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Abstract

This paper demonstrates that when log price changes are not IID, their

conditional density may be more accurate than their unconditional density for

describing short term behavior.  Using the BDS test of independence and

identical distribution, daily log price changes in four currency futures

contracts are found to be not IID.  While there appears to be no predictable

conditional mean changes, conditional variances are predictable, and can be

described by an autoregressive volatility model.  Furthermore, this

autoregressive volatility model seems to capture all the departures from

independence and identical distribution. 

Based on this model, daily log price changes are decomposed into a

predictable part and an unpredictable part.  The predictable part is described

parametrically by the autoregressive volatility model.  The unpredictable part

can be modeled by an empirical density, either parametrically or

nonparametrically.  This two-step semi-nonparametric method yields a

conditional density for daily log price changes, which has a number of uses in

financial risk management. 

In particular, one can directly calculate the capital requirement needed

to cover losses of a futures position over one trading day.  One can also use

simulation methods to calculate the capital requirement over longer holding

periods.  This conditional density provides different, and probably more

accurate, capital requirements than the unconditional density.
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I. Introduction

A number of recent papers in the economics and finance literature have

found strong evidence of nonlinear dynamics in short term movements of asset

returns.1  The next logical question is: What is the relevance of this

finding?  In the presence of any dynamics (whether linear or nonlinear),

conditional densities can provide a better description of short term asset

price movements than unconditional densities.  This may be important for

financial risk management, especially when highly leveraged instruments, such

as futures contracts, are involved.  For example, hedge ratios and the amount

of capital needed to cover possible losses during the time a futures position

is held depend critically on the probability distribution of changes in

futures prices.

Traditional methods of estimating a probability density use a smoothed

histogram of past price changes.  This corresponds to the unconditional

density.  A conditional density can provide a more accurate assessment of

price changes, since it uses more information.  If the dynamics of asset

prices were linear in nature, their conditional densities could be obtained in

a straight forward manner.  The empirical finding that the dynamics of asset

prices are nonlinear, however, complicates substantially the estimation of

their conditional densities.  This paper illustrates how the conditional

density can be estimated in a computationally efficient manner, and applies it

to foreign currency futures. 

The outline of the paper is as follows.  Section II discusses the

difference between conditional and unconditional densities.  If price changes

are independent and identically distributed (IID), then the two densities are
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the same.  It is therefore important to test for independence and identical

distribution.  Section III introduces the Brock, Dechert, and Scheinkman

(1987) test for independence and identical distribution, which is applied to

four currency futures contracts traded in the Chicago Mercantile Exchange.  It

finds that price changes are not IID.  In particular, there is strong evidence

of conditional heteroskedasticity.  Section IV describes a simple two-step

semi-nonparametric method for approximating the conditional densities.  Step

one extracts the predictable parts of price changes parametrically.  For the

futures data, the conditional mean is approximately zero, but the conditional

variance can be modelled by an autoregressive process.  Step two describes the

remaining unpredictable movements of price changes nonparametrically. 

Applications to futures trading are then provided in Section V.  We show how

to determine the capital needed to cover a given probability of losses over

the next trading day.  Using the estimated conditional density, the capital

requirement changes with the conditional variance of futures price changes,

while that based on the unconditional density is constant over time.  We also

show how to use simulation to determine the capital needed to cover a given

probability of cumulative losses over a longer horizon.  We find that the

unconditional density can give time varying capital requirements, which may be

more accurate than those from the unconditional density.  Concluding remarks

are offered in Section VI.

II.2. Conditional and Unconditional Densities

This section describes the difference between conditional and

unconditional densities.  To facilitate discussion, let Pt be the price of an
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asset at time t.  Define xt = log[Pt/Pt-1] as its continuously compounded rate

of change.  The unconditional density of xt is obtained by fitting a density

to the histogram of xt, using either parametric or nonparametric methods.  The

conditional density of xt given its own past values is obtained by postulating

and estimating a complete probability model for the law of motion of xt over

time.2  Usually the unconditional density is much simpler to estimate,

particularly in the case of the parametric method, which explains its

popularity in finance.3  There are situations, however, when the conditional

density gives a more accurate probability model of the short term behavior of

xt.

To highlight the differences between conditional and unconditional

densities, consider the following example.  Let xt be a first order

autoregressive process:

xt = α + β xt-1 + ut,

where ut is IID, normal, with mean 0 and variance σ, and |β|<1.  The

conditional distribution of xt is normal, with mean α/[1-β] and variance σ

/[1!β2], while the distribution of xt conditional on xt-1 is normal, with mean

[α+βxt-1] and variance σ.  The conditional and unconditional distributions are

the same whenever β=0, i.e., xt is IID.  They are different whenever β…0,

i.e., xt is not IID.

The two distributions are related as follows.  Suppose we only observe

xt-2.  Then the conditional distribution of xt given xt-2 is normal, with mean

[α(1+β)+β2xt!2] and variance σ[1+β2].  By repeated substitution, we can show

that the conditional distribution of xt given xt-k converges to the

unconditional distribution as k64.  In other words, the unconditional
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distribution describes the long run behavior of xt, while the conditional

distribution describes its short run behavior.  In the first order

autoregression, the conditional variance is always smaller than the

unconditional variance.  In general, however, the conditional variance can be

larger or smaller than the unconditional variance.4

III. Test of Independence and Identical Distribution

We use the Brock, Dechert, and Scheinkman (1987) (BDS) test for

independence and identical distribution.  This test is chosen because it can

detect many types of departures from independence and identical distribution,

such as nonstationarity, nonlinearity, and deterministic chaos.  Any of these

departures from the IID case implies that the conditional distribution is

different from the unconditional distribution.  Furthermore, the BDS test can

serve as a general model specification test, especially in the presence of

nonlinear dynamics.5

The BDS test has been discussed in detail elsewhere.6  We provide only a

brief review.  Let {xt, t=1,...,T} be a time series, and denote x = (xt,

xt!1,...,xt-m+1) a point in the m-dimensional Euclidean space.  Define the

correlation integral Cm(δ) to be the fraction of pairs of points, x and x,

which are within a distance δ of each other:

Cm(δ) = plimT64 #{ (t,s), 0<t<T,0<s<T: maxi=0,...,m-1 |xt-i-xs-i| < δ } / T2.

For our purposes, we shall use the maximum norm, although the standard

Euclidean norm is perfectly acceptable.  If {xt} were IID, then Cm(δ) =

[C1(δ)]m.  Brock, Dechert, and Scheinkman (1987) construct a statistic for

testing the null hypothesis that Cm(δ) = [C1(δ)]m. 7  They show that the test
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statistic is asymptotically a standard normal distribution.  Brock, Hsieh, and

LeBaron (1991) and Hsieh and LeBaron (1988) report extensive simulations and

show that the asymptotic distribution is a good approximation of the finite

sample distribution, when there are more than 500 observations.  They

recommend using δ between one-half to two times the standard deviation of the

raw data.  Also, the accuracy of the asymptotic distribution deteriorates for

high imbedding dimensions, particularly when m is 10 or above. 

Our data consist of daily settlement prices for four currency futures

contracts traded on the Chicago Mercantile Exchange (CME): the British Pound

(BP), Deutsche Mark (DM), Japanese Yen (JY), and Swiss Franc (SF), from

February 22, 1985 to March 9, 1990, totaling 1275 observations per contract. 

The starting date corresponds to the time when daily price limits were

removed.  Currency futures expire four times per year.  In order to obtain a

continuous time series, the contracts were rolled over to the next expiration

cycle 1 week prior to expiration.

It is appropriate to discuss why we choose to analyze currency futures

prices instead of forward exchange rates, even though the forward exchange

market is many times the size of the currency futures markets.  The reason is

that financial risk management is generally concerned with the market value of

a futures or forward contract over its entire life.  Unfortunately, daily

forward exchange rates are typically given in fixed maturities of 1 month, 3

months, ... etc., which do not provide sufficient information.  For this

reason, we turn to currency futures, because futures exchanges provide

information on daily movements of the futures price throughout the life of a

futures contract.  Cornell and Reinganum (1981) find that there is practically
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no difference between forwards and futures in the foreign exchange market.  We

can therefore use futures prices to construct a probability model, which can

be applied to forward contracts as well.

Table 1 provides a statistical description of log price changes.  The

means are not statistically different from zero.  The annualized standard

deviations are 12.96%, 12.47%, 11.26%, and 13.82%, respectively, for the BP,

DM, JY, and SF, assuming that each calendar year consists of 253 trading days.

 All four series have strong departures from normality, as the coefficients of

skewness and kurtosis are statistically different from those of a normal

distribution.  The BDS statistic for testing independence and identical

distribution are provided in Table 1, for imbedding dimensions (m) 2 through

5, and distances (δ) 0.5, 1.0, 1.5, and 2.0 times the standard deviation of

the raw data.  If we use the 1% marginal significance level, we will reject

independence and identical distribution in all 16 statistics for the BP and

the JY, 11 of the 16 for the DM, and 4 of the 16 for the SF.  Even though the

BDS statistics for each currency futures are not independent, they show strong

evidence of departure of independence and identical distribution for at least

3 currency futures.  This is consistent with similar findings in the spot

currency markets, as in Hsieh (1989).

As the BDS test is sensitive to any departure from independence and

identical distribution, it is useful to know the cause of the rejection. 

Table 2 provides some information.  It shows that the autocorrelation

coefficients of log price changes are not statistically different from zero,

either individually or jointly (using the Box-Pierce statistic for the first

15 lags).8  On the other hand, the autocorrelation coefficients of the
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absolute values of log price changes are much larger.  More than half of them

are statistically different from zero, and the joint test using the Box-Pierce

statistic rejects the hypothesis that the first 15 lags are zero.  This

evidence is consistent with the hypothesis that the rejection of independence

and identical distribution is not due to linear, but rather nonlinear,

dependence in exchange rates.9

The rejection of independence and identical distribution implies that

the conditional density differs from the unconditional density in describing

short term dynamics of futures prices.  Furthermore, the presence of nonlinear

dependence implies that linear (e.g., Box-Jenkins) methods cannot be used to

model the conditional density.  This motivates the goal in the rest of this

paper, namely, to obtain a useable form of the conditional density which takes

into account the nonlinear dependence, and to provide some interesting

applications.

IV. A Two-step Method for Estimating Conditional Densities

In theory, the conditional density can be estimated nonparametrically,

for example, using kernels, splines, neural networks, or series expansions. 

In practice, nonparametric methods have two drawbacks.  They require

substantial computational time, and little is known about the sample sizes

required for accurate estimation.  In this paper, we try a different approach.

Our approach to estimating conditional density is essentially a two-step

semi-nonparametric approach.  Step one estimates the predictable part of the

data parametrically.  Step two estimates the remaining unpredictable part

nonparametrically.  Speed of computation is the primary motivation for doing
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this in two steps, rather than jointly estimating the parametric and

nonparametric parts.10

The parametric part in step one deals with the conditional mean and

conditional variance of xt, defined as:

µt = E[xt|xt-1, xt-2, ...],

σt = V[xt|xt-1, xt-2, ...]
�.

For the four currency futures, we will show, below, that the conditional mean

is zero and that the conditional variance is time-varying and depends

nonlinearly on past realizations of xt.  In addition, we demonstrate that the

conditional variance captures most of the predictability of price changes,

using the BDS statistic.  Therefore, we model as IID the unpredictable part:

zt = [xt-µt]/σt.

The nonparametric part in step two deals with the density of zt.

It is important to note that not all nonlinear dependence can be

modelled in this way.  This method is not appropriate when, for example, there

is dependence in higher order moments.  Careful diagnostics are therefore

needed.

IV.A  Estimating the Conditional Mean Function

We now proceed to characterize the conditional mean function of price

changes given its own past, which is defined as:

µt = E[xt|xt-1,xt-2,...] = f(xt-1,xt-2,...).

Operationally, this means that:

E[ xt-f(xt-1,xt-2,...) | xt-1,xt-2, ... ] = 0.

Based on the findings on spot currencies that the conditional mean is zero, we
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argue that the same is true for currency futures.

Hsieh (1989) proposes a test of the null hypothesis that the conditional

mean function is zero.  The test makes use of the fact that, if the

conditional mean of xt is zero, then its bicorrelation coefficients,

E[xtxt-ixt-j]/V[xt]
3/2, are zero for i,j$1.11  Table 3 provides the estimated

bicorrelation coefficients up to the fifth lag.  None of them, either

individually or jointly, are statistically different from zero.  While the

bicorrelation test results are consistent with the null hypothesis of a zero

conditional mean function, Pemberton and Tong (1981) point out that there

exist nonlinear models with zero bicorrelation coefficients and nonzero

conditional means.  To deal with these types of models, we turn to a second

approach, using nonparametric methods to directly estimate the conditional

mean function.

Suppose xt is generated by the following model:

xt = g(xt-1,xt-2,...) + εt,

where εt is IID.12  If g() is sufficiently well behaved, Stone (1977) shows

that nonparametric regression methods can be used to estimate g()

consistently.  There are many ways to implement nonparametric regressions.  

Diebold and Nason (1990) and Meese and Rose (1990) use the method of

locally weighted regression (LWR) in Cleveland and Devlin (1988).13  Briefly,

LWR can be illustrated in the following way.  Suppose we believe that the

conditional mean function g() includes only xt-1. 
14  LWR looks at the history

of xt, finds those instances when xt-i-1 is close to xt-i by choosing the nearest

k neighbors of xt-1, and runs a weighted regression of xt-i on

xt-i-1 by giving more weights to closer neighbors.  This gives a local estimate
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of g() around the point xt-1.  We can use this local estimate to forecast xt by

evaluating it at xt-1. 

There are a number of choices to make in this forecasting exercise. 

One, the number of nearest neighbors k.  We try 10% of all available history,

up to 90%, in steps of 10%.  Two, the number of lags of xt-1 to include as

arguments of g().  We use lags 1 through 5.  Three, the weighting scheme of

the local regression.  We use the tricubic weights proposed in Cleveland and

Devlin (1988).  Four, the length of the out-of-sample forecast.  We choose the

last third of our sample.

Table 4 provides the ratio of the root mean squared errors (RMSE) of the

LWR forecasts to that of a random walk model of futures prices (where the

predicted xt is zero).  For each currency, there are 45 different RMSEs,

corresponding to the 5 choices of lag lengths and 9 sizes of nearest

neighborhoods.  A ratio larger than 1 indicates that the RMSE of the LWR is

higher than that of the random walk model. In the BP, JY, and SF, LWR

performed worse than the random walk model.  In the DM, 3 of the 45 LWR

forecasts beat the random walk, but the improvement is less than half a

percent.  These results are consistent with those in Diebold and Nason (1990)

and Meese and Rose (1990), and indicate that there is little evidence of a

nonzero conditional mean in price changes in currency futures. 15

IV.B Estimating the Conditional Variance Function

While the conditional mean is statistically not different from zero, the

large autocorrelations of the absolute values of price changes suggest that

the conditional variance is time varying.  The difficulty in modeling the
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conditional variance is that it is never observed directly.  In this paper, we

take two different approaches.

The first approach is motivated by the popularity of the autoregressive

conditional heteroskedasticity models of Engle (1982), Bollerslev (1986), and

Nelson (1991).  See Bollerslev, Chow, and Kroner (1990) for a survey.  We have

selected Nelson's (1991) EGARCH model, which is given by:

Xt = µ + hηt,

ηt|Ωt-1 ~ N(0,1),

log ht = α + β log ht-1 + φ [ |ηt-1| - (2/π)
� ] + γ ηt-1,

where Ωt-1 is the information set at time t-1.
16  Since ht is known at t-1, it

is included in Ωt-1.  The EGARCH model is chosen over Engle's (1982) ARCH or

Bollerslev's (1986) GARCH models for two reasons: (a) EGARCH allows the

conditional variance to respond differently to a decline versus an advance (by

allowing γ to be different from zero) while ARCH and GARCH impose a symmetric

response; and (b) unlike ARCH and GARCH, EGARCH does not need to impose any

constraints on the coefficients of the variance equation to enforce

nonnegativity of the variance.  This makes estimation much simpler. 

We use the Berndt, Hall, Hall, and Hausman (1974) estimation procedure,

and the results are given in Table 5.  Firstly, the estimates of β are all

statistically greater than zero.  In fact, those for the BP, DM, and SF are

very close to 1, which indicates that volatility is highly persistent in

currency futures.  The much smaller value of β for the JY indicates that its

volatility is less persistent.  However, the estimates of β for all 4 currency

futures are smaller than 1, which means that the distribution is strictly

stationary.  Secondly, there appears to be no asymmetry in the variance
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equation, since the estimates of γ are not statistically different from zero.

 These results are similar to those found in spot exchange rates.

While the EGARCH model can be justified on the grounds that it can

approximate variance changes,17 our main interest is to see if it can capture

all the nonlinear dependence in price changes.  If it does, we can proceed to

the second step of our semi-nonparametric procedure.  This can be tested as

follows.  Letĥ t and  denote the fitted values of ht and µ in the EGARCH

model.  We want to test whether the remaining movements in price changes,

called standardized residuals,

^t = [xt-]/ĥ,

are IID.  This can be done by running the BDS tests on the standardized

residuals. 

The results are reported in Table 6.  There is one important caveat

here.  We cannot use the asymptotic distribution of the BDS test, as Brock,

Hsieh, and LeBaron (1991) show that the BDS test is biased in favor of the

null hypothesis of independence and identical distribution when applied to

standardized residuals of EGARCH models.  Therefore, we use simulated critical

values of the BDS test which are provided in Table 6.  They indicate that the

standardized residuals still reject independence and identical distribution

for the DM and the SF, which means that the EGARCH model cannot capture all

the nonlinear dependence in those two currency futures.

We now turn to the second approach to modeling volatility.  The idea is

to construct a daily measure of volatility using intraday futures data, which

then allows us to fit a time series model of volatility.  As in Kupiec (1990),

our daily measure of volatility is the Parkinson (1980) range estimator of the
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standard deviation:

σP,t = [.361 H 1440 / M ]
� log[ Hight / Lowt ],

where Hight and Lowt are the high and low transaction prices during each

trading day, and M is the number of minutes during a trading day.18  We should

point out that the standard deviation of the trading day in the CME, which is

approximately 400 minutes at the end of our sample, is scaled up to a trading

day of 24 hours (i.e. 1440 minutes).  While this particular scaling is

motivated by the fact that the foreign exchange market is open around-the-

clock, any scaling factor is innocuous, as the second step of our semi-

nonparametric method will provide the appropriate scaling factor.

It is important to stress here that σP,t is the ex post measure of

volatility, while we are mainly interested in the ex ante, i.e., conditional,

forecast of volatility.  To obtain a conditional forecast of volatility, we

posit the following model for log price changes, xt:

xt = σP,t ut,

log σP,t = α + Σ βi log σP,t-i + νt,

where νt is IID.  We call this the autoregressive volatility model.  It is

motivated by the fact that σP,t is autocorrelated.
19  We can recover the ex

ante volatility, as follows.  Regress log σP,t on its own lags and a constant

term using ordinary least squares.  For simplicity, we call this the

"autoregressive volatility" model.  The number of lags of log σP,t is

determined by the Schwarz (1978) criterion: 8 for the BP, 8 for the DM, 5 for

the JY, and 8 for the SF.  The estimates are given in Table 7.  The

persistence of volatility is measured by the sum of the β coefficients, which

are .782 for the BP, .760 for the DM, .624 for the JY, and .736 for the SF. 
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They are statistically less than 1 in all 4 cases, indicating that log

volatility is strictly stationary.  When compared to the EGARCH model, the

autoregressive volatility model has much less persistence for the BP, DM, and

SF.  This will have an impact on our simulations in Section V.

As the issue of volatility persistence is important in the distinction

between the autoregressive volatility and the EGARCH model, we perform several

tests of sensitivity and misspecification of the autoregressive volatility

model.  Firstly, we include the lagged values of log volatility up until the

20th lag.  This does not change our results substantially.  In particular, the

sums of the β parameters increase slightly, to .844 (BP), .793 (DM), .675

(JY), and .779 (SF).  But they are still statistically less than 1, as the

F(1,1234) statistics are 15.36 (BP), 21.69 (DM), 38.27 (JY), and 27.43 (SF).

Secondly, we add day-of-the-week dummy variables to the model, since the

literature has found these to be statistically important in variance

changes.20  While most of the day-of-the-week dummies are statistically

different from zero, they add little to the explanatory power.  The 2's

improve only marginally, rising to .284 (from .274), .242 from (.227), .181

(from .170), and .208 (from .193), respectively, in the BP, DM, JY, and SF. 

In addition, the Schwarz criterion worsens in three of the four currencies. 

These dummies also did not change the amount of volatility persistence.  The

sum of the β coefficients are .785 (BP), .765 (DM), .627 (JY), and .740 (SF),

which are essentially the same as those without the dummies and remain

statistically different from unity in all 4 cases.  Thus, day-of-the-week

dummies are excluded from the final model.  Thirdly, we include lags of the

log volatilities of the other currencies.  They did not appear to be
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statistically significant, and the Schwarz criterion worsens in all cases. 

Hence we kept the specification as reported in Table 7.

To ensure that the autoregressive volatility model can capture all the

predictability in currency futures, we run the BDS test on the standardized

residuals:

zt = xt/P,t,

where P,t is the fitted value from the autoregressive volatility model.  The

results are reported in Table 8.  Critical values of the BDS statistics are

obtained through simulation, as done in Table 6.  We find little evidence

against the hypothesis that the standardized residuals are IID.  For the BP,

DM and JY, there are no rejections of the null, while for the SF, 3 of the 16

statistics reject the null.  Note that this rate of rejection is much lower

than that of the EGARCH model in Table 6. 

IV.C Estimating the Density of the Unpredictable Part of Futures Price Changes

The tests indicate that the autoregressive volatility model is

appropriately specified, and appears to have captured the predictable

movements in exchange rates.  We now proceed to the second step of our semi-

nonparametric method, which involves modeling zt = xt/P,t, the unpredictable

part of log price changes.

Table 8 provides some information about zt.  The mean is close to zero.

 The standard deviation is close to unity.  There is little evidence of

skewness, but strong evidence of leptokurtosis.  Using the BDS test, we have

already shown that zt is IID, so we can estimate its unconditional density

using standard methods.  For example, we can fit a parametric density
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function, such as the Student-t.  Or we can fit a nonparametric density, using

kernels or series expansions.

For the purposes of our applications in Section V, we actually do not

need to estimate the density of zt at all.  Section V.A requires only the

quantiles of zt, which are provided in Table 8.  In Section V.B, we simulate

future values of xt by "bootstrapping" from zt, as per Efron (1982).  We now

turn to these applications.

V. Application to Risk Management: Minimum Capital Requirements

There are many uses of the conditional density of price changes.  In

this section, we calculate the minimum capital requirement of a futures

position.  First, we show that there is a direct method to obtain daily

minimum capital requirements.  Next, we show that we can obtain longer term

minimum capital requirements, via simulation.

V.A Daily Minimum Capital Requirements

Suppose a firm holds a long position of Lt units of a foreign currency

futures contract.  An important question in risk management is:  What is the

minimum capital, Kt, needed to cover losses of this long position with a 99.5%

probability?  The minimum capital is the sum of prearranged lines of credit

and short term liquid instruments which can be converted to cash almost

instantaneously, e.g., Treasury bills, negotiable certificates of deposits,

money market funds, interest bearing checking accounts, etc.  We note that we

have selected 99.5% as the "coverage probability" purely for illustrative

purposes.21
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The capital requirement, Kt, is determined as follows.  Let Pt+1 be the

settlement price in the following trading day.  The losses of the long

position are given by (Pt-Pt+1)Lt.  Thus, we want Kt to solve the following

equation:

Pr{ (Pt-Pt+1) Lt > Kt } = .005.

The left hand side can be rewritten as follows:

Pr{ log[1-κt]/σt+1|t > zt+1 }  =  .005.

where κt = Kt/[PtLt], zt+1 = xt+1/σt+1|t, xt+1 = log[Pt+1/Pt], and σt+1|t denotes exp{

Et[logσt+1] }.  In particular, we can use a rolling regression method to

sequentially generate σt+1|t.  The minimum capital is now expressed as a

fraction of PtLt.

To solve for κt, we only need to know the quantiles of the distribution

of zt+1, which are provided in Table 8.  The quantile zR is the point where:

Pr{ zR > zt+1 } = .005.

In particular, zR is -3.017 for the BP, -2.399 for the DM, -3.623 for the JY,

and -2.306 for the SF.  For each currency, then, the minimum capital as a

fraction of the market value of the long position is:

κt = 1-exp(σt+1|t zR).

Since zR is a negative number, an increase in σt+1|t will increase the capital

requirement.

As σt+1|t is time varying, so is κt.  In contrast, the capital requirement

using the unconditional density is constant over time.  When the conditional

variance is larger (smaller) than the unconditional variance, the capital

requirement using the conditional density is higher (lower) than that of the

unconditional density.
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In the second example, suppose the firm is holding a short position of

St units of currencies in futures contracts.  [Shorts are represented by

negative quantities, i.e., St<0.]  The capital requirement, Kt, which can

cover the losses of the short position with a 99.5% probability, is found in

an analogous manner.  Let ζt = Kt / [-Pt St ] be the capital requirement as a

fraction of [ -Pt St ].  Then ζt is given by the equation:

ζt = exp(σt+1|t zh) - 1,

where zh is the quantile of zt such that:

Pr{ zh > zt } = .995.

Based on Table 8, zh equals 2.590 for the BP, 2.418 for the DM, 3.271 for the

JY, and 2.572 for the SF.  As zh is positive, an increase in σt+1|t will raise

the capital requirement.  In contrast, the capital requirement using the

unconditional density is constant over time.

In the third example, we consider a futures exchange setting futures

margin requirements to protect the capital of its clearing members from

defaults by futures traders.  There are two types of futures margins: initial

margins and maintenance margins.  For illustrative purposes, we concentrate on

the maintenance margin.  Suppose the futures exchange desires to set the

maintenance margin to ensure that it is sufficient to cover possible losses of

either long or short positions at least 99.5% of the time.  In other words,

the maintenance margin as a percent of the price times the size of the futures

contract should be the maximum of the capital requirements for the long and

the short sides, i.e., Max{κt,ζt}.  While there is a 0.5% chance that the

maintenance margin cannot cover the losses of the futures contract, this

should be interpreted as an upper bound of the default probability for a
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futures contract, since a trader can add funds to his account to cover losses

exceeding the maintenance margin. 

V.B Application to Risk Management: Longer Term Minimum Capital Requirements

So far, we have considered the capital requirements for holding a

futures position for one trading day.  It would be reasonable to ask how much

capital is needed for holding a futures position for longer periods. 

This consideration can arise in many contexts.  For example, a firm is

planning to use a currency futures contract to hedge the exchange rate risk of

inflows of British Pounds three months from now.  To goal of the hedge is to

balance gains (losses) in the cash inflow with losses (gains) in the futures

position as the exchange rate fluctuates.  The problem facing the firm,

however, is that a futures position is marked to market, so that gains and

losses are settled at the end of each trading day, while the cash position is

settled in entirety three months from now.  If the exchange rate moves in such

a way that the cash position is making profits while the futures position is

sustaining losses, the firm may need additional funds to meet margin

requirements on the futures position because it cannot use the gains in the

cash position to offset these losses.  If the firm is unable to meet margin

requirements, it will be forced to liquidate the futures position prematurely,

which defeats the purpose of hedging.  Before the firm commits to the hedging

strategy using futures, it must know how much capital (e.g., additional funds)

may be needed to maintain this futures position for the next three months. 

The answer to this question can be obtained via a simulation study. 

Start with the conditional density of price changes at the time when the firm
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initially opens the futures position.  For the sake of illustration, take this

to be the end of our data sample, March 9, 1990.  Simulate the path of the

futures price over the course of the next 3 months.  At the end of each

trading day, track the value of the futures position, and record its lowest

value during the 3 month period.  This is the maximum "draw down" for this

simulated path, which represents the maximum loss sustained by the firm while

holding the futures position.  If the firm's additional funds is less than

this maximum draw down, it would not be able to maintain its futures position.

 By repeating this for 10,000 simulated paths, we generate an empirical

distribution of the maximum draw down.  The capital requirement can then be

set to that amount which is able to cover a given percentage of the simulated

maximum draw downs.  We use the 90% coverage probability, because 10,000

replications is not accurate enough to measure the extreme tails of a

distribution.

The simulation can be done as follows.  Recall that the semi-

nonparametric model of futures price changes is given by:

xt = σP,t ut

log σP,t = α + Σ βi log σP,t-i + νt,

where xt = log[Pt/Pt-1].  A simulated path of future xt's is generated

recursively, using the estimates of α and β's from our sample, and the values

of σP,t at the end of the sample.  The ut and νt are drawn randomly, with

replacement, from the residuals in a "bootstrap" fashion, per Efron (1982).

Table 9 reports the results of the simulation experiment for the capital

requirement needed to hold a futures position with 90% probability.  We vary

the holding period of the futures position over 1, 5, 10, 15, 20, 25, 30, 60,
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90, and 180 trading days.  The 95% central confidence intervals for these

capital requirements are given in Table 10.22  For comparison, we also report

the simulations using the unconditional density, and the EGARCH model.  In the

case of the unconditional density, the xt's are drawn randomly, with

replacement, from the 1275 observed price changes.  In the case of the EGARCH

model, the simulated xt's use the estimated values of α, β, φ, and γ, and the

value of ht at the end of the sample.  The ηt's are drawn randomly, with

replacement, from the standardized residuals, in a way analogous to the

autoregressive volatility model.

To understand the results, keep in mind that we start the simulation on

March 9, 1990, when the volatility is below the sample average.23  Thus, the

autoregressive volatility model predicts a lower volatility in the near future

than the unconditional density. 

Consider holding a long futures position in the BP.  For a 1 day holding

period, the capital requirement is 0.73% of the initial face value of the

contract according to the autoregressive volatility model and 0.91% according

to the unconditional density.  [If we had started the simulation on a day

which had a higher volatility than the sample average, the capital requirement

based on the autoregressive volatility model would have been higher than that

based on the unconditional density.]  For a 5 day holding period, the capital

requirements are, respectively, 1.9% and 2.3%. 

These differences in capital requirements are both statistically and

economically significant.  In the case of the 1 day holding period for the BP,

there is a 95% probability that the correct capital requirement using the

autoregressive model is higher than 0.70% and lower than 0.74% of the initial
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face value of the contract.  At the same time, there is a 95% probability that

the correct capital requirement using the unconditional density is higher than

0.85% and lower than 0.95%.  Furthermore, the difference between capital

requirements of 0.73% versus 0.91% is economically significant, when

transactions have face values of several hundred million dollars, such as the

case when highly leverage instruments are involved. 

Tables 9 and 10 also provide some information on the convergence

behavior of the autoregressive volatility model to the unconditional density.

 Firstly, we observe that the capital requirements (and their associated

confidence intervals) of the former approach those of the latter as the

holding period lengthens.  For the BP, this occurs in 90 (trading) days.  The

DM takes 60 trading days, while the JY takes only 30 days.  But the SF takes

more than 180 days.24  However, the convergence is likely to be oscillatory

rather than monotonic, as the autoregressive model of volatility has several

lags.

In comparison, the EGARCH model produced dramatically different results.

 Over a 1-day holding period, the capital requirements based on the EGARCH

model are similar to those based on the unconditional density.  However, as we

simulate into the future, the EGARCH model produces much larger capital

requirements than both the autoregressive volatility model and the

unconditional density.  This phenomenon is due to the high degree of

volatility persistence in the EGARCH model.  During the simulation period, a

large price change (either positive or negative) will cause the conditional

variance of the EGARCH model to increase and to remain high for a long period

of time.25  In contrast, there is much less volatility persistence in the
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autoregressive volatility model and none in the unconditional model.  This

persistence in volatility also means that the convergence of the EGARCH model

to the unconditional density is extremely slow.  We have simulated as many as

500 trading days into the future.  For the BP, DM, and SF, the capital

requirements from the EGARCH model are still twice as high as those from the

unconditional density.  The exception is the JY.  Its capital requirements

from the EGARCH model are roughly 50% higher than those from the unconditional

density.  This demonstrates that, while the EGARCH model may produce

satisfactory 1-day ahead volatility forecasts, it is may not be appropriate

for multi-step ahead volatility forecasts.

Another interesting feature in Table 9 is that a short position requires

more capital than a corresponding long position at any given coverage

probability.  This is due to the fact that the futures price is bounded below

by zero, but unbounded above.  Even when the logarithmic rate of change of the

futures price is symmetric, the change in the futures price itself is

asymmetric.  Thus, the probability of a $1 decrease in futures price is less

than that of a $1 increase.  This accounts for the difference in the capital

requirements between a long and a short position.

VI. Conclusions

In this paper, we demonstrate that when log price changes are not IID,

their conditional density may be more accurate than their unconditional

density for describing short term behavior.  Using the BDS test of

independence and identical distribution, we show that daily log price changes

in four currency futures contracts are not IID.  While there appears to be no
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predictable conditional mean changes, conditional variances are predictable,

and can be described by an autoregressive volatility model.  Furthermore, this

autoregressive volatility model seems to capture all the departures from

independence and identical distribution. 

Based on this model, we can decompose daily log price changes into a

predictable part and an unpredictable part.  The predictable part is described

parametrically by the autoregressive volatility model.  The unpredictable part

can be modeled by an empirical density, either parametrically or

nonparametrically.  This two-step semi-nonparametric method yields a

conditional density for daily log price changes, which has a number of uses in

financial risk management. 

In particular, we show how to directly calculate the capital requirement

needed to cover losses of a futures position over one trading day, and how to

use simulation to obtain the capital requirement over longer holding periods.

 We find that the conditional density can provide different, and probably more

accurate, capital requirements than the unconditional density.
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Notes:
See LeBaron (1988), Scheinkman and LeBaron (1989), and Hsieh (1991) for stock returns, and Hsieh

(1989) for exchange rates.

This is more restrictive than the general notion, which allows conditioning on other

information.  Our univariate approach is much simpler computationally than the multivariate

approach.  When conditioning on other information, such as trading volume, we will need to model

these additional variables.

Parametric unconditional densities have been estimated by Fama (1965) and Blattberg and Gonedes

(1974) for stock returns, and Westerfield (1977), Rogalski and Vinso (1978), Boothe and Glassman

(1988) for exchange rates.

Suppose xt is given by the following process:

xt = σt ut,

log σt = α + β log σt-1 + vt,

re ut is IID, normal, with mean 0 and variance 1, and vt is IID, normal, with mean 0 and variance 

.  Furthermore, ut and vs are independent for all t and s, and |β| < 1.  It is easy to verify

that the conditional and unconditional distribution of xt is different, and that the conditional

variance of xt can be either larger or smaller than the unconditional variance.

See Brock, Hsieh, and LeBaron (1991) for a discussion of this point.

See Scheinkman and LeBaron (1989) and Hsieh (1989).

Note that IID implies that Cm(δ) = [C1(δ)]m, but the converse is not true.  Dechert (1988) gives

some pathological examples of non-IID data for which Cm(δ) = [C1(δ)]m.

This finding contradicts those of Hodrick and Srivastava (1987) and McCurdy and Morgan (1987),

who find strong autocorrelation in log price changes in currency futures prices using data for

which daily price limits were in effect but did not take them into account.  Kodres (1988) uses

a limited dependent variable method, but fails to take account of the conditional
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heteroskedasticity, as pointed out by Harvey (1988).

The reader may be concerned with the role of maturity drift in these results using futures data.

 It is possible that a fixed maturity futures price change is IID, but the distribution of an n-

period maturity futures price change is different from that of an n-1 period maturity futures

price change.  This may induce "spurious" rejection of IID.  To check that this is not the case,

Appendix A and B (available upon request) provide the BDS statistics and autocorrelation

coefficients of the absolute values of daily log price changes of spot currencies, collected by

the Board of Governors of the Federal Reserve System, for the same time period.  The spot

exchange rates (which is a 2-day forward contract) have essentially the same statistical

behavior as the currency futures.

The two-step procedure may suffer from some efficiency loss.  However, with the sample size we

have, the longer computation time of joint estimation is a greater cost than any gain in

efficiency.

The proof relies on the law of iterated expectations.  E[xtxt-ixt-j] =

E[xt|xt-1,...]xt-ixt-j ] = 0.

Note that the restriction that εt is IID is needed to prove consistency of nonparametric methods

to estimate the function g().

Diebold and Nason (1990) and Meese and Rose (1990) found that LWR does not outperform a random

walk model in forecasting spot exchange rates in terms of mean squared error or mean absolute

error.  It is possible that LWR has low power in detecting conditional mean changes.  But the

simulations in Hsieh (1991) show that LWR can detect all the nonlinear dynamics models most

often cited in the time series literature.

The extension to the case with multiple lags is straight forward.

We have also tested for the significance of day-of-the-week dummies, which turn out not to be a

factor in the conditional mean.  These results are available from the author upon request.
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The (2/π)
� is used to center the mean of |ηt-1| at 0.

See Nelson (1990) for a discussion.

For the BP, the trading hours are 7:30 am to 1:24 pm from 85/2/22 until 85/10/14, and 7:20 am to

1:24 pm from 85/10/15 to 88/10/04.  For the DM, the corresponding trading hours are 7:30 am to

1:20 pm and 7:20 am to 1:20 pm.  For the JY, they are 7:30 am to 1:22 pm and 7:20 am to 1:22 pm.

For the SF, the corresponding trading hours are 7:30 am to 1:16 pm and 7:20 am to 1:16 pm. 

Since 88/10/05, the trading hours for all currency futures are 7:20 am to 2:00 pm.

A similar model was identified for the Standard and Poors 500 cash index in Hsieh (1991).

See Hsieh (1988) for a discussion of day-of-the-week effects in spot currencies.

We need a theory of hedging to determine whether "coverage probability" is the appropriate

concept for hedging, and what the optimal "coverage probability" should be.

Efron (1982) provides a nonparametric method to estimate the confidence interval for a quantile.

 Let X be a random variable with distribution F.  We want to estimate θ, defined as Prob{X<θ}=q.

 Let x(1),...,x(n) be the ordered data from a sample of size n.  A confidence interval for 

[x(j),x(k)], can be found as follows.  Observe that Prob{x(j)<θ#x(k)} = Prob{j<Z#k}, where Z =

#{x(i)<θ} is a binomial distribution.  Suppose we want a 90% confidence interval for θ.  We can

determine j and k such that Prob{j<Z#k} = 0.95.  If n is small, we can use the exact binomial

distribution of Z.  Since n is large in our case (i.e., 10,000), we approximate the binomial

distribution with a normal distribution.

On that day, the Parkinson volatilities are 12.48%, 9.51%, 7.90%, and 8.90%, respectively, for

the BP, DM, JY, and SF.  Over the entire sample, the average of the Parkinson volatilities are

16.13%, 16.06%, 12.68%, and 18.01%, respectively.

The SF actually takes about 250 trading days, according to our simulations which are not



-31-

reported in Tables 9 and 10.

This explanation is confirmed by the following experiment.  We estimated the EGARCH model

subject to the constraint that β=0 in the variance equation.  This allows much less volatility

persistence.  In the case of the BP, the restricted EGARCH model produced capital requirements

of 12.26% at the 180 day holding period for long positions, and 31.00% for short positions. 

These are much closer to the capital requirements in Table 9 for the autoregressive volatility

model and the unconditional density, and very different from those from the unrestricted EGARCH

model.
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Table 1
Statistical Description of Daily Log Price Changes:
Feb. 22, 1985 - Mar. 9, 1990 (1275 observations)

               BP                DM                JY                SF

Mean          0.00045           0.00043           0.00032           0.00037
Median        0.00036           0.00000           0.00000           0.00016
Std dev       0.00815           0.00784           0.00708           0.00869
Skewness      0.36              0.28              0.34              0.18  
Kurtosis      6.25              5.32              7.81              4.94  
Maximum       0.04553           0.04832           0.05333           0.04967
Minimum      -0.02899          -0.03264          -0.04133          -0.03692

BDS statistics:
m  δ         

2  0.5        2.39*             1.68              4.15*             1.01
3  0.5        2.76*             2.23              4.95*             1.08
4  0.5        3.58*             3.16*             6.39*             1.77
5  0.5        4.40*             3.91*             7.88*             2.57

2  1.0        3.34*             1.48              4.06*             0.46
3  1.0        4.00*             2.10              4.49*             0.85
4  1.0        4.86*             3.11*             5.69*             1.59
5  1.0        5.73*             3.85*             6.52*             2.40

2  1.5        3.96*             1.99              3.68*             0.81
3  1.5        4.84*             2.97*             4.29*             1.62
4  1.5        5.75*             3.95*             5.61*             2.57
5  1.5        6.54*             4.69*             6.32*             3.38*

2  2.0        3.88*             2.51*             3.16*             1.35
3  2.0        4.86*             3.79*             3.84*             2.37
4  2.0        5.77*             4.75*             5.14*             3.30*
5  2.0        6.54*             5.53*             5.73*             4.02*

* Significant at the 1% level using a two-tailed test.

Note:
m is the imbedding dimension.

δ is the distance between points, measured in terms of number of standard
deviations of the raw data.
The critical values (marginal significance level) of the statistics for a two-
tailed test are: 1.645 (10%), 1.960 (5%), 2.326 (2%), and 2.576 (1%).
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Table 2
Autocorrelations of Price Changes and Their Absolute Values

               BP                DM                JY                SF

Autocorrelation Coefficients:

ρ( 1)         0.032            -0.019             0.024            -0.006
ρ( 2)        -0.016            -0.009             0.000            -0.013
ρ( 3)        -0.017             0.042             0.057             0.029
ρ( 4)        -0.019            -0.043            -0.004            -0.032
ρ( 5)        -0.005             0.014             0.012             0.009
ρ( 6)         0.054             0.033             0.021             0.007
ρ( 7)        -0.045            -0.021            -0.026            -0.017
ρ( 8)         0.029             0.047             0.051             0.021
ρ( 9)        -0.016             0.005             0.022             0.008
ρ(10)        -0.020            -0.037            -0.005            -0.033
ρ(11)        -0.039            -0.009             0.014            -0.011
ρ(12)        -0.015            -0.022             0.025            -0.008
ρ(13)         0.056             0.018            -0.002             0.034
ρ(14)         0.005             0.015             0.042             0.002
ρ(15)         0.052             0.056             0.022             0.066

Q(15)        20.09             17.12             14.25             12.26

Autocorrelation Coefficients of absolute values:
r( 1)         0.107*            0.059             0.118*            0.027
r( 2)         0.094*            0.038             0.058             0.025
r( 3)         0.108*            0.079*            0.101*            0.052
r( 4)         0.112*            0.055             0.041             0.040
r( 5)         0.081*            0.088*            0.084*            0.084*
r( 6)         0.096*            0.107*            0.087*            0.097*
r( 7)         0.088*            0.099*            0.010             0.096*
r( 8)         0.101*            0.087*            0.088*            0.061
r( 9)         0.088*            0.063             0.069             0.054
r(10)         0.129*            0.128*            0.023             0.113*
r(11)         0.047             0.020             0.041             0.038
r(12)         0.078*            0.068            -0.005             0.075*
r(13)         0.092*            0.086*            0.023             0.088*
r(14)         0.116*            0.073*            0.055             0.048
r(15)         0.108*            0.115*            0.028             0.103*

Q(15)       182.41**          128.85**           79.50**           98.69**

* Significant at the 1% level using a two-tailed test.
** Significant at the 1% level using a one-tailed test.

Note:
Q(15) is the Box-Pierce statistic testing for the first 15 lags to be
different from zero.  The critical values (marginal significance levels) are:
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22.31 (10%), 25.00 (5%), and 27.49 (1%).
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Table 3
Bicorrelation Coefficients

Lags               BP              DM              JY              SF
i     j

1     1          -0.119          -0.059          -0.072          -0.037
1     2          -0.041          -0.011          -0.030          -0.013
2     2           0.232           0.156           0.103           0.185
1     3          -0.024           0.009           0.073          -0.001
2     3           0.125           0.076          -0.003           0.060
3     3          -0.006          -0.097           0.231          -0.035
1     4           0.006           0.000           0.039          -0.012
2     4          -0.012          -0.013           0.034          -0.015
3     4          -0.030           0.021           0.068           0.027
4     4           0.008          -0.016           0.149           0.018
1     5           0.028          -0.020           0.039          -0.005
2     5          -0.007          -0.065          -0.023          -0.045
3     5           0.037           0.037          -0.033          -0.010
4     5          -0.097          -0.027           0.021          -0.005
5     5           0.026           0.015           0.051           0.061

 χ2(15)          15.58           12.42           11.35           12.01
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Table 4
Ratio of Root Mean Squared Forecast Errors

No. of  Fraction      BP              DM              JY              SF
Lags    of sample
    1   0.1          1.0209          1.0081          1.0547          1.0285
    1   0.2          1.0254          0.9953          1.0371          1.0325
    1   0.3          1.0260          0.9971          1.0323          1.0250
    1   0.4          1.0221          0.9996          1.0301          1.0214
    1   0.5          1.0188          1.0020          1.0278          1.0196
    1   0.6          1.0170          1.0037          1.0263          1.0186
    1   0.7          1.0155          1.0051          1.0256          1.0172
    1   0.8          1.0141          1.0064          1.0260          1.0154
    1   0.9          1.0133          1.0068          1.0260          1.0135
    2   0.1          1.0605          1.0312          1.1094          1.0342
    2   0.2          1.0548          1.0211          1.0935          1.0121
    2   0.3          1.0491          1.0162          1.0831          1.0080
    2   0.4          1.0431          1.0102          1.0742          1.0044
    2   0.5          1.0370          1.0067          1.0664          1.0019
    2   0.6          1.0315          1.0048          1.0593          0.9997
    2   0.7          1.0268          1.0041          1.0540          0.9982
    2   0.8          1.0232          1.0038          1.0496          0.9973
    2   0.9          1.0204          1.0040          1.0459          0.9976
    3   0.1          1.1473          1.0777          1.2062          1.0744
    3   0.2          1.1019          1.0655          1.1572          1.0305
    3   0.3          1.0810          1.0567          1.1323          1.0190
    3   0.4          1.0678          1.0477          1.1140          1.0148
    3   0.5          1.0582          1.0404          1.0990          1.0112
    3   0.6          1.0508          1.0347          1.0855          1.0089
    3   0.7          1.0435          1.0303          1.0750          1.0067
    3   0.8          1.0375          1.0252          1.0656          1.0048
    3   0.9          1.0315          1.0196          1.0590          1.0038
    4   0.1          1.3497          1.1755          1.3802          1.1763
    4   0.2          1.2435          1.0841          1.2608          1.0698
    4   0.3          1.1892          1.0587          1.2091          1.0373
    4   0.4          1.1548          1.0472          1.1764          1.0208
    4   0.5          1.1302          1.0402          1.1536          1.0125
    4   0.6          1.1095          1.0348          1.1362          1.0081
    4   0.7          1.0914          1.0291          1.1216          1.0053
    4   0.8          1.0742          1.0241          1.1080          1.0049
    4   0.9          1.0596          1.0194          1.0958          1.0056
    5   0.1          1.4288          1.4386          1.7291          1.3289
    5   0.2          1.2553          1.2397          1.4582          1.1802
    5   0.3          1.1847          1.1638          1.3585          1.1271
    5   0.4          1.1448          1.1182          1.2929          1.0958
    5   0.5          1.1162          1.0875          1.2401          1.0739
    5   0.6          1.0954          1.0661          1.1983          1.0583
    5   0.7          1.0799          1.0507          1.1619          1.0468
    5   0.8          1.0673          1.0404          1.1316          1.0382
    5   0.9          1.0546          1.0338          1.1077          1.0314
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Note: Underlined value represents the lowest ratio in a given currency.
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Table 5
EGARCH Estimates

xt = µ + hηt

ηt ~ N(0,1)
log ht = α + β log ht-1 + φ [ |ηt-1| - (2/π)

� ]  + γ ηt-1

               BP                DM                JY                SF

 µ           0.000319          0.000377          0.000232          0.000239
            (0.000208)        (0.000214)        (0.000189)        (0.000235)

 α          -0.688127         -1.072229         -4.438289         -0.993241
            (0.030088)        (0.041828)        (0.756704)        (0.032479)

 β           0.928780          0.889511          0.550707          0.895527
            (0.002995)        (0.004386)        (0.075851)        (0.003508)

 φ           0.135854          0.187005          0.282167          0.157669
            (0.019961)        (0.028388)        (0.093357)        (0.024013)

 γ          -0.110718          0.084173          0.313274          0.129035
            (0.177458)        (0.147279)        (0.201531)        (0.166507)

Bollerslev-Woolridge robust standard errors are in parentheses.
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Table 6
EGARCH Standardized Residuals

BDS Test for IID

m  δ           BP                DM                JY                SF

2  0.5       -0.61             -1.10               0.12            -1.34
3  0.5       -0.78             -1.35               0.17            -1.88*
4  0.5       -0.52             -1.08               0.95            -1.71*
5  0.5       -0.09             -0.99               1.90            -1.67

2  1.0       -0.50             -1.65              -0.62            -2.23*
3  1.0       -0.59             -1.77*             -0.69            -2.55*
4  1.0       -0.40             -1.45*              0.32            -2.35*
5  1.0       -0.14             -1.33*              0.89            -2.04*

2  1.5       -0.42             -1.54              -1.03            -2.41*
3  1.5       -0.56             -1.51*             -1.09            -2.59*
4  1.5       -0.50             -1.25*              0.16            -2.29*
5  1.5       -0.31             -1.19*              0.77            -2.08*

2  2.0       -0.42             -1.24              -1.01            -2.05*
3  2.0       -0.54             -1.18              -0.89            -2.07*
4  2.0       -0.41             -0.97               0.33            -1.72*
5  2.0       -0.28             -0.98               0.85            -1.58*

Note:
* Statistically significant at the 5% two-tailed test based on the simulated
critical values of an EGARCH model for 1275 observations with 2000
replications:

                              δ                
    m         0.50      1.00      1.50      2.00

2.5% critical values
    2        -2.04     -1.95     -1.77     -1.62
    3        -1.63     -1.39     -1.30     -1.31
    4        -1.66     -1.22     -1.14     -1.15
    5        -1.66     -1.22     -1.14     -1.15

97.5% critical values
    2         1.73      1.58      1.57      1.56
    3         1.70      1.45      1.49      1.83
    4         1.85      1.47      1.49      2.22
    5         1.85      1.47      1.49      2.22
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Table 7
Estimates of the Autoregressive Volatility Model

Using Parkinson's Standard Deviations

log σP,t = α + Σ βi log σP,t-i + νt

                BP                DM                JY                SF

α             -1.037            -1.139            -1.874            -1.219
              (0.171)           (0.187)           (0.199)           (0.193)

log σP,t-1       0.192             0.153             0.208             0.115
              (0.028)           (0.028)           (0.028)           (0.028)

log σP,t-2       0.134             0.111             0.137             0.106
              (0.029)           (0.028)           (0.028)           (0.028)

log σP,t-3       0.062             0.052             0.058             0.068
              (0.029)           (0.028)           (0.029)           (0.028)

log σP,t-4       0.069             0.092             0.109             0.091
              (0.029)           (0.028)           (0.028)           (0.028)

log σP,t-5       0.137             0.091             0.112             0.118
              (0.028)           (0.028)           (0.028)           (0.028)

log σP,t-6       0.027             0.072                               0.074
              (0.029)           (0.028)                             (0.028)

log σP,t-7       0.073             0.110                               0.086
              (0.028)           (0.028)                             (0.028)

log σP,t-8       0.088             0.079                               0.078
              (0.028)           (0.028)                             (0.028)

2             0.274             0.227             0.170             0.193

Σβi            0.782             0.760             0.624             0.736
              (0.129)           (0.124)           (0.165)           (0.099)

Test of

Σβi=1         36.59             37.27             91.73             55.71
F(n1,n2)       1,1258            1,1258            1,1264            1,1260
              [0.0000]          [0.0000]          [0.0000]          [0.0000]

Standard errors in parantheses, p-values in square brackets.

Note:
The standard errors and test of Σβi=1 do not change when using a
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heteroskedasticity-consistent covariance matrix.
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Table 8
Statistical Description of Standardized Residuals of

The Autoregressive Volatility Model

               BP                DM                JY                SF

Mean          0.042             0.036             0.037             0.024
Median        0.051             0.000             0.000             0.019
Std dev       0.880             0.853             1.031             0.842
Skewness     -0.035             0.053             0.196             0.025
Kurtosis      5.249             4.360             7.485             4.426
Maximum       5.078             3.389             6.897             3.513
Minimum      -3.560            -3.626            -5.205            -4.000

Quantiles:
 0.50%       -3.017            -2.399            -3.623            -2.306
 1.00%       -2.474            -2.245            -2.821            -2.080
 5.00%       -1.411            -1.319            -1.557            -1.322
10.00%       -0.970            -0.937            -1.046            -0.985
90.00%        1.067             1.135             1.228             1.096
95.00%        1.504             1.487             1.697             1.422
99.00%        2.304             2.220             2.611             2.137
99.50%        2.590             2.418             3.271             2.572

BDS statistics:
m  δ

2  0.5       -0.61             -0.45              1.69             -1.27
3  0.5       -0.96             -1.09              1.45             -1.64
4  0.5       -0.97             -1.24              1.65             -1.20
5  0.5       -1.01             -1.36              2.04             -1.20
                                                                  
2  1.0       -0.24             -0.91              1.77             -1.80
3  1.0       -0.86             -1.28              1.33             -2.23*
4  1.0       -0.94             -1.17              1.69             -2.07*
5  1.0       -1.02             -1.25              1.77             -1.88
                                                                  
2  1.5        0.42             -0.68              1.48             -1.80
3  1.5       -0.23             -0.83              1.17             -2.04*
4  1.5       -0.32             -0.66              1.91             -1.82
5  1.5       -0.44             -0.73              1.99             -1.73
                                                                  
2  2.0        0.75             -0.40              0.84             -1.42
3  2.0        0.41             -0.32              0.88             -1.52
4  2.0        0.38             -0.11              1.60             -1.31
5  2.0        0.26             -0.20              1.66             -1.34
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Table 8 (cont.)

Note:
* Statistically significant at the 5% two-tailed test based on the simulated
critical values of an autoregressive volatility model for 1275 observations
with 2000 replications:

                              δ                
    m         0.50      1.00      1.50      2.00

2.5% critical values
    2        -1.84     -1.86     -1.86     -1.96
    3        -1.86     -1.88     -1.85     -1.96
    4        -1.86     -1.87     -1.93     -1.96
    5        -1.77     -1.89     -1.91     -1.96

97.5% critical values
    2         1.90      1.94      1.92      1.96
    3         2.01      1.94      2.00      1.96
    4         2.01      1.95      2.12      1.96
    5         2.04      2.06      2.05      1.96
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Table 9
Capital Requirement for 90% Coverage Probability

As a Percent of the Initial Value

          No.        Long Position                      Short Position
          of
         Days    AR      Uncond   EGARCH             AR      Uncond   EGARCH

    BP     1     0.73     0.91     0.93              0.80     0.98     1.05
           5     1.90     2.30     2.61              2.18     2.76     3.00
          10     2.83     3.27     4.19              3.38     4.22     4.88
          15     3.54     3.94     5.72              4.45     5.48     6.67
          20     4.10     4.61     6.96              5.24     6.33     8.43
          25     4.59     5.15     8.25              6.20     7.36    10.46
          30     5.02     5.58     9.08              7.11     8.33    12.06
          60     7.24     7.44    14.50             11.64    12.87    20.71
          90     8.74     8.70    17.91             15.45    16.90    28.03
         180    11.38    10.67    24.25             25.81    27.36    48.02

    DM     1     0.72     0.87     0.83              0.89     1.00     0.95
           5     1.89     2.18     2.34              2.23     2.70     2.91
          10     2.77     3.14     3.93              3.40     4.12     5.03
          15     3.52     3.86     5.37              4.36     5.30     6.92
          20     4.05     4.45     6.54              5.19     6.14     8.91
          25     4.55     4.90     7.86              6.14     7.21    10.69
          30     4.93     5.37     8.75              7.02     7.88    12.36
          60     7.16     7.24    13.14             11.36    12.38    20.86
          90     8.87     8.39    16.06             14.68    16.16    27.75
         180    11.38    10.35    21.69             24.25    26.25    45.68

    JY     1     0.56     0.74     0.72              0.68     0.87     0.86
           5     1.61     1.99     2.22              1.92     2.36     2.73
          10     2.59     2.82     3.46              3.06     3.53     4.41
          15     3.30     3.46     4.37              4.11     4.60     5.79
          20     3.95     4.10     5.09              5.13     5.45     6.77
          25     4.42     4.58     5.78              5.91     6.30     7.98
          30     4.95     4.92     6.34              6.58     6.85     8.81
          60     6.99     6.84     8.72             10.53    10.74    13.58
          90     8.43     8.00    10.51             13.61    14.00    17.63
         180    10.97    10.27    13.99             21.86    22.21    27.39

    SF     1     0.82     0.97     0.89              0.93     1.12     0.98
           5     1.99     2.51     2.48              2.23     2.93     2.98
          10     2.87     3.60     4.12              3.37     4.53     5.09
          15     3.67     4.35     5.60              4.22     5.67     7.03
          20     4.24     5.10     6.82              5.09     6.69     8.86
          25     4.81     5.65     8.12              5.90     7.77    10.93
          30     5.23     6.20     9.12              6.70     8.47    12.50
          60     7.69     8.41    13.73             10.55    13.10    21.27
          90     9.23     9.93    16.89             13.60    17.06    27.80
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         180    12.18    12.57    22.92             21.72    27.45    45.47
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Table 10
Approximate 95% Central Confidence Intervals for
Capital Requirement for 90% Coverage Probability

As a Percent of the Initial Value

      No.                Long Position                                  Short Position

      of

     Days       AR          Uncond        EGARCH               AR          Uncond        EGARCH

BP    1   [ 0.70, 0.74]  [ 0.86, 0.95]  [ 0.90, 0.96]    [ 0.78, 0.82]  [ 0.96, 0.99]  [ 1.01, 1.07]

      5   [ 1.87, 1.95]  [ 2.26, 2.37]  [ 2.54, 2.67]    [ 2.14, 2.25]  [ 2.70, 2.83]  [ 2.95, 3.06]

     10   [ 2.76, 2.91]  [ 3.19, 3.34]  [ 4.08, 4.30]    [ 3.30, 3.48]  [ 4.15, 4.30]  [ 4.77, 4.99]

     15   [ 3.47, 3.61]  [ 3.87, 4.02]  [ 5.57, 5.90]    [ 4.36, 4.53]  [ 5.38, 5.59]  [ 6.54, 6.84]

     20   [ 4.02, 4.20]  [ 4.52, 4.72]  [ 6.82, 7.17]    [ 5.12, 5.34]  [ 6.22, 6.44]  [ 8.31, 8.62]

     25   [ 4.49, 4.70]  [ 5.03, 5.29]  [ 8.06, 8.43]    [ 6.08, 6.33]  [ 7.22, 7.51]  [10.26,10.64]

     30   [ 4.94, 5.14]  [ 5.44, 5.72]  [ 8.87, 9.32]    [ 7.00, 7.25]  [ 8.15, 8.48]  [11.83,12.30]

     60   [ 7.10, 7.45]  [ 7.31, 7.58]  [14.21,14.78]    [11.37,11.89]  [12.66,13.08]  [20.41,21.11]

     90   [ 8.55, 8.94]  [ 8.57, 8.92]  [17.51,18.25]    [15.22,15.73]  [16.56,17.23]  [27.50,28.62]

    180   [11.15,11.66]  [10.45,10.92]  [23.93,24.74]    [25.33,26.29]  [27.00,27.76]  [47.00,49.05]

DM    1   [ 0.68, 0.75]  [ 0.81, 0.90]  [ 0.78, 0.85]    [ 0.85, 0.91]  [ 0.96, 1.08]  [ 0.93, 0.99]

      5   [ 1.85, 1.94]  [ 2.15, 2.23]  [ 2.28, 2.40]    [ 2.19, 2.28]  [ 2.64, 2.75]  [ 2.86, 2.97]

     10   [ 2.70, 2.84]  [ 3.08, 3.22]  [ 3.86, 4.02]    [ 3.34, 3.47]  [ 4.04, 4.22]  [ 4.92, 5.16]

     15   [ 3.44, 3.58]  [ 3.77, 3.93]  [ 5.28, 5.51]    [ 4.28, 4.44]  [ 5.21, 5.40]  [ 6.80, 7.08]

     20   [ 3.96, 4.14]  [ 4.35, 4.55]  [ 6.41, 6.69]    [ 5.10, 5.28]  [ 6.02, 6.26]  [ 8.70, 9.07]

     25   [ 4.47, 4.65]  [ 4.80, 5.00]  [ 7.71, 8.00]    [ 6.00, 6.26]  [ 7.07, 7.38]  [10.47,10.90]

     30   [ 4.84, 5.06]  [ 5.24, 5.47]  [ 8.57, 8.95]    [ 6.91, 7.16]  [ 7.73, 8.02]  [12.10,12.65]

     60   [ 7.03, 7.33]  [ 7.12, 7.42]  [12.94,13.43]    [11.15,11.59]  [12.18,12.57]  [20.58,21.32]

     90   [ 8.66, 9.06]  [ 8.22, 8.60]  [15.77,16.44]    [14.48,15.03]  [15.89,16.46]  [27.17,28.27]

    180   [11.13,11.63]  [10.11,10.59]  [21.31,22.14]    [23.88,24.61]  [25.83,26.64]  [44.81,46.62]

JY    1   [ 0.56, 0.60]  [ 0.72, 0.76]  [ 0.70, 0.75]    [ 0.68, 0.72]  [ 0.86, 0.92]  [ 0.81, 0.89]

      5   [ 1.60, 1.67]  [ 1.94, 2.04]  [ 2.16, 2.28]    [ 1.89, 1.98]  [ 2.33, 2.41]  [ 2.67, 2.81]

     10   [ 2.45, 2.58]  [ 2.77, 2.88]  [ 3.38, 3.53]    [ 3.06, 3.20]  [ 3.46, 3.61]  [ 4.30, 4.51]

     15   [ 3.23, 3.39]  [ 3.41, 3.54]  [ 4.26, 4.46]    [ 4.03, 4.21]  [ 4.50, 4.69]  [ 5.65, 5.93]

     20   [ 3.84, 4.01]  [ 4.02, 4.19]  [ 4.99, 5.18]    [ 4.93, 5.15]  [ 5.36, 5.58]  [ 6.65, 6.93]

     25   [ 4.33, 4.52]  [ 4.47, 4.67]  [ 5.66, 5.91]    [ 5.75, 6.00]  [ 6.17, 6.41]  [ 7.81, 8.13]

     30   [ 4.79, 4.97]  [ 4.84, 5.03]  [ 6.24, 6.46]    [ 6.50, 6.77]  [ 6.74, 6.99]  [ 8.61, 9.05]

     60   [ 6.90, 7.19]  [ 6.69, 6.97]  [ 8.61, 8.92]    [10.33,10.70]  [10.57,10.95]  [13.35,13.87]

     90   [ 8.29, 8.63]  [ 7.87, 8.16]  [10.32,10.69]    [13.36,13.91]  [13.81,14.28]  [17.31,17.93]

    180   [10.76,11.23]  [10.09,10.49]  [13.74,14.25]    [21.47,22.26]  [21.79,22.47]  [26.97,27.93]

SF    1   [ 0.79, 0.84]  [ 0.95, 1.01]  [ 0.86, 0.92]    [ 0.89, 0.96]  [ 1.10, 1.16]  [ 0.95, 1.02]

      5   [ 1.94, 2.04]  [ 2.45, 2.57]  [ 2.44, 2.54]    [ 2.19, 2.29]  [ 2.86, 3.00]  [ 2.91, 3.04]

     10   [ 2.80, 2.94]  [ 3.51, 3.67]  [ 4.06, 4.18]    [ 3.30, 3.45]  [ 4.43, 4.62]  [ 4.98, 5.21]

     15   [ 3.59, 3.75]  [ 4.28, 4.45]  [ 5.46, 5.74]    [ 4.16, 4.32]  [ 5.57, 5.75]  [ 6.91, 7.17]

     20   [ 4.15, 4.33]  [ 4.99, 5.20]  [ 6.68, 6.97]    [ 4.98, 5.18]  [ 6.57, 6.83]  [ 8.68, 9.06]

     25   [ 4.71, 4.93]  [ 5.54, 5.77]  [ 7.96, 8.27]    [ 5.80, 6.02]  [ 7.60, 7.93]  [10.63,11.12]

     30   [ 5.11, 5.34]  [ 6.11, 6.31]  [ 8.97, 9.29]    [ 6.58, 6.84]  [ 8.33, 8.65]  [12.16,12.80]

     60   [ 7.55, 7.80]  [ 8.23, 8.57]  [13.48,14.00]    [10.37,10.80]  [12.92,13.37]  [20.88,21.64]

     90   [ 9.06, 9.42]  [ 9.72,10.17]  [16.69,17.17]    [13.32,13.89]  [16.83,17.34]  [27.36,28.37]
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    180   [11.98,12.43]  [12.27,12.87]  [22.62,23.29]    [21.34,22.09]  [27.01,27.88]  [44.72,46.46]

Table 10 (cont.)

Note: The first number in the square bracket is the left side of the
confidence
interval.  The second number is the right side of the confidence interval.
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Appendix A
BDS Statistics of Log Spot Price Changes

Feb. 22, 1985 - Mar. 9, 1990 (1267 observations)

m  δ           BP                DM                JY                SF

2  0.5        4.30*             2.71*             4.85*             2.22
3  0.5        4.41*             4.37*             6.10*             2.70*
4  0.5        4.70*             5.61*             7.40*             3.84*
5  0.5        4.62*             6.44*             8.66*             4.51*

2  1.0        4.50*             1.90              3.91*             1.85
3  1.0        4.87*             3.18*             4.24*             2.69*
4  1.0        5.53*             4.41*             5.26*             3.96*
5  1.0        6.12*             5.04*             6.04*             4.53*

2  1.5        4.87*             1.75              3.97*             1.79
3  1.5        5.43*             2.84*             4.16*             2.71*
4  1.5        6.19*             3.92*             4.82*             4.01*
5  1.5        6.86*             4.70*             5.16*             4.70*

2  2.0        4.82*             1.79              3.87*             1.94
3  2.0        5.56*             2.78*             4.22*             2.92*
4  2.0        6.27*             3.56*             4.69*             3.96*
5  2.0        6.90*             4.36*             4.96*             4.62*

* Significant at the 1% level using a two-tailed test.

Note:
m is the imbedding dimension.

δ is the distance between points, measured in terms of number of standard
deviations of the raw data.
The critical values (marginal significance level) of the statistics for a two-
tailed test are: 1.645 (10%), 1.960 (5%), 2.326 (2%), and 2.576 (1%).
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Appendix B
Autocorrelation Coefficients of Absolute Values of Log Spot Price Changes

Feb. 22, 1985 - Mar. 9, 1990 (1267 observations)

               BP                DM                JY                SF

r( 1)         0.119*            0.059             0.115*            0.044
r( 2)         0.094*            0.070             0.079*            0.062
r( 3)         0.103*            0.095*            0.100*            0.081*
r( 4)         0.116*            0.085*            0.039             0.042
r( 5)         0.124*            0.094*            0.120*            0.072
r( 6)         0.118*            0.120*            0.103*            0.096*
r( 7)         0.080*            0.133*            0.040             0.114*
r( 8)         0.089*            0.078*            0.062             0.084*
r( 9)         0.096*            0.049             0.045             0.050
r(10)         0.155*            0.113*            0.090*            0.107*
r(11)         0.100*            0.090*            0.103*            0.097*
r(12)         0.060             0.035             0.003             0.032
r(13)         0.053             0.106*            0.048             0.082*
r(14)         0.083*            0.068             0.072             0.068
r(15)         0.147*            0.029            -0.021             0.020

Q(15)       211.58**          141.87**          112.95**          106.28**

* Significant at the 1% level using a two-tailed test.
** Significant at the 1% level using a one-tailed test.

Note:
Q(15) is the Box-Pierce statistic testing for the first 15 lags to be
different from zero.  The critical values (marginal significance levels) are:
22.31 (10%), 25.00 (5%), and 27.49 (1%).
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Table 7 (old)
Statistical Description of the Log of Parkinson's Standard Deviations:

Feb. 22, 1985 - Mar. 9, 1990 (1275 observations)

                BP                DM                JY                SF

Mean          -4.73             -4.73             -4.99             -4.60  
Median        -4.78             -4.75             -5.02             -4.62  
Std dev        0.529             0.521             0.549             0.495 
Skewness       0.28              0.12              0.33              0.20  
Kurtosis       3.17              2.90              3.19              3.08  
Maximum       -2.35             -3.00             -2.63             -2.66  
Minimum       -6.52             -6.28             -6.64             -6.17  

Autocorrelation Coefficients:

ρ( 1)          0.401             0.340             0.322             0.285
ρ( 2)          0.370             0.312             0.280             0.277
ρ( 3)          0.329             0.273             0.227             0.255
ρ( 4)          0.324             0.293             0.250             0.265
ρ( 5)          0.363             0.295             0.247             0.282
ρ( 6)          0.307             0.289             0.201             0.259
ρ( 7)          0.322             0.309             0.204             0.264
ρ( 8)          0.321             0.286             0.224             0.255
ρ( 9)          0.315             0.266             0.176             0.231
ρ(10)          0.307             0.250             0.140             0.217
ρ(11)          0.289             0.200             0.130             0.190
ρ(12)          0.302             0.253             0.150             0.239
ρ(13)          0.306             0.231             0.107             0.211
ρ(14)          0.312             0.234             0.112             0.194
ρ(15)          0.319             0.241             0.119             0.203

Q(15)         2022**            1416**             777**            1124**

** Significant at the 1% level using a one-tailed test.

Note:
Q(15) is the Box-Pierce statistic testing for the first 15 lags to be
different from zero.  The critical values (marginal significance levels) are:
22.31 (10%), 25.00 (5%), and 27.49 (1%).


