I mplications of Nonlinear Dynam cs for Financial Ri sk Managenent

by

David A. Hsieh*
Fuqua School of Business
Duke University
919- 660- 7779

[ Publised Version: Journal of Financial and Quantitative Analysis, March 1993]

March, 1991
Revi sed: April, 1992

* The aut hor acknow edges the help of Cathy McCrae and Ri chard MDonal d of the
Chi cago Mercantile Exchange in providing the data used in the analysis. He is
grateful to coments by Francis Diebold and an anonynmous referee, as well as
participants in the Conference on Volatility at the Amsterdam Institute of

Fi nance, Novenber 7-8, 1991, and the Conference on d obal Ri sk Managenent of

Interest Rate and Exchange Rate at the Berkeley Programin Finance, April 6-7,
1992.



Abst r act

Thi s paper denonstrates that when |og price changes are not 1D, their
conditional density may be nore accurate than their unconditional density for
descri bing short term behavior. Using the BDS test of independence and
identical distribution, daily log price changes in four currency futures
contracts are found to be not IID. Wile there appears to be no predictable
condi tional nean changes, conditional variances are predictable, and can be
descri bed by an autoregressive volatility nodel. Furthernore, this
autoregressive volatility nodel seens to capture all the departures from
i ndependence and identical distribution

Based on this nodel, daily |log price changes are deconposed into a
predi ctable part and an unpredictable part. The predictable part is described
paranmetrically by the autoregressive volatility nodel. The unpredictable part
can be nodel ed by an enpirical density, either paranetrically or
nonparanetrically. This two-step sem -nonparanetric nmethod yields a
conditional density for daily log price changes, which has a nunber of uses in
financial risk managenent.

In particular, one can directly calculate the capital requirenment needed
to cover losses of a futures position over one trading day. One can al so use
simul ati on nethods to cal cul ate the capital requirenent over |onger hol ding
periods. This conditional density provides different, and probably nore

accurate, capital requirenents than the unconditional density.



. Introduction

A nunber of recent papers in the econom cs and finance literature have
found strong evidence of nonlinear dynamics in short term novenents of asset
returns.® The next logical question is: Wiat is the relevance of this
finding? In the presence of any dynam cs (whether |inear or nonlinear),
conditional densities can provide a better description of short term asset
price novenents than unconditional densities. This may be inportant for
financial risk managenent, especially when highly | everaged i nstrunents, such
as futures contracts, are involved. For exanple, hedge ratios and the anobunt
of capital needed to cover possible |l osses during the tine a futures position
is held depend critically on the probability distribution of changes in
futures prices.

Tradi tional methods of estimating a probability density use a snoot hed
hi st ogram of past price changes. This corresponds to the unconditiona
density. A conditional density can provide a nore accurate assessnent of
price changes, since it uses nore information. |If the dynam cs of asset
prices were linear in nature, their conditional densities could be obtained in
a straight forward manner. The enpirical finding that the dynam cs of asset
prices are nonlinear, however, conplicates substantially the estimation of
their conditional densities. This paper illustrates how the conditiona
density can be estimated in a conputationally efficient manner, and applies it
to foreign currency futures.

The outline of the paper is as follows. Section Il discusses the
di fference between conditional and unconditional densities. |If price changes

are independent and identically distributed (I1D), then the two densities are



the sane. It is therefore inportant to test for independence and identica
distribution. Section Ill introduces the Brock, Dechert, and Schei nkman
(1987) test for independence and identical distribution, which is applied to
four currency futures contracts traded in the Chicago Mercantil e Exchange. It
finds that price changes are not IID. In particular, there is strong evidence
of conditional heteroskedasticity. Section IV describes a sinple two-step

sem - nonparanetric nethod for approxi mating the conditional densities. Step
one extracts the predictable parts of price changes paranetrically. For the
futures data, the conditional nean is approximtely zero, but the conditiona
variance can be nodell ed by an autoregressive process. Step two describes the
remai ni ng unpredi ct abl e novenents of price changes nonparanetrically.
Applications to futures trading are then provided in Section V. W show how
to determ ne the capital needed to cover a given probability of |osses over
the next trading day. Using the estimated conditional density, the capita
requi renent changes with the conditional variance of futures price changes,
whi |l e that based on the unconditional density is constant over tinme. W also
show how to use sinmulation to determ ne the capital needed to cover a given
probability of cumulative | osses over a |longer horizon. W find that the
uncondi ti onal density can give tine varying capital requirenments, which may be
nore accurate than those fromthe unconditional density. Concluding remarks

are offered in Section VI.

I1.2. Conditional and Unconditional Densities
Thi s section describes the difference between conditional and

uncondi tional densities. To facilitate discussion, let P, be the price of an



asset at time t. Define x; = log[P/P:.4] as its continuously conpounded rate
of change. The unconditional density of x, is obtained by fitting a density
to the histogramof x;, using either paranetric or nonparanetric methods. The
conditional density of x; given its own past values is obtained by postul ating
and estimating a conplete probability nodel for the | aw of notion of x; over
time.? Usually the unconditional density is much sinpler to estimate,
particularly in the case of the paranetric nethod, which explains its
popul arity in finance.® There are situations, however, when the conditiona
density gives a nore accurate probability nodel of the short term behavior of
Xt -

To highlight the differences between conditional and unconditiona
densities, consider the follow ng exanple. Let x; be a first order
aut or egr essi ve process:

Xy = a t b Xt.1 + Uy,

where uy is 11D, normal, with nean 0 and variance s, and |p|<1. The
conditional distribution of x; is normal, with nean a/[1-p] and variance g
/[1—bﬁ , While the distribution of x; conditional on X;.; is nornal, wth nean
[ atbXt-1] and variance s. The conditional and unconditional distributions are
t he sane whenever p=0, i.e., x; is IID. They are different whenever p=0,
i.e., X; is not IID.

The two distributions are related as follows. Suppose we only observe
Xt-2. Then the conditional distribution of x; given x;., is normal, w th nean
[ a( 1+b) +b®X; »] and variance s[1+p?]. By repeated substitution, we can show
that the conditional distribution of x; given x;. converges to the

uncondi tional distribution as k-. In other words, the unconditiona



di stribution describes the |ong run behavior of x;, while the conditiona

di stribution describes its short run behavior. |In the first order

aut oregression, the conditional variance is always smaller than the
uncondi ti onal variance. In general, however, the conditional variance can be

| arger or smaller than the unconditional variance.*

I11. Test of Independence and ldentical Distribution

We use the Brock, Dechert, and Schei nkman (1987) (BDS) test for
i ndependence and identical distribution. This test is chosen because it can
detect many types of departures fromindependence and identical distribution
such as nonstationarity, nonlinearity, and determ nistic chaos. Any of these
departures fromthe 11D case inplies that the conditional distribution is
different fromthe unconditional distribution. Furthernore, the BDS test can
serve as a general nodel specification test, especially in the presence of
nonl i near dynamics. ®

The BDS test has been discussed in detail elsewhere.® W provide only a
brief review Let {x;, t=1,...,T} be a tine series, and denote x = (X,
Xt-1, - - -, Xt-m1) @ point in the mdinensional Euclidean space. Define the
correlation integral C{d) to be the fraction of pairs of points, x and x,
which are within a di stance d of each ot her

Cdd = plim. # (t,s), O0<t<T,0<s<T: MBXi= .. m1 |Xe-i-Xsi| <d} / T2

For our purposes, we shall use the maxi nrum norm although the standard
Euclidean normis perfectly acceptable. If {x;} were IID, then C{d =

[C(d]1™ Brock, Dechert, and Schei nkman (1987) construct a statistic for

testing the null hypothesis that Cf{d = [C(d]™ ’ They show that the test



statistic is asynptotically a standard normal distribution. Brock, Hsieh, and
LeBaron (1991) and Hsieh and LeBaron (1988) report extensive simulations and
show that the asynptotic distribution is a good approximation of the finite
sanpl e distribution, when there are nore than 500 observations. They
recomend using d between one-half to two tinmes the standard devi ation of the
raw data. Also, the accuracy of the asynptotic distribution deteriorates for
hi gh i nbeddi ng di mensi ons, particularly when mis 10 or above.

Qur data consist of daily settlenment prices for four currency futures
contracts traded on the Chicago Mercantile Exchange (CVE): the British Pound
(BP), Deutsche Mark (DM, Japanese Yen (JY), and Swiss Franc (SF), from
February 22, 1985 to March 9, 1990, totaling 1275 observati ons per contract.
The starting date corresponds to the tinme when daily price limts were
renoved. Currency futures expire four tines per year. |In order to obtain a
continuous time series, the contracts were rolled over to the next expiration
cycle 1 week prior to expiration

It is appropriate to di scuss why we choose to anal yze currency futures
prices instead of forward exchange rates, even though the forward exchange
market is many times the size of the currency futures nmarkets. The reason is
that financial risk managenment is generally concerned with the market val ue of
a futures or forward contract over its entire life. Unfortunately, daily
forward exchange rates are typically given in fixed maturities of 1 nonth, 3
months, ... etc., which do not provide sufficient information. For this
reason, we turn to currency futures, because futures exchanges provide
i nformati on on daily nmovenents of the futures price throughout the life of a

futures contract. Cornell and Reinganum (1981) find that there is practically



no di fference between forwards and futures in the foreign exchange market. W
can therefore use futures prices to construct a probability nodel, which can
be applied to forward contracts as well.

Table 1 provides a statistical description of |Iog price changes. The
means are not statistically different fromzero. The annualized standard
deviations are 12.96% 12.47% 11.26% and 13.82% respectively, for the BP
DM JY, and SF, assumi ng that each cal endar year consists of 253 tradi ng days.

Al four series have strong departures fromnornmality, as the coefficients of
skewness and kurtosis are statistically different fromthose of a nornal
distribution. The BDS statistic for testing i ndependence and identica
distribution are provided in Table 1, for inbedding di nensions (n) 2 through
5, and distances (d) 0.5, 1.0, 1.5, and 2.0 tines the standard devi ati on of
the raw data. |If we use the 1% nmargi nal significance level, we will reject
i ndependence and identical distribution in all 16 statistics for the BP and
the JY, 11 of the 16 for the DM and 4 of the 16 for the SF. Even though the
BDS statistics for each currency futures are not independent, they show strong
evi dence of departure of independence and identical distribution for at |east
3 currency futures. This is consistent with simlar findings in the spot
currency markets, as in Hsieh (1989).

As the BDS test is sensitive to any departure from i ndependence and
identical distribution, it is useful to know the cause of the rejection
Table 2 provides sone information. It shows that the autocorrel ation
coefficients of log price changes are not statistically different from zero,
either individually or jointly (using the Box-Pierce statistic for the first

15 lags).® On the other hand, the autocorrelation coefficients of the



absol ute val ues of log price changes are nuch larger. More than half of them
are statistically different fromzero, and the joint test using the Box-Pierce
statistic rejects the hypothesis that the first 15 lags are zero. This
evidence is consistent with the hypothesis that the rejection of independence
and identical distribution is not due to linear, but rather nonlinear
dependence in exchange rates.®

The rejection of independence and identical distribution inplies that
the conditional density differs fromthe unconditional density in describing
short termdynam cs of futures prices. Furthernore, the presence of nonlinear
dependence inplies that linear (e.g., Box-Jenkins) nethods cannot be used to
nodel the conditional density. This nmotivates the goal in the rest of this
paper, nanmely, to obtain a useable formof the conditional density which takes
i nto account the nonlinear dependence, and to provide sone interesting

applications.

V. A Two-step Method for Estimating Conditional Densities
In theory, the conditional density can be estimated nonparanetrically,
for exanmple, using kernels, splines, neural networks, or series expansions.
In practice, nonparanetric mnmethods have two drawbacks. They require
substantial conputational tinme, and little is known about the sanple sizes
required for accurate estimation. |In this paper, we try a different approach
Qur approach to estimating conditional density is essentially a two-step
sem - nonparanetri c approach. Step one estimates the predictable part of the
data paranetrically. Step two estinmates the remaining unpredictable part

nonparanetrically. Speed of conputation is the primary notivation for doing



this in two steps, rather than jointly estimating the paranetric and
nonpararnetric parts.'°
The paranetric part in step one deals with the conditional nean and
condi tional variance of x;, defined as:
m = E[ X¢| X¢-1, Xi-2, .. .1],
st = V[ X¢| Xt-1, Xt-20 -] .
For the four currency futures, we will show, below that the conditional nean
is zero and that the conditional variance is tinme-varying and depends
nonlinearly on past realizations of x;. |In addition, we denonstrate that the
conditional variance captures nost of the predictability of price changes,
using the BDS statistic. Therefore, we nodel as I1D the unpredictable part:
Zy = [X¢-m]/ st
The nonparanetric part in step two deals with the density of z.
It is inportant to note that not all nonlinear dependence can be
nodel led in this way. This nethod is not appropriate when, for exanple, there
i s dependence in higher order nmoments. Careful diagnostics are therefore

needed.

IV.A Estimating the Conditional Mean Function
We now proceed to characterize the conditional nean function of price
changes given its own past, which is defined as:
m = E[X¢| Xeo1, Xeo2y o0 ] = F(Xeo1, Xee2,o 02 )
Qperationally, this neans that:
B[ Xe-f(Xeo1, Xt-2,-02) | Xto1, X¢e2, ... ] = 0.

Based on the findings on spot currencies that the conditional nean is zero, we



argue that the sane is true for currency futures.

Hsi eh (1989) proposes a test of the null hypothesis that the conditiona
mean function is zero. The test nmakes use of the fact that, if the
condi tional mean of X is zero, then its bicorrelation coefficients,
E[ XX i1/ V[x]¥? are zero for i,j>1." Table 3 provides the estimated
bi correl ation coefficients up to the fifth lag. None of them either
individually or jointly, are statistically different fromzero. Wile the
bicorrelation test results are consistent with the null hypothesis of a zero
condi tional nean function, Penberton and Tong (1981) point out that there
exi st nonlinear nodels with zero bicorrelation coefficients and nonzero
conditional neans. To deal with these types of nodels, we turn to a second
approach, using nonparanetric nethods to directly estimate the conditiona
nmean functi on.

Suppose x; i s generated by the foll owi ng nodel:

Xt = 9(Xt-1, Xe-2, - -+ )+ @,

where g is IID.*2 If g() is sufficiently well behaved, Stone (1977) shows
t hat nonparametric regression nethods can be used to estimate g()
consistently. There are nmany ways to inplenent nonparanetric regressions.

Di ebol d and Nason (1990) and Meese and Rose (1990) use the nethod of
|l ocal |y wei ghted regression (LWR) in Oeveland and Devlin (1988).% Briefly,
LWR can be illustrated in the follow ng way. Suppose we believe that the
conditional nean function g() includes only x,.;. * LWR looks at the history
of x{, finds those instances when X;.;.; i s close to x;.; by choosing the nearest
k nei ghbors of x;.;, and runs a wei ghted regression of x;.; on

Xt-i-1 by giving nore weights to closer neighbors. This gives a |ocal estimte



of g() around the point x;.;. W can use this local estimate to forecast x; by
evaluating it at X.

There are a nunber of choices to make in this forecasting exercise.
One, the nunmber of nearest neighbors k. W try 10% of all avail able history,
up to 90% in steps of 10% Two, the nunber of lags of x(.; to include as
argunents of g(). W use lags 1 through 5. Three, the weighting scheme of
the | ocal regression. W use the tricubic weights proposed in d evel and and
Devlin (1988). Four, the Iength of the out-of-sanple forecast. W choose the
last third of our sanple.

Table 4 provides the ratio of the root nmean squared errors (RVBE) of the
LWR forecasts to that of a random wal k nodel of futures prices (where the
predicted x; is zero). For each currency, there are 45 different RVSBEs,
corresponding to the 5 choices of lag | engths and 9 sizes of nearest
nei ghborhoods. A ratio larger than 1 indicates that the RVSE of the LWR is
hi gher than that of the randomwal k nodel. In the BP, JY, and SF, LWR
performed worse than the randomwal k nodel. In the DM 3 of the 45 LWR
forecasts beat the randomwal k, but the inprovenent is less than half a
percent. These results are consistent with those in Diebold and Nason (1990)
and Meese and Rose (1990), and indicate that there is little evidence of a

nonzero conditional mean in price changes in currency futures. *°

IV.B Estimating the Conditional Variance Function
VWile the conditional nmean is statistically not different fromzero, the
| arge autocorrel ati ons of the absolute val ues of price changes suggest that

the conditional variance is time varying. The difficulty in nodeling the
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conditional variance is that it is never observed directly. In this paper, we
take two different approaches.

The first approach is notivated by the popularity of the autoregressive
condi tional heteroskedasticity nodels of Engle (1982), Bollerslev (1986), and
Nel son (1991). See Bollerslev, Chow, and Kroner (1990) for a survey. W have
sel ected Nelson's (1991) EGARCH nodel, which is given by:

X = m+ hh,
hel W-1 ~ N(O, 1),
log hy =a +blog hia +f [ |hetl - (2/p) ] + ghe,
where W.,; is the information set at tinme t-1.® Since h, is known at t-1, it
is included in W.;. The EGARCH nodel is chosen over Engle's (1982) ARCH or
Bol l erslev's (1986) GARCH nodels for two reasons: (a) EGARCH all ows the
conditional variance to respond differently to a decline versus an advance (by
allowing gto be different fromzero) while ARCH and GARCH i npose a symetric
response; and (b) unlike ARCH and GARCH, EGARCH does not need to inpose any
constraints on the coefficients of the variance equation to enforce
nonnegativity of the variance. This makes estimation nuch sinpler.

We use the Berndt, Hall, Hall, and Hausman (1974) estimation procedure,
and the results are given in Table 5. Firstly, the estimates of p are al
statistically greater than zero. |In fact, those for the BP, DM and SF are
very close to 1, which indicates that volatility is highly persistent in
currency futures. The much smaller value of p for the JY indicates that its
volatility is |l ess persistent. However, the estimates of p for all 4 currency
futures are smaller than 1, which nmeans that the distribution is strictly

stationary. Secondly, there appears to be no asymmetry in the variance
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equation, since the estimates of gare not statistically different from zero.
These results are simlar to those found in spot exchange rates.

VWil e the EGARCH nodel can be justified on the grounds that it can
approxi mate variance changes,® our main interest is to see if it can capture
all the nonlinear dependence in price changes. |If it does, we can proceed to
the second step of our sem -nonparanetric procedure. This can be tested as
follows. Leth ; and denote the fitted values of h; and min the EGARCH
nodel . W want to test whether the remaining novenments in price changes,
cal | ed standardi zed residual s,

Moo= [ xe- 11 h,
are IID. This can be done by running the BDS tests on the standardized
resi dual s.

The results are reported in Table 6. There is one inportant caveat
here. W cannot use the asynptotic distribution of the BDS test, as Brock
Hsi eh, and LeBaron (1991) show that the BDS test is biased in favor of the
nul | hypot hesi s of independence and identical distribution when applied to
standardi zed residuals of EGARCH nodels. Therefore, we use sinulated critica
val ues of the BDS test which are provided in Table 6. They indicate that the
standardi zed residuals still reject independence and identical distribution
for the DM and the SF, which neans that the EGARCH nodel cannot capture al
t he nonli near dependence in those two currency futures.

W& now turn to the second approach to nodeling volatility. The idea is
to construct a daily nmeasure of volatility using intraday futures data, which
then allows us to fit a time series nodel of volatility. As in Kupiec (1990),

our daily measure of volatility is the Parkinson (1980) range estimator of the
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standard devi ati on:
spt = [.361 x 1440 / M] log[ H gh: / Low ],

where Hi ghy and Low are the high and | ow transaction prices during each
trading day, and Mis the number of mnutes during a trading day.'® W should
poi nt out that the standard deviation of the trading day in the CVE, which is
approxi mately 400 m nutes at the end of our sanple, is scaled up to a trading
day of 24 hours (i.e. 1440 minutes). VWile this particular scaling is
notivated by the fact that the foreign exchange market is open around-the-
cl ock, any scaling factor is innocuous, as the second step of our sem -
nonparanetric method will provide the appropriate scaling factor

It is inportant to stress here that sp; iS the ex post neasure of
volatility, while we are mainly interested in the ex ante, i.e., conditional
forecast of volatility. To obtain a conditional forecast of volatility, we

posit the followi ng nodel for |og price changes, Xx;:

Xt = spt Ui,
log spt = a *+ S b 109 spi-i + i,
where n is IID. W call this the autoregressive volatility nodel. It is

notivated by the fact that sp, is autocorrelated.'® W can recover the ex
ante volatility, as follows. Regress |log sp: On its own |ags and a constant
termusing ordinary | east squares. For sinplicity, we call this the
"autoregressive volatility"” nodel. The nunber of lags of log sp: IS

determ ned by the Schwarz (1978) criterion: 8 for the BP, 8 for the DM 5 for
the JY, and 8 for the SF. The estimates are given in Table 7. The

persi stence of volatility is nmeasured by the sumof the p coefficients, which

are .782 for the BP, .760 for the DM .624 for the JY, and .736 for the SF
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They are statistically less than 1 in all 4 cases, indicating that |og
volatility is strictly stationary. When conpared to the EGARCH nodel, the
autoregressive volatility nodel has much | ess persistence for the BP, DM and
SF. This will have an inmpact on our simulations in Section V.

As the issue of volatility persistence is inportant in the distinction
bet ween the autoregressive volatility and the EGARCH nodel, we perform several
tests of sensitivity and m sspecification of the autoregressive volatility
model . Firstly, we include the |agged values of log volatility up until the
20th lag. This does not change our results substantially. |In particular, the
sunms of the p parameters increase slightly, to .844 (BP), .793 (DM, .675
(JY), and .779 (SF). But they are still statistically less than 1, as the
F(1,1234) statistics are 15.36 (BP), 21.69 (DM, 38.27 (JY), and 27.43 (SF).

Secondl y, we add day-of-the-week dumry variables to the nodel, since the
literature has found these to be statistically inmportant in variance
changes.?® Wile nost of the day-of-the-week durmies are statistically
different fromzero, they add little to the explanatory power. The ?'s
i nprove only marginally, rising to .284 (from.274), .242 from (.227), .181
(from.170), and .208 (from.193), respectively, in the BP, DM JY, and SF
In addition, the Schwarz criterion worsens in three of the four currencies.
These dummi es al so did not change the anmount of volatility persistence. The
sum of the p coefficients are .785 (BP), .765 (DM, .627 (JY), and .740 (SF),
which are essentially the same as those w thout the dunmm es and remain
statistically different fromunity in all 4 cases. Thus, day-of-the-week
dunmi es are excluded fromthe final nodel. Thirdly, we include |ags of the

log volatilities of the other currencies. They did not appear to be
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statistically significant, and the Schwarz criterion worsens in all cases.
Hence we kept the specification as reported in Table 7.

To ensure that the autoregressive volatility nodel can capture all the
predictability in currency futures, we run the BDS test on the standardi zed
resi dual s:

z¢ = Xilpt,
where p; is the fitted value fromthe autoregressive volatility nodel. The
results are reported in Table 8. Critical values of the BDS statistics are
obt ai ned through simulation, as done in Table 6. W find little evidence
agai nst the hypothesis that the standardi zed residuals are 11 D. For the BP
DM and JY, there are no rejections of the null, while for the SF, 3 of the 16
statistics reject the null. Note that this rate of rejection is much | ower

than that of the EGARCH nodel in Table 6.

IV.C Estimating the Density of the Unpredictable Part of Futures Price Changes

The tests indicate that the autoregressive volatility nodel is
appropriately specified, and appears to have captured the predictable
nmovenments in exchange rates. W now proceed to the second step of our sem -
nonpar anetri c nmet hod, which involves nodeling z: = xi/p, the unpredictable
part of | og price changes.

Tabl e 8 provides sone information about z,. The nean is close to zero.
The standard deviation is close to unity. There is little evidence of
skewness, but strong evidence of |eptokurtosis. Using the BDS test, we have
al ready shown that z; is IID, so we can estimate its unconditional density

usi ng standard net hods. For exanple, we can fit a paranetric density
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function, such as the Student-t. O we can fit a nonparanetric density, using
kernel s or series expansions.

For the purposes of our applications in Section V, we actually do not
need to estimate the density of z, at all. Section V.A requires only the
quantiles of z, which are provided in Table 8. In Section V.B, we sinulate
future val ues of x; by "bootstrapping" fromz,, as per Efron (1982). W now

turn to these applications.

V. Application to Ri sk Managenent: M ninum Capital Requirenents

There are many uses of the conditional density of price changes. In
this section, we calculate the mninumcapital requirement of a futures
position. First, we showthat there is a direct nethod to obtain daily
m ni mum capi tal requirenents. Next, we show that we can obtain |longer term

m ni mum capi tal requirenents, via sinulation.

V.A Daily Mnimm Capital Requirenents

Suppose a firmholds a long position of Ly units of a foreign currency
futures contract. An inportant question in risk managenent is: Wat is the
m ni mum capital, K, needed to cover losses of this long position with a 99.5%
probability? The mninmumcapital is the sumof prearranged |ines of credit
and short termliquid instrunents which can be converted to cash al nost
i nstant aneously, e.g., Treasury bills, negotiable certificates of deposits,
nmoney mar ket funds, interest bearing checking accounts, etc. W note that we
have sel ected 99.5% as the "coverage probability” purely for illustrative

pur poses. 2
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The capital requirenent, K, is determned as follows. Let P, be the
settlenent price in the followi ng trading day. The |losses of the |ong
position are given by (P-Pis) L. Thus, we want K; to solve the foll ow ng
equat i on:

Pr{ (P-Pis1) L > K } = .005.
The left hand side can be rewitten as foll ows:
Pr{ log[1-kil/sts1yt > Zt+s1 } = .005.
where ki = K/[PLi], Zis1 = Xesa/ stees Xesr = 109[ Praa/ P], and si4q)¢ denotes exp{
E[logst+1] }. In particular, we can use a rolling regression nethod to
sequentially generate s;y:. The mninmumcapital is now expressed as a
fraction of PL;.

To solve for k;, we only need to know the quantiles of the distribution

of zy4+;, which are provided in Table 8. The quantile z, is the point where:
Pr{ z, > z¢.s } = .005.
In particular, z,is -3.017 for the BP, -2.399 for the DM -3.623 for the JY,
and -2.306 for the SF. For each currency, then, the mnimumcapital as a
fraction of the market value of the long position is:
ki = 1-exp(st+yt Zy) -
Since z, is a negative nunber, an increase in s« Wll increase the capita
requi renent.

As sty IS time varying, so is k. In contrast, the capital requirenent
usi ng the unconditional density is constant over tinme. Wen the conditiona
variance is larger (smaller) than the unconditional variance, the capita
requi renent using the conditional density is higher (lower) than that of the

uncondi ti onal density.
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In the second exanpl e, suppose the firmis holding a short position of
St units of currencies in futures contracts. [Shorts are represented by
negative quantities, i.e., §<0.] The capital requirenment, K, which can
cover the | osses of the short position with a 99.5% probability, is found in
an anal ogous manner. Let z =K [/ [-P. S ] be the capital requirenent as a
fraction of [ -P, S ]. Then z is given by the equation:

ze = exp(st+yt zn) - 1,
where z, is the quantile of z, such that:

Pr{ z, > zy } = .995.
Based on Table 8, z, equals 2.590 for the BP, 2.418 for the DM 3.271 for the
JY, and 2.572 for the SF. As z, is positive, an increase in sgva¢ Wl raise
the capital requirenent. |In contrast, the capital requirenent using the
uncondi tional density is constant over tine.

In the third exanple, we consider a futures exchange setting futures
margin requi rements to protect the capital of its clearing nmenbers from
defaults by futures traders. There are two types of futures margins: initial
mar gi ns and mai nt enance margins. For illustrative purposes, we concentrate on
t he mai ntenance margi n. Suppose the futures exchange desires to set the
mai nt enance margin to ensure that it is sufficient to cover possible |osses of
either long or short positions at |least 99.5%of the tinme. |In other words,

t he mai ntenance margin as a percent of the price tinmes the size of the futures
contract should be the maxi num of the capital requirenents for the [ ong and
the short sides, i.e., Max{ki,z}. Wile there is a 0.5% chance that the

mai nt enance margi n cannot cover the |osses of the futures contract, this

shoul d be interpreted as an upper bound of the default probability for a
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futures contract, since a trader can add funds to his account to cover | osses

exceedi ng the mai nt enance mar gi n.

V.B Application to R sk Managenent: Longer Term M ni num Capital Requirenents
So far, we have considered the capital requirenents for holding a
futures position for one trading day. It would be reasonable to ask how much

capital is needed for holding a futures position for |onger periods.

This consideration can arise in nmany contexts. For exanmple, a firmis
pl anning to use a currency futures contract to hedge the exchange rate risk of
inflows of British Pounds three nonths fromnow To goal of the hedge is to
bal ance gains (losses) in the cash inflowwith | osses (gains) in the futures
position as the exchange rate fluctuates. The problemfacing the firm
however, is that a futures position is marked to nmarket, so that gains and
| osses are settled at the end of each trading day, while the cash position is
settled in entirety three nonths fromnow |If the exchange rate noves in such
a way that the cash position is making profits while the futures position is
sustaining |l osses, the firmmy need additional funds to nmeet margin
requi renents on the futures position because it cannot use the gains in the
cash position to offset these losses. |If the firmis unable to neet nmargin
requirenents, it will be forced to liquidate the futures position prematurely,
whi ch defeats the purpose of hedging. Before the firmconmts to the hedging
strategy using futures, it nust know how much capital (e.g., additional funds)
may be needed to maintain this futures position for the next three nonths.

The answer to this question can be obtained via a simulation study.

Start with the conditional density of price changes at the tine when the firm
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initially opens the futures position. For the sake of illustration, take this
to be the end of our data sanple, March 9, 1990. Sinulate the path of the
futures price over the course of the next 3 nonths. At the end of each
tradi ng day, track the value of the futures position, and record its | owest
val ue during the 3 month period. This is the maxi rum "draw down" for this
simul ated path, which represents the nmaxi mum | oss sustained by the firmwhile
hol ding the futures position. |If the firmis additional funds is I ess than
this maxi rum draw down, it would not be able to maintain its futures position

By repeating this for 10,000 sinul ated paths, we generate an enpiri cal
di stribution of the maxi mum draw down. The capital requirenent can then be
set to that amount which is able to cover a given percentage of the sinmulated
maxi mum dr aw downs. W use the 90% coverage probability, because 10, 000
replications is not accurate enough to neasure the extrene tails of a
di stribution.

The sinulation can be done as follows. Recall that the sem -

nonparanetri c nodel of futures price changes is given by:

Xt = spt Ut
log spt = a *+ S b 109 spi-i + i,
where x; = log[P/Pi.1]. A sinulated path of future x;"s is generated

recursively, using the estimates of g and p's fromour sanple, and the val ues

of sp: at the end of the sanple. The u; and n. are drawn randomy, wth

repl acenent, fromthe residuals in a "bootstrap"” fashion, per Efron (1982).
Table 9 reports the results of the sinulation experinment for the capita

requi renent needed to hold a futures position with 90% probability. W vary

the hol ding period of the futures position over 1, 5, 10, 15, 20, 25, 30, 60,
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90, and 180 tradi ng days. The 95% central confidence intervals for these
capital requirements are given in Table 10.% For conparison, we al so report
the sinulations using the unconditional density, and the EGARCH nodel. 1In the
case of the unconditional density, the xi's are drawn randomy, with

repl acenent, fromthe 1275 observed price changes. 1In the case of the EGARCH
model , the sinulated x;"s use the estimated values of a, b, f, and g and the
value of hy at the end of the sanple. The h's are drawn randomy, wth

repl acenent, fromthe standardi zed residuals, in a way anal ogous to the

aut oregressive volatility nodel

To understand the results, keep in mnd that we start the simulation on
March 9, 1990, when the volatility is below the sanple average.® Thus, the
autoregressive volatility nodel predicts a lower volatility in the near future
than the unconditional density.

Consi der holding a long futures position in the BP. For a 1 day hol di ng
period, the capital requirenment is 0.73%of the initial face value of the
contract according to the autoregressive volatility nodel and 0.91% accordi ng
to the unconditional density. [If we had started the sinulation on a day
whi ch had a higher volatility than the sanple average, the capital requirenent
based on the autoregressive volatility nodel would have been higher than that
based on the unconditional density.] For a 5 day holding period, the capita
requi renents are, respectively, 1.9%and 2. 3%

These differences in capital requirements are both statistically and
econom cally significant. In the case of the 1 day holding period for the BP
there is a 95% probability that the correct capital requirenment using the

aut oregressi ve nodel is higher than 0.70% and | ower than 0.74%of the initial
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face value of the contract. At the same tine, there is a 95% probability that
the correct capital requirenent using the unconditional density is higher than
0.85% and | ower than 0.95% Furthernore, the difference between capita

requi renents of 0.73%versus 0.91%is economcally significant, when
transacti ons have face val ues of several hundred million dollars, such as the
case when highly | everage instrunments are invol ved

Tables 9 and 10 al so provide sonme information on the convergence

behavi or of the autoregressive volatility nodel to the unconditional density.

Firstly, we observe that the capital requirenents (and their associ ated
confidence intervals) of the former approach those of the latter as the
hol di ng period | engthens. For the BP, this occurs in 90 (trading) days. The
DM t akes 60 tradi ng days, while the JY takes only 30 days. But the SF takes
nmore than 180 days.? However, the convergence is likely to be oscillatory

rat her than nonotonic, as the autoregressive nodel of volatility has severa

| ags.

In conparison, the EGARCH nodel produced dramatically different results.

Over a 1l-day holding period, the capital requirenents based on the EGARCH
nodel are simlar to those based on the unconditional density. However, as we
simulate into the future, the EGARCH nodel produces nmuch |arger capita

requi renents than both the autoregressive volatility nodel and the
uncondi ti onal density. This phenonenon is due to the high degree of
volatility persistence in the EGARCH nodel. During the sinulation period, a

| arge price change (either positive or negative) will cause the conditiona
variance of the EGARCH nodel to increase and to remain high for a | ong period

of tinme.?® In contrast, there is nuch less volatility persistence in the
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autoregressive volatility nodel and none in the unconditional nodel. This
persistence in volatility also neans that the convergence of the EGARCH nodel
to the unconditional density is extrenely slow W have sinulated as many as
500 trading days into the future. For the BP, DM and SF, the capita

requi renents fromthe EGARCH nodel are still twice as high as those fromthe
uncondi ti onal density. The exception is the JY. |Its capital requirenents
fromthe EGARCH nodel are roughly 50% hi gher than those fromthe unconditiona
density. This denonstrates that, while the EGARCH nodel may produce

sati sfactory 1-day ahead volatility forecasts, it is nay not be appropriate
for multi-step ahead volatility forecasts.

Anot her interesting feature in Table 9 is that a short position requires
nmore capital than a corresponding | ong position at any given coverage
probability. This is due to the fact that the futures price is bounded bel ow
by zero, but unbounded above. Even when the logarithmc rate of change of the
futures price is synmetric, the change in the futures price itself is
asymmetric. Thus, the probability of a $1 decrease in futures price is |ess
than that of a $1 increase. This accounts for the difference in the capita

requi renents between a long and a short position

VI . Concl usi ons

In this paper, we denonstrate that when | og price changes are not 11D
their conditional density may be nore accurate than their unconditiona
density for describing short term behavior. Using the BDS test of
i ndependence and identical distribution, we show that daily | og price changes

in four currency futures contracts are not II1D. Wile there appears to be no
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predi ct abl e conditional mean changes, conditional variances are predictable,
and can be described by an autoregressive volatility nodel. Furthernore, this
autoregressive volatility nodel seens to capture all the departures from

i ndependence and identical distribution

Based on this nodel, we can deconpose daily log price changes into a
predi ctable part and an unpredictable part. The predictable part is described
paranetrically by the autoregressive volatility nodel. The unpredictable part
can be nodel ed by an enpirical density, either paranetrically or
nonparanetrically. This two-step sem -nonparanetric nmethod yields a
conditional density for daily log price changes, which has a nunber of uses in
financial risk managenent.

In particular, we show howto directly calculate the capital requirenent
needed to cover | osses of a futures position over one trading day, and how to
use simulation to obtain the capital requirenent over |onger holding periods.

We find that the conditional density can provide different, and probably nore

accurate, capital requirenents than the unconditional density.
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Not es:
See LeBaron (1988), Schei nkman and LeBaron (1989), and Hsieh (1991) for stock returns, and Hs

(1989) for exchange rates.

This is nore restrictive than the general notion, which allows conditioning on ot
i nformati on. Qur univariate approach is much sinpler conputationally than the nmultivari
approach. \When conditioning on other information, such as trading volunme, we will need to no

t hese additional vari abl es.

Parametric unconditional densities have been estimated by Fama (1965) and Bl attberg and Gone
(1974) for stock returns, and Westerfield (1977), Rogal ski and Vinso (1978), Boothe and d ass

(1988) for exchange rates.

Suppose x; is given by the follow ng process:

Xt = st Ui,

log si = a + b log si.1 + vy,

U is IID, normal, with nean 0 and variance 1, and v, is IID, normal, with mean 0 and vari anc

Furthernore, u, and vs are independent for all t and s, and |p] < 1. It is easy to ver

that the conditional and unconditional distribution of x; is different, and that the conditio

variance of x; can be either larger or smaller than the unconditional variance.

See Brock, Hsieh, and LeBaron (1991) for a discussion of this point.

See Schei nkman and LeBaron (1989) and Hsieh (1989).

Note that IIDinplies that G{d) = [C(d)]" but the converse is not true. Dechert (1988) g

sone pat hol ogi cal exanples of non-11D data for which G{d) = [C(d]"

This finding contradicts those of Hodrick and Srivastava (1987) and McCurdy and Mrgan (198
who find strong autocorrelation in log price changes in currency futures prices using data
which daily price limts were in effect but did not take theminto account. Kodres (1988) u

a |limted dependent variable nmethod, but fails to take account of the conditio
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het er oskedasticity, as pointed out by Harvey (1988).

The reader may be concerned with the role of maturity drift in these results using futures da

It is possible that a fixed maturity futures price change is 11D, but the distribution of an
period maturity futures price change is different fromthat of an n-1 period maturity futu
price change. This may induce "spurious"” rejection of IID. To check that this is not the ca
Appendix A and B (available upon request) provide the BDS statistics and autocorrel at
coefficients of the absolute values of daily log price changes of spot currencies, collected
the Board of Governors of the Federal Reserve System for the sane tinme period. The s
exchange rates (which is a 2-day forward contract) have essentially the same statisti

behavi or as the currency futures.

The two-step procedure may suffer from some efficiency |oss. However, with the sanple size
have, the |onger conputation time of joint estimation is a greater cost than any gain

ef ficiency.

The proof relies on the law of iterated expectations. FE[ X¢Xi.iX¢j] =

E[Xt|Xt.1,...]Xt_iXt_j ] =0.

Note that the restriction that g is IIDis needed to prove consistency of nonparametric meth

to estimate the function g().

Di ebol d and Nason (1990) and Meese and Rose (1990) found that LWR does not outperform a ran
wal k nodel in forecasting spot exchange rates in terns of nean squared error or mean abso
error. It is possible that LWR has | ow power in detecting conditional mean changes. But
simulations in Hsieh (1991) show that LWR can detect all the nonlinear dynamcs nodels n

often cited in the tine series |literature.

The extension to the case with multiple lags is straight forward.

We have also tested for the significance of day-of-the-week dumm es, which turn out not to b

factor in the conditional mean. These results are available fromthe author upon request.
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The (2/p) is used to center the mean of |hi4 at O.

See Nel son (1990) for a discussion.

For the BP, the trading hours are 7:30 amto 1:24 pmfrom 85/2/22 until 85/10/14, and 7:20 am
1: 24 pm from 85/10/15 to 88/10/04. For the DM the corresponding trading hours are 7:30 amr
1: 20 pmand 7:20 amto 1:20 pm For the JY, they are 7:30 amto 1:22 pmand 7:20 amto 1:22
For the SF, the corresponding trading hours are 7:30 amto 1:16 pm and 7:20 amto 1:16 pi

Since 88/10/05, the trading hours for all currency futures are 7:20 amto 2:00 pm
A simlar nodel was identified for the Standard and Poors 500 cash index in Hsieh (1991).
See Hsieh (1988) for a discussion of day-of-the-week effects in spot currencies.

W need a theory of hedging to determ ne whether "coverage probability" is the appropri

concept for hedging, and what the optinmal "coverage probability" should be.

Efron (1982) provides a nonparanetric nmethod to estimate the confidence interval for a quanti

Let X be a randomvariable with distribution F. W want to estimate g, defined as Prob{X<q}
Let x(1),...,x(n) be the ordered data from a sanple of size n. A confidence interval for
[x(j),x(k)], can be found as follows. CObserve that Prob{x(j)<q<x(k)} = Prob{j<Z<k}, where .
#{x(i)<qg} is a binomal distribution. Suppose we want a 90% confidence interval for g W

determine j and k such that Prob{j<z<k} = 0.95. If nis small, we can use the exact binomr

di stribution of Z. Since n is large in our case (i.e., 10,000), we approximte the binomr

distribution with a normal distribution.

On that day, the Parkinson volatilities are 12.48% 9.51% 7.90% and 8.90% respectively,
the BP, DM JY, and SF. Over the entire sanple, the average of the Parkinson volatilities
16.13% 16.06% 12.68% and 18.01% respectively.

The SF actually takes about 250 trading days, according to our sinmulations which are
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reported in Tables 9 and 10.

This explanation is confirmed by the follow ng experimnent. We estimated the EGARCH np
subject to the constraint that p=0 in the variance equation. This allows nuch less volatil
persistence. In the case of the BP, the restricted EGARCH nodel produced capital requirene
of 12.26% at the 180 day holding period for long positions, and 31.00% for short position:
These are much closer to the capital requirenents in Table 9 for the autoregressive volatil

nmodel and the unconditional density, and very different fromthose fromthe unrestricted EGA

nodel
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Table 1
Statistical Description of Daily Log Price Changes:
Feb. 22, 1985 - Mar. 9, 1990 (1275 observati ons)

BP DM JY SF
Mean 0. 00045 0. 00043 0. 00032 0. 00037
Medi an 0. 00036 0. 00000 0. 00000 0. 00016
Std dev 0. 00815 0. 00784 0. 00708 0. 00869
Skewness 0. 36 0. 28 0. 34 0.18
Kurtosis 6. 25 5.32 7.81 4,94
Maxi num 0. 04553 0. 04832 0. 05333 0. 04967
M ni num -0. 02899 -0. 03264 -0.04133 -0. 03692
BDS statistics:
m d
2 0.5 2. 39* 1.68 4, 15* 1.01
3 0.5 2. 76* 2.23 4, 95* 1.08
4 0.5 3. 58* 3. 16* 6. 39* 1.77
5 0.5 4, 40* 3.91~ 7.88* 2.57
2 1.0 3. 34* 1. 48 4, 06* 0. 46
3 1.0 4, 00* 2.10 4, 49* 0. 85
4 1.0 4, 86* 3.11* 5. 69* 1.59
5 1.0 5.73* 3. 85* 6. 52* 2.40
2 1.5 3. 96* 1.99 3. 68* 0.81
3 1.5 4, 84* 2.97* 4, 29* 1.62
4 1.5 5. 75* 3. 95* 5.61*% 2.57
5 1.5 6. 54* 4, 69* 6. 32* 3. 38*
2 2.0 3. 88* 2.51* 3. 16* 1.35
3 2.0 4, 86* 3. 79*% 3. 84~ 2.37
4 2.0 5.77* 4, 75* 5. 14~ 3. 30*
5 2.0 6. 54* 5. 53* 5.73* 4, 02*

* Significant at the 1%l evel using a two-tailed test.

Not e:

mis the inbeddi ng di nension.

d is the distance between points, nmeasured in terns of nunber of standard

devi ati ons of the raw data.

The critical values (marginal significance level) of the statistics for a two-
tailed test are: 1.645 (10%, 1.960 (5%, 2.326 (2%, and 2.576 (1%.
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Table 2
Aut ocorrel ations of Price Changes and Their Absol ute Val ues

BP DM JY SF

Aut ocorrel ati on Coefficients:

r( 1) 0. 032 -0.019 0. 024 - 0. 006
r( 2) -0. 016 -0. 009 0. 000 -0.013
r( 3) -0. 017 0.042 0. 057 0. 029
r( 4) -0.019 -0. 043 -0. 004 -0.032
r( 5) - 0. 005 0.014 0.012 0. 009
r( 6) 0. 054 0. 033 0. 021 0. 007
r( 7) - 0. 045 -0.021 -0. 026 -0. 017
r( 8) 0. 029 0. 047 0. 051 0. 021
r( 9) -0. 016 0. 005 0. 022 0. 008
r(10) -0. 020 -0. 037 - 0. 005 -0.033
r(11) -0.039 -0. 009 0.014 -0.011
r(12) -0. 015 -0.022 0. 025 -0. 008
r(13) 0. 056 0.018 -0. 002 0. 034
r(14) 0. 005 0. 015 0.042 0. 002
r(15) 0. 052 0. 056 0. 022 0. 066
Q 15) 20. 09 17.12 14. 25 12. 26
Aut ocorrel ati on Coefficients of absol ute val ues:

r( 1) 0.107* 0. 059 0.118* 0. 027
r( 2) 0. 094* 0. 038 0. 058 0. 025
r( 3) 0.108* 0. 079* 0.101* 0. 052
r( 4) 0.112* 0. 055 0. 041 0. 040
r( 5) 0. 081* 0. 088* 0. 084* 0. 084*
r( 6) 0. 096* 0.107* 0. 087* 0. 097*
r( 7) 0. 088* 0. 099* 0. 010 0. 096*
r( 8) 0.101* 0. 087* 0. 088* 0. 061
r( 9 0. 088* 0. 063 0. 069 0. 054
r(10) 0. 129* 0.128* 0. 023 0.113*
r(11) 0. 047 0. 020 0. 041 0. 038
r(12) 0.078* 0. 068 - 0. 005 0. 075*
r(13) 0. 092* 0. 086* 0. 023 0. 088*
r(14) 0.116* 0.073* 0. 055 0. 048
r(15) 0.108* 0. 115* 0. 028 0.103*
Q 15) 182. 41** 128. 85** 79. 50** 98. 69**

* Significant at the 1%l evel using a two-tailed test.
** Significant at the 1%l evel using a one-tailed test.

Not e:

Q15) is the Box-Pierce statistic testing for the first 15 lags to be
different fromzero. The critical values (marginal significance |evels) are:
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22.31 (10%,

25.00 (5%,

and 27.49 (1%.
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Table 3
Bi correl ati on Coefficients

Lags BP DM JY SF
i i

1 1 -0.119 -0. 059 -0.072 -0. 037
1 2 -0. 041 -0.011 -0. 030 -0.013
2 2 0. 232 0. 156 0.103 0.185
1 3 -0.024 0. 009 0.073 -0.001
2 3 0.125 0.076 -0.003 0. 060
3 3 -0. 006 -0. 097 0.231 -0.035
1 4 0. 006 0. 000 0. 039 -0.012
2 4 -0.012 -0.013 0. 034 -0.015
3 4 -0. 030 0. 021 0. 068 0. 027
4 4 0. 008 -0.016 0. 149 0.018
1 5 0.028 -0. 020 0. 039 -0. 005
2 5 -0. 007 -0. 065 -0.023 -0. 045
3 5 0. 037 0. 037 -0.033 -0.010
4 5 -0. 097 -0. 027 0. 021 -0. 005
5 5 0. 026 0. 015 0. 051 0. 061
¢%(15) 15. 58 12. 42 11. 35 12.01
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Tabl e 4
Rati o of Root Mean Squared Forecast Errors

No. of Fraction BP DM JY SF
Lags of sanmple
1 0.1 1. 0209 1.0081 1. 0547 1.0285
1 0.2 1.0254 0.9953 1.0371 1.0325
1 0.3 1.0260 0.9971 1.0323 1.0250
1 0.4 1.0221 0. 9996 1.0301 1.0214
1 0.5 1.0188 1. 0020 1.0278 1.0196
1 0.6 1.0170 1.0037 1.0263 1.0186
1 0.7 1.0155 1.0051 1.0256 1.0172
1 0.8 1.0141 1.0064 1. 0260 1.0154
1 0.9 1.0133 1.0068 1. 0260 1.0135
2 0.1 1. 0605 1.0312 1.1094 1.0342
2 0.2 1.0548 1.0211 1.0935 1.0121
2 0.3 1.0491 1.0162 1.0831 1.0080
2 0.4 1.0431 1.0102 1.0742 1.0044
2 0.5 1.0370 1. 0067 1.0664 1.0019
2 0.6 1.0315 1.0048 1.0593 0. 9997
2 0.7 1.0268 1.0041 1. 0540 0. 9982
2 0.8 1.0232 1.0038 1. 0496 0.9973
2 0.9 1.0204 1. 0040 1. 0459 0.9976
3 0.1 1.1473 1.0777 1.2062 1.0744
3 0.2 1.1019 1. 0655 1.1572 1.0305
3 0.3 1.0810 1. 0567 1.1323 1.0190
3 0.4 1.0678 1.0477 1. 1140 1.0148
3 0.5 1.0582 1. 0404 1.0990 1.0112
3 0.6 1.0508 1.0347 1.0855 1.0089
3 0.7 1.0435 1.0303 1.0750 1. 0067
3 0.8 1.0375 1.0252 1. 0656 1.0048
3 0.9 1.0315 1.0196 1. 0590 1.0038
4 0.1 1. 3497 1.1755 1.3802 1.1763
4 0.2 1. 2435 1.0841 1.2608 1.0698
4 0.3 1.1892 1.0587 1.2091 1.0373
4 0.4 1.1548 1.0472 1.1764 1.0208
4 0.5 1.1302 1. 0402 1.1536 1.0125
4 0.6 1.1095 1.0348 1.1362 1.0081
4 0.7 1.0914 1.0291 1.1216 1.0053
4 0.8 1.0742 1.0241 1.1080 1. 0049
4 0.9 1. 0596 1.0194 1.0958 1. 0056
5 0.1 1.4288 1.4386 1.7291 1.3289
5 0.2 1. 2553 1.2397 1.4582 1.1802
5 0.3 1.1847 1.1638 1.3585 1.1271
5 0.4 1.1448 1.1182 1.2929 1.0958
5 0.5 1.1162 1.0875 1. 2401 1.0739
5 0.6 1.0954 1.0661 1.1983 1.0583
5 0.7 1.0799 1. 0507 1.1619 1.0468
5 0.8 1.0673 1. 0404 1.1316 1.0382
5 0.9 1. 0546 1.0338 1.1077 1.0314
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Not e: Underlined value represents the lowest ratio in a given currency.
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EGARCH Esti mat es

Table 5

Xt = m+ hh
h: ~ N(O, 1)

log hy =a +pblog hea +f [ [hed - (2/p) 1T + ghes

BP
m 0. 000319
(0. 000208)
a - 0. 688127
(0. 030088)
b 0. 928780
(0. 002995)
f 0. 135854
(0.019961)
9 -0.110718
(0. 177458)

DM

. 000377
.000214)

. 072229
. 041828)

. 889511
. 004386)

. 187005
. 028388)

. 084173
. 147279)

Bol | er sl ev-Wbol ri dge robust standard errors are in

- 38-

JY

. 000232
.000189)

. 438289
. 756704)

. 550707
. 075851)

. 282167
. 093357)

. 313274
. 201531)

par ent heses.

SF

. 000239
. 000235)

. 993241
. 032479)

. 895527
. 003508)

. 157669
. 024013)

. 129035
. 166507)



Table 6
EGARCH St andar di zed Resi dual s
BDS Test for |ID

m d BP DM JY SF

2 0.5 -0.61 -1.10 0.12 -1.34
3 0.5 -0.78 -1.35 0.17 -1.88*
4 0.5 -0.52 -1.08 0.95 -1.71%
5 0.5 -0.09 -0.99 1.90 -1.67
2 1.0 -0.50 -1.65 -0.62 -2.23%
3 1.0 -0.59 -1.77% -0. 69 -2.55%
4 1.0 -0. 40 - 1. 45*% 0.32 -2.35%
5 1.0 -0.14 -1.33% 0. 89 - 2. 04%
2 1.5 -0.42 -1.54 -1.03 -2.41%
3 1.5 -0. 56 -1.51% -1.09 -2.59%
4 1.5 -0.50 - 1. 25% 0.16 -2.29%
5 1.5 -0.31 -1.19% 0.77 -2.08*
2 2.0 -0.42 -1.24 -1.01 -2.05*
3 2.0 -0.54 -1.18 -0. 89 -2.07%
4 2.0 -0.41 -0.97 0.33 -1.72%
5 2.0 -0.28 -0.98 0. 85 -1.58*
Not e:

* Statistically significant at the 5% two-tailed test based on the simnul ated
critical values of an EGARCH nodel for 1275 observations wth 2000
replications:

d
m 0. 50 1.00 1.50 2.00
2.5%critical values
2 -2.04 -1.95 -1.77 -1.62
3 -1.63 -1.39 -1.30 -1.31
4 -1.66 -1.22 -1.14 -1.15
5 -1.66 -1.22 -1.14 -1.15

97.5%critical val ues

2 1.73 1.58 1.57 1.56
3 1.70 1.45 1.49 1.83
4 1.85 1.47 1.49 2.22
5 1.85 1.47 1.49 2.22
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Table 7
Estimates of the Autoregressive Volatility Mde
Usi ng Par ki nson's Standard Devi ati ons

log sp,t = a + S b 109 spii + nt
BP DM JY
a -1.037 -1.139 -1.874
(0.171) (0.187) (0. 199)
l0g spt-1 0.192 0. 153 0. 208
(0. 028) (0. 028) (0. 028)
l0g spt-2 0.134 0.111 0. 137
(0. 029) (0. 028) (0. 028)
|09 spt-3 0. 062 0. 052 0. 058
(0. 029) (0. 028) (0. 029)
|09 spt-a 0. 069 0. 092 0. 109
(0. 029) (0. 028) (0. 028)
|09 spt-5 0.137 0. 091 0.112
(0. 028) (0. 028) (0. 028)
| 09 sp -6 0. 027 0.072
(0. 029) (0. 028)
09 sp -7 0.073 0.110
(0. 028) (0. 028)
| 0g sp -8 0. 088 0. 079
(0. 028) (0. 028)
2 0.274 0. 227 0.170
Shi 0.782 0. 760 0. 624
(0. 129) (0. 124) (0. 165)
Test of
Shi=1 36. 59 37.27 91.73
F( ng, ny) 1, 1258 1, 1258 1,1264
[ 0. 0000] [ 0. 0000] [ 0. 0000]

Standard errors in parantheses, p-values in square brackets.

Not e:
The standard errors and test of gph=1 do not change
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SF
-1.219
(0.193)

0.115
(0.028)

0. 106
(0.028)

0. 068
(0.028)

0. 091
(0.028)

0.118
(0.028)

0.074
(0.028)

0. 086
(0.028)

0.078
(0.028)

0.193
0. 736
(0. 099)

55. 71
1, 1260
[ 0. 0000]

when using

a



het er oskedasti city-consi stent covariance matri x.
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Tabl e 8
Statistical Description of Standardi zed Residual s of
The Autoregressive Volatility Mde

BP DM JY SF

Mean 0.042 0. 036 0. 037 0. 024
Medi an 0. 051 0. 000 0. 000 0. 019
Std dev 0. 880 0. 853 1.031 0.842
Skewness -0.035 0. 053 0. 196 0. 025
Kurtosis 5. 249 4,360 7.485 4,426
Maxi num 5.078 3. 389 6. 897 3.513
M ni num - 3.560 -3.626 -5.205 -4, 000
Quantil es:

0. 50% -3.017 -2.399 -3.623 - 2. 306

1.00% -2.474 -2.245 -2.821 -2.080
5. 00% -1.411 -1.319 -1. 557 -1.322
10. 00% -0.970 -0.937 -1. 046 -0.985
90. 00% 1.067 1.135 1.228 1.096
95. 00% 1.504 1. 487 1.697 1.422
99. 00% 2.304 2.220 2.611 2.137
99. 50% 2.590 2.418 3.271 2.572
BDS statistics:

m d

2 0.5 -0.61 -0.45 1.69 -1.27
3 0.5 -0.96 -1.09 1.45 -1.64
4 0.5 -0.97 -1.24 1.65 -1.20
5 0.5 -1.01 -1.36 2.04 -1.20
2 1.0 -0.24 -0.91 1.77 -1.80
3 1.0 -0. 86 -1.28 1.33 -2.23%
4 1.0 -0.94 -1.17 1.69 -2.07%
5 1.0 -1.02 -1.25 1.77 -1.88
2 1.5 0.42 -0.68 1. 48 -1.80
3 1.5 -0.23 -0.83 1.17 - 2. 04%
4 1.5 -0.32 -0. 66 1.91 -1.82
5 1.5 -0.44 -0.73 1.99 -1.73
2 2.0 0.75 -0.40 0. 84 -1.42
3 2.0 0.41 -0.32 0. 88 -1.52
4 2.0 0. 38 -0.11 1.60 -1.31
5 2.0 0. 26 -0.20 1.66 -1.34
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Table 8 (cont.)

Not e:

* Statistically significant at the 5% two-tailed test based on the sinulated
critical values of an autoregressive volatility nodel for 1275 observations
wi th 2000 replications:

d
m 0. 50 1.00 1.50 2.00
2.5%critical values
2 -1.84 -1.86 -1.86 -1.96
3 -1.86 -1.88 -1.85 -1.96
4 -1.86 -1.87 -1.93 -1.96
5 -1.77 -1.89 -1.91 -1.96

97.5%critical val ues

2 1.90 1.94 1.92 1.96
3 2.01 1.94 2.00 1.96
4 2.01 1.95 2.12 1.96
5 2.04 2.06 2.05 1.96
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Table 9
Capital Requirenment for 90% Coverage Probability
As a Percent of the Initial Value

No. Long Position Short Position
of
Days AR Uncond EGARCH AR Uncond EGARCH
BP 1 0.73 0.91 0.93 0. 80 0.98 1.05
5 1.90 2.30 2.61 2.18 2.76 3.00
10 2.83 3.27 4.19 3.38 4.22 4.88
15 3.54 3.94 5.72 4.45 5.48 6. 67
20 4.10 4.61 6. 96 5.24 6. 33 8.43
25 4.59 5.15 8.25 6. 20 7.36 10. 46
30 5.02 5.58 9.08 7.11 8.33 12. 06
60 7.24 7.44 14. 50 11.64 12. 87 20. 71
90 8.74 8.70 17.91 15.45 16. 90 28.03
180 11.38 10. 67 24. 25 25.81 27. 36 48. 02
DM 1 0.72 0. 87 0.83 0. 89 1.00 0.95
5 1.89 2.18 2.34 2.23 2.70 2.91
10 2.77 3.14 3.93 3.40 4.12 5.03
15 3.52 3.86 5.37 4.36 5.30 6.92
20 4.05 4.45 6.54 5.19 6.14 8.91
25 4.55 4.90 7.86 6.14 7.21 10. 69
30 4.93 5.37 8.75 7.02 7.88 12. 36
60 7.16 7.24 13. 14 11. 36 12. 38 20. 86
90 8.87 8. 39 16. 06 14. 68 16. 16 27.75
180 11.38 10. 35 21.69 24. 25 26. 25 45. 68
JY 1 0.56 0.74 0.72 0. 68 0. 87 0. 86
5 1.61 1.99 2.22 1.92 2.36 2.73
10 2.59 2.82 3. 46 3.06 3.53 4.41
15 3.30 3. 46 4.37 4.11 4.60 5.79
20 3.95 4.10 5.09 5.13 5.45 6.77
25 4.42 4.58 5.78 5.91 6. 30 7.98
30 4.95 4.92 6.34 6. 58 6. 85 8.81
60 6. 99 6.84 8.72 10.53 10. 74 13.58
90 8.43 8. 00 10.51 13.61 14. 00 17.63
180 10. 97 10. 27 13.99 21.86 22.21 27. 39
SF 1 0.82 0.97 0. 89 0.93 1.12 0.98
5 1.99 2.51 2.48 2.23 2.93 2.98
10 2.87 3.60 4.12 3.37 4.53 5.09
15 3.67 4.35 5. 60 4.22 5. 67 7.03
20 4.24 5.10 6.82 5.09 6. 69 8. 86
25 4.81 5.65 8.12 5.90 7.77 10.93
30 5.23 6. 20 9.12 6.70 8. 47 12. 50
60 7.69 8.41 13.73 10. 55 13.10 21. 27
90 9.23 9.93 16. 89 13. 60 17. 06 27. 80
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180 12. 18 12. 57 22.92 21.72 27.45 45. 47
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180 [11.98,12.43] [12.27,12.87] [22.62,23.29] [21.34,22.09] [27.01,27.88] [44.72,46.46]

Table 10 (cont.)

Note: The first nunber in the square bracket is the left side of the
confi dence
interval. The second nunber is the right side of the confidence interval.
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Appendi x A
BDS Statistics of Log Spot Price Changes
Feb. 22, 1985 - Mar. 9, 1990 (1267 observati ons)

m d BP DM JY SF

2 0.5 4. 30* 2.71* 4. 85* 2.22

3 0.5 4.41* 4.37* 6. 10* 2.70*
4 0.5 4.70* 5.61* 7.40* 3. 84*
5 0.5 4.62* 6. 44* 8. 66* 4.51*
2 1.0 4. 50* 1.90 3.91* 1.85

3 1.0 4.87* 3.18* 4. 24* 2.69*
4 1.0 5.53* 4.41* 5. 26* 3. 96*
5 1.0 6. 12* 5. 04* 6. 04* 4.53*
2 1.5 4.87* 1.75 3.97* 1.79

3 1.5 5.43* 2. 84* 4.16* 2.71*
4 1.5 6. 19* 3.92* 4.82* 4.01*
5 1.5 6. 86* 4.70* 5. 16* 4.70*
2 2.0 4.82* 1.79 3.87* 1.94

3 2.0 5. 56* 2.78* 4.22* 2.92*
4 2.0 6. 27* 3. 56* 4.69* 3. 96*
5 2.0 6. 90* 4. 36* 4. 96* 4.62*

* Significant at the 1%l evel using a two-tailed test.

Not e:

mis the inbeddi ng di nmension.

d is the distance between points, neasured in terns of nunber of standard
devi ati ons of the raw data.

The critical values (marginal significance level) of the statistics for a two-
tailed test are: 1.645 (10%, 1.960 (5%, 2.326 (2%, and 2.576 (1%.
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Appendi x B
Autocorrel ati on Coefficients of Absolute Values of Log Spot Price Changes
Feb. 22, 1985 - Mar. 9, 1990 (1267 observati ons)

BP DM JY SF
r( 1) 0. 119~ 0. 059 0. 115* 0. 044
r( 2) 0. 094~ 0. 070 0. 079* 0. 062
r( 3) 0. 103~ 0. 095~ 0. 100* 0. 081~
r( 4) 0. 116* 0. 085~ 0. 039 0. 042
r( 5) 0. 124~ 0. 094~ 0. 120* 0.072
r( 6) 0.118* 0. 120* 0. 103~ 0. 096*
r¢ 7) 0. 080~ 0. 133~ 0. 040 0. 114~
r( 8) 0. 089~ 0.078* 0. 062 0. 084~
r( 9 0. 096* 0. 049 0. 045 0. 050
r(10) 0. 155~ 0.113* 0. 090~ 0. 107~
r(11) 0. 100* 0. 090~ 0. 103~ 0. 097~
r(12) 0. 060 0. 035 0. 003 0. 032
r(13) 0. 053 0. 106* 0. 048 0. 082~
r(14) 0. 083~ 0. 068 0.072 0. 068
r(15) 0. 147~ 0. 029 -0.021 0. 020
Q 15) 211. 58** 141. 87** 112. 95** 106. 28**

* Significant at the 1%l evel using a two-tailed test.
** Significant at the 1%l evel using a one-tailed test.

Not e:

Q15) is the Box-Pierce statistic testing for the first 15 lags to be
different fromzero. The critical values (marginal significance |evels) are:
22.31 (10%, 25.00 (5%, and 27.49 (1%.
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Table 7 (ol d)
Statistical Description of the Log of Parkinson's Standard Devi ati ons:
Feb. 22, 1985 - Mar. 9, 1990 (1275 observati ons)

BP DM JY SF
Mean -4.73 -4.73 -4.99 -4.60
Medi an -4.78 -4.75 -5.02 -4.62
Std dev 0. 529 0.521 0. 549 0. 495
Skewness 0. 28 0.12 0. 33 0. 20
Kurtosis 3.17 2.90 3.19 3.08
Maxi num -2.35 -3.00 -2.63 -2.66
M ni num -6.52 -6.28 -6.64 -6.17
Aut ocorrel ati on Coefficients:
r( 1) 0. 401 0. 340 0. 322 0. 285
r( 2) 0. 370 0. 312 0. 280 0. 277
r( 3) 0. 329 0. 273 0. 227 0. 255
r( 4) 0. 324 0. 293 0. 250 0. 265
r( 5) 0. 363 0. 295 0. 247 0. 282
r( 6) 0. 307 0. 289 0. 201 0. 259
r( 7) 0. 322 0. 309 0. 204 0. 264
r( 8) 0. 321 0. 286 0. 224 0. 255
r( 9) 0. 315 0. 266 0.176 0.231
r(10) 0. 307 0. 250 0. 140 0. 217
r(11) 0. 289 0. 200 0. 130 0. 190
r(12) 0. 302 0. 253 0. 150 0. 239
r(13) 0. 306 0.231 0. 107 0.211
r(14) 0. 312 0. 234 0.112 0.194
r(15) 0. 319 0. 241 0.119 0. 203
Q 15) 2022** 1416** 777%* 1124**

** Significant at the 1%l evel using a one-tailed test.

Not e:

Q15) is the Box-Pierce statistic testing for the first 15 lags to be
different fromzero. The critical values (marginal significance |evels) are:
22.31 (10%, 25.00 (5%, and 27.49 (1%.
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