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Estimating the Dynamics of Volatility
by
David A. Hsieh

The volatility of financial markets has |ong been a favored subject of
i nvestigation for academ cs and market participants. Since volatility is not
observed, there has been no agreenent on how to neasure it. However, one
concl usi on appears to have energed, nanely, that volatility is volatile. This
paper exam nes various neasures of volatility, and proposes a diagnostic to
test which of these measures of volatility best captures the dynam cs of
volatility of daily price novenents.

The paper has five sections. Section 1 discusses the various mneasures
of volatility, including three price-based neasures of volatility (historica
volatility, close-to-close volatility, and intraday volatility) and two
option-based neasures of volatility (inplied volatility of at-the-noney cal
and put options). Section 2 examnes the properties of these five volatility
measures. Section 3 estimates the dynanmics of volatility. Section 4 proposes
a diagnostic to test for the best nmeasure of volatility. Section 5 provides

concl udi ng remarks.

1. Measures of Volatility

In this section, we define the various neasures of volatility. Wile
this methodol ogy applies to analysis of volatility in all financial markets,
we restriction our attention to the foreign currency market, in particular
the U S. Doll ar/Deutsche Mark exchange rate. Like the U S. governnent bond
mar ket, the foreign exchange (FX) market is an over-the-counter market where
transacti ons are generally conducted through interbank networks. The
liquidity of the FX market is by far the highest of all financial markets,
estimated to be around $1 trillion per day, with Dollar/Mark being the nost
wi dely traded currency.

Due to the nature of the interbank market, transactions data are not

available. Wiile it is possible to exam ne quotations obtained through
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i nformati on agenci es such as Reuters or Telerate, quotes (which are
solicitations to trade) appear to have substantially different characteristics
than transactions prices. Thus, we focus our attention on the Deutsche Mark
(DM futures contract on the Chicago Mercantil e Exchange (CVE), which al so
trades options on these futures contracts.

The tick-by-tick (also called quote capture or tinme-and-sales) data
contain the tine and price of every transaction in which the price has changed
fromthe previous transaction. |In addition, a bid price is recorded if it is
above the previous transaction, and an ask price is recorded if it is bel ow
the previous transaction. Since these bid and ask prices do not represent
actual transactions, we elimnated themfromour sanple. Note that there is
no i nformati on on the nunber and vol unme of transactions at any given price.
Qur data began on February 25, 1985, when daily price limts were renoved on
currency futures, and ended on June 28, 1991, spanning 1605 tradi ng days.
Since futures contracts expire 4 tinmes per year, we use the contract which is
nearest to maturity, switching to the next nearest to maturity on the Friday
precedi ng the second Wednesday of each expiration nonth.

We begin our analysis by defining the term'volatility." Let F be the
settlenent price of the DM futures contract at date t. Let x; = In[FR/F.; be

t he conti nuously conpounded rate of change, where "In" denotes natura
logarithm The volatility of the DM futures contract, denoted by s;, is the
standard devi ati on of x;.

As s¢ is not observable, we proxy it in different ways. If we are

willing to assume that x; is normally distributed with mean zero and vari ance

st, then the expected value of the close-to-close volatility,

avi =(p/2) |Xt|,
is st. Unfortunately, this is a very noisy nmeasure of g;, because it uses

only one observation per day.
Next, we consider a popul ar neasure, called historical volatility, which

is the standard devi ation of past observations of x;. In this paper, we use a
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20-day rolling neasure:

hve ={ s [ % - § x/20 ]2/ 20}

VWile hvy is less noisy than av, because it uses nore data, the rolling w ndow
i nduces a noving average process of order 19 in hvy.

I nstead of using close-to-close returns, as in avy and hvy, we can nake
use of tick-by-tick information on the DM futures contract. |In particular
the intraday volatility is the standard deviation of the 15-m nute rates of
change of the nearby futures contract, denoted as iv,. It is appropriate to
di scuss the choice of a 15-minute interval. 1In tick-by-tick data, as in nost
transacti ons data, there are bid-ask bounces, which induces a |arge and
negative first-order serial correlation in the data. W need a sufficiently
long tine interval, such as 15 minutes, to renove this effect. W note that,
while the volatility is Iikely to be changing over the course of a trading
day, we are interested in the curmulative volatility fromclose to close. As
long as daily "seasonals"” in volatility are not time varying, the intraday
volatility is reasonable proxy of the close-to-close volatility.

Aside fromthe three volatility nmeasures using price data al one, we can
use information fromoptions on the DM futures contract, which are also traded
on the CME. In particular, we calculate the inplied volatilities of at-the-
money (ATM calls and puts, denoted cvy and pvy, respectively. They are
obtained as follows. For each day, we choose the nearby DM futures contract
and the options on that contract that matures in the same nonth with at | east
10 days to maturity. W match futures and options prices using the tick-by-
tick data fromthe CME, selecting the strike price closest to the futures
price at the close of the trading day. The interest rate is taken to be the
Treasury bill rate that matures nearest to the options expiration data. The
inplied volatility of the option is then cal cul ated using the Barone-Adesi and

VWhal ey [1987] approximate solution to Anerican options.

2. Properties of Volatility

These neasures of volatility provide sonme insights on the properties of
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volatility. First, they confirmthe general inpression that volatility is
time varying and serially correlated. Table 1 provides the autocorrel ation
coefficients of these various neasures of volatility. The standard error of
these correlation coefficients is 0.025. Since the coefficients thenselves
are typically many tinmes larger than this standard error, there is good
evi dence that volatility is not only volatile, but also autocorrelated. In
the case of the historical volatility, which is a 20-day rolling neasure, it
is not surprising that the first 19 autocorrelation coefficients are |arge.
However, the next 10 autocorrelation coefficients are nore than two tines
| arger than their standard errors, indicating a fair anount of persistence.
Even in the cases of iv, and avy, which use non-overlapping data to construct
a daily nmeasure of volatility, the correlation of the 20-th lag is stil
statistically different fromzero

Second, the degree of volatility persistence depends on the measure of
volatility. Three neasures (hvy, cvy, and pv,) indicate that volatility is
hi ghl y persistent because they have large first-order autocorrel ation
coefficients, which are close enough to unity that volatility appear to be a
nonstationary, unit-root |like, process. On the other hand, the remaining two
measures (avy and iv,) indicate that volatility is nmuch | ess persistent
because they have nuch |ower first-order autocorrel ation coefficients, which
are far enough away fromunity that volatility is a stationary process. On
cl oser exam nation, hvy is much nore stationary that cvy and pv,. The
autocorrel ation coefficients of hv;, are simlar in size to those of av; and
ivi, while the autocorrelation coefficients of cvy and pv, remain substantially
hi gher, even out to the 40-th lag. The price-based neasures of volatility
(hvy, ivy, and avy) indicate that volatility is a stationary process, while the
option-based nmeasures of volatility (cvy and pvy) indicate that volatility may
be a nonstationary process with unit-root type behavior

Qur economic intuition rules out the possibility that volatility is a
unit-root process, since such a process leads to arbitrarily high volatilities

with certainty. |In fact, the Dicky-Fuller test indicates that cv, and pv, are
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stationary processes. However, we are still faced with the fact that the
option-based nmeasures of volatility find nmuch nore persistence in volatility
than do the price-based neasures.

A potential explanation of this disagreenment is the presence of two
di fferent conponents of volatility: a short term conponent which is fast
nmovi ng, and a long term conponent which is slow noving. Both conponents are
stationary. The price-based neasures of volatility are capturing only the
short term conponent. The amount of noise in high frequency data nasks the
sl ow novi ng, long termconponent of volatility. Option-based nmeasures of
volatility, on the other hand, is capturing nore of the | ong term conponent,
since the option is forecasting the average volatility over its life tine. As
we constrain the option maturity to be |onger than 10 days (but typically
shorter than 110 days), the inplied volatility is dom nated by the sl ow nmoving
| ong term conponent of volatility. |If this is the explanation, the "correct™
way to nmeasure and predict volatility will depend on the horizon. To the
extent that we are interested in short term(e.g. one day) volatility, the
price-based neasures are nore appropriate. The option-based neasures woul d be
nore appropriate for longer term(e.g. one nonth) volatility.

Anot her expl anation of the disagreenment in volatility persistence
bet ween price-based and option-based nmeasures is that the latter is the result
of a m sspecification of the option pricing nodel. The option pricing nodel
may have incorrectly assuned a | og normal distribution for the underlying
asset's price. O the option pricing nodel may have omitted inportant
vari abl es, such as the price of volatility risk, in the case that volatility
is stochastic and so an option cannot be replicated by arbitrage. The
persistence in volatility is a result of the systematic mspricing of the

options by the (m sspecified) pricing nodel.

3. Estimating Dynamics of Volatility
As we pointed out in the previous section, the appropriate nmeasure of

volatility depends on the time horizon. For the purpose of this paper, we
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assune that the horizon is one trading day. This choice is not entirely
random Many interesting questions in financial risk nmanagenent concern price
distributions fromthe close of one trading day to the close of the next
tradi ng day. For exanple, futures exchanges typically collect margins and
mark the positions of traders to market once a day at the close. These
futures exchanges set their prudential margins to protect their clearing
menbers froman extrenme price nove over the course of a trading day. The
amount of margin is therefore related to the daily volatility of the futures
price in question.

In this section, we will estinmate the dynam cal properties of
volatility. As all five nmeasures of volatility are stationary processes, we
descri be them by sinple autoregressive tine series nodels, of the foll ow ng
form

Yo = a+ Si- b ye.i + e
where p is the lag length and y; is the variable of interest. Using the
Schwarz [1978] information criterion, we determine p to be 1 for avy, 21 for
hv,, 7 for ivy, 3 for cvy, and 2 for pvi. This is taken to be the m ninal
value of p. Then, we increase p until the regression residuals, e, are no
| onger serially correlated. This yields pto be 7 for both avy and iv,, 3 for
cvy, and 2 for pvy. W are, however, forced to abandon hv, because the seri al
correlation of e, persists even when we increase p to 30 lags. The
regressions are reported in Table 2. In all cases, past volatility is usefu
in predicting current volatility. Since the price-based volatility neasures,
av; and ivy, have | ow degrees of autocorrelation, the R's of their regr essi ons
are low. On the other hand, the option-based volatility measures, cv; and
pvi, have high degrees of autocorrelated, so the R s of their regressions are

much hi gher.

4. Diagnostic Test
As the time series properties of these neasures of volatility are quite

different, we now investigate which is a better nmeasure. Qur criterion is as
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follows. Based on the regression in Table 2, we obtain the (in-sanple) fitted
val ues of volatility for, say avy, denoted by fav,. Then, we construct the
st andardi zed vari abl e zav;:

zavy = Xy /| fav;.

Under the assunption that x, has nmean zero and standard deviation s, if fav

is a good estimate of the volatility s, then zav, should have nmean zero, and

standard deviation 1. |In addition, if favy, correctly neasures the dynam cs of

st, then |zavy| should not be serially correlated. Simlarly, we construct

the fitted val ues of ivy, cvy, and pvy, denoted as fiv,, fcvy, and fpvy,
respectively, and the correspondi ng standardi zed vari abl es ziv,, zcv,, and
Zpv;.

Tabl e 3 provides the diagnostics for these standardi zed variables. All
four standardi zed vari abl es have nmeans which are not statistically different
fromzero. 1In addition, there appears to be little autocorrel ation
coefficients of |zavy|, |ziv¢, |zcvy, and |zpv¢|. This means that the
aut oregressive nodels for all four neasures are correctly capturing the
dynam cs of daily volatility. However, the standard deviation of zav; is
statistically greater than 1; that of ziv, less than 1; only those of zcv; and
zpvy are not statistically different from1. This neans that fav, tends to
underestimate daily volatility. The opposite is true of fiv,. Only fcvy and
fpvy are unbi ased estimates of daily volatility. On the basis of this in-
sanple test, we consider fcv, and fpvy to be the best estimates of one-day

ahead volatility.

5. Concl udi ng Remar ks

Thi s paper neasures the daily volatility of DM futures prices using both
price-based nethods and option-based nmethods. All volatility neasures
indicate that volatility is volatile. Except for historical volatility, the
ot her four measures (avy, ivy, cvy, and pvy) indicate that volatility can be

described as a stationary, autoregressive process. Autoregressive nodels were



identified and estimated, and fitted values of volatility are obtained. These
fitted values indicate that the autoregressive nodels were able to capture the
dynam cs of volatility. However, only the option-based neasures (cv, and pvy)
wer e unbi ased predictors of volatility. This indicates that option-based
measures of volatility can be valuable in providing accurate forecasts of

daily volatility.



Ref er ences:

Bar one- Adesi, G and R Wal ey, 1987, Efficient Analytic Approximtions of
AMerican Option Values, Journal of Finance, 42, 301-320.

Schwarz, G, 1978, Estimating the D nmension of a Mddel, The Annal s of

Statistics, 6, 461-464.



Lag

OCO~NOUITRARWNPEF

Not es:
hv,: 20-day histori

Table 1
Aut ocorrel ati on of Measures of Volatility

hv, i Vi av CV;
0.943 0. 341 0. 034 0
0. 887 0. 287 0. 036 0
0. 835 0. 269 0. 066 0
0.788 0. 295 0. 058 0
0. 752 0. 292 0. 079 0
0.716 0. 262 0. 083 0
0.678 0. 285 0. 079 0
0.642 0. 238 0. 090 0
0. 608 0. 243 0. 057 0
0. 576 0. 242 0. 146 0
0. 546 0. 195 0. 024 0
0. 517 0.214 0. 043 0
0. 485 0. 196 0. 088 0
0. 451 0. 203 0. 051 0
0.418 0.221 0. 099 0
0. 385 0.178 0. 035 0
0. 352 0.171 0. 041 0
0. 318 0.137 0. 068 0
0. 285 0. 197 0. 032 0
0. 247 0. 180 0. 055 0
0. 251 0.176 0. 001 0
0. 256 0.142 0. 032 0
0. 258 0. 136 0. 033 0
0. 254 0. 148 0. 006 0
0. 232 0.114 0. 028 0
0. 210 0. 091 -0.021 0
0.191 0.114 0. 054 0
0.170 0. 140 0. 023 0
0. 150 0.117 0. 024 0
0.131 0.118 0. 015 0
0.111 0. 087 -0. 015 0
0. 091 0.109 -0. 027 0
0.073 0. 095 0. 057 0
0. 057 0. 075 -0. 036 0
0. 041 0. 090 0. 030 0
0. 025 0. 084 0. 024 0
0. 004 0. 085 0. 006 0
-0. 017 0. 070 -0.025 0
-0.038 0. 091 0. 022 0
-0. 054 0. 077 0. 049 0

cal volatility, hvy.

ive: intraday volatility, ivy.

avy: (p/2) | X¢|, avi.
NG

the-nmoney call option inplied volatility, cvy.

pvt: at-the-noney put option inplied volatility, cv;.

One standard error

of the autocorrelation coefficients is O.
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b1
b
b3
b4
bs
be
b,
R
Tfst of § b =1

c
(dof)
Not es:

Table 2

Estimating Volatility Dynam cs

Regr essi on:
av,
0.0758

(0.0071)

0. 0110
(0.0281)

0. 0135
(0.0271)

0. 0483
(0.0271)

0. 0449
(0. 0252)

0. 0696
(0.0274)

0.0728
(0. 0297)

0. 0668
(0. 0258)

0. 0236

107. 04

(6)

Standard errors in parentheses.

i Vi
0. 0400
(0.0052)

0. 1824
(0. 0250)

0. 0898
(0. 0244)

0. 0681
(0. 0258)

0.1153
(0. 0246)

0. 1027
(0. 0279)

0. 0583
(0.0274)

0.1110
(0. 0280)

0. 2175

60. 37
(6)
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CVy
0. 0042
(0. 0009)

0. 8531
(0. 0352)

0. 0295
(0. 0379)

0. 0875
(0. 0310)

0. 9355

16. 72
(1)

pvi
0. 0042
(0. 0009)

0.7617
(0. 0436)

0. 2040
(0. 0436)

0. 9264

20. 85
(2)



Table 3
I n- Sanpl e Di agnostics of Volatility Dynam cs:

zav, Zi Vy ZCV; Zpvy
Mean 0. 0375 0. 0219 0. 0277 0. 0282
Std Dev 1.0677 0. 8236 0. 9756 0.9724
t (Mean=) 1.40 1. 06 1.13 1.15
t(Std Dev=1) 2.69 -7.01 -0.97 -1.10
Aut ocorrel ati on Coefficients of Absol ute Val ues:
Lag 1 -0. 000 -0. 025 -0.023 -0.021
2 -0. 005 -0.035 -0.018 -0.019
3 -0.023 -0.019 0. 001 0. 001
4 -0.010 -0.011 0. 010 0.011
5 -0. 008 0. 007 0.031 0.031
6 -0.024 0. 000 0. 020 0.021
7 -0.022 - 0. 007 0. 020 0. 020
8 0. 054 0. 022 0. 033 0. 035
9 0. 035 0. 013 0. 025 0. 024
10 0. 106 0. 080 0. 094 0. 094
11 -0. 008 -0.032 -0.016 -0.018
12 0. 000 -0.012 -0. 006 -0. 006
13 0. 046 0. 019 0. 032 0. 032
14 0. 025 -0. 001 0. 005 0. 003
15 0. 063 0. 047 0. 045 0. 045
16 0. 005 -0. 004 0. 009 0. 007
17 0. 016 -0. 002 0. 004 0. 004
18 0. 044 0. 032 0. 035 0. 034
19 0. 016 -0. 002 0. 002 0. 003
20 0. 023 0. 008 0. 018 0. 019
21 -0.014 -0. 027 -0.015 -0. 017
22 0. 015 -0. 001 0. 007 0. 009
23 0. 000 - 0. 007 -0. 008 - 0. 007
24 -0. 004 -0.024 -0.011 -0.011
25 0. 015 -0.010 0. 007 0. 006
26 - 0. 049 -0. 068 - 0. 057 -0. 059
27 0. 048 0. 035 0. 044 0. 041
28 0. 005 -0.010 -0. 006 - 0. 007
29 0. 017 -0. 008 -0. 000 0. 001
30 -0. 008 -0.024 -0. 022 -0. 022
31 -0.015 -0. 039 -0. 029 -0.028
32 -0. 025 -0. 029 -0. 040 -0.043
33 0. 049 0. 035 0. 037 0. 036
34 - 0. 047 -0. 063 -0. 055 -0. 055
35 0.031 0. 019 0. 024 0. 023
36 0. 015 -0. 005 0. 010 0. 008
37 0. 005 -0. 006 0. 007 0. 006
38 -0.028 -0. 040 -0.035 -0. 037
39 0. 025 0. 015 0. 017 0. 018
40 0. 048 0. 028 0.031 0.031

Not e:
One standard error of the autocorrelation coefficients is 0.025.
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