
SODA: A Low-power Architecture For Software Radio

Yuan Lin, Hyunseok Lee, Mark Woh, Yoav Harel, Scott Mahlke, Trevor Mudge
Advanced Computer Architecture Laboratory

University of Michigan at Ann Arbor
{linyz, leehzz, mwoh, yoavh, mahlke, tnm}@umich.edu

Chaitali Chakrabarti
Department of Electrical Engineering

Arizona State University
chaitali@asu.edu

Krisztián Flautner
ARM, Ltd.

Cambridge, United Kingdom
krisztian.flautner@arm.com

ABSTRACT
The physical layer of most wireless protocols is traditionally
implemented in custom hardware to satisfy the heavy com-
putational requirements while keeping power consumption
to a minimum. These implementations are time consuming
to design and difficult to verify. A programmable hardware
platform capable of supporting software implementations of
the physical layer, or software defined radio, has a number
of advantages. These include support for multiple protocols,
faster time-to-market, higher chip volumes, and support for
late implementation changes. The challenge is to achieve
this without sacrificing power. In this paper, we present a
design study for a fully programmable architecture, SODA,
that supports software defined radio — a high-end signal
processing application. Our design achieves high perfor-
mance, energy efficiency, and programmability through a
combination of features that include single-instruction mul-
tiple-data (SIMD) parallelism, and hardware optimized for
16bit computations. The basic processing element is an
asymmetric processor consisting of a scalar and SIMD pipe-
line, and a set of distributed scratchpad memories that are
fully managed in software. Results show that a four pro-
cessor design is capable of meeting the throughput require-
ments of the W-CDMA and 802.11a protocols, while operat-
ing within the strict power constraints of a mobile terminal.

1. INTRODUCTION
Communication has become one of the central uses of

computing technology over the years. Applications that fa-
cilitate inter-personal communication, such as desktop pub-
lishing, graphic design, email, and web browsing, have been
primary factors in driving the evolution of microprocessors
and computer systems. Meeting the processing requirements
of applications has historically dominated the concerns of
processor and system architects. With the proliferation of
wireless mobile communications, the problem emphasis has
shifted to networking protocols and signal processing that
are required to sustain the necessary bandwidth of these ap-
plications. In recent years, we have seen the emergence of an
increasing number of wireless protocols that are applicable
to different types of networks. Figure 1 lists some of these
wireless protocols and their application domains. Software
Defined Radio (SDR) promises to deliver a cost effective
and flexible solution by implementing the wide variety of
wireless protocols in software. In this paper, we present a
design study for a fully programmable architecture, SODA
(Signal-processing On-Demand Architecture), that supports

WPAN:
Personal Area

Network

WLAN:
Local Area

Network

WMAN:
Metro Area

Network

WWAN:
Wide Area
Network

~10 meters
Bluetooth, UWB

~100 meters
802.11, HiperLan

City or suburb
WiMAX

Broad geographic coverage
GSM, W-CDMA, cdma2000

Figure 1: Categories of Wireless Networks

SDR.
We use two representative, but very different, wireless pro-

tocols to understand the architectural requirements of phys-
ical layer signal processing for SDR. Wideband code divi-
sion multiple access (W-CDMA) [14] is one of the dominant
third generation cellular protocols for multimedia services,
including video telephony on a wireless link. W-CDMA im-
proves over prior cellular protocols by increasing the data
rate from 64Kbps to 2Mbps, and unifies a single service link
for both voice and packet data. 802.11a [1] is a standard
wireless local area network (WLAN) protocol that supports
data rates from 6Mbps to 54Mbps. WLAN protocols are
intended for indoor use with stationary terminals. We chose
these two benchmarks since they are sufficiently different
from each other algorithmically, and are representative of
the large spectrum of algorithms that need to be supported
by an SDR platform.

Software Defined Radio Challenges and Benefits.
The operation throughput requirements of W-CDMA and
802.11a are already an order of magnitude higher than the
capabilities of modern DSP processors, a gap that is likely
to grow in the future. Figure 2 shows the demands of these
protocols in terms of throughput and power requirements.
A comparison of the theoretical peak performance through-
put and power consumption of SODA with other existing
DSP, media, and general-purpose processor systems is also
illustrated. The results are calculated for 16bit fixed point
operations. We see that while most DSP processors oper-
ate at around 10 Mops/mW, most wireless protocols need
100Mops/mW. This is why most wireless protocols to date

1

10

100

1000

0.1 1 10 100

Power (Watts)

P
ea

k
P

er
fo

rm
an

ce
 (

G
o

p
s)

Embedded
Multi-media

Gaming
Console

802.11
RequirementsW-CDMA

Requirements

SODA
(65nm)

TI C6X (130nm)

Imagine (150nm)

VIRAM (180nm)

IBM Cell

B
etter

Pow
er Efficiency

General
Purpose

Computing

Pentium M (90nm)

10 M
ops/m

W
SODA (90nm)

SODA (180nm)

100 M
ops/m

W

Figure 2: Throughput and power requirements of
the W-CDMA and 802.11 wireless protocols, and
computational efficiency of SODA and other DSP
and general purpose processors

have been implemented with custom hardware. While cus-
tom hardware can meet the operational requirements, a pro-
grammable solution offers many potential advantages:

Multi-mode operation is enabled by running different pro-
tocols depending on the available wireless network — GSM
in Europe, CDMA in the USA and some parts of Asia, and
802.11 in the coffee shop. This can be accomplished with
less hardware than would be required by multiple custom
hardware implementations.

Time to market of a protocol implementation is lower be-
cause the hardware can be reused. The hardware integration
and software development tasks can progress in parallel.

Prototyping and bug fixes is enabled for next generation
protocols on existing silicon with a software change. Contin-
uing evolution of the specification can still be supported by
changing the software after the chipset and even the device
has been manufactured. Algorithmic improvements can be
deployed without redesign.

Chip volumes are higher as the same chip can support
multiple protocols without requiring hardware changes.

We believe that the use of programmable systems for wire-
less protocols is inevitable due to the need to support mul-
tiple increasingly complex protocols.

SODA Architecture. The proposed programmable ar-
chitecture, SODA, can meet the extraordinarily high per-
formance requirements of current and future wireless proto-
cols, use reasonable hardware area, and operate within an
embedded DSP processor’s power budget. The architecture
is made up of four cores, each containing asymmetric dual
pipelines that support scalar and 32-wide SIMD execution.
The arithmetic units are customized for 16 bits, and the
register files and software-controlled scratchpad memories
need only a few ports. Our results show that in a 90nm
implementation, our architecture meets the throughput re-
quirements of the 2Mbps W-CDMA protocol and 24Mbps
802.11a running at only 400MHz. The area requirement is
projected to be 6.7mm2. At the nominal operating voltage
of 1V, this translates into a power consumption of less than
500mW. This number includes an ARM Cortex-M3 [2] con-
trol processor which is responsible for part of the protocol
processing.

The main contributions of this paper are the following:

1. A description of the implementation and analysis of

two wireless protocols (W-CDMA and 802.11a) used
for our benchmarking. Unlike other studies, we take
the requirements of the entire protocol, not just a col-
lection of stand-alone kernels, into account - Section 2.

2. A design study of a fully programmable wide-SIMD
architecture, SODA, that can meet the power and per-
formance requirements of high-end wireless protocols.
The discussion outlines the architectural design choices
and trade-offs required for an application-domain spe-
cific multiprocessor architecture for SDR - Sections 3
and 4.

3. An evaluation of the wireless algorithms on the pro-
posed architecture which shows that high-end embed-
ded programmable systems can meet the wireless pro-
tocols’ throughput requirements - Section 5.

2. ANALYSES OF WIRELESS PROTOCOLS
The majority of previous architectural studies on DSP

applications have focused mainly on small DSP kernels in
existing benchmark suites, such as MediaBench [18]. Such
an approach cannot be used here since wireless protocols
have complex inter-algorithm interactions that cannot be
characterized by studying individual algorithms in isolation.
Therefore, we have implemented the complete W-CDMA
and 802.11a protocols’ physical layers in C to study the be-
havior of wireless protocol operations in [19]. A summary of
our findings for W-CDMA and 802.11a is given in Table 2 in
Section 5.3. Through the implementation of both protocols,
we have found system-level challenges that have not been
addressed in the literature, as well as many algorithmic-
level implementation details that could not have been dis-
covered through compiler analysis. Here we summarize our
key observations into two categories: protocol system-level
behavior and DSP algorithm-level behavior.

2.1 System-level Behavior
DSP Kernel Macro-Pipelining – Wireless protocols usu-

ally consist of multiple DSP algorithm kernels connected to-
gether in feed-forward pipelines. Data are streamed through
kernels sequentially, as shown in Figure 3. With no data
temporal locality, cache structures provide little additional
benefits, in terms of power and performance, over software
controlled scratchpad memories.

Low-throughput Inter-kernel Communication Traffic – Be-
tween DSP algorithm kernels, data are transfered as scalar
variables. The traffic throughput of the protocol systems
are not very high (as in 7.68MBps for W-CDMA receiving
front-end). This implies that inter-kernel data traffic can
be mapped onto low-throughput, low-power inter-connects
with minimal performance degradation.

Heterogeneous Inter-kernel Communications – Some inter-
kernel communications can be streamed, where the receiv-
ing kernel can process input data individually (i.e. filters).
Other inter-kernel communications must be buffered, as the
receiving kernels require blocks of the data (i.e. Interleaver
and Turbo Decoder). Kernels with the same throughput,
but different communication patterns will result in dramat-
ically different hardware requirements. Streamed kernels
need only small FIFO queues, but the buffered kernels re-
quire a large memory space.

Real-time Deadlines – W-CDMA has multiple periodic
deadlines. Meeting these deadlines is one of the challenges

Scalar input
data stream

Scalar output
data stream

Vector
operations

Vector DSP Kernel Operations

Inter-kernel
scalar

data stream
Vector

operations

Vector DSP Kernel Operations

Wireless Protocol System Operation -- Pipelined DSP Kernel Processing

Scalar to
vector

operations

Scalar to
vector

operations

Vector
to scalar

operations

Vector
to scalar

operations

Figure 3: Wireless Protocol Characteristics: system-level macro-pipeline; algorithm-level vector operations

SIMD
RF

SIMD
MEM

scalar
RF

scalar
MEM

WtoS
&

StoW

DMA

Scalar ALU SIMD ALU

Local
Mem

Execution
Unit

PE

Local
Mem

Execution

Unit

PE

Local
Mem

Execution
Unit

PE

Local
Mem

Execution

Unit

PE

Global

Mem
System ArchitectureARM

Figure 4: Overview of SODA multi-core DSP archi-
tecture

that has not been addressed in previous published DSP ar-
chitectural studies. Meeting real-time deadlines requires
concurrent execution management for multiple DSP algo-
rithms.

2.2 Algorithm-level Behavior
High Data-Level Parallelism – Most of the computation-

ally intensive DSP algorithms have abundant data level par-
allelism. For example, the searcher, the heaviest workload
of the W-CDMA protocol, can be represented by 320-wide
vectors. (See Table 2 in Section 5.3)

8 to 16bit Data Width – Most algorithms operate on vari-
ables with small values. Our analysis of W-CDMA and
802.11a suggests that the architecture should provide strong
support for 8 and 16 bit fixed point operations. 32 bit fixed
point and floating point support is not necessary.

Scalar-Vector operations – Because data are transferred as
scalar data streams, but processed as vector variables, effi-
cient scalar-vector conversion operations are needed to con-
vert the inter-algorithm scalar variables into vector variables
for intra-algorithm vector processing, as shown in Figure 3.

3. ARCHITECTURAL TRADEOFFS
In order to meet the high computational requirements of

SDR with stringent power budgets, we propose a multipro-
cessor architecture shown in Figure 4. It consists of multiple
processing elements (PEs), a scalar control processor, and
global scratchpad memory, all connected through a shared
bus. Each PE consists of a scalar unit and a wide SIMD unit.
The wide SIMD unit runs most of the compute-intensive

algorithms, such as the searcher, FFT, filter, Viterbi, and
Turbo decoder, while the scalar unit is used to support many
of the DSP algorithms that are scalar in nature and cannot
be parallelized. The ARM Cortex-M3 [2] core is mainly used
as a system controller to handle the protocols’ control code
and state transitions. There are no cache structures in this
system: both the local memories and the global memory are
managed by software through each PE’s DMA controller to
which all the local and global memories are visible.

In Section 3.1, we first address the major challenges for
supporting the wireless protocols in SODA. This includes
managing concurrent DSP algorithm executions, control-
ling inter-algorithm communications, and meeting real-time
deadlines. In Section 3.2, we address the architectural trade-
off for supporting individual DSP algorithms, and in Sec-
tion 3.3, we compare our design with existing industry and
research solutions.

3.1 Multi-core System Design Tradeoff
Concurrent Algorithm Execution Support. Most

commercial DSPs (i.e. TIC64x [3]) have a single execution
context to avoid extra power consumption associated with
supporting concurrent thread execution. However, periodic
real-time deadlines require algorithms to compute with dif-
ferent data rates, and with different latencies. Realizing
complex protocols such as W-CDMA with a single threaded
system would require sophisticated operating system schedul-
ing and complex context switching hardware—high-end micro-
architecture techniques that are too expensive for wireless
protocols. In order to fully support wireless protocols, it
is necessary to support efficient concurrent DSP algorithm
execution.

Static Multi-core Scheduling Vs. Multi-threading.
Traditional micro-architectural techniques—such as simul-
taneous multithreading and cache coherency—that were orig-
inally developed for server-class multiprocessors provide a
convenient abstraction to the programmer but may not be
the most efficient for implementation in high-throughput
embedded systems. Strict real-time requirements also re-
quire deterministic architectural behavior. This implies that
micro-architectural features that trade-off good average-case
performance for non-deterministic and poor worst-case per-
formance (e.g., caching, multi-threading and prediction) are
not well suited to these applications.

To reduce hardware complexity and produce efficient de-
terministic code behavior, we propose not to provide multi-
threading nor cache coherency support. Instead, each proto-
col pipeline is broken up into kernels, and each kernel is as-
signed statically to a processing element which is then stat-
ically scheduled to execute according to the algorithm data
flow. This model grew out of our observations that inter-
kernel communication throughputs are low, and intra-kernel

computational throughputs are high. Therefore, the static
scheduling approach results in less communication traffic
compare to the case when kernels are split into threads.

Scratchpad Memory with Data Streaming. In ad-
dition to data computation, programmers also need to han-
dle the data communications between algorithms. These
inter-algorithm communications are usually data stream-
ing buffers that are ideal for non-blocking DMA transfers.
While the processors operate on the current data, the next
batch of data are streamed between the memories and reg-
ister files in the background. Streaming computations have
been previously proposed for multi-media processor archi-
tectures, including the Imagine processor [6], and the IBM
Cell processor [13]. They have shown that scratchpad mem-
ories, instead of cache, are best suited for streaming applica-
tions. We find that streaming computation also fits wireless
protocol computations very well.

Macro-pipelined Message Passing Protocol. Tradi-
tional message passing protocol requires the sender and re-
ceiver to send synchronization semaphores to prevent queue
over(under)flowing [10]. Because many of the inter-kernel
communication channels are streaming data with frequent
periodic real-time deadlines, this would require frequent syn-
chronizations in order to multiplex between all of the dif-
ferent streaming channels. Our approach is to do message
passing with global synchronization. We choose to use a
real-time macro clock for communication and synchroniza-
tion that is software controlled by the ARM controller. At
every macro clock tick boundary, a list of PEs that needs
to be synchronized is provided to the controller. This op-
eration is analogous to the clocked scheme in a traditional
pipelined processor, in which each PE behaves like a proces-
sor pipeline stage. An example of the W-CDMA execution
using this approach is shown in Figure 10b in Section 5.2.

3.2 DSP Processor Design Tradeoff
Vector vs. SIMD vs. VLIW. Traditional embedded

DSP processors typically fall under one of three categories:
Vector, SIMD and VLIW. Vector architectures have native
support for vector operations, with each instruction capa-
ble of computing arrays of data sequentially. However, due
to the need to support computations on vectors with dy-
namically changing widths and strides, traditional vector
processors are performance limited by their centralized reg-
ister file’s large number of access ports [17]. The SIMD
approach separates the register file into clusters, reducing
accessing ports’ complexity. However, in most commercial
solutions, SIMD width is conservatively limited between 4
to 8 wide, due to data array alignment difficulties in general
purpose DSP computations [15]. VLIW architectures sup-
port ILP(Instruction Level Parallelism) very well, as mem-
ory operations can be done concurrently with multiple data
computations. However, they are not very well suited for
vector DLP (Data Level Parallelism), as each data compu-
tation requires its own instruction. Through our application
analyses, we find that a hybrid combination of the three ar-
chitectural styles provides a good match for the character-
istics of most wireless protocols.

Wide SIMD Execution Unit. The computation in-
tensive DSP algorithms in wireless protocols usually contain
operations on very wide vectors. In addition, vector widths
and strides are always known during compile time. Although
vector architecture is a good fit for wide vector computation,

the extra hardware support for dynamic vector management
is unnecessary, as all data operations can be statically sched-
uled. This favors a wide SIMD-styled clustered execution.
Traditional SIMD architectures have a short SIMD width
due to the difficulties in vector data alignment. In addition,
general purpose SIMD accelerators usually need to support
a large range of data sizes; (for example, Intel MMX [22]
supports 8/16/32/64 bit SIMD operation). Therefore, the
bottlenecks of a SIMD system are often the data movement
and alignment operations, not data computation operations.
Previous studies have addressed this problem through com-
plex multi-ported memories and register files [15], or a full
crossbar interconnect [11]. In the context of the power bud-
gets for mobile devices, these are high-power solutions.

Wireless protocols’ DSP algorithms have well-defined intra-
vector data permutation patterns, and they operate on 8bit
and 16bit data. These traits significantly simplify the data
movement requirements. Therefore, we can afford to scale
up the SIMD width to exploit DSP algorithms’ very wide
vector operations. In our design, the processor consists of 32
clusters. Each cluster contains 1 ALU and a simple register
file with 2 read ports and 1 write port. The interconnect
between the clusters is a relatively simple shuffle exchange
network [24], which has been shown to support our target
algorithms’ data rearrangements efficiently.

Restricted Vector ISA. From our algorithm analysis,
we find that all of the DSP algorithms can be implemented
by vector operations with predicated execution and permu-
tations. Both of these enhancements have been well stud-
ied, such as CRAY-1 [9] and the VIRAM SIMD instruction
set [16]. However, unlike these previous vector ISAs, our
design is more restricted — the width of the vector is set
to the SIMD execution width, because there is no need for
supporting unknown vector lengths and strides.

Asymmetric VLIW Instructions. In addition to the
heavy vector computation, there are many small, yet equally
important scalar DSP algorithms in wireless protocols. Wide
SIMD execution units are too inefficient in supporting these
scalar and narrow SIMD operations. Therefore, we provide
a scalar execution unit for this purpose. Scalar operations
can be executed concurrently with SIMD operations. This
VLIW is asymmetric because instructions for SIMD pipeline
cannot execute on the scalar pipeline, and vice versa. In ad-
dition, there is an AGU pipeline for memory accessing and
address calculations.

3.3 SDR Architecture Survey
Recently, there has been tremendous interest in SDR in

both the academia and industry, resulting in a wide range of
proposed architectural solutions. These include highly par-
allel VLIW machines, fine-grained FPGA-like computation
fabrics, coarse-grain MIMD architecture, SIMD, and vector
architectures. A summary of SODA architecture and a few
representative embedded processors from each category is
shown in Table 1.

Hybrid-SIMD based SDR Solutions. The Sand-
blaster communication processor [12] is one of the most
interesting SDR solutions. It is a complete solution that
implements cellular and WLAN protocols. Similar to the
SODA architecture, each Sandblaster processor consists of
a scalar processor and a high throughput vector processing
unit. However, the two architectures are very different at the
system-level. Unlike the static multi-core scheduling used

System-level PE PE Memory PE RegFile Fixed-point Data
Configuration Configuration Organization Organization Precisions (bits)

SODA 1 ARM + 4 PE VLIW Clustered Scalar+SIMD 16
Static Scheduled with SIMD ops Scratchpad

Sandbridge 4 PEs GPP+SIMD Multi-core SIMD 16/32
Sandblaster Multi-threading Cache
Phillips EVP Uni-processor VLIW with SIMD ops Scratchpad VLIW+SIMD 8/16/32
XiRisc Uni-processor VLIW+embedded FPGA Cache Unified 8/16/32/64
QuickSilver MIMD Scalar+ASIP Scratchpad Distributed 8/16/32/64
TI C64x Uni-processor VLIW Cache Cluster 8/16/32
Imagine Uni-processor SIMD with VLIW op Scratchpad Stream+SIMD 8/16/32
VIRAM Uni-processor Vector Scratchpad Vector Cluster 8/16/32/64
IBM Cell 1 PPE + 8 SPE Out-of-order SIMD Unified Scratchpad SIMD 1-128

Table 1: Architectural comparisons between SODA and other embedded DSP and multi-media processors

in SODA, Sandblaster supports concurrency through multi-
threading. While this is a powerful technique, it requires ad-
ditional hardware overhead, such as cache coherency. Phillips
EVP processor [25] is also another SDR solution. Sim-
ilar to SODA, it is also a VLIW architecture with wide
SIMD execution units. However, EVP differs in its VLIW
organization—it can execute multiple types of wide SIMD
operations in parallel. While this provides support for ILP,
it also requires a more complex register file. Because there
is very limited ILP among vector computations, this extra
level of parallelism does not add much to performance. In
addition, while EVP is designed to be a stand-alone DSP
processor, SODA is a multi-processor architecture designed
for supporting system-level protocol execution.

Reconfigurable array based SDR Solutions. There
have been numerous SDR solutions based on fine-grained
reconfigurable FPGA-like computation fabrics. Examples
of such solutions include picoArray [7], and the XiSystem’s
XiRisc [20]. Some of these solution, such as the XiRisc, also
include a scalar/VLIW processor, with the reconfigurable
logic acting as an accelerator. One of the major drawbacks
of the fine-grain computation fabrics is the high communi-
cation cost of data shuffling within the computation fabrics.
In addition, programming such devices to meet real-time
constraints is difficult.

Heterogeneous MIMD based SDR Solutions. These
MIMD styled architectures contain a system of heteroge-
neous coarse-grained processing elements, with each type of
PE tailored to a specific DSP algorithm group. Examples
include Intel RCA [8], and QuickSilver [5]. Both RCA and
QuickSilver have 3 or 4 different types of PEs, ranging from
simple scalar processors to ASIP(Application Specific IP)
Viterbi/Turbo accelerators. These heterogeneous SDR sys-
tems provide a trade-off between overall system flexibility
and individual kernel computational efficiency. While a ho-
mogeneous processor system can distribute the system work-
load among PEs, a heterogeneous processor system must
provide enough units for the worst case workloads of each
type of PE. As shown in Table 2 in Section 5.3, W-CDMA
and 802.11 require very different types of DSP algorithms.
Therefore, heterogeneous systems are more-likely to under-
utilize their hardware, resulting in less efficient overall sys-
tem operations.

VLIW DSP Solutions. The TI TMS320C64x DSP
processors [3] are highly parallel VLIW machines, that can
achieve high performance. However, because data level par-
allelism is much more prevalent than instruction level par-

allelism, the benefits offered by VLIW are not utilized in
wireless applications. The instruction execution power con-
sumption is relatively higher than other solutions, and thus
the overall computational efficiency is lower. These solu-
tions typically cannot meet the SDR performance and power
requirements by themselves. Therefore, they often include
ASICs accelerators for performance enhancements.

Vector/SIMD based Multi-media Solutions. Vec-
tor and SIMD embedded processors have been very popular
in the multi-media domain. Among them are the IBM Cell
Processor [13], VIRAM Project [16], and Imagine Project [6].
IBM’s Cell processor is architecturally similar to our de-
sign at the system-level, with a controller (PPE) and multi-
ple SIMD processors (SPE). However, the SPE is a generic
SIMD-based processor, whereas ours is a domain-specific
VLIW+SIMD processor targeted at SDR. Although the Cell
processor has higher overall computational throughput than
our processor, it was never designed to be a mobile solution,
and its power consumption is 100x greater than the budget
for a wireless protocol. Imagine [6] uses SIMD-based ex-
ecution, where each instruction is a VLIW operation. The
VIRAM [16] design is an improved vector processor designed
for multi-media workload. Again, these processors were not
designed specifically for wireless applications, but instead
for general multimedia applications. The SODA architec-
ture is designed specifically for wireless protocols and, as a
result, can execute them much more efficiently.

4. SODA IMPLEMENTATION
In this section, we first discuss our PE design. We then

discuss PE SIMD design trade-offs in Section 4.2. And fi-
nally, we discuss some of our architecture design techniques
for low-power operations in Section 4.3.

4.1 PE Design
Overview. Figure 5 shows the architectural details of a

single PE. There are three pipelines that run in lock-step:
a scalar pipeline, an SIMD pipeline, and an AGU (Address
Generation Unit) pipeline. The scalar pipeline consists of
one 16bit datapath. Its main purpose is to support scalar
DSP algorithms, as well as the DSP algorithms’ control
code. In most DSP algorithms, the core kernels are made
up of shallow nested loops (one or two levels). Because of
this, we chose not to implement a branch predictor, but add
loop counter-based branch instructions instead.

The SIMD pipeline consists of a 32-way 16bit datapath,
with 32 16bit arithmetic units working in lock-step. It is de-

PE

Scalar pipeline

16-bit RF
16 Entries

16-bit RF
16 Entries

16-bit RF
16 Entries

16-bit RF
16 Entries

32x16bit

I
D

16bit

16bit

I
D

16bit

16bit

I
D

16bit

16bit

I
D

16bit

16bit

S
S
N

E
X

E
X

E
X

E
X

Wide SIMD to Scalar
Reduction Network

Stage 1 (WtoS1)

SIMD Scratchpad Memory (8KB)
2 Read/Write Port (512bit wide)

16-bit
ALU

16-bit
Multiplier

16bit

16bit

16bit

16bit

16bit

16bit

16bit

16bit

W
B

W
B

W
B

W
B

32 way
SIMD RegFile
2 Read Ports
1 Write Ports

I
R

Wide SIMD to Scalar
Reduction Network

Stage 2 (WtoS2)

16-bit RF
16 Entries

I
D

16bit

16bit
E
X16bit

16bit
W
B

StoW1

16-bit
ALU

16-bit
Multiplier

16-bit
ALU

16-bit
Multiplier

16-bit
ALU

16-bit
Multiplier

16-bit
ALU

Scalar Scratchpad Memory (4KB)
2 Read/Write Port (16bit wide)

StoW2

32-way
SIMD

I
R

To
Scalar

RF

16-bit RF
16 Entries

I
D

E
X

W
B

I
R

To
AGU
RF

AGU
Calculation

12bit 12bit

32x16bit

Instruction
Queue

PC & Loop
Counter

Instruction
Memory

4KB

SIMD pipeline

AGU pipeline
DMA16bit

To
Inter-PE

Bus

512bit

Figure 5: Processing Element Architectural Diagram

a) 8 wide Shuffle
Exchange Network

b) 8 wide Inverse
Shuffle Exchange

Network

c) 8 wide SSN with Shuffle
Exchange, Inverse Shuffle

Exchange and feedback path

16bit Flip-flop 16bit 2-to-1 MUX

Figure 6: 8-wide SIMD Shuffle Network(SSN)

signed to handle computationally intensive DSP algorithms.
Each datapath includes a 2 read-port, 1 write-port 16 en-
try register file, and one 16bit ALU with multiplier. The
multiplier takes two execution cycles when running at the
targeted 400MHZ. Intra-processor data movements are sup-
ported through the SSN (SIMD Shuffle Network). Figure 6c
shows a simplified 8-wide version of the network, whereas
SODA’s SSN is actually 32-wide. SSN is consisted of a shuf-
fle exchange (SE) network (shown in Figure 6a), an inverse
shuffle exchange (ISE) network (shown in Figure 6b), and
a feedback path. Previous work [26] has shown that any
permutation of size N can be done with 2log2N − 1 itera-
tions of either the SE or ISE network, where N is the SIMD
width. For the permutation patterns of SDR algorithms,
we found that we can reduce the number of iterations if we

Scalar
to SIMD

SIMD to
Scalar

Scalar Stream
to SIMD

Bitwise Scalar
to SIMD

Disjoint Scalar
to Wide SIMD

SIMD to
Scalar Stream

SIMD to
Bitwise Scalar

Wide SIMD to
Disjoint Scalar

(a) (b) (c) (d)

Figure 7: Scalar-SIMD Operations for Various DSP
Algorithms

include both the SE and ISE networks. In addition to the
SSN network, a straight-through connection is also provided
for data that does not need to be permutated.

The AGU pipeline handles DMA (Direct Memory Access)
transfers and memory address calculations for both scalar
and SIMD pipelines. In wireless protocols, DSP kernels pro-
cess data in streams through data queues, that is supported
by the AGU’s DMA capability. In addition, it also han-
dles local memory accesses for both the scalar and SIMD
pipelines.

Asymmetric Dual SIMD Pipeline. As explained in
Section 2, inter-kernel communications are via scalar streams,
but intra-PE computations are vector operations. There-
fore, support for a scalar-vector interface between the scalar

and SIMD pipeline is needed. In our architectural diagram,
Figure 5, this is shown as the StoW and WtoS units. The
StoW network spreads a scalar value into a wide vector, and
WtoS network reduces a wide vector into a scalar value. The
StoW1 unit is for spreading scalar register values into the
SIMD pipeline, and the StoW2 is for spreading scalar mem-
ory values into the SIMD pipeline. The WtoS network is a
32-to-1 reduction tree. It is pipelined into two stages, WtoS1
and WtoS2 units.

From our benchmark analysis, we found four types of
scalar-vector operations, shown in Figure 7.

Scalar-SIMD Operations – These operations spread one
scalar variable into a vector, and reduce a vector down to
one scalar variable, as shown in Figure 7a. Filter, Viterbi
Decoder, and Turbo Decoder fall into this category.

ScalarStream-SIMD Operations – These operations trans-
fer an array of scalar variables directly into a vector, as
shown in Figure 7b. If implemented directly through the
scalar-SIMD StoW network, the transfer operations would
take up to 32 cycles, as each scalar value is spread sequen-
tially from the scalar to SIMD pipeline. However, with the
AGU unit, we can redirect our DMA to transfer data di-
rectly into the SIMD memory, bypassing the scalar pipeline.
The algorithms in this category include FFT and the RAKE
receiver.

BitwiseScalar-SIMD Operations – These operations spread
the bits of a scalar value into a vector, as shown in Figure 7c.
Vectors with 1bit elements are common in DSP. One exam-
ple is the searcher, which correlates vectors of individual
bits that make up the received signal stream. This special
expansion/reduction functionality is supported in the StoW
and WtoS networks.

DisjointScalar-SIMD Operations – These operations sup-
port expansion/reduction operations between multiple dis-
joint scalar values and wide SIMD vectors, as shown in Fig-
ure 7d. This feature is useful for algorithms with native
vector width less than the SIMD’s width. An example is
the Turbo decoder. It has a native vector width of 8 ele-
ments. Our SIMD datapath can operate on 32 elements at
once. Running a sequential version of the Turbo Decoder
only utilizes 25% of the SIMD pipeline. Using the slid-
ing window technique, Turbo decoder can be parallelized
to process 4 data streams in lock-step SIMD-style execu-
tion. However, the 4 data streams require 4 separate scalar
values. In order to handle expansion and reduction of mul-
tiple disjoint scalar values, the StoW and WtoS networks
are modified to include a 4-wide 16bit disjoint scalar (DS)
register. For StoW expansion, four separate values are first
read sequentially from the scalar pipeline into the DS regis-
ter, and then 4 8-wide expansions are performed. For WtoS
reduction, the SIMD vector is first reduced to 4 16bit values,
stored in the DS register. The scalar pipeline then processes
these 4 values sequentially. Although the scalar operations
are still processed sequentially, because the majority of the
computations are vector operations, this scalar overhead has
minimal effect on the overall performance.

Special DSP Instructions. Implementing customized
complex instructions is very common in DSP processors.
Typical examples are Multiply-Accumulate (MAC) and sat-
urated arithmetic instructions. The first type of custom
or intrinsic operations includes special vector permutations
supported by the SSN. The Vector Compare & Select (VCS)
operation, needed in Viterbi and Turbo decoders, compares

0

1

2

3

4

5

6

2 4 8 16 32 64 128 256

SIMD width

N
o

rm
al

iz
ed

 P
o

w
er

Fq(2) = 5GHZ
I(2) = 31

Fq(4) = 2.5GHZ
I(4) = 18

Fq(8) = 1.3GHZ
I(8) = 9

Fq(16) = 690MHZ
I(16) = 7

Fq(32) = 380MHZ
I(32) = 6

Fq(64) = 240MHZ
I(64) = 5

Fq(128) = 200MHZ
I(128) = 5

Fq(256) = 180MHZ
I(256) = 5

Figure 8: Average normalized power of a 4-PE con-
figuration for achieving the computational require-
ments of W-CDMA and 802.11a in 180nm technol-
ogy

and selects between two adjacent vector elements. The but-
terfly operation is implemented to enhance the FFT per-
formance. These two types of permutation operations are
micro-coded into the controller of the SSN network.

The second type of intrinsic instruction is used to convert
a vector to a single scalar value. This instruction is heavily
used in the synchronization and modulation kernels. An
example, the Vector Max instruction, is crucial for Viterbi
and Turbo since calculating the maximum value of a vector
without special hardware support is very inefficient.

The last type of intrinsic instruction is predicated nega-
tion. This instruction uses two 1bit vectors to control the
sign of the two ALU operands, and conditionally negates the
operands before ALU execution. This is equivalent to a mul-
tiplication of the operands with a 1bit number that can be
either +1 or -1. It is used for auto-correlation, modulation
and FFT operations.

4.2 SIMD Design and Tradeoffs
To justify the SODA system configuration with wide SIMD

pipelines, we have done a study on the first-order power
consumption trade-offs SIMD width and frequency. This
study was done using 180nm technology. We estimate that
40GOPS would be required in order to meet the realtime
computation requirements of W-CDMA and 802.11a. Fur-
thermore, we find that both W-CDMA and 802.11a can be
partitioned into 4 major task groups that are relatively bal-
anced (see Figure 10c for the W-CDMA implementation).
So, in this paper, we examine the power consumption of
a 4 PE system. In a 4 PE system, each PE will need to
supply approximately 10GOPS. On one end of the spec-
trum, the PE can be a 2-wide SIMD running at 5GHZ;
and on the other end, it can be a 256-wide SIMD running
at 180MHZ. Intuitively, the optimal SIMD configuration
should lie within these two extremes. Figure 8 summarizes
our findings to determine the power consumption of a PE.

The following is our methodology for calculating the first-
order power consumption P for a single PE with a workload
requirement of T GOPS, and an SIMD width of w. We
assume a homogeneous system with PEs having the same
SIMD configuration and frequency. If N is the number of al-
gorithms running on the SIMD pipeline, then T =

P

N

i=1
Ti,

where Ti is the workload of the ith algorithm in the protocol.

The required frequency of a PE, F (w), as a function of
w, can be calculated by summing up the frequencies of each
individual algorithm.

F (w) =

N
X

i=1

„

Ti

Vi

‰

Vi

w

ı«

(1)

Where Vi is the native vector width of algorithm i. The
first term in the summation, Ti

Vi

, calculates the frequency

for meeting the computational requirement of Ti GOPS in
terms of number of vector operations per second. The sec-
ond term, dVi

w
e, calculates the number of cycles to perform

a vector operation of size Vi on a SIMD processor of width
w. In the case of w > Vi, the SIMD is under utilized since
the vector is narrower than its SIMD width. The exception
is the Turbo decoder, where we can use the sliding win-
dow technique to compute multiple windows in parallel and
thereby exploit the wider SIMD width. In our analysis, Ti

and Vi are calculated based on the W-CDMA and 802.11a
protocol profiling results shown in Table 2.

Given the limitation of silicon technology, there is an up-
per bound on the achievable frequency. PEs with narrow
SIMD width that require ultra high frequency will have to
implement deeper pipelines. In this study, we scale up the
pipeline depth based on SODA’s 5 stage pipeline organi-
zation. There are four architectural components that con-
tribute to the overall SIMD pipeline depth: the register file
(R), ALU (A), SIMD memory (M), and SSN (S). We ig-
nored the WtoS network, because it is not a part of the
SIMD pipeline. Equation 2 expresses the overall pipeline
depth I, as the sum of the register file pipelines(Ir), the ALU
pipelines(Ia), and the maximum of the memory pipeline(Im)
and SSN pipeline(Is).

I(w) = 2Ir(w) + Ia(w) + max(Im(w), Is(w)) (2)

In Equation 2, Ir is scaled by 2 due to the two separate
pipelines stages for register read and write. Also the maxi-
mum of Im and Is is used because SSN and memory share
the same pipeline stage. The pipeline depth of each com-
ponent is obtained from synthesized Verilog, for frequency
F (w).

Let E(w) be the energy consumption of one cycle of oper-
ation for one PE, and let P (w) be PE’s power consumption.

E(w) = C + w(LeI + ReUr + AeUa) +

Me(w)Um + Se(w)Us + De(w)Ud (3)

P (w) = E(w) · F (w) (4)

In Equation 3, C is the constant power overhead, due to the
scalar and AGU pipeline, the instruction memory, and the
DMA controller. Le is one 16bit datapath pipeline’s flip-flop
energy, Re is one 16bit register file’s energy, Ae is one 16bit
ALU’s energy, Me is the SIMD memory energy, Se is the
SSN energy, and De is the WtoS reduction network energy.
All of the above energy results are for one cycle of operation.
Because memory, SSN, and reduction network do not scale
linearly with the SIMD width, we model them empirically by
synthesizing each configuration in Verilog. Ux represents the
average utilization factor for component x, gathered from
behavioral simulations on the SODA simulator.

Figure 8 shows the normalized power as a function of
SIMD width for average W-CDMA and 802.11a workloads.
Each point is annotated with its operating frequency, F (w),
and the number of pipeline stages, I(w). We see that smaller

SIMD width configurations consume less power per cycle,
but require unrealistically deep pipelines. For example, the
4-wide SIMD configuration requires 18 pipeline stages. Wider
SIMD configurations have shorter pipelines with low oper-
ating frequencies, but suffer from underutilization. Figure 8
shows that the 32-wide SIMD consumes the lowest power.
The 8, 16, and 64 wide SIMD also achieve similar power
consumption, and would be acceptable design points. The
power numbers have been derived assuming that underuti-
lized SIMD processors still consume dynamic power for the
unused SIMD units. However, we can employ simple clock-
gating techniques to turn off the unused units, thereby re-
ducing wide SIMD’s power consumptions. In addition, fre-
quency and voltage do not scale linearly with nanometer
CMOS technologies. In sub-90nm implementations, narrow
width SIMD will result in deeper pipelines. Consequently,
the optimal power consumption point is likely to shift to
higher SIMD width in future technologies, if leakage can be
contained.

4.3 Embedded Low-power Design
In order to achieve the high computational requirements,

while maintaining low power requirements, SODA utilizes
the following techniques:

Intrinsic Operations – Traditional DSP processors rely
heavily on MAC operations to achieve efficiency. We found
that many of these multiplication operations are with 1
bit values, and can be implemented by vector logic opera-
tions (Predicated Negation) that consume significantly lower
power.

Clustered Register Files with 2 Read Ports and 1 Write
Port – Each PE’s register file is a cluster of three separate
files: an SIMD RF, scalar RF, and AGU RF. For a 32-way
vector operation, each RF in our PEs requires only 2 ports.
As shown in previous studies [23], increasing the number of
register file ports increases the register file’s power consump-
tion quadratically. By using less ports, our implementation
saves register file power.

Fewer Memory Read/Write Ports – Each PE’s local mem-
ory is a cluster of 2 memories—4KB for the scalar memory
and 8KB for the SIMD memory. In general, two memories
consume lower power than one unified memory. In addition,
our SIMD memory requires a 512bit read/write port, but
our scalar memory only requires a 16bit read/write port.
Separate memories allow us to further optimize each for its
intended use.

Smaller Instruction Fetch Logic – Our VLIW instructions
use a fixed sized instruction width of 64bits split into three
fields—Scalar, AGU, and SIMD. Commercial DSP solutions
often have variable length instruction widths of 96-128bits.
In addition, they do not support SIMD instructions or a
vector ISA that allows us to efficiently express long vector
operations, effectively reducing an algorithm’s code size.

5. EXPERIMENTAL EVALUATIONS

5.1 Methodology
SODA Behavioral Analysis. In order to test the per-

formance of SODA, we first developed W-CDMA and 802.11a
physical layer system implementations in C. This approach
enables full system performance including memory require-
ments, synchronization schemes, and non-parallelizable bot-
tlenecks to be evaluated. Block diagrams of the major com-

F
 ro n te n d

LPF-Tx scrambler spreader Interleaver
Channel
encoder

LPF-Rx

searcher

descrambler despreader

c o m
 b in e rdescrambler despreader

...

modulator

demodulator

deinteleaver
Channel
decoder

(turbo/viterbi)

U
 p p e r la y e rs

Transmitter

Receiver

(a) W-CDMA Protocol Diagram

F
 ro n te n d

LPF-Tx
QAM

Mapping
Interleaver

Channel
encoder

LPF-Rx

FFT

Frequency, Time
Synchronization

modulator

demodulator

deinteleaver
Channel
decoder
(viterbi)

U
 p p e r la y e rs

Transmitter

Receiver

IFFT
Preamble
Insertion

Channel
Estimation

Frequency
Equalization

QAM
demapping

(b) 802.11a Protocol Diagram

Figure 9: Physical Layer Operations of W-CDMA and 802.11a Wireless Protocols

ponents for each protocol are given in Figure 9. Next, we
hand-coded the benchmarks into the SODA instruction set.
To evaluate intra-kernel synchronization and data flow char-
acteristics, we built an inter-processor network simulator
based on our PE’s cycle-accurate processor simulator, and
DMA transfers and bus synchronization schemes.

SODA Area And Power Model. Area estimation of
our architecture was calculated using our RTL Verilog model
of the SODA architecture. We synthesized our Verilog model
using Synopsys Physical Compiler and Cadence Silicon En-
semble for 400MHz using the TSMC 180nm library. The
memories were generated with the Artisan SRAM memory
generator. The estimated area for 90nm and 65nm processes
were calculated using a quadratic scaling factor.

Dynamic power was estimated using utilization factors of
each PE derived from our behavioral simulations of the W-
CDMA and 802.11a protocols on our system simulator. For
each PE we then took the dynamic power results from Physi-
cal Compiler and used the utilization factors to calculate the
dynamic power of that PE. The dynamic power of the mem-
ories were derived form the Artisan SRAM memory gener-
ator. Using the synthesized model of the PE, we extracted
the interconnect power and added it to the dynamic power
then summed up the PEs to calculate the total dynamic
power of the system.

To scale to 90nm and 65nm, we used the Predictive Tech-
nology Models (PTM) [4] and simulated in SPICE based on
a delay of 20 F04 in 180nm at 1.8V, 90nm at 1V, and 65nm
at 0.8V.

The leakage power was estimated at 30% of the total
power. This is in accordance with ITRS specifications for
90nm technology. We used the more conservative approach,
since the PTM leakage results were lower than industry
trends.

5.2 Software Defined Radio Implementations
Protocol System Implementations. For this discus-

sion we will focus on W-CDMA instead of 802.11a, because
its behavior is more complex. Figure 10 shows the real-time
W-CDMA 2Mbps DCH (Dedicate CHannel) execution trace
on SODA: Figure 10a shows the system execution of 1 frame
of data; Figure 10b shows one slot of execution using the
macro-pipelining message passing protocol; and Figure 10c
shows the functional mapping of W-CDMA onto SODA.
DCH is a full duplex channel consisting of the DPDCH (Ded-
icated Physical Data CHannel) for uplink and the DPCH
(Dedicated Physical CHannel) for downlink. In the W-
CDMA specification, DCH also includes the uplink DPCCH
(Dedicated Physical Control CHannel), which is not mod-

eled in this study. The uplink and downlink channels are
mapped onto their own PEs. This assignment achieves a
relatively balanced workload across the 4 PEs.

To better understand W-CDMA execution, consider Fig-
ure 10a. The horizontal axis is time, and the vertical axis
lists the SODA’s PEs, and their real-time processing utiliza-
tion. The utilization of PE1, PE2, PE3, and PE4 are 60%,
50%, 100% and 94% respectively. One W-CDMA frame con-
tains 15 slots. There are two hard real-time deadlines that
have to be met in W-CDMA. The first one is the power
control critical path that controls the transmission power
based on received signal quality. It needs to update peri-
odically once per slot (0.67 msec). The critical path is the
channel between the FIR Rx filter, Demodulation and Power
Control. This is a streaming channel with minimal memory
storage requirements. The other real-time critical path is
the channel from the FIR filter to the searcher. This needs
to complete within 5 msec and requires a large amount of
data buffering. Figure 10b shows the multi-PE execution
using our macro-pipelined message passing protocol. Data
is streamed from one PE to the next, synchronizing only on
the macro-clock boundary.

From the above analysis, we see that while throughput
is essential, fast intra-processor kernel switching, and effi-
cient inter-processor communication are also essential. Be-
cause wireless protocols have static run-time characteristics,
compile-time scheduling of the kernels is sufficient to re-
duce unnecessary context switching overhead. Our macro-
pipelining message passing technique reduces the inter-PE
synchronization overhead by pipelining data transfers, and
exploiting the streaming nature of inter-kernel communica-
tion.

5.3 Performance and Power Results
Performance Results. Table 2 provides a characteri-

zation of each kernel algorithm in W-CDMA and 802.11a
in terms of extent of vectorization, vector width, bit width,
etc. This characterization was used to define the SODA ar-
chitecture, as described in Section 2. Table 2 also lists the
throughput and latency of each kernel algorithm when im-
plemented on SODA. The raw computations are measured in
terms of number of execution cycles on a general purpose Al-
pha processor. The SODA computation, on the other hand,
is the number of execution cycles required by the SODA vec-
tor ISA. It can be seen that large speedups are possible in
many cases. For instance, W-CDMA’s searcher algorithm,
which requires 26.5 Gops on a general purpose processor, is
reduced to 200 Mops on SODA. Part of the speedup is due
to SODA’s wide SIMD execution, and part of it is due to

General Purpose Processor (Alpha) SODA
Algorithms Configurations Vector Vector Bit Raw Comp. Comp.

Comp. Width Width Mcycles/sec Mcycles/sec

W-CDMA (2Mbps)
Scrambler Defined in W-CDMA standard yes 2560 1,1 240 9

Descrambler* 12 fingers, 3 base stations yes 2560 1,8 2,600 23
Spreader spreading factor = 4 yes 512 8 300 5

Despreader* 12 fingers, 3 base stations yes 512 8 3,600 11
PN Code (Rx) 3 base stations no 1 8 30 23
PN Code (Tx) Defined in W-CDMA standard no 1 8 10 8

Combiner* 2 Mbps Data Rate partial 12 8 100 3
FIR (Tx) 4 filters x 65 coeff. x 3.84MSps yes 64 1,16 7,900 307
FIR (Rx) 2 filters x 65 coeff. x 7.68MSps yes 64 8,8 3,900 182
Searcher* 3 base stations, 320 windows yes 320 1,8 26,500 200
Interleaver 1 frame no 1 8 10 2

Deinterleaver 1 frame no 1 8 10 2
Turbo Encoder K=4 partial 3 1,1 100 2
Turbo Decoder* K=4, 2 SOVA, 5 Iterations partial 8 8,8 17,500 540
*These algorithms have dynamically changing workloads that are dependent on channel conditions.

802.11a (24Mbps)
FFT 64 points yes 64 16 15,600 240
IFFT 64 points yes 64 16 15,600 240

Equalizer 64 points yes 54 16 960 120
QAM 64 constellation points no 1 4 1 2

DQAM 64 constellation points no 1 4 3 2
FIR (Tx) 1 filter x 33 tap x 20MSps x 2 yes 33 16 3,040 160
FIR (Rx) 1 filter x 33 tap x 40MSps x 2 yes 33 16 6,080 320

Freq. Sync. Defined in 802.11 standard partial 16 16 190 10
Time Sync. Defined in 802.11 standard partial 16 16 190 10
Interpolator Farrow structure cubic 8 taps yes 2048 16 4,800 250
Interleaver 1 frame no 1 1 290 60

Deinterleaver 1 frame no 1 16 290 60
Conv. Enc. K=7, Rate = 3/4 partial 6 1 100 40
Viterbi Dec. K=7, Soft Input partial 64 8 35,000 398
Scrambler Defined in 802.11 standard partial 7 1 340 34

Descrambler Defined in 802.11 standard partial 7 16 340 34

Table 2: Kernel Algorithms in W-CDMA and 802.11a and their performance on a GPP and SODA.

Area W-CDMA 2Mbps 802.11a 24Mbps
Components Units Area Area Power Power Power Power

mm2 % mW % mW %

PE

SIMD+scalar Data Mem (8KB+4KB) 4 6.1 23% 87 3% 67 2%
SIMD Register File (16x512bit) 4 1.9 7% 1077 37% 874 27%

SIMD ALUs and Multipliers 4 6.7 25% 314 11% 609 19%
SIMD Pipeline+Clock+Routing 4 1.5 6% 1127 38% 1157 36%

Intra-processor Interconnect 4 1.1 4% 53 2% 53 2%
Scalar Pipeline+Inst. Mem+Inst. Fetch 4 3.1 11% 274 9% 329 10%

System
ARM (Cortex-M3) 1 0.6 3% 5 < 1% 10 < 1%

Global Scratchpad Memory (64KB) 1 3.6 14% 10 < 1% 80 2%
Inter-processor Bus with DMA 1 2.0 7% 3 < 1% 26 1%

Total 180nm (1.8V @400MHZ) 26.6 100% 2950 100% 3206 100%

Est.
90nm (1V @400MHZ) 6.7 447 486

65nm (0.8V @400MHZ) 3.5 236 257

Table 3: System Area and Power Summary

2 LPF-Rx
182 Mops

Descrambler
23 Mops

Misc.
Control
1 Mops

Searcher
200 Mops

De-
interleaver

2 Mops

Power
Control

15 Kops

PN Code
TX/RX

31 Mops
Turbo

Decoder
540 Mops

Buffer
(1360 Bytes)

Buffer
(1280 Bytes) Buffer

(2560 Bytes)

Despreader
11 Mops

Combiner
3 Mops

FIFO Queue
(12.5 KBytes)

Buffer
(10 Bytes)

Buffer
(20 KBytes)

Buffer
(20 KBytes)

Buffer
(1024 Bytes)

ARM PE PE PE PE Global
Memory

4 LPF-Rx
307 Mops

Scrambler
9 Mops

Spreader
5 Mops

Encoder
2 Mops

Interleaver
2 Mops

Buffer
(1024 Bytes)

WCDMA Receiver WCDMA
Trasnmitter

SYNC
P1, ARM

P
N

FIR M

P
N

FIR M

P
N

FIR M

P
N

FIR M

Input
from A/D

PE1
FIR/Mod.

PE2
Searcher

PE3
Turbo

PE4
TX

1 slot

0.67 mSec

ARM:
PN/Power Ctrl.

P
C

SYNC
P1, ARM

SYNC
P1, P2, ARM

SYNC
P1, ARM

SYNC
P1, ARM

SYNC
P1, ARM

Searcher

P
N

(b) Macro-pipelined Message Passing* (c) Functional Mapping of W-CDMA onto PEs

(a) System Execution For W-CDMA 2Mbps DCH Data Channels*

ARM

PE1

PE2

PE3

PE4

Searcher
Real-Time Critical

Path (5 msec)

Power Control

Real-Time Critical
Path (0.67 msec)

1 W-CDMA frame (15 slots), 10 msec

F
I

R

M
O
D

F
I

R

M
O
D

F
I

R

M
O
D

F
I
R

M
O
D

F
I

R

M
O
D

F
I

R

M
O
D

F
I

R

M
O
D

F
I

R

M
O
D

F
I
R

M
O
D

F
I

R

M
O
D

F
I

R

M
O
D

F
I

R

M
O
D

F
I

R

M
O
D

F
I
R

M
O
D

E

N
C

I Modulation FIR

PN Code
<0.1 msec

Power Control
<0.1 msec

Deinterleaver
0.2 msec

Interleaver
0.2 msec

Turbo Encoder
0.2 msec

FIR(Tx)
8 msec

Modulation
1 msec

FIR(Rx)
0.3 msec

Demodulation
0.1 msec

Turbo Decoder
10 msec

Searcher
5 msec

Time

P

N

P

N

P

N

P

C

P

N

P

C

P

N

P

C

P

N

P

C

P

N

P

C

P

N

P

C

P

N

P

C

P

N

P

C

P

N

P

C

P

N

P

C

P

N

P

C

P

N

P

C

P

N

P

C
I

P

C

* Execution intervals are not drawn to scale

Figure 10: W-CDMA Protocol Implementation

the fact that SODA assembly code is hand-optimized.
Because W-CDMA is designed to support mobile commu-

nications, its workload is highly dependent on the environ-
ment conditions. In this study, the descrambler, despreader,
combiner, and searcher are benchmarked with the worst case
environment condition, because they include real-time dead-
lines that must be met under the heaviest workload. The
Turbo decoder is benchmarked with the average case work-
load because it has flexible deadlines that allow its inputs to
be buffered. This is why it is acceptable for the decoder to
take 540Mcycles(1.35 seconds) to finish one second of com-
putation.

Power and Area Results. Table 3 lists the area and
power breakdowns of the SODA system. The wide SIMD de-
sign means the SIMD pipeline and clock logic consumes the
largest amount of power. The SIMD register file is also one
of the major power consumers (37% in W-CDMA and 27%
in 802.11a), due to heavy utilizations during vector com-
putations. SIMD memory power is higher for W-CDMA
(87mW) than for 802.11a (67mW). This is because most
802.11a algorithms have vector width less or equal to 64,
so the SIMD register values do not spill into the memory.
In contrast, W-CDMA has more algorithms with long vec-
tors that need to be buffered in memory. The SIMD ALU
power consumption is significantly higher for 802.11a than
for W-CDMA, because 802.11a’s FFTs requres many 16-bit
multiplications, whereas the majority of the W-CDMA com-
putations are additions. In our synthesized design, a 16-bit
multipliers consumes approximately 10x more power than

an 16-bit adder. This is the principal reason why 802.11a
consumes more power than W-CDMA. The intra-processor
interconnect consumes very little power for both 802.11a
and W-CDMA. Finally, low inter-PE communications im-
plies that the bus power consumption is also not a con-
cern (3mW for W-CDMA and 26mW for 802.11a). Overall,
the results show that a power efficient wide SIMD multi-
PE architecture can be designed using simple register files,
partially connected intra-processor interconnect, and a low
power bus-based inter-processor network.

The area results, shown in Table 3, indicate that the
ALUs with multipliers and the scratchpad memories take the
largest area in the PE. In addition, the PE’s local memories
(48KB) occupy a larger area (6.1mm2) than the 64KB global
memory (3.6mm2), because the local memories are dual-
ported, with one port dedicated to the DMA, whereas the
global memory is a 32bit single ported memory. The intra-
processor interconnect, including the SSN and the WtoS
reduction network, is only 4% of the total area. This means
that the interconnect network is not a limitation for 32-wide
SIMD systems. Of course, if this number were scaled to hun-
dreds, then the interconnect network may start to become
a limitation.

Technology Scaling and Power Optimizations. At
180nm, SODA’s power consumption is 3W. This is too high
for embedded mobile devices. A typical cellular phone’s
power budget for the physical layer is around 200mW [21].
To see if this constraint can be met, we have estimated
the power and area of SODA at state-of-the-art technology

nodes of 90nm and 65nm using the Predictive Technology
Models. Designs in both technologies fall within the range
of acceptable power consumption — 450mW and 250mW
respectively. There are other factors that we have ignored
that would further reduce power consumption. These in-
clude a greater use of custom design, and the observation
that many of the W-CDMA algorithms need only 8bit arith-
metic. Our studies were based on unoptimized synthesis. In
a volume production setting, much of the datapath would
be implemented with custom designs to significantly reduce
space and power. We previously synthesized an 8bit 32 wide
version of SODA, and its power consumption in 90nm was
about 300mW. However, 802.11 and many next generation
protocols use 16bit algorithms, thus an 8bit solution will not
meet future demands. There are still many important 8bit
algorithms, such as Viterbi decoder. This means that power
optimization techniques such as clock-gating, dynamic pre-
cision and voltage scaling can be used to reduce power con-
sumption by dynamically adjusting between 8bit or 16bit
computations and between different SIMD widths. We are
investigating these issues.

6. CONCLUSION
Process technology scaling has made the transition from

custom hardware to programmable architectures possible
even for performance-hungry and power-limited workloads
typified by wireless protocols. In this paper we describe
and discuss architectural trade-offs for designing a domain
specific processor for Software Defined Radio. We describe
and motivate our multiprocessor, programmable wide SIMD
architecture. We show that our architecture is capable of
meeting the processing requirements of two widely differing
protocols (W-CDMA and 802.11a) within acceptable power
budgets when using a state-of-the-art technology node. Our
choice of these two dissimilar protocols was to stress the
flexibility of our solution. Further process scaling will en-
able the support of even more demanding protocols (such as
UWB) in a power-efficient manner.

7. ACKNOWLEDGMENT
Yuan Lin is supported by a Motorola University Partner-

ship in Research Grant. This research is also supported by
ARM Ltd., the National Science Foundation grant NSF-ITR
CCR-0325898 and CCR-0325761.

8. REFERENCES

[1] ANSI/IEEE Std 802.11, 1999 Edition, Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications.

[2] ARM Cortex-M3:
http://www.arm.com/products/CPUs/ARM-Cortex-
M3.html.

[3] DSP Developers’ Village, Texas Instruments:
http://dspvillage.ti.com.

[4] Predictive Technology Model:
http://www.eas.asu.edu/ ptm/.

[5] QuickSilver Technology: http://www.qstech.com/.
[6] J. H. Ahn et al. Evaluating the Imagine Stream

Architecture. In Proceedings of the 31st Annual
International Symposium on Computer Architecture, June
2004.

[7] R. Baines and D. Pulley. Software defined baseband
processing for 3G base stations. In 4th International

Conference on 3G Mobile Communication Technologies
(Conf. Publ. No. 494), pages 123–127, June 2003.

[8] I. Chen, A. Chun, E. Tsui, H. Honary, and V. Tsai.
Overview of Intel’s Reconfigurable Communication
Architecture. In 3rd Workshop on Application Specific
Processors, pages 95–102, Sept. 2004.

[9] Cray Research Inc. The Cray-1 Computer System,
Publication No.2240008b 1976.

[10] D. E. Culler, J. P. Singh, and A. Gupta. Parallel Computer
Architecture: A Hardware/Software Approach. Morgan
Kaufmann Publishers, Inc., San Francisco, California, 1999.

[11] K. Diefendorff, P. Dubey, R. Hochsprung, and H. Scales.
AltiVec Extension to PowerPC Accelerates Media
Processing. In IEEE Micro, volume 20, no. 2, pages 85–95,
Mar./Apr. 2000.

[12] J. Glossner, E. Hokenek, and M. Moudgill. The Sandbridge
Sandblaster Communications Processor. In 3rd Workshop
on Application Specific Processors, pages 53–58, Sept. 2004.

[13] P. H. Hofstee. All About the Cell Processor. In IEEE
Symposium on Low-Power and High-Speed Chips(COOL
Chips VIII), April 2005.

[14] H. Holma and A. Toskala. WCDMA for UMTS: Radio
Access For Third Generation Mobile Communications.
John Wiley and Sons, LTD, New York, New York, 2001.

[15] H. C. Hunter and J. H. Moreno. A New Look at Exploiting
Data Parallelism in Embedded System. In Proceedings of
the 2003 International Conference on Compilers,
Architecture and Synthesis for Embedded Systems, pages
159–169, 2003.

[16] C. Kozyrakis and D. Patterson. Vector Vs. Superscalar and
VLIW Architectures for Embedded Multimedia
Benchmarks. In Proceedings of the 35th Annual
ACM/IEEE International Symposium on
Microarchitecture, pages 283–293, Nov. 2002.

[17] C. Kozyrakis and D. Patterson. Overcoming the
Limitations of Conventional Vector Processors. In
Proceedings of the 30th Annual International Symposium
on Computer Architecture, pages 399–409, 2003.

[18] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communicatons Systems. In Proceedings
of the 30th Annual ACM/IEEE International Symposium
on Microarchitecture, pages 330–335, 1997.

[19] H. Lee et al. Software Defined Radio - A High Performance
Embedded Challenge. In Proc. 2005 Intl. Conference on
High Performance Embedded Architectures and Compilers
(HiPEAC), Nov. 2005.

[20] A. Lodi et al. XiSystem: A XiRisc-Based SoC With
Reconfigurable IO Module. In IEEE Journal of Solid-State
Circuits, volume 41, No. 1, pages 85–96, Jan. 2006.

[21] Y. Neuvo. Cellular Phones as Embedded Systems. In IEEE
International Solid-State Circuits Conference, 2004.

[22] A. Peleg and U. Weiser. MMX Technology Extension to the
Intel Architecture. In IEEE Micro, volume 16, no. 4, Aug.
1996.

[23] S. Rixner et al. Register Organization for Media
Processing. In Proceedings of the Sixth International
Symposium on High-Performance Computer Architecture,
pages 375–386, Jan. 2000.

[24] H. Stone. Parallel Processing with the Perfect Shuffle. In
IEEE Transactions on Computers, volume 20, Feb.

[25] C. van Berkel et al. Vector Processing as an Enabler for
Software-Defined Radio in Handsets From 3G+WLAN
Onwards. In Proc. 2004 Software Defined Radio Technical
Conference, Nov. 2004.

[26] A. Waksman. A Permutation Network. In Journal of the
ACM, volume 15, No. 1, pages 159–163, Jan. 1968.

