunmber x, between
0 and 1. Then generate the sequence of nunmbers x, using the follow ng rule:
if x

X = 2 X < 0.5,

t-17 t-1

X

. 2 (1-%x.,),if x_, > 0.5.

t-1 =

The tent map is so naned because the graph of X, versus x,, is shaped like a

1
“tent", as shown in Figure 1. Note that x, is a nonlinear function of x, _,.
Intuitively, the tent map takes the interval [0,1], stretches it to
twice the length, and folds it in half, as illustrated in Figure 2. Repeated
application of stretching and folding pulls apart points close to each ot her
This makes prediction difficult, thus creating the illusion of randomess.
There are four inmportant properties of the tent map. One, {x} fills up
the unit interval [0,1] uniformy as t_,, Technically, this neans that the
fraction of points in {x} falling into an interval (a,b) is (b-a) for any
O<a<b<l. Two, any small error in nmeasuring the initial x, will be conpounded

in forecasts of x, exponentially fast. Suppose we only know that x, is in [a-
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s,ats]. If we try to forecast x, into the future, all we knowis that x, lies
in[0,1] as t_y»n. Three, x, appears stochastic even though it is a

determ nistic process, in the sense that the enpirical autocovariance function
oK) = Elxx. ] =1lim,, s5,XX_ /T =20, which is the same as that of white

noi se. Four, x, will have a series of snall increases, and then it suddenly

declines ("crashes?") sharply.

Pseudo Random Nunber Generators

A nmore "randont chaotic system can be obtained using the ideas of the
tent map. Here is an exanple of a pseudo random nunber generator, which is
very frequently used in conputer prograns. Take a nunber A (say 7°) and a
| arge prime nunber P (say 2%-1). Pick any nunmber z, called a "seed", between
0 and P. Generate new seeds using the follow ng rule:

z = Az

t

., (mod P)
Generat e the sequence:

X, = zIP.

Then x, is "uniformy distributed' on the interval (0,1), in the same way as
is the tent map.

It turns out that this method creates pseudo random nunbers which are
much nore "random | ooki ng" than the tent map. This pseudo random nunber
generator can be related to the tent map as follows. First, we nodify the
“"tent" pattern in Figure 1 to the "diadic map" in Figure 3. This changes the
"stretch and fold" action of the tent map to "stretch, cut, and stack," as
illustrated in Figure 4. Second, we increase the nunber of teeth fromtwo to

7°. By this time, the graph of this map appears to "fill up" the space in the

unit square, and is the reason why it appears to be nuch nore random



Logi stic Map

O her chaotic maps are frequently nentioned. The logistic nap is
slightly nore conplex than the tent map. Again, select x, between 0 and 1,
and generate the sequence of x, according to:

X, = A X, (1-x.),
where A is between 0 and 4. For snall values of A the systemis stable and
wel | behaved. But as the value of A approaches 4, the system becones chaotic.
The logistic map adds a fifth property to chaotic behavior, that the dynam cs
of a system depends on a paraneter (Ain this case). For sone values of the
paranmeter, the dynanmcs nmay be sinple, while for other values, the dynam cs
may be chaoti c.
Hénon Map

Both the tent map and the logistic map are univariate chaotic systens.

The Hénon map is a bivariate chaotic system described by a pair of difference

equati ons:
Xy = y., +1- Ax,, A=1.14
Y. = B X, . B=0.3
Lorenz Map

The Lorenz map is a trivariate chaotic system Notice that it is a

system of differential equations, rather than difference equations.

= a(y-x), a = 10,
= -y - x2z- bx, b = 28,
= Xy - cC z, c = 8/3.

Mackey- d ass Equati on

The above chaotic maps generate "l ow di mensional" chaos, which neans
that the nonlinear structure is easily detected, as we shall show | ater.
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There are, however, "high dinensional" chaotic systens which are nuch harder
to detect. The Mackey-d ass equation is such an exanple. It is a "del ayed"
differential equation, given by:

ax(t-c)

(t) = ————— - bx(t) a=0.2, b=0.1, c=100.
1+ x(t-c)*

Ceneral Chaotic Maps

In general, chaotic maps are obtained by a determnistic rule:

X = f(x, ., X

t

In order to generate chaotic behavior, f( ) nust be a nonlinear function

t-17

If f( ) is linear, then either x, will converge to a nunber (called a
fixed point), or x, will cycle with a fixed period, or x, will expl ode.
Therefore, if f( ) is a chaotic map, it nust be nonlinear. Note, however,
that nonlinearity alone is not sufficient to generate chaotic behavior. [For

exanple, f(x) = x*is a nonlinear map, but it is not chaotic.]

3. Detecting Chaos
An inportant reason for the interest in chaotic behavior is that it can
potentially explain fluctuations in the econony and financi al nmarkets which

appear to be random So there is need to test for the presence of chaos.

Suppose we have a string of data, x, X, ..., X, ..., X,. [Say these are
stock returns.] How can we tell if the data are chaotic?
One way to detect chaos is to observe that chaotic maps do not "fill up"

enough space in high dinmension. To nmake this concrete, consider two sets of
data: a, is generated by the tent map, and b, is a randomvariable which is
uniformon the interval [0,1]. If we plot a in one dinmension, the data is
uni formover [0,1], and so they fill up as much space as does b,. However,
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consi der the 2-vectors (a,_, &) and (b, b). If we plot themin two
di rensions, the data fromthe tent map will fall on the tent, while the data
fromthe uniformrandomvariable will fall uniformy in the unit square
[0,1] x[0,1]. In other words, data fromthe tent map | eave large "holes" in
two di nensi onal space, while the random data do not.
Clearly it is not practical to do this exercise in higher dinensions.
In order to do detect chaotic behavior, G assberger and Procaccia (1983a)
devel oped the notional of correlation dinmension. This is done in four steps.
Step 1. Renpve autocorrelation, if present. Autocorrelation can effect
some tests for chaos, so that we nust renove it fromthe data. This is
typically done by filtering the raw data using an autoregression, where the
lag length is selected based on either the Akai ke (1974) or Schwarz (1978)
information criterion

Step 2. Formn-histories of the filtered data. These are denoted as

fol | ows:
1-history: X = X,.
2-history: x = (X X,).
n-history: x = (X - e s X))

An n-history is a point in n-dinensional space; n is called the "inbedding
di mension. "

Step 3. Calculate the correlation integral

C(e) = # (t,s), O<t,s,<T: |x - x| <e} [/ T,
where | | is the sup- or max- norm In words, the correlation integral
C(e), is defined as the fraction of pairs, (x,x), which are "close" to each

other, in the sense that:



Step 4. Calculate the slope of the graph of log C(¢) versus log ¢ for
smal | values of ¢. More precisely, we want to calculate the follow ng

quantity:

v, lim, log C(¢) / log e.
If v, does not increase with n, the data is consistent with chaotic behavior

In fact, the G assberger-Procaccia correlation dinension is defined as:

v = lim, v,

The nmeani ng of the correl ation di nensi on becones cl ear when we consi der
the tent map. Since the tent map is uniformy distributed on the interval
(0,1), C(e) doubles if ¢ doubles. Thus, for snall values of ¢,

v, = log C(e) / log ¢ = 1.

But the 2-histories do not fill up the unit square [0,1]x[0,1]. In fact, al
the points fall on the tent. For small values of ¢, C(¢) doubles if ¢

doubl es, and so

v, = log C(e) / log ¢ = 1.
This continues to be true for any n, i.e.
v, = log C(e) / log ¢ = 1.

So, for the tent map, the correlation dinension, v, is 1

Next, apply this to data generated fromthe randomvariable uniformy
distributed on the interval [0,1]. Again, we would find that C(¢) doubles if
¢ doubles, so

v, = log C(e) / log ¢ = 1.
However, C/(¢) quadruples if ¢ doubles, and so

v, = log C(e) / log ¢ = 2.

In fact,



v, = log C(e) / log e = n.
For the random process, the correlation dinension, v, is 4.

The correlation dinmension therefore is a neasure of how nuch space is
"filled up" by a string of data. Here are the Grassberger-Procaccia

correlation dinensions for the other chaotic maps, given in Gassberger and

Procacci a (1983a):

Logistic 1.00 + 0.02
Hénon 1.22 + 0.01
Lorenz 2.05 £ 0.01
Mackey- d ass 7.50 £ 0.15

Fromthis, we conclude that the chaotic maps do not full up enough
space. This is in fact a generic property of chaotic processes, whenever the
i mbeddi ng dimension is nore than twice the correl ation dinension.*

Al t hough this 4 step procedure sounds straight forward, and has been
applied by scientists in nany problens, a nunber of issues surface when

dealing with econom c and financi al data.

4. What do we find in the stock market?

Schei nknan and LeBaron (1989) used the Grassberger-Procaccia plots and
cal cul ated the correlation dinension of weekly stock returns. They found that
the slope of log C(¢) versus log ¢ appears to be around 6, even for
di mensions as high as 25. They, however, noted that this is not sufficient
evi dence of chaos in stock returns, because there are a nunber of problens
with this graphical procedure.

Firstly, the characterization that chaotic processes have finite
correlation dinension is not a sufficient and necessary condition. There are
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degenerat e random processes which have finite correlation dinensions. Also,
sone nonlinear stochastic nodel, such as Engle's (1982) autoregressive
conditional heterskedasticity nodel, exhibit "dependence" in the sense that
the slope of the graph of 10g,C(e) versus log ¢ increases at a rate slower
than n, as pointed out by Schei nkman and LeBaron (1989).

Secondly, we have only finite ambunts of data, which neans that there is
no way to verify that a processes has an infinite correlation dinmension
Scientists typically use 100,000 or nore data points to detect |ow di mensional

chaotic system Financial econom sts have substantially fewer points. The

| argest data sets generally have 2,000 observations. |If we use the inbedding
di mensi on of 10, we have only 200 non-overl apping 10-histories. It is very
hard to say whether 200 10-histories "fill up" a 10-di nensional space. In

other words, there is no practical way to distinguish between a chaotic
process with a high correlation dinmension (say |larger than 10) and a truly
random pr ocess.

Thirdly, we have to worry about biases in snall data sets. Ransey and
Yuan (1989) show that the slope of the graph of 109,C(¢) versus log ¢ is
bi ased downward in small data sets (2,000 or fewer observations). This biases
the results in favor of finding chaos, even if there is none.

Fourthly, the graphical procedure is not a statistical test. Ideally,
we want a way to quantify the accuracy of the correlation dinension. This is

not readily avail able.?

Statistical Test: the BDS Statistic
To deal with these problens, Brock, Dechert, and Schei nkman (1987) have
devised a statistical test. |If {x: t=1,...,T} is a random sanpl e of
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i ndependent and identically distributed (I1D) observations, then:

C(e) = C(e)"

One can estimate C(¢) and C(e) by C (&) and C (¢), and show that:

We) = T[ CGe) - Ce)"]1 [ o,4(¢)
has a linmiting standard normal distribution. Here, o, (¢) is an estimte of
the asynptotic standard error of [ C (¢) - C (e)"]1. W shall refer to W (¢)
as the BDS statistic.

Note that the statenent C(e) = C(e)" does not inply 11D. Dechert
(1988) has several counter exanpl es.

Since the BDS statistic is a relatively new procedure, it is useful to
study its finite sanple distribution using nonte carlo sinulations. The first
set of results neasure how well the asynptotic distribution approxinmtes the
finite sanple distribution of the BDS statistic. W generate 1,000 IID
observations (using a good pseudo random nunber), apply the BDS test, and
repeat this 2,000 tines. |If we use a 5%significance |evel, we should reject
5% of the replications. Mst of these sinulations were reported in Hsieh and
LeBaron (1988). Table 1 shows that the asynptotic distribution of the BDS
test at dinension two is a reasonable approximtion for 11D data from four
di stributions (standard normal, Student t with 3 degrees of freedom chi-
square with 4 degrees of freedom and Cauchy), when ¢ is set between one half
to two standard deviations of the data. These distributions were selected
with the following intentions: the standard nornmal is the base case; the
Student t and the Cauchy have very fat tails; and the chi-square is strongly
skewed. W al so added two unusual distributions: the uniformand the binodal,
for which the asynptotic distribution of the BDS does not seemto fit the
finite sanple distribution. Fortunately, very little financial data |ook |ike

-11-



these two distributions. The results for dinmension five in Table 2 are
simlar with sone slight deterioration. W conclude that the BDS test avoids
the biases of the correlation dimension estinates.

In a second set of sinulations, we neasure the ability of the BDS
statistic to detect departures fromlID. Gven that there are uncountable
ways to generate non-11D data, we select nodels which are interesting
alternatives, and report the results in Table 3.

The first two nbdels represent tinme series data with |inear dependence.

The ARl is the first order autoregressive nodel, given by:

X, = o X, + u.
The MAL is the first order noving average nodel, given by:

X = 6 u., + u.

t t

In the sinulations, u, is Il D standard nornal, p=.5, and e=.5. The point we

t
wi sh to nake here is that the BDS test can detect |inear dependence easily.
To enploy BDS as a test for nonlinearity (whether chaotic or stochastic), we
nust renove any |inear dependence in the data.

The next two nodel s represent data which violate the assunptions of
strict stationarity and ergodicity. In the "2-mean" nodel, the data are
i ndependent and nornal ly distributed, where the first 500 observati ons have
nean -1 and variance 1, and the second 500 observations have nean +1 and
variance 1. In the "2-variance" nodel, the data are al so i ndependent and
normal Iy distributed, where the first 500 observations have nean 0 and
variance 1, and the second 500 observations have nean 0 and variance 2. These
nodel s are exanpl es of "structural changes" or "regi ne changes". Table 3
shows that BDS al so has no trouble in detecting them

We consider two nonlinear tinme series nodels which have no
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aut ocorrel ati on but non-zero conditional neans. Robinson (1977) proposed the

nonl i near novi ng average (NMA) nodel :

X = ul + o ul*l ul—Z’

t

where u, is 11D standard normal.° In the sinulations, o=.5. The other

nonlinear tinme series nodel is the threshold autoregressive (TAR) nodel in

Tong and Lim (1980):

X, = o X, + u, if x_, <1,
Xl = B Xl—l + ul’ If X1,1 Z 11
where u, is IID standard normal. In the sinulations, «=-.4 and p=.5. Table 3

shows that BDS can detect the nonlinearity in both the NVA and the TAR
Next, we exami ne nonlinear tinme series nodels with no autocorrelation
and zero conditional neans, but exhibits conditional heteroskedasticity. As

di scussed earlier, Engle (1982) presented the autoregressive conditiona

het er oskedasticity (ARCH) nodel :

X, = o, U,
o=@, t o X,
In our sinmulations, ¢,=1 and ¢,=.5. Bollerslev (1986) turned ARCH into
Generalized ARCH (GARCH) by meking o, a function of its own past:
o=@, t o X, +t U o,
In our sinulations, ¢,=1 and ¢=.1, and y=.8. Nelson (1988) changed GARCH into
exponential GARCH (EGARCH) by using log s, instead of o
log 6 = ¢, + ¢ | X Jo, *+vlog o, + v xX_ /o, -
I'n our sinmulations, ¢,=1 and ¢=.1, ¢=.8, and y=0. Unlike sinple ARCH and
GARCH, EGARCH is able to capture asymretric response of the variance to the
direction of x, e.g., a higher variance when x, is negative, and a | ower

variance when x, is positive, a phenomenon noted by Black [1976]. W refer to
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all three as "ARCH type" nobdels. These nodels have enjoyed a great deal of
attention in the econonetric literature, particularly in applications to
financial tine series.® Table 3 shows that BDS can easily detect the sinple
ARCH and the GARCH nodel s, but has troubl e detecting EGARCH

For a chaotic (i.e. nonlinear determnistic) process, we use the Mackey-
d ass equation. The results for the tent map, |ogistic map, and Hénon maps
are simlar, and avail able upon request. The Mackey-d ass is chosen, because
it has the highest correlation dinension (7.5) anong this group of chaotic
processes, nmaking it the nmost difficult to detect. In addition, its
correlation dinension is simlar to that of weekly stock returns as neasured
by Schei nknman and LeBaron (1989). To renpove any evi dence of |inear
dependence, we filter the data using an autoregression with three |ags.
Tabl e 3 shows that BDS has no trouble in picking up the nonlinear dependence
inthe (filtered) Mackey-d ass data. [We will discuss the "sine" node
later.]

The third set of sinulation address the issue of "nuisance" paraneters.
We have already pointed out that we nust renove any |inear dependence from our
data before applying the BDS test for nonlinearity. The question is: wll
linear filtering change either the asynptotic or the finite sanple
distribution of the test statistic? Brock (1987) proves that the asynptotic
distribution of the BDS test is not altered by using residuals instead of raw
data in linear nodels. |In fact, Brock's theorem can be extended to residuals
of sonme nonlinear nodels (such as the nonlinear noving average), but not to
ARCH nodels. This is confirmed by the simulations in Table 4. The results
show that the asynptotic distribution still approxinmates the finite sanple
distribution with the same degree of accuracy even when replacing raw data
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with residuals of the ARL, the MAL, and the NMA. The results al so show t hat
the BDS test may reject too infrequently in the case of standardized residuals
from GARCH and EGARCH nodel s.

We now apply the BDS test of IIDto stock narket returns. CQur data are
weekly stock returns provided by Peter Rossi using the data fromthe Center
for Research in Securities Prices (CRSP) at the University of Chicago,
beginning in 1963 and ending in 1987. These data have been carefully
constructed to include dividend as well as capital gains, and they have al so
been nade into different portfolios. W exanine a value weighted i ndex (VW
and an equally weighted index (EW.° In addition, we use ten val ued-wei ghted
decile portfolios in which firns are ranked by size every quarter. Results
are reported for the first (smallest), fifth, and tenth (largest) decile
portfolios, called DECl, DEC5, and DECLO0.° Al data were first filtered by an
aut or egressi on whose lag | ength was deternm ned by the Akai ke (1974)
information criterion.’

Table 5 contains sone descriptive statistics of these filtered series.
The filtering procedure renmoves any nonzero nean fromthe data. [The neans in
the raw data are small to begin with.] The main point to note in this table
is that all series are leptokurtic --- with the coefficients of kurtosis nuch
larger than 3 --- a fact which is well known.

Table 6 gives the results of the BDS tests. They strongly reject the
hypot hesi s that stock returns are IID. This is true for the market as a
whol e, as well as the decile portfolios.

VWhat is the inplication of the finding that returns are not |1D?
Firstly, it does not contradict market efficiency. Market efficiency inplies
that forecast errors of returns are not predictable. The fact that returns
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t hensel ves are not I1D (and therefore potentially predictable) says nothing
about forecast errors.

Secondly, when returns are not IID, it is not appropriate to estinate
(unconditional) density. A number of studies have fit |eptokurtic
distributions to stock returns. For exanple, Blattberg and Gonedes (1974)
found that the Student t distribution provides a better fit to stock returns
than the symetric stable paretian distribution of Mandel brot (1963). Since
both the stable paretian and the Student t are leptokurtic, the probability of
observing large returns (in absolute values) is nmuch higher than that using
the normal distribution. One may therefore be tenpted to "explain" crashes,
such as that on Cctober 19, 1987, as small but nonzero probability events.®

The fact that returns are not 11D, ° however, nakes this explanation for stock
mar ket crashes | ess pl ausi bl e, because the parameters of these distributions
were estimated assumng that returns are |ID

Thirdly, the rejection of 11D does not provide direct evidence of chaos
in the stock market. Qur sinulations in Table 3 show that there are at |east
four types of non-11D behavior: |inear dependence, nonstationarity, chaos, and
nonl i near stochastic processes. W can rule out |inear dependence, since
there is little of it in the rawreturns, and since we have renpved what ever
correlation there is by filtering the return series. W therefore concentrate
on the remaining three causes.

The rejection of IIDis consistent with the view that stock returns are
nonstationary. Over a long time period, it is difficult to nake a case that
t he behavi or of stock returns renmains unchanged. Shift in economc
fundanmentals, e.g. wars, can result in a different nmean return (represented by
the "2-nmean" nodel). Changes in the operating procedure of the Federa
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Reserve, e.g. switching froman interest rate to a noney supply target during
1979- 1982, can affect the volatility of financial markets (represented by the
"2-variance" nodel).

The rejection of IIDis also consistent with returns bei ng generated by
nonl i near stochastic systens, e.g. NMA, TAR, and ARCH type nodels. Wile
there are few nodels in econonmics and finance which | ead to nonlinear
stochastic systens of these specific types, this observation does not inply
that nonlinear stochastic nodels are not useful. The nonlinear noving average
nodel can be regarded as a second-order approximation of the Volterra
representation, which all stationary (linear or nonlinear) time series
possess. The threshol d autoregressive process can result from an endogenous
regi me switching nodel.” The ARCHtype nodel can be thought of as
appr oxi mati ng conditional variance changes.™

Finally the rejection of IIDis also consistent with chaotic behavior in
stock returns. Regardless of whether determnismis aesthetically appealing
or not, there are many ways to generate econom c nodels with chaotic dynam cs,
sunmmari zed by Baunol and Benhabib (1989). |If a systemis both chaotic and
stochastic, we shall classify it (arbitrarily) as a stochastic system \Wat
remains for us to dois totry to elimnate two of the three explanations for

non-11D behavi or of stock returns.

5. Is Nonstationarity Responsible for the Rejection of |ID?

For financial econonmists, nonstationarity is synonynous with structura
change. There may be many reasons for structural changes --- technol ogica
and financial innovations, policy changes, etc. It would be difficult to
argue that the structure of the econom c and financial system has renmi ned
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constant from 1962 to 1987. So we nust allow for the possibility that
structural changes caused BDS to reject 11D during this period.

In order to check this explanation, we |ook at the returns of the
Standard & Poors 500 stock index (w thout dividends) for the followi ng tine
periods: weekly returns from1962 to 1989 (SPW, daily returns from1983 to
1989 (SPD), and 15 minute returns during 1988 divided into 4 approxi mately
equal subsanples (SPML, SPM2, SPMB, SPWM4).* Inplicitly, we are assum ng that
structural changes occur infrequently. By going to higher and higher
frequency data in shorter and shorter tine periods, we should renove the
ef fects of structural changes.

Table 6 indicates that the weekly S&P returns is not IID, the sane as
t he val ue wei ghted index over the sane period. Wat is nore interesting,
however, is that the daily returns in 1982-1989 and the 15-minute returns in
1988 are also not IID. " This nakes it unlikely that infrequent structura
changes are causing the rejection of IIDin weekly returns. It is, of course,
possi bl e that structural changes happen so frequently that they occur in
mnute-to-mnute intervals over the course of 3 nmonths. If this is the true,

t hen econonetric work on econonic and financial data is al nost inpossible.

6. |s Chaotic Dynam cs Responsible for the Rejection of I1D?

The rejection of IIDis certainly consistent with the hypothesis that
the stock market is governed by chaotic dynamics. The issue we raise here is
--- is there any direct evidence of chaotic behavior? Before we proceed, we
shoul d point out that there is no way to distingui sh conplex chaotic dynam cs
(e.g. sophisticated pseudo random nunber generators) fromtruly random
behavior. But our task is a little bit sinpler. |If stock returns are
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governed by chaotic dynam cs, the process generating these dynam cs nust have
| ow conplexity, as indicated by the strong rejection of 11D by the BDS
statistics, even at dinension 2.

The initial attenpt we nmake is to see if the third order nonents of
stock returns are nonzero, follow ng the suggestion in Hsieh (1989). If x, is
a chaotic process, then we can wite:

X, = fF(X.5-0.).

This is a special case of a nore general category of nonlinear processes:

X, = f(X.p. ) + g,

where ¢, is satisfies the condition that E ¢]|X, ,,...]1=0. For both nodels, we
can consider f() as the nean of x, conditional on its own past. Since f() is
nonl i near, these nodels are "nonlinear-in-nean" (as opposed to "nonlinear-in-
variance", which will be discussed later). The nonlinearity of f( ) can
generate nuch richer dynam cs than linear nodels, and can give rise to "large"
noves, such as crashes, in stock narkets.

To test for nonlinearity-in-nmean, we pose the null hypothesis that ()
is identically zero. This inplies that the unconditional third order nonments,
E[ x,x,.,x,;1=0, for i,j>0. Hsieh (1989) proposes the follow ng test:

a) Define o(i,j) = E[xX. X ]/c’, where o’=V[x,]. Estimate o(i,j) with the
appropriate sanple monents: r(i,j) =[5 xX_X_/Tl/ [sx/T]""

b) NIr(i,j)-o(i,j)] has a limting distribution N(O,V(i,j)], where

V(i,j) can be estimated by the nmethod of nonents:

[2 {xX X /T - r(i,j)y*1 1 [sx/T]°
Hsi eh (1989) then tests the null hypothesis that o(i,j)=0 individually using a
t-statistic. The contribution of this paper is to recognize that one can test

the composite null hypothesis that p(i,j)=0 for 0<i<<m for a given m making
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use of the fact that the asynptotic covariance between r(i,j) and r(i',j') can
be estimated using the obvious sanple cross nonents:

[2 {xXX X /T - r(i, i) XX X JT - r(it i)y 11 [sx/T]°
Then the conposite test can be conducted using the usual y° statistic."

We point out that the test statistic is designed so that it will not
rej ect nodels which are "nonlinear-in-variance"

X, = 9(Xp 1) e,

Since x, and ¢, take on both positive and negative val ues, we cannot take

| ogarithns of both sides and transformthis nodel to one having nonlinear-in-
nean. However, the test should detect hybrid nodels, those which are
“nonlinear-in-nean" as well as "nonlinear-in-variance"

X, = f(Xpoor) +0(X.,..)e,.

[ The GARCH-i n-nean nodel, where the conditional variance appears also in the
conditional nean, is such an exanple.]

As in the case of the BDS test, we performsinulations to evaluate the
finite sanple distribution of the third order nonent test as well as its
ability to detect nonlinearity-in-nmean. The results are reported in Table 7.

The first 4 nodels use |ID data generated by the standard nor nal
Student t with 3 degrees of freedom Cauchy, and the chi-square with 4 degrees
of freedom They show that the asynptotic distribution of third order nonment
test approximates the finite sanple distribution for 1000 observations
tolerably well for I1D data generated by the standard normal and the y’(4),
but rather poorly for the t(3) and the Cauchy. The latter two distributions
do not have fourth or higher noments, which are assuned to exist in the
derivation of the asynptotic distribution of the third order nonment test
statistic. Thus care nust be used when applying the third order nonent test
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to very fat tailed data.

The next 5 nodels have non-11D data, but do not have nonlinearity-in-
nean. There is a slight tendency for the test to reject too infrequently.
This is nore so for the ARL, MALl, and 2-nean, and less so for the 2-variance
and EGARCH

The next 4 nodels (NMA, TAR, filtered Mackey-d ass, and GARCH i n- nean),
generate non-11D data which have nonlinearity-in-nmean and nonzero third order
nonents. The third order nonent test can detect the first 3 nodels nearly
100% of the tine,™ but the power against the GARCH i n-nmean nodel is |ow,
probably because the high order nonents of the GARCH i n-nmean nodel does not
exi st.

The last sinulation uses a nbdel which has nonlinearity-in-nmean but zero
third order nmonents:

X, = sin[x, ] * e,
where ¢ is |ID standard normal. The sinulation shows that the third order
nonent test, as expected, cannot pick up the nonlinearity in this nodel. The
reason is quite sinple. |If the conditional neans are zero, then the third
order noments are zero. However, the converse is not true: if the third
order nmonents are zero, it does not inply that the conditional neans are zero.

This was first pointed out by Penberton and Tong (1981). Note, however, that
BDS has no trouble in detecting this type of nonlinearity. (See the results in
Table 3.)

We now apply the third order nonent test to stock returns. |If we had
found large test statistics, we would have concl uded that stock returns have
nonlinearity-in-mean. But Table 8 shows that there is no evidence to reject
the null hypothesis that stock returns have zero third order nonents. As
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di scussed above, this is not sufficient to rule out that stock returns have
nonl i nearity-in-nean.

We therefore turn to nonparanetric regressions to try to capture the
conditional nean directly. Suppose returns are generated by the follow ng
nodel :

X, = f(X.p.-0) * g,
where f() is nonlinear and ¢ is IID.  This includes chaotic nodels as specia
cases, if we set ¢=0. Wen f() is a snooth function, Stone (1977) showed
that a |large class of nonparanetric regressions can be used to fit f()
consistently as the sanple size increases. There are nany ways to inpl enent
nonparanetri c regression, for exanple, kernel estinmation, series expansion
neural network, and nearest neighbor. W select the nethod of locally
wei ghted regression (LWR), which is a generalization of nearest neighbor. LW
has been enpl oyed by D ebold and Nason (1990) in testing for nonlinearity-in-
nmean in exchange rates, and LeBaron (1988) in stock returns.

Di ebol d and Nason (1990) gave a very good description of locally
wei ghted regression. Briefly, the idea is this. Suppose we want to forecast

X, ,=f(X,...). W have already observed x,, x etc. Since the BDS statistic

t-17

i ndi cates that, whenever x,, was close to x_,, x, was also close to x.. W can

-
| ook at the history of returns, find those instances which are close to
(X,,...), and run a regression to predict x,,. Locally weighted regressions
uses the k nearest neighbors, and a schene whi ch gives nore weight to cl oser
observations and | ess weight to farther observations. There are a nunber of
paranmeters to be selected. (a) W must pick the nunber of nearest neighbors
to use. W have tried 10% of all observations, up to 90% increasing in steps

of 10% (b) W have to select the nunber of lags of x, to use in
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approximating f(x,,...). W use 1 through 5. (c) We have to choose a
wei ghting scheme. W use the "tricubic" schene proposed by d evel and and
Devlin (1988).* (d) W need to choose a period for out-of-sanple forecasting.
For the weekly returns (VW EW DECl, DEC5, DECl0, and SPW, we arbitrarily
started the forecast at the 1001-st observation and continued through the end.
For the daily returns (SPD) we begin the forecast at the 1601-st observation
For the 15-mnute returns (SPML, SPM2, SPMB, SPM4), we begin the forecast at
the 1401-st observation. This way, each series has at |east 1000 observations
for the locally weighted regression, and at |east 300 observations for out-of-
sanpl e forecasting.

Forecastability is neasured in terns of root nmean squared errors, which
are reported in Table 9. The locally weighted regression forecasts are
conpared to the bench mark forecast using a randomwal k nodel in prices. In
nost cases, the random wal k nodel achi eves the | owest root nmean squared error

In certain instances, e.g., VW EW DECl, and SPM4, sone forecasts using
| ocal ly weighted regressions were able to beat the random wal k, but the
reduction in root mean squared error is less than 5% G ven the wi de range
of paraneter values in choosing the locally weighted regression, we would
interpret this only as "data-mning" rather than "forecastability."

If stock returns are chaotic with | ow conplexity, we should be able to
use locally weighted regression to forecast returns nuch better than the
random wal k nmodel of prices. |In addition, our forecasts should inprove as the
forecast horizon beconmes shorter and shorter. Neither of these inplications
seemto be born out by the data. W do not observe consistently better
forecasting performance by the locally wei ghted regressions, and we certainly
do not inprove our forecasting performance when we shorten the forecasting
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hori zon.

One possible explanation of the inability of LMR to out performrandom
wal k forecasts is that LMR is unable to capture conditional nean changes. W
therefore performa sinulation using "2-nean", "2-variance", NMA TAR, Sine
EGARCH, and Mackey-d ass. W generate 500 observations of each series, and
begi n out-of-sanple forecasting at the 451-st observations. The tricubic
wei ghting function is used. Since the sinulations are conmputationally
i ntensive, we use only one choice of k --- 50 nearest neighbors (about 10% of
the entire sanple). W conpare the root nean squared error of the LW
forecasts with that of the "random wal k" forecast for 2000 replications.
Tabl e 10 shows that LWR beat the random wal k forecast 100% of the time in the
Mackey-d ass equation, and 95% of the tine for the "Sine" nodel, which was not
detectable by the third order noment test. |In addition, LWR outperforns
randomwal k in the TAR nodel, even though the f( ) function is not snpoth.
This indicates that LWR has the ability to pick up conditional nean changes.

While we did not experiment with different nethods of nonparanetric
regressions, we note that other authors have had no nore success. Wite
(1988) found that forecasts of IBMstock returns using neural network did not
out performthe randomwal k nodel. Prescott and Stengos (1988) found that
forecasts of kernel estimators on gold and silver also could not outperform
and random wal k nodel .

The preponderance of the failure to outperformthe randomwal k nodel in
asset markets force us to conclude that there is no strong evidence that the
noverments in stock market is prinmarily due to conditional nean changes, when
conditioning on past returns. In particular, there is no evidence of |ow
conpl exity chaotic behavior in stock returns.” Furthernore, this casts doubt
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on nodels trying to explain stock price nmovenents as conditional nean changes,

e.g. tine varying risk premumin expected stock returns.

7. |Is Conditional Heteroskedasticity Responsible for the Rejection of I1D?

Next we proceed to consider whether stock returns have nonlinearity-in-
vari ance:

X, = 09Xy --1) e
where E[ ¢|X,,,...]1=0 and V[ g]|X,.,,...]1=1 (without |oss of generality). This is
a general nodel of conditional heteroskedasticity, which contain ARCHtype
nodel s as speci al cases.

There is now growi ng evidence that stock nmarket volatility is not only
tinme-varying [e.g. French, Schwert, and Stanbaugh (1987)] but is predictable
[e.g. Schwert and Sequin (1990)]. A nunber of papers have used ARCHtype
nodel s to describe conditional heteroskedasticity [e.g. Bollerslev (1987) and
Nel son (1988).] W pose two questions in this section: (a) what is the
evi dence of conditional heteroskedasticity? (b) Does the conditiona
het er oskedasticity captured by ARCH type nodels account for all the
nonlinearity in stock returns?

To answer the first question, observe that if we take the absolute
val ues of the previous equation, we obtain

x| = 19(X0 - )] Tedl.

If g( ) is differentiable, a Taylor series expansion would yield the result
that |x,| depends on |x,,|. Thus correlation of |x,| with |x, ]| is evidence of
condi tional heteroskedasticity (particularly when x, is not correlated with x, .
).* Table 11 presents the autocorrel ations of the absolute val ued data.

There is strong evidence of conditional heteroskedasticity in weekly and daily
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returns, and somewhat weaker evidence in 15-minute returns.?

ARCH-t ype npdel s have been used to capture conditiona
het eroskedasticity in stock returns, and the typical diagnostic tests (e.qg.
autocorrel ati on of absolute values and squares of standardi zed residuals) show
that they do. W are, however, interested in a deeper issue: does ARCHtype
nodel s capture all the nonlinear dependence in stock returns? To answer this
guestion, we fit an EGARCH nodel to the data:

X, ~ N(O, o),

log 6 = ¢, + ¢ | X, Jo, +vlog o, + v X /o,
EGARCH i s chosen over the sinpler ARCH or GARCH nodel for two reasons: (a)
unli ke the sinple ARCH or GARCH nodel, EGARCH does not inmpose any restrictions
on the signs of the parameters to guarantee that estimated variances are
positive, and (b) EGARCH can accomopbdate conditional skewness discussed in
Bl ack [1976] which is not allowed in the |ess flexible ARCH and GARCH nodel s.
We use a Berndt, Hall, Hall, and Hausnan (1974) procedure with analytic
derivatives to estimate this nodel.
If the EGARCH nodel is correctly specified, the standardi zed residual s:
z, = x/,,

should be IIDin large sanples. Here, is the fitted value of the standard

t
deviation fromthe variance equation. Thus BDS can be used as on the
standardi zed residuals to test if EGARCH captures all nonlinear dependence in
stock returns.

Tabl e 12 shows that the BDS statistics on the standardized residuals are
nmuch snmaller than those of the raw data. Only a few statistics are
significant, if we use the asynptotic distribution. The trouble is that the

asynptotic distribution of the BDS statistic cannot be used when dealing with
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ARCH, GARCH, and EGARCH st andardi zed residuals, a point nade in Table 5.
Therefore, we use the bootstrap critical values of the BDS statistic fromthe
simulations. The 2.5% and 97.5%critical values are given in Table 13. Based
on these critical values, the only series to pass the BDS diagnostic is the
snal | est decile portfolio, DECL. Al the other series contain several BDS
statistics which are outside the 5%critical range. In particular, the daily
S&P returns have the worst fit, failing the BDS diagnostic every tine. There
is sufficient evidence here to indicate that the EGARCH nodel cannot

conpl etely account for all nonlinearity in stock returns.

One problemw th ARCH type nodels is that the variance equati on does not
contain an innovation. To obtain a nore general nodel, we add a stochastic
termin the variance equation, leading to the follow ng specification for
stock returns:
X, = o, Z,s
where z, is an |ID random variable, and o, evolves according to:

log o, = B, + 5 B 109 o, + v,
where v, is II D independent of z,.

It is appropriate here to contrast this nodel with the nmixture nodels in
the earlier stock market literature. Blattberg and Gonedes (1974) pointed out
that the symmetric stable distribution is obtained froma nornal distribution
whose variance is drawn froma strictly positive stable distribution, that the
Student t is obtained froma normal distribution whose variance is drawn from
an inverted gamm distribution, and that Cark's (1973) nodel is a nornal
di stribution whose variance is drawmn froma | og nornmal distribution. Thus,
all there mxture nodels can be witten in the form x, = ¢, z,, where z, is |IID

t

standard nornal, and o, is another IID randomvariable. |In these cases, X

t
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exhi bits neither conditional heteroskedasticity or nonlinear dependence. Cur
nore general specification allows for conditional heteroskedasticity (which is
a form of nonlinear dependence).

To test the variance specification, we construct daily standard
deviations of returns fromApril 21, 1982 to Septenber 30, 1989, using the 15-
m nute data, after renoving the serial correlation. Figure 5is a plot of the
logarithns of the daily standard deviations. Note that, while the volatility
on Cctober 19 and 20, 1987, were considered to be "huge" at the time, they did
not show up as "outliers"” in the logarithns. |In fact, the volatility |eading
up to those days had been on the rise. This is consistent with the
di agnostics on the | east squares residuals. Using the Schwarz criterion, we
determne the lag length to be 5 [the Akaike criterion led to very long | ags.]

The | east squares fit is as follows:
log o, = - .8577 + .2385 109 5., + .1298 log o, + .1129 log o,
(.1064) (.0229) (. 0236) (. 0236)
+ .1515 log o, + . 1386 log o,
(.0236) (.0229)
R = .4127.
There is clearly nean reversion in volatility.

We ran the BDS test on the residuals to test for the appropriateness of
the linear nodel. Table 14 shows that the BDS statistics are very small
giving no evidence of nonlinearity. Furthernore, it is interesting to note
that the coefficient of kurtosis of the residuals is 3.49, not nuch higher
than 3. There does not appear to be extrenme points.

In the last step we check whether this nodel of conditiona
het eroskedasticity can capture the nonlinear dependence in stock returns. W
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standardi ze daily returns with the fitted values , fromthe variance equation

t

z = X/

t [

[Note that x, here is the raw data, not the linearly filtered
data.] W then renove linear dependence in z, (possibly due to asynchronous
trading) using an ARL. This lag length was identified by both the Akai ke and
the Schwarz criterion. Table 14 contains the final diagnostics of this nodel.

It shows that the BDS statistics are substantially |ower than those in Table
12 (for SPD). |If we use the asynptotic distribution of the BDS test, we do
not reject the nodel. Even if we apply a nore stringent rejection criterion
and use the critical values in Table 13, we could reject only 1 BDS statistic
--- at dinmension 2, when ¢/ o=2. |n either case, we believe that the nore
flexible variance specification provides a nuch better description of the
nonl i near dependence in daily stock returns.

This nodel gives rise to sone interesting possibilities. First, the
nore flexible nodel of conditional heteroskedasticity fits the data nuch
better, in the sense that it captures all of the nonlinear dependence in daily
stock returns. Second, the nean reversion in volatility nmeans that one can
forecast future volatility based on past volatility. Third, the standardi zed
data (after dividing by expected volatility) still has fatter tails than the
normal distribution, as indicated in Table 14. Since these standardized data
are 11D, we can obtain a nonparanetric estinmate of their density, which can
then be used to nake probability statenments that are useful in, say, setting

margi n requi renents for stock returns.

8. Concl udi ng Renar ks
We have found that stock returns are not |ID. The evidence points to
conditional heteroskedasticity as the cause of the rejection of IID. Wile we
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find that ARCHtype nodels do not fully describe the nonlinearity in stock
returns, a nore flexible nodel of conditional heteroskedasticity can. These
findings have nany interesting inplications. One, we should not fit

uncondi tional density functions on stock returns when these procedures assune
that returns are IID. W nust first renove the nonlinear dependence. Two, if
we are interested to nbdel nonlinearity in stock returns, we should direct our
efforts not at nodeling conditional nean changes (which include chaotic

dynam cs), but at nodeling conditional heteroskedasticity. Three, if the
flexible conditional heteroskedasticity nbodel holds up under future analysis,
it can provide conditional volatility forecasts. Those, together with a
nonparanetric estinate of the density of the standardi zed residuals, can give
a conditional probability distribution, which would be useful in various

cont exts.
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Not es
1. See the discussion in Brock (1986) and the proof in Takens (1980).

2. Denker and Keller (1986) and Brock and Baek (1990) provide ways to do this.

3. The nonlinear noving average is very simlar to the bilinear nodel in
G anger and Andersen (1978)

4. See the survey article by Bollerslev, et. al. (1990).

5. W also exam ned the value and equally weighted indices in excess of a
Treasury bill return. The results did not differ fromthe raw indices, and so
were not reported.

6. The results are the same using equally weighted decile portfolios.

7. The Schwarz (1978) information criterion was al so used. The |ags
identified by the Akai ke (Schwarz) information criterion are:

VW1 (1), EW2 (1), DEC1 7 (1), DECS5 2 (1), DECIO 1 (0). Since there are |large
nunbers of degrees of freedomin our data, we used the longer |lags identified
by the Akai ke information criterion

8. Table 1 in Fama and Roll (1968) shows that the probability of observing an
outcome in excess of 6 standardized units is 5.36%for the Cauchy distribution
conpared to alnost 0% for the normal distribution. In fact, the probability of
an outcome in excess of 20 standardized units is 1.59%for the Cauchy

di stribution!

9. Note that the Cauchy distribution is a menber of the stable paretian
famly. The sinmulations in Table 1 show that the asynptotic distribution of
the BDS statistic can still approximate the finite distribution well, even

t hough the Cauchy distribution has no nonents.

10. See Hsieh (1990).
11. See Nelson (1989) for a discussion.

12. These are logarithmc differences of price changes. They are filtered by
an autor egressi on whose | ags are chosen by the Akai ke (Schwarz) criterion to
be: weekly returns, 6 (0), daily returns, 5 (0), and 15 minute returns, 4 (1).
Since we have a | arge nunber of degrees of freedom we use the |onger |ag

| engt hs.

13. It is possible that the 15-minute return is capturing sone nonlinear

dynam cs fromthe m cromarket structure. This will have to be studied in the
future
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14. W note that this test can fail to detect a chaotic process whose odd
product nonments are zero. This can happen if the function f() is anti-
symmetric. This is not true for any of the chaotic nodels in this paper.

15. W also reject 100% of the replications using the tent map, the Hénon nap,
and the logistic map (when o=4).

16. W have experinment briefly with nearest neighbor, which is a rectangul ar
wei ghting schene. The results are simlar to those using the tricubic
wei ghting function.

17. These results are consistent with the findings in LeBaron (1988).

18. These results could change if we increase the information set to include
vari abl es other than past returns.

19. Even if we had found evi dence of chaotic behavior, estimating the unknown
parameters of a chaotic map is next to inpossible. See Geweke (1989) for a
di scussi on.

20. The sane argunent shows that x woul d be correlated with x, under
condi tional heteroskedasticity. See Engle (1982) and McLeod and Li (1983).

21. W point out here that the evidence is consistent with conditiona

het er oskedasticity. But it does not rule out even higher order dependence
(e.g. conditional skewness, conditional kurtosis).
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