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We study a family of dynamic resource allocation problems, wherein requests of different types arrive over

time and are accepted or rejected. Each request type is characterized by its reward, arrival probability, and

resource consumption.

An upper bound for collected reward is given by a linear optimization problem with a random right-

hand side. This type of problem, known as packing LP, is ubiquitous in resource allocation problems. We

provide a detailed characterization of the parametric structure of this packing LP. Relying on this geometric

understanding, we re-visit and expand on BudgetRatio algorithms that achieve constant regret by re-

solving this same packing LP in each period and accepting requests “scored” as sufficiently valuable.

We illustrate the benefits of the geometric view in proving that (i) BudgetRatio achieves constant regret

relative to the offline (full information) upper bound in the presence of inventory that is (slowly) restocked

(ii) Within explicitly identifiable bounds, the algorithm’s regret is robust to misspecification of the model

parameters. This gives bounds for the “bandits” version of the problem where the parameters have to be

learned. (iii) The algorithm has an equivalent formulation as a generalized bid-price algorithm where the bid

prices can be adaptively and efficiently computed.

Our analysis focuses on the evolution of the remaining inventory—in turn of the LP that drives Bud-

getRatio—as a stochastic process. We prove that it is attracted to “sticky” regions of the state space where

the online algorithm takes actions consistent with the optimal basis of the offline upper bound, a basis that

is revealed only in hindsight, at the horizon’s end.
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1. Introduction We study a family of dynamic resource allocation problems described as

follows. Requests of multiple types arrive over a finite horizon of T discrete periods. If accepted, a

request consumes a set of resources (that depends on the request’s type) and generates a reward.

There is an inventory of resources available at time 0 and additional units of inventory may be

re-stocked over time. The controller’s objective is to use its resource inventory to maximize the

total reward collected over the finite horizon.

The important and well-studied network revenue management problem as well as some assembly,

distribution, and matching problems are members of this family.

If the controller could solve the problem in an offline fashion, she would wait for the end of the

horizon and, given the realization of the random arrivals, choose the best allocation of resources

to requests. The reward of the offline controller is an upper bound on any online algorithm.

At each time step t= 1, . . . , T , a request of type j ∈ J arrives with probability pj and simulta-

neously a unit of resource i ∈R is restocked with probability ϱi. The algorithm we study, which

we refer to as BudgetRatio, is based on re-solving the following packing linear program at each

time period:

max
y
v′y s.t. Ay≤ 1

T − tI
t+ ϱ︸ ︷︷ ︸

per-period inventory

, 0≤ y≤ p︸ ︷︷ ︸
per-period demand

, (1)

where p= (pj)j∈J are the arrival probabilities of requests, ϱ= (ϱi)i∈R the resource restock proba-

bilities, v = (vj)j∈J is the vector of rewards, and A is the |R|× |J | resource-consumption matrix.

Finally, It ∈NR is the available inventory of different resources at t. Since there are (T − t) periods
to go, the per-period expected available inventory is 1

T−tI
t+ϱ and the per-period expected demand

is p.

In a solution ȳt to Eq. (1), ȳtj is a proxy for the fraction of type-j requests that we want to

accept: an inventory-dependent “score” of type j. BudgetRatio accepts requests with sufficiently

large scores, i.e., such that ȳtj ≥ ηj for thresholds ηj that we will explicitly specify. Viewed as a

random process, these scores ȳt depend, through the LP solution, on the random budget-ratio

process Rt := 1
T−tI

t+ ϱ. This random process, evolving in the space of scaled resources, drives our

analysis; see Fig. 1.

Methodology: a geometric view of re-solving policies. The problems we consider cannot

be solved optimally due to the so-called “curse of dimensionality”. This motivates the pursuit

of policies that are simple to implement, adapt, and scale according to the problem instance.

Algorithms based on linear programming have been introduced to overcome this challenge.

We uncover fundamental structure of the online stochastic packing problem. We expose the

problem’s geometric nature and study the budget consumption dynamics as a stochastic-process in
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Figure 1. Action regions of BudgetRatio for a problem with two resources i ∈ {a, b} and four request types j ∈

{1,2,3,4}. The plot is in the space of ratios that represent the per-period resource availability Rt
i =

1
T−t

Iti + ϱi for

i ∈ {a, b}. Each point corresponds to a pair of budget states (Ra,Rb). When solving the LP, we obtain the set of

request types K= {j : ȳtj ≥ ηj} that should be accepted at that inventory level. Each color on the plot corresponds

to a different such set. The light-blue rhombus-like region, for instance, corresponds to K= {1,2}; when Rt is in this

region, BudgetRatio accepts only type-1 and type-2 requests. (RIGHT) The action regions of the optimal policy

(computed via DP) with 70 periods to go.

the space RR
+ of budget ratios. The analysis reveals how BudgetRatio interacts with the geometry

of the packing LP.

The thresholding of the decision ȳt divides the space of resource-budgets RR
+ into mutually

exclusive action regions. When the ratio is in a given region, all requests j associated to this region

(those for which ȳtj ≥ ηj) are accepted and all others are rejected; see Fig. 1. In this way, the

“location” of Rt determines the actions that the algorithm takes.

The offline problem is a packing LP whose right-hand side corresponds to the (random) real-

ization of total demand and restock over the horizon. To achieve constant regret, an online policy

must act in a way that is consistent with the optimal, unknown, basis of the benchmark offline

problem. This is made mathematically meaningful in Proposition 3 which relates the regret of any

policy to the time in which it stops being consistent with the offline basis. The thresholding of ȳt

guarantees that, notwithstanding the unrevealed offline basis, that stopping time is large: under

BudgetRatio the process Rt spends most of its time in the action region (and subset thereof)

where it performs basic allocations, those that are consistent with the offline basis. To establish this
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we must (i) develop a generalizable mathematical description of Fig. 1 and (ii) study the dynamics

of the stochastic process Rt inside and between the action regions in this figure.

While the main contribution is mathematical, the geometric view advances the understanding

of practical aspects of BudgetRatio, specifically:

BudgetRatio as a bid-price control. Bid-price heuristics are popular due to their intuitive

interpretation: a request should be accepted if its reward exceeds the opportunity cost of the

resources it consumes.

In online packing, the standard bid-price algorithm solves the packing LP and accepts a request

if its reward exceeds the sum of the shadow prices of all resources it consumes. This is a popular

and widely used policy, yet it does not achieve constant regret Jasin and Kumar [2013].

To achieve constant regret, our bid-price version of BudgetRatio is more careful: the bid-price

is obtained from a maximum over several shadow prices—the collection of these is determined by

the problem’s geometry. The generalized bid-prices can be computed adpatively and efficiently.

Robustness to parameter misspecification. Our geometric analysis uncovers the sensitivity

to errors in the forecasting of the demand and/or the rewards. We study the case where the true

parameters (rewards and probabilities) are (v, p, ϱ), but the algorithm is run with (ṽ, p̃, ϱ̃) ̸= (v, p, ϱ).

We quantify how accurate (ṽ, p̃, ϱ̃) must be for BudgetRatio to achieve constant regret, despite

being executed with incorrect parameters.

We introduce an appealingly simple notion of centroids (see Section 3). As long as the misspec-

ification leaves these centroids unchanged, the collection of action regions in Fig. 1 is stable under

perturbations of the parameters. In the one-dimensional case (i.e., with a single resource), ṽ must

be accurate enough to deduce the ranking of the requests Vera et al. [2021]. The centroids provide

a generalization of the inherently one-dimensional notion of ranking, allowing us to understand the

multidimensional problem. These robustness guarantees subsequently yield optimal regret guaran-

tees in the setting where the demand and reward parameters are not apriori known to the controller

and must be learned.

The impact of restock on regret. In the baseline setting of online packing (or network revenue

management), inventory is not restocked; only the initial inventory is available to the controller.

Generally, restock poses a real challenge: the offline upper bound is too ambitious and constant

regret is not attainable. Our geometric view of the problem affords a nuanced consideration of

restock. We prove that, under an explicitly identifiable “slow restock” condition, constant regret

is attainable in this generally difficult problem, and is achieved by BudgetRatio with suitably

tuned thresholds.
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2. Model and overview of results A decision maker allocates resources to requests over

T periods. There is a set of resources R = [d] = {1, . . . , d} and, at time t = 0, there is an initial

inventory I0i for resource i∈R. Additionally, at each time t∈ [T ], a unit of resource i arrives with

probability ϱi independently of the past; ϱ denotes the vector of these arrival probabilities and

satisfies
∑

i∈R ϱi ≤ 1 (not all resources restock). At most one unit of resource arrives each period.

We let Zt = (Zti : i ∈ R) be the accumulated restock over the time interval [1, t]. The controller

cannot consume more than I0i +Zti units of resource i by time t.

There is a set J = [n] = {1, . . . , n} of possible requests, a request of type j ∈J generates a reward

vj and consumes resources as encoded in a matrix A∈ {0,1}d×n, where Aij = 1 means that type j

requires one unit of resource i. At time t∈ [T ], a request j arrives with probability pj independently

of the past; p denotes the vector of these arrival probabilities and satisfies
∑

j∈J pj = 1. Exactly

one request arrives each period. We let Zt = (Ztj : j ∈ J ) be the accumulated arrivals over [1, t].

The controller cannot accept more than Ztj requests of type j by time t.

We let V t be the reward brought by the request arriving at time t; the random variables

V 1, V 2, . . . , V T are assumed to be i.i.d with P[V t = vj] = pj, j ∈J . The inventory on hand at time

t∈ [T ] is denoted by It = (It1, . . . , I
t
d)

′.

The selection process at time t unfolds as follows:

(i) Inventory restock: the inventory is updated to include newly arriving resource units; i.e.,

Iti ← Iti +1 if a resource i arrives.

(ii) Request acceptance and inventory reduction: If the arrival is of type j (i.e., V t = vj), then

the request must be rejected if It ̸≥ Aj. If the request is feasible (Aj ≤ It), then it may be

accepted, thereby generating a reward vj and decreasing the inventory to It−Aj; or it may

be rejected generating zero reward.

Resources do not expire: if not used by time t, they are available at t + 1. The decision to

accept/reject a request is final: if a type-j request is accepted, reward is collected and the relevant

resources are consumed; it if it rejected it is lost forever (requests do not queue).

No online policy can do better than the offline, full information, counterpart in which all rewards

are presented in advance. Allowing this offline to use fractional allocations gives a further upper

bound. This fractional offline controller is our benchmark; its expected total reward is given by

V ∗
off(T, I

0) :=E


max v′y

s.t. Ay ≤ I0 +ZT

y ≤ZT

y ∈Rn≥0

 . (2)

Throughout we assume, without loss of generality, that Ii ≤ T for all i∈R. If Ii >T , resource i
is non-binding and we can reduce the problem to one with d− 1 resources.
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As a pre-processing step, we perturb the rewards: for every j ∈ J , we take the rewards to be

randomly perturbed rewards vj ← vj + Uj where Uj(0,1/T ) are n i.i.d uniform [0,1/T ] random

variables. Over an horizon of length T , this perturbation introduces at most a O(1) error. It

guarantees that, almost surely, the optimal solutions are uniquely defined at each period of the

Algorithm and in the offline problem; see e.g. [Bertsimas and Tsitsiklis, 1997, Exercise 3.15].

2.1. The Primal BudgetRatio Algorithm. The budget is the inventory on hand plus

expected future restock; the budget ratio is the size of the budget relative to the residual horizon.

Definition 1 (Budget Ratio). The budget ratio at time t∈ [1, T ] is

Rt :=
1

T − t(I
t+E[ZT −Zt]) =

1

T − tI
t+ ϱ,

where It is the inventory on hand at time t. The ratio at t= 0 is defined by the random variables

(without expectation) R0 := 1
T
(I0 +ZT ). The demand at time t= 0 is defined by D0 := 1

T
ZT .

Define
LP(R,D) max v′x

s.t. Ay ≤R,
y ≤D,
y ∈Rn≥0.

(3)

BudgetRatio re-solves a deterministic relaxation of (2) and thresholds its solution to make

acceptance/rejection decisions; see Algorithm 1.

Algorithm 1 Budget Ratio Policy

Input: Aggressiveness parameter α∈ (0,1)
1: Set thresholds: for j ∈J , let γj :=maxi:Aij=1 ϱi and set p̄j← pj + γj1{γj>αpj}.
2: for t= 1, . . . , T do

3: If a resource i∈R arrived, Iti ← Iti +1.

4: Set Rt← 1
T−tI

t+ ϱ.

5: Solve LP(Rt, p) to obtain the optimal decision variables ȳt.

6: Set j as the type of the arriving request.

7: if It ̸≥Aj (not feasible to serve j) or ȳtj <αp̄j (no desirable to serve j): reject the request

8: else if ȳtj ≥ αp̄j: accept the request It← It−Aj
9: Carry over the inventory for the next period: It+1← It.

LP notation and terminology. Let Ā be the following augmentation of the resource consumption

matrix A, where In is the identity matrix of dimension n×n

Ā=

[
A 0 Id
In In 0

]
. (4)
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For any R ∈Rd≥0 and D ∈Rn≥0, we re-write the LP relaxation, in standard form, as

max

v′y : Ā
yu
s

=

(
R
D

)
, (y,u, s)≥ 0

, (LP(R,D))

where (y,u, s) ∈ Rn ×Rn ×Rd is the decision vector. The variables y ∈ Rn represent the amount

of requests accepted, u ∈ Rn correspond to the number of unmet (i.e., arrived but not accepted)

requests, and s∈Rd stand for resource surplus. We refer to these henceforth as the request, unmet,

and surplus variables.

We use the general notation B to denote a basis of (LP(R,D)) as well as the (d+ n)× (d+ n)

sub-matrix of Ā corresponding to the variables in the basis B; Bc denotes the non-basic columns.

Let v̄ = (v,0,0) ∈Rn×Rn×Rd be the extended reward vector, where we assign zero value to the

slack variables u and s.

For an optimal basis B we refer to λ= λ(B, v) = (B−1)′v̄B as the dual variables associated with

B.

A useful example. For visualization purposes, we present in detail a two-dimensional example

(d= 2 resources) that is rich enough to demonstrate key characteristics, yet simple enough to afford

a visual representation of the problem’s geometry. The example is a traditional packing problem

with no restock (ϱ= 0).

We denote resources and their initial inventory by a, b and Ia, Ib respectively. There are four

customer types {1,2,3,4} with the consumption matrix A, reward values, and arrival probabilities

A =
1 2 3 4

a 1 0 1 1
b 0 1 1 1

, v= (4,4,5,1), and p= (1/4, 1/4, 1/4, 1/4).

Type-3 requests bring the highest reward (v3 = 5) but consume both resources a and b. Types 1 and

2 have the highest per-resource-consumption reward. Type-4 consumes both resources but brings

little rewards; it is the least desirable. For future reference, we label this as the base example.

The geometry of BudgetRatio. Each point in the colored map in Fig. 1 corresponds to a

two-dimensional budget-ratio (Ra,Rb). When solving LP(R,p), we obtain the set of request types

K= {j : ȳj ≥ αp̄j} that BudgetRatio accepts at that inventory level; no other types are accepted.

The action region

NK = {R ∈R2
+ : ȳj ≥ αp̄j, for j ∈K, ȳj <αp̄j, for j ∈Kc}.

is the set of budget ratios R where BudgetRatio accepts exclusively requests from types in the

centroid set K; each color on the plot corresponds to a different centroid set; the light-blue region,

for instance, is the set N{1,2}.
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The red circle in NK represents the centroid budget. It is where the budget equals the resource

consumption of those request types in K:
∑
j∈K

Aijpj =: rK. (Centroid Budget)

For the centroid K= {1,3}, the budget is the vector r{1,3} = (0.5,0.25)′ because 0.5 = p1+p3 (both

request types consume resource a) and 0.25 = p3 (only type 3 requires resource b). The centroid

budgets anchor the geometry of the action regions.

The LP at a centroid budget, LP(rK, p), has multiple optimal bases B; these are the bases

associated with the centroid K. With each of these we have the dual variable λ(B, v) = (B−1)′v̄B. This

informal description of the geometry suffices for the presentation of our results; formal definitions

appear in §3 and §4.

2.2. The max-bid-price BudgetRatio. We present a generalization of bid-price policies

that, we will prove, achieves constant regret.

We define the (set of) dual prices at a centroid K as follows

ΛK := {λ : λ= λ(B, v) for some optimal basis B associated to K},

Λ(R) = ΛK if R ∈NK. (5)

The map Λ(·) identifies which bid-prices are relevant for the budget R. Having identified the

centroid K such that R ∈NK, the set of bid-prices are those associated to its corresponding centroid

K.
When close to the origin R = 0, primal BudgetRatio rejects all requests even if R > 0. To

mimic this boundary behavior, we must introduce—through the bid prices—a high shadow price

near the boundary of the state space. The centroid K is near a boundary for type j if
∑

l∈KAl ̸≥Aj,
we then write j ∈ ∂(K). For the centroid K= ∅ all types are near the boundary: ∂(∅) =J . Define

λ∂(R) = 2
∑
j

vjej1{j∈∂(K)}, if R ∈NK,

where ej is the vector of size d+n that has 1 in entry d+j and 0 elsewhere. We note that λ∂(R) = 0

if R ∈NK and K is such that rK > 0; in the base example this is the case for all but K= ∅,K= {1}
and K= {2}. Below Ā is the augmentation of A as in Eq. (4).

Definition 2 (a max-bid price definition of BudgetRatio). An arriving request of

type j is accepted at time t if It ≥ Aj (there are enough resources), and vj exceeds the max-bid

price: vj ≥maxλ∈Λ(Rt) Ā
′
j(λ+λ∂(Rt)).
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In our base example, the dual vectors at the centroid K= {1} (bottom yellow region in Fig. 1) has

the dual vectors λ(B1) = (4,4,0,0,0,0)′, λ(B2) = (1,4,3,0,0,0)′, and λ(B3) = (0,5,4,0,0,0)′ (one

vector for each of the optimal bases at the centroid’s budget) so that for Rt ∈N{1}, the decision is

to accept a type-j arrival if vj ≥max{λ(B1)
′Āj, λ(B2)

′Āj, (B3)
′Āj}. Type 1 is accepted here because

λ(B1)
′Ā1 = λ(B2)

′Ā1 = λ(B3)
′Ā1 = 4 ≤ v1; type 2 is not accepted because λ(B3)

′Ā2 = 5 ≥ 4 = v2

(even without including λ∂).

In Theorem 1, we state an equivalence between the two formulations of BudgetRatio: the

one (based on the primal) in Algorithm 1 and the other (based on the dual) in Definition 2. We

prove that both algorithms take precisely the same actions at all times: BudgetRatio accepts an

arriving request of type j at time t (and facing ratio Rt) if and only if the max-bid price control

does so at this time and state.

This bid-price formulation of BudgetRatio could, in some instances, be computationally faster

than Algorithm 1. To pre-compute the full map Λ(·), we must solve at most (n+1)! parcking LPs

where, n, recall, is the number of types; see Remark 4. Algorithm 1, in contrast, requires solving

(in real time) T such LPs, one for each period in the horizon. In our base example, there are 4

types so that bid-price BudgetRatio is computationally preferable for T ≫ 24. Moreover, the

map is computed only once and can be subsequently used for multiple runs of the online phase,

as is often done in large-scale networks; see Bast et al. [2016]. But pre-computing the full map

is not necessary for the bid-price version of BudgetRatio. Instead, bid-prices can be generated

adaptively and relatively efficiently; see Remark 7.

2.3. Main results We impose the following requirement throughout.

Assumption 1 (Slow Restock). For every centroid K and every resource i used by some

j ∈K (
∑

j∈KAij ≥ 1) we have ϱi < (rK)i =
∑

j∈KAijpj.

The requirement is that a resource restocks at a lower rate than the rate consumed by the

centroid set. It is trivially satisfied in the traditional online packing setting where there is initial

inventory but no restock (ϱ= 0); see further discussion of this assumption in Remark 1.

We define two requirements on the primitives (p, ϱ, v,A) that are used to parametrize our robust-

ness statements. They are not needed for constant regret.

Definition 3 (δ-Complementarity). Let B be a basis (associated with some centroid K)
and λ= λ(B, v) be the dual variables associated to (B, v). We say that B is δ-complementary if (i)

λi ≥ δ for all resource i whose surplus si is not in B, (ii) λj ≥ δ for all request type j whose slack

ui is not in B, and (iii) (Ā′λ)j ≥ vj + δ for all request type j whose request variable yj is not in B.
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Our notion of δ-complementarity is a strengthening of the standard notion of complemen-

tary slackness in linear programming; the latter is recovered by setting δ = 0 in our definition.

Parametrizing strict complementarity by δ > 0 allows us to relate the problem’s primitives to

allowed perturbation/misspecification of the reward vector v.

Similarly to δ-complementarity, δ-separation will parametrize allowed misspecification of the

arrival-probability vector p.

Definition 4 (centroid separation). We say that the centroids are δ-separated if

minK̸=K′ mini∈R|(rK(p)− rK′(p))i| ≥ δ.
In the one dimensional case (d= 1), Definitions 3 and 4 reduce to explicit insightful requirements;

see Corollary 1.

Theorem 1 (constant regret and its robustness). Suppose that slow restock holds. Then,

1. Constant Regret: BudgetRatio (primal) achieves a uniformly bounded regret: There exists

a constant M such that

V ∗
off(T, I

0)−Von(T, I
0)≤M, (6)

where Von(T, I
0) is the total reward of BudgetRatio. The constant M may depend on

(p, ϱ, v,A), but not on the horizon T or the initial inventory I0.

2. Robustness with respect to reward: The regret remains constant if BudgetRatio uses

an estimate ṽ of v, as long as

||v− ṽ||∞ ≤
δ

c(d+2)
, (7)

where δ is such that all bases are δ-complementary, and c≤max{||B−1||∞ :B basis }.
3. Robustness with respect to arrival probabilities: The regret remains similarly constant

if BudgetRatio uses an estimate (p̃, ϱ̃) of (p, ϱ), as long as (p̃, ϱ̃) satisfy slow-restock and

max
K
||rK(p)− rK(p̃)||∞ ≤

δ

4
, (8)

where δ is such that all centroid budgets are δ-separated.

4. Max-bid price Equivalence: If all bases are δ-complementary for some δ > 0, then the

primal and max-bid-price definitions of BudgetRatio are equivalent: on any realization of

Z,Z and at any time t, BudgetRatio as specified in Algorithm 1 accepts an arriving request

of type j, if and only if the max-bid price algorithm in Definition 2 does.

In the 2-dimensional base example Fig. 1(RIGHT), the sup norm distance between any two red

circles (centroid budgets) equals 1/4, hence centroid separation (Definition 4) is satisfied with δ= 1/4.

δ-complementarity (Definition 3) is satisfied with δ = 1 and max{||B−1||∞ : B basis } ≤ 1; this we

found through computational discovery of all the optimal bases. Therefore, Eq. (7) specializes to
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||v − ṽ||∞ ≤ 1/4. It is important that c, δ depend only on (v,A) and not on p, ϱ or the horizon T .

The requirement Eq. (8) on p̃ imposes 8 constraints, one per centroid.

In the one-dimensional case (7) and (8) simplify to intuitive requirements.

Corollary 1 (separation conditions for a single resource). With d = 1, the centroids

are δ-separated, in the sense of Definition 4, with δ=minj pj. Eq. (8) reduces to∣∣∣∣∣∣
∑
k∈[j]

(pk− p̃k)

∣∣∣∣∣∣≤ mink pk
4

=
δ

4
∀j ∈ [n], (9)

which is, in particular, satisfied if ||p− p̃||∞ ≤ mink pk
4n

. The rewards v satisfy δ-complementarity, in

the sense of Definition 3, if

vj ≥ δ, for all j ∈ [n], and |vj − vj′ | ≥ δ, for all j ̸= j′. (10)

Equation (10) recovers the reward separation requirement in [Vera et al., 2021, Theorem 4].

We conclude this section with a discussion of slow restock and of BudgetRatio parameters.

Remark 1 (slow restock). Conceptual implications: In allowing restock in our model,

we explore the limits of constant regret and simple re-solving algorithms. The slow-restock require-

ment in Assumption 1 draws such a limit explicitly: if the condition is met, constant regret is

attainable and is achieved by a suitably modified version of BudgetRatio.

Lemma 2 illuminates how the slow restock assumption facilitates the workings of BudgetRatio.

If the restock rate is large, much of the forecasted inventory at a time t is embedded in future

arrivals. This means that although we might want to accept a request at time t, we might not be

able to because there is no inventory on hand. With high-restock rates, the system behaves more

like a loss-queue than an inventory allocation problem—see further discussion in Section 8.

Assumption 1 can be weakened somewhat: if—in Fig. 1—the initial budget lies in N{1,2,3} (the

red action region), it suffices to satisfy slow restock for the centroid {1,2,3} and its immediate

neighbors {1,2}, {1,3}, {2,3}, and {1,2,3,4}.
If the parameters satisfy the complete exact of Assumption 1—ϱi >maxK(rK)i for all resource i

and centroids K—the problem trivializes: there is so much capacity that constant regret is achieved

by admitting all arriving requests as long as there is available inventory.

The problematic cases are those where ϱi < (rK)i for some centroids but ϱi > (rK)i for others; or

those where some of these are held with equality. In Appendix Section A, we provide examples,

where a regret proportional to
√
T is unavoidable.

Algorithmic implications: The rate is accounted for in the definition of p̄j where γj captures

the restock of resources used by j; p̄= p if there is no restock. The greater the restock rate, the
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more opportunities BudgetRatio has to serve type-j requests in the future. Because the resources

that j consumes replenish, it is less critical to accept j in the immediate present. The increase in

the threshold by γj renders BudgetRatio more conservative in accepting j. On the other hand,

for a request with low restock of the resources it consumes (hence small γj), BudgetRatio might

as well accept it now as the opportunities to do so will not increase in the future.

Remark 2 (The Aggressiveness Parameter α). The parameter α can be set to any value

in (0,1). The closer that the value of α is to 1 (while still away from 1) the greater the restock rate

that is allowed without compromising constant regret. Intuitively speaking, as α approaches 1, the

algorithm becomes more conservative in accepting requests; it slows down to allow for inventory

to accumulate.

Final setup details. Let F0 denote the trivial σ-field and, for t ∈ [T ], let Ft = σ{(Zτ ,Zτ ) : τ =
1, . . . , t} be the σ-field generated by the random arrivals of resources and requests. An online policy

π can be expressed with binary random variables (σπ,tj : j ∈ J ) such that σπ,tj = 1 means that a

type-j request is accepted at time t. For adapted online policies, σπ,t must be Ft-measurable. Let

Y π,t
j :=

∑
τ∈[t]

σπ,τj ,

be the total number of type-j requests accepted by the policy π over [1, t]. A policy is feasible if (1)

the total consumption of resource i does not exceed its initial inventory I0i plus its total restock,

and (2) the total acceptance does not exceed arrivals:

AY π,t ≤ I0 +Zt, t∈ [T ], (11)

Y π,t ≤Zt, t∈ [T ],

σπ,tj ≤ 1{V t=vj}, t∈ [T ], j ∈J .

Let Π be the set of feasible online policies, those that are Ft-adapted and satisfying (11). The

total reward of an online policy π ∈Π is

V π(T, I0) =E

∑
t∈[T ]

v′σπ,t

.
For each (T, I0), the goal of the decision maker is to maximize the expected value:

V ∗(T, I0) =max
π∈Π

V π(T, I0).

To prove optimality guarantees, we compare V π(T, I0) (with π← BudgetRatio) against the

offline benchmark V ∗
off(T, I

0) in (2).
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Additional notation. Given a subset K ⊆ J we let AK be the submatrix of A that has only

columns in the index set K (but has all rows). We similarly define sub-vectors: if x is a column

vector, xK is a subvector with the indices in the set K. For real vectors x, y of the same dimension

and ϵ > 0, we write x= y± ϵ if ∥x− y∥ ≤ ϵ. Throughout d(x, y) is the Euclidean distance between

two points x, y ∈Rd. For a subset C ⊆Rd and a point x∈Rd, d(x,C) = infy∈C d(x, y) is the equclidean

distance of x from the set C. We similarly define d∞(x, y) and d∞(x,C) for the sup-norm. For an

integer m≥ 1, [m] = {1, . . . ,m}. We adopt the convention that the maximum over the empty set

is zero and the minimum is ∞ (max∅= 0,min∅=∞). We use throughout M to be a constant

—that can depend on (A,p, ϱ, v), but it is independent of (T, I0)— whose value can change from

one line to the next.

2.4. Related Work

Online packing (network revenue management). The attainability of constant regret

has been already established for some online allocation. Arlotto and Gurvich [2019], the first to

establish constant regret (regardless of whether the deterministic LP is degenerate or not), takes

a geometric stochastic-process view, but it is specific to the one-dimensional (i.e., single resource)

case. The geometric analysis of the multidimensional case requires the introduction of generalizable

mathematical constructs (centroids, bases, cones, etc). More recently, Vera and Banerjee [2021],

Vera et al. [2021] study a large family of resource allocation problems that includes also dynamic

posted pricing.

Relative to this earlier work, the geometric view has explanatory power insofar as it provides an

alternative and mathematically appealing support for constant regret that is grounded in linear

programming and, specifically, in a parametric view of the packing LP. This view provides language

through which we can explicitly identify the robustness and flexibility of BudgetRatio.

Bid-price heuristics. Bid-price heuristics are popular due to their intuitive interpretation;

see Talluri and Van Ryzin [1998] for asymptotic results and Boyd and Bilegan [2003] for a broader

overview of bid-prices. In a setting with multiple resources, a bid-price policy is described as follows:

at time t, compute a vector λt ∈ Rd≥0 of resource prices and reject a type-j arrival if and only if

its reward is below the combined price of requested resources, i.e., if and only if vj < A′
jλ

t. The

standard bid price heuristic sets λt to be the dual vector (or “shadow price”) of an LP solved at

time t. It is known that these bid prices cannot achieve constant regret Jasin and Kumar [2013].

To the best of our knowledge, the strongest available guarantee for bid-price policies is O(
√
T )

regret Talluri and Van Ryzin [1998]. We show that BudgetRatio can be interpreted as a bid-price

control (Talluri and Van Ryzin [1998] and [Talluri and Van Ryzin, 2004, Chapter 3.2]), albeit a
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more elaborate one. Our generalized version of bid-price—which we call max-bid price—achieves

constant regret.

Robustness to parameter misspecification and bandits. In Theorem 1 we identify suf-

ficient conditions on the misspecification of parameters (probabilities p, ϱ and rewards v) under

which constant regret persists. When these conditions are met BudgetRatio produces constant

regret even if executed under wrong parameters.

Our results have implications for learning and acting in resource allocation. The premise is that

the reward of type-j requests is random with expectation vj and neither v nor the arrival probability

vectors p, ϱ are initially known to the controller. The empirical frequency of different request types

provides the controller with an estimate of p, and the accepted requests allow the controller to

estimate v; see Bubeck and Cesa-Bianchi [2012] for more on bandit problems.

Bandit problems known as bandits with knapsacks Badanidiyuru et al. [2013] explicitly model

budget constraints which, in our setting, correspond to the limited inventory. In contextual bandits

Agrawal and Devanur [2016], arrivals present a “context” before the controller makes decisions.

The general-purpose results in the literature Agrawal and Devanur [2016], Badanidiyuru et al.

[2013] imply O(
√
T ) regret bounds for our setting. For our model, where the context is the type

j ∈ [n], we identify the separation condition in Definition 4 that guarantees an optimal regret

scaling of O(logT ). This separation condition relies on our notion of centroids: to make good

accept/reject decisions, we must learn enough about the primitives to identify the type of instance,

i.e., the important centroids. Centroids bring out a natural multi-dimensional notion of separation

that is consistent with, yet generalizes, the O(logT ) regret and the separation condition for the

one-dimensional (single resource) case in Vera et al. [2021], Wu et al. [2015].

Two-sided arrivals and assembly. Arrivals of inventory capture assembly networks with

fixed production rates. In assembly models, orders arrive to be assembled by using relevant compo-

nents; see Song and Zipkin [2003] as well as Plambeck and Ward [2006] which gives an asymptoti-

cally optimal policy for holding cost minimization under a high demand assumption. We focus on

finite-time non-asymptotic guarantees for reward maximization. Our contribution to this literature

is in identifying conditions on the restock rate that, when met, render the offline upper bound

attainable, and achievable by a simple resolving algorithm that we explicitly construct.

Paremetric linear programming. The objective in this literature is to understand how

optimization problems change as the primitives change; see Gal [1984] for a survey. We study the

parametric behavior of the packing LP when multiple parameters are perturbed simultaneously.

This is in the spirit of multiparametric linear programming Bemporad et al. [2002], Borrelli et al.
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[2003] where the parametric analysis is used in support of model predictive control. Our analysis of

BudgetRatio requires the characterization of the geometry of the problem. This is made feasible

by the special structure of the packing LP.

Drift analysis. Much of our analysis centers on the dynamics of the process Rt. We argue

that, when close to the boundary of an action region, the ratio process Rt drifts towards and then

“sticks” to this boundary. Such Lyapunov/drift arguments are frequently used in the analysis of

stochastic models to establish positive recurrence of Markov processes. In the context of online

control, there are similarities to queueing theory where max-weight policies—based on re-solving

local optimization problems—lead to the attraction to a subset of the state space; see Eryilmaz

and Srikant [2012], Maguluri and Srikant [2016].

3. Overview of our approach. An online policy builds, in an adapted manner, an approx-

imate solution for a random linear system whose right-hand side is revealed only at the end of the

horizon—the offline linear system. The offline optimal decision maker waits until the end of the

horizon to solve its LP while the online policy must commit to solutions in a dynamic fashion.

Below we make this precise.

Offline representation. Introducing slack variables, we rewrite the constraints of the offline LP

(2), {Ay≤ I0 +ZT , y≤ZT} in standard form {Ay+ s= I0 +ZT , y+u=ZT}, where s∈Rd≥0 is the

surplus of resource and u∈Rn≥0 is the unmet demand. Augmenting the matrix A to Ā in Eq. (4),

we arrive at the standard form representation of offline’s value

V ∗
off(T, I

0) =E

max

v′y : Ā
yu
s

=C


 , where C :=

(
I0 +ZT

ZT

)
. (12)

The random vector C ∈Rd+n≥0 is the maximum consumption of offline. Given a basis B (columns

of Ā) for the LP in Eq. (12), the optimal solution satisfies BxB =C, where x= (y,u, s) stands for

all the variables and B = B(C) depends on the right-hand side. The realized (random) value of

offline can be written as ∑
B
v′ByB1{B is optimal} =

∑
B
v′BB−1C1{B is optimal}. (13)

Recall that we use B for both the indices of basic columns and the sub matrix ĀB.

Online construction of the offline linear system. If the optimal offline basis is B, offline’s

actions correspond to the unique solution of the system BxB =C, where x= (y,u, s). The quality

of the online approximation to the static offline system depends on how long—out of the total

horizon of length T—the policy π takes actions that are consistent with the optimal offline basis

B. This consistency is captured in the following definition.
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Definition 5 (Basic Allocation). Let π be an online policy and B be the optimal offline

basis (revealed at time T ). We say that π performs basic allocation at t ∈ [T ] if it only serves

requests j such that yj ∈B (request variable for type j is basic) and it only rejects arriving requests

such that uj ∈B (unmet variable for type j is basic).

Above we refer to the basis of the offline problem but there could be multiple optimal bases.1 In

that case, for a given basis B we would say that π performs a B-basic allocation at t. We continue

referring to the optimal basis for the offline problem on the understanding that the statements

apply to any optimal basis if multiple exist.

As long as the policy π performs basic allocations, it is “operating” in an optimal basis. Ifτπ

is the first time where π performs a non-basic allocation, regret is incurred only and at most in

the remaining T − τπ periods; see Proposition 1. That regret, in turn, depends on the amount of

resource that remains unused by the online policy relative to the offline solution.

Definition 6 (Wastage). Let π be any online policy and B the optimal offline basis. Let Sti

be the surplus of resource i∈ [d] at time t when using the policy π, i.e., St = I0 +Zt−AY π,t. The

wastage of π at t is W π,t :=max{Sti : surplus variable si is non basic}=max{Sti : si /∈B, i∈ [d]}.
Intuitively, if si /∈B, then resource i has no slack: it is completely utilized in the offline solution.

The wastage captures the inventory left unused by the online policy that should have been used in

its entirety. The quality of the online system, i.e., the approximation to BxB =C is determined by

this time τπ and the wastage it induces.

Proposition 1 (a stopping-time regret criterion). Let B be the optimal basis for the

offline problem (12) and denote J t ∈J the type of the t-th request. For any online policy π define

the time

τπ :=min{t≤ T : the policy does not perform a basic allocation at t}− 1

=min{t≤ T : (σπ,tj = 1 and yj ̸∈ B for some j) or (σπ,tj = 0 and uj /∈B where j = J t)}− 1.

Then for any τ ≤ τπ a.s. the expected regret of π is at most ME[T − τ +W π,τ ], where M is a

constant independent of (T, I0), but that may depend on (A,v), and W π,t is the wastage at time t.

In particular, the regret is O(1) if E[T − τ +W π,τ ] =O(1).

Proof. Throughout the proof, the policy π is fixed and omitted from notation. Let Y t
j ,U

t
j be the

number of type-j requests accepted and rejected (unmet) by the online policy over the interval

1 Our perturbation of the rewards guarantees that offline has a unique optimal solution but this solution might be
degenerate. Indeed, at centroid budgets, this optimal solution is degenerate.
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[1, t]. Let Ct :=

(
I0 +Zt

Zt

)
be the maximal feasible consumption in [1, t], and recall that the surplus

is St := I0 +Zt−AY t ∈Rd≥0. By definition,

ĀXt =Ct, where Xt = (Y t, St,U t).

Let us divide the matrix Ā into basic and non-basic columns as Ā= [B,Bc]. We note that,

B

Y t

U t

St


B

+Bc
 0

0
St


Bc

=Ct and C −Ct =

(
ZT

ZT

)
−
(
Zt

Zt

)
, ∀t≤ τ. (14)

The first equation follows from the decomposition Ā= [B,Bc] and the fact that, up to time τ , the

policy performs basic allocations so that the only non-zero variables Y t
j ,U

t
j are those in the basis

B. The second equation follows from the definition of C and Ct. Recall that the offline variables

xB = (y,u, s)B =B−1C are the solution to the offline system. Using (14) we then haveyu
s


B

−

Y t

U t

St


B

=B−1C −B−1

Ct−Bc
 0

0
St


Bc


=B−1

((
ZT

ZT

)
−
(
Zt

Zt

))
+B−1Bc

 0
0
St


Bc

∀t≤ τ. (15)

The process Y is increasing and non-negative: Y T ≥ Y t ≥ 0 for all t∈ [T ]. Consequently,

Regret = (v′ByB− v′Y T )≤ (v′ByB− v′Y t)≤ v′B(yB−Y t
B).

We bound the last expression using Eq. (15): since there is at most one arrival per period,

||(ZT ,ZT )′− (Zt,Zt)′||∞ ≤ T − t, and the surplus is bounded by definition as ||StBc ||∞ =W t. Finally,

we take the worst case over B in Eq. (15) and conclude the result by setting t= τ . □

To prove item 1. of Theorem 1 (constant regret), it suffices now to find a random time τ ≤ τπ

a.s. and prove that E[T −τ +W π,τ ] =O(1). Accordingly, the remainder of our analysis is dedicated

to, identifying τ , and then bounding T − τ and the wastage W for π=BudgetRatio.

Analysis overview via the one-dimensional case. Let us consider in some detail the one-

dimensional packing problem, also known as the multi-secretary problem [Arlotto and Gurvich,

2019]. There are I0 positions to be filled and candidates arrive one at a time with abilities (rewards)

V 1, . . . , V T ; the goal is to maximize total accumulated reward by selecting at most I0 candidates.

In our notation, d= |R|= 1 (single resource), ϱ= 0 (no-restock so that E[R0] =R0 = 1
T
I0), and

A = e′ (each request consumes one unit of the resource). The deterministic relaxation has n+ 1

constraints, one for each of the demand constraints, and a single budget constraint:

LP(R,p) max v′y
s.t. e′y ≤E[R0],

y ≤ p,
y ≥ 0.

(16)



18 A. Vera, A. Arlotto, I. Gurvich and E. Levin: Dynamic Resource Allocation

We assume without loss of generality that types are labelled in decreasing order of rewards, i.e.,

v1 > v2 > . . . > vn, and let F̄i :=
∑i

j=1 pj be the survival function at vi. The deterministic relaxation

in Eq. (16) has a simple greedy solution: in increasing order of k, set ȳk = pk as long as F̄k ≤E[R0].

Letting i0 =max{k : F̄k ≤R}; finally, set ȳi0+1 =E[R0]− F̄i0 .

Centroids. If the budget ratio is exactly E[R0] = F̄j (at a jump point of the distribution), the

deterministic relaxation (16) takes all types K= [j], and only those types. In other words, for this

choice of right-hand side (budget), the problem LP(F̄j, p) has all variables y1, . . . , yj saturated and

all other variables equal to zero. The sets K with this property are centroids. The set K = [j] is

optimal when the budget is exactly rK = F̄j, so we refer to rK as the centroid’s budget; see Fig. 2.

The centroids do not depend on p. Regardless of the distribution, the LP “takes” all requests

[j] before taking any request of type j+1. Both the deterministic relaxation LP(E[R0], p) and the

offline problem LP(R0,D0)—where, we recall, D0 = 1
T
ZT—follow the same nested rule. This con-

cept generalizes in multiple dimensions: there are sets of requests K⊆J that are always prioritized

in a subset of the space independent of the demand p. Centroids elicit a useful summary of the

matrix A and the reward vector v; see Definition 7.

Action regions: the centroid neighborhood. The thresholding of the algorithm—accepting

type j requests only if ȳj ≥ 1
2
pj—creates a confidence interval (a neighborhood) around the cen-

troid’s budget. The neighborhood of the centroid {1,2} is the interval N{1,2}(p) = [F̄2− p2
2
, F̄2 +

p3
2
]

centered at exactly the centroid budget r[2](p) = F̄2 = p1+p2; see Fig. 2. As long as Rt = It/(T − t)
is in this interval, BudgetRatio accepts only (and all) arriving requests of types {1,2}; it starts
accepting type-3 requests when Rt exceeds the upper threshold F̄2+p3/2. It rejects type-2 requests

if it goes below the lower threshold F̄2− p2/2.

Basic convex subsets. By Proposition 1, for an online policy to be good it must have “almost”

oracle access to the offline basis B; its decisions must be consistent with the (apriori unknown)

basis B for much of the horizon.

Consider the centroid [2] = {1,2}, its budget r[2](p) = F̄ (v3) = F̄2 and the action region N[2](p) =

[F̄2− p2/2, F̄2+ p3/2]: when R
t ∈N[2](p), BudgetRatio accepts only, and all, arriving requests of

types 1 and 2. This action region has two convex subsets, each associated with a specific basis. The

basis B2 that has—in addition to types 1,2—the request variable y3 for type 3 is optimal on the set

N[2](B2, p) = [F̄2, F̄2 + p3/2]. The basis B1 that has—in addition to the unmet (slack) variables for

types j > 2—also the unmet variable u2 for type 2, is optimal on N[2](B1, p) = [F̄2−p2/2, F̄2].When

in the proximity of N[2](B2, p), i.e., on the set N ϵ
[2](B2, p) = {R : d(R,N2(B, p)) ≤ ϵ} (see Fig. 2),

BudgetRatio accepts all of type 1,2 requests and, if Rt crosses into the neighboring centroid [3],

also type 3 requests. Similarly, when in the set N ϵ
[2](B1, p), BudgetRatio accepts all of type-1

requests and, if Rt crosses into the neighboring centroid [1], stops accepting type 2 requests.
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F̄1 F̄2 F̄3

Rt

0

F̄1 − p1/2 F̄2 − p2/2 F̄3 − p3/2

Figure 2. The position of the ratio Rt with respect to the centroid budgets r[j](p) = F̄j determines the actions of the

policy. At time t, the policy accepts a type-j request if and only if Rt ≥ F̄j −pj/2. Oracle containment guarantees that

if the realization ZT is such that offline accepts only types [2] = {1,2}, then Rt ∈ N ε
[2](B1, p) with high probability

for most of the horizon. If, instead, ZT is such that offline accepts also type-3 requests, then Rt ∈ N ε
[2](B2, p) with

high probability for most of the horizon. In conclusion, Rt evolves in the “correct” region N ε
[2](B1) or N ε

[2](B2, p), this

guarantees that the policy accepts only requests in the optimal offline basis.

Oracle containment. By the same arguments as above, but with the probability distribution

p replaced by the random realization D0, offline selects basis B1 if R0 ∈ N[2](B1,D
0) and accepts

only requests of types {1,2}. We will prove that BudgetRatio—despite not knowing the optimal

offline basis—keeps Rt ∈ N ε
[2](B1, p) for much of the horizon. Here we have p instead of D0: if

offline has R0 ∈N[2](B1,D
0) then BudgetRatio—acting adaptively in real time—keeps Rt in the

proximity of the corresponding “theoretical” set N ε
[2](B1, p).

As long as Rt ∈N ε
[2](B1, p), recall, it accepts only requests {1,2} thus performing basic allocations.

If, instead, R0 ∈N[2](B2,D
0) offline selects basis B2 and accepts type 3. BudgetRatio then keeps

Rt ∈N ε
[2](B2, p) for much of the horizon.

The overall implication is that BudgetRatio performs basic allocations for much of the horizon

and, in turn, that τπ is large. Finally, Rt = 1
T−tI

t ∈N ε
[2](B1, p)∪N ε

[2](B2, p)≤ F̄3 implies It ≤ F̄3(T −
t): little inventory (hence little wastage) remains at the end of the horizon. With τπ large and

wastage small, Proposition 1 yields constant regret.

Our analysis consists, then, of two steps: (i) mapping budgets R (a point in the space of budget

ratios) to optimal bases of (LP(R,D)); and (ii) showing that, under BudgetRatio, Rt remains

in the basic subset which is consistent with optimal (unknown to it) offline basis.

The mapping from budgets R to bases (step (i) above) is straightforward in the one dimensional

case: On the “right” of the centroid K= [2] is its centroid neighbor K= [3]—request-type 3 is added

to the centroid—and the optimal basis B2 is the one where the request variable y3 is in the basis.

On the left is the neighbor K = [1]—so 2 leaves the centroid—and the optimal basis B1 has the

unmet variable u2. In this way, there is correspondence between the bases that are optimal at a

centroid’s budget and the neighbors of the centroid. The fact that BudgetRatio drives Rt into
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the correct basic subset (step (ii) above) is non-trivial already in the one dimensional case; see

Arlotto and Gurvich [2019].

In the remainder of the paper we introduce the infrastructure to execute on both of these steps

in the multidimensional problem.

0 1 

ܼ̅ଵ ൅ ܼ̅ଶ ܼ̅ଵ ൅ ܼ̅ଶ ൅ ܼ̅ଷܼ̅ଵ

ܴ଴

0 ଵ݌ ଵ݌ ൅ ଶ݌ ଵ݌ ൅ ଶ݌ ൅ ଷ݌ 1

Figure 3. Why randomized policies do not maintain basic allocations. An illustration via the one-dimensional (d= 1)

case. Although offline accepts no type 3 requests because R0 ≤ Z̄T
1 + Z̄T

2 (TOP), the online randomized algorithm

accepts type 3 with some probability (BOTTOM).

Remark 3 (On randomized policies and bid-price controls). Our definition of basic

allocation (Definition 5) and its associated guarantee in Proposition 1, underscore the relationship

between regret and the extent to which an online policy performs allocations that are consistent

with the offline basis B. Randomized policies [Jasin and Kumar, 2012] do not satisfy this consis-

tency. Consider the multi-secretary problem and the scenario captured in Fig. 3. With R0 close

enough to p1 + p2, we can have with non-neglible probability both Z̄T1 + Z̄T2 = 1
T
ZT1 + 1

T
ZT2 > R0

and p1+p2 <R
0. In this realization, offline takes all of type-1 and most of type-2 requests but none

of the type-3 requests. The standard randomized policy solves LP (Rt, p) and accepts a request of

type j with probability yj/pj. In this scenario, it accepts at time t = 1 an arriving type 3 with

probability (R0− (p1+ p2))/p3 and will continue accepting type-3 requests until Rt ≤ p1+ p2, thus
performing multiple non-basic allocations. Under this randomized policy, and with this initial bud-

get R0, the budget fluctuates around p1 + p2 and performs non-basic allocations (too) frequently.

BudgetRatio, in contrast, introduces a confidence interval: it does accept type-3 requests unless

R0 ≥ p1 + p2 + p3/2.

This execution of non-basic allocations is also the shortcoming of the standard bid-price control.

Here, a request is accepted if its reward vj exceeds the sum of shadow prices (shadow price =

the dual variables of the resource constraint) of requested resources. In this example, because

R0 ∈ (p1 + p2, p1 + p2 + p3), the shadow price of the (single) resource is v3 so that type-3 requests

are accepted. At the centroid’s budget p1 + p2, there are two optimal dual solutions: in one the
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shadow price of the capacity constraints is v3 and in the other it is v2 > v3. The max-bid equivalent

of BudgetRatio in Definition 2 accepts only types 1 and 2 but not type 3.

4. Parametric structure of the packing problem. The geometric structure and the

stochastic analysis that builds on it (convex subsets, basic cones, etc.) are relatively simple in

the one-dimensional case. Formalizing general notions of centroids and action regions requires a

parametric analysis of the packing LP.

0.0 0.2 0.4 0.6 0.8 1
.
0

Ratio a

0.0

0.2

0.4

0.6

0.8

1.0

R
a
ti

o
 b

{}

{1,2,3,4}

{1,2} {1,3}

{1}

{2}

{1,2,3}{2,3}

{}
{1,2,3,4}
{1,2}
{1,3}
{1}
{2}
{1,2,3}
{2,3}

Figure 4. The action regions and convex subsets in the base example

The centroid neighborhood N{1,2} in the base example (see Fig. 4(LEFT)) has three basic convex

subsets as seen on the right of that figure, each of which corresponds to one optimal basis. As long

as Rt is in the yellow convex set, a given basis—let us call it BY ellow—is optimal for LP (Rt, p).

This basis is fully characterized by its centroid {1,2} and the three centroid neighbors {1},{1,3}
and {1,2,3}; see Lemma 4.

We show that as long as the budget ratio Rt stays “close” to this basic convex subset—e.g. within

the red-lined encirclement of the yellow subset—it performs actions consistent with its underlying

basis; see Proposition 2. This is the multidimensional generalization of the sets N ϵ
[2](B1) and

N ϵ
[2](B2) in the one-dimensional case; recall Fig. 2. We further show that if BY ellow is optimal for

offline then, indeed, Rt remains close to the yellow set under the online policy BudgetRatio; see

Proposition 3.

Below is how this roadmap is divided into sections:
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• In §4.1 we define, in optimization terms, the centroid regions and their basic convex subsets.

Specifically, we map the the location of the budget ratio R, which features in the right-hand

side of (LP(R,D)), to the optimal bases of this optimization problem. We prove that as long

as Rt is in the proximity of the basic convex subset corresponding to the offline optimal basis,

BudgetRatio is performing basic allocations. In other words, the “escape time” from the

convex subset is a lower bound on τπ in our regret criterion Proposition 1; see Proposition 2.

Regret would then be small if τπ is close to the end of the horizon time T .; See Proposition

3.

• §4.2 and §5 are dedicated to proving Proposition 2 and 3. To show that the escape time from

the basic convex subset is indeed large we must have the language to study movement of Rt

as it is driven by BudgetRatio. In §4.2 we characterize the geometry of the basic convex

subsets. We show that a basic convex subset is the intersection of a centroid neighborhood

and a suitable cone (Lemma 5) that can we characterize in significant detail. This section ends

with the proof of Proposition 2.

• With the geometry mapped, §5 is where we analyze the stochastic movement of Rt in space and

prove that it stays in proximity of the correct basic convex subset and hence performs actions

that are consistent with offline’s optimal basis. This includes (1) a sticky boundary property

(Theorem 2), that shows that the residual budget process remains close to one centroid neigh-

borhood/action region; and (2) a cone-containment property (Theorem 3) that stipulates that

the BudgetRatio controlled budget process remains constrained to the correct basic cone.

Combined, Theorem 2 and 3 are the key ingredients in the proof of Proposition 3.

• Items 2. and 3. of Theorem 1 (parameter robustness) are proved in §6. Item 4 (max-bid price

control) is proved §7.

4.1. Action regions, exit times and constant regret For ease of exposition, we

strengthen Assumption 1 and require that ϱi <
1
2
(rK)i, instead of ϱi < (rK)i. This allows us to take

the tuning parameter to be α= 1
2
throughout this section. The analysis remains the same as long

as α∈ (0,1) is such that ϱi <α(rK)i; such α∈ (0,1) exists by Assumption 1.

Recall the augmented matrix Ā in (4) and the standard form (LP(R,D)) introduced in Section 2.

Our first result focuses attention on a subset of relevant bases; no other bases must be considered.

Lemma 1. Fix a basis B and let λ= (B−1)′v̄B be the dual variables associated to B. If (i) λ≥ 0

and (ii) Ā′λ≥ v̄, then B is optimal for (LP(R,D)) if B−1

(
R
D

)
≥ 0. Conversely, for any right-hand

side (R,D), there is an optimal basis that satisfies (i) and (ii).

All lemmas are proved in Appendix B.
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For a set K⊆J and a demand vector D ∈Rn, the action region for K is the set of ratios NK(D)⊆
Rd where the algorithm serves exclusively requests in K, i.e., all requests j ∈ K are accepted and

j /∈K are rejected:

NK(D) :=
{
R ∈Rd : BudgetRatio serves exclusively requests K when (Rt, p) = (R,D)

}
=
⋃
B

{
R ∈Rd :B optimal, yK =

(
B−1

(
R
D

))
K
≥ 1

2
DK, yKc =

(
B−1

(
R
D

))
Kc

<
1

2
DKc

}
.

(17)

The equality holds because the algorithm serves a request j if and only if yj ≥Dj/2. We use this

definition with D taking two possible values: D= p and D=D0 = 1
T
ZT . The set NK(D) might be

empty for some K⊆J (the algorithm never “prioritizes” the set K of request types).

Henceforth we use D as a placeholder where the constructs are relevant for both offline and

BudgetRatio. As a general rule, D appears for geometric constructions (relevant for both

online and offline) while p appears in statements concerning the stochastic process Rt driven by

BudgetRatio.

It is in the following lemma, and only here, where the slow restock Assumption 1 is used. The

assumption guarantees that enough of the total inventory (on-hand plus future restock) is on-hand

so that BudgetRatio can accept a type j ∈K request when Rt ∈NK(p).

Lemma 2. For K ⊆ J , BudgetRatio serves exclusively requests in K if and only if Rt ∈
NK(p). Furthermore, for a constant M that depends only on (A,p, ϱ), whenever t ≤ T −M and

Rt ∈NK(p), there is enough inventory to serve any request j ∈K, i.e., It ≥Aj for all j ∈K.

In view of (17), we can write NK(D) =∪BNK(D,B) where NK(D,B)⊆NK(D) is the set of ratios

where the algorithm serves exclusively requests in K and the optimal basis for LP(R,D) is B.

NK(D,B) :=
{
R ∈Rd : BudgetRatio uses B and serves exclusively K when (Rt, p) = (R,D)

}
=

{
R ∈Rd :B optimal, yK =

(
B−1

(
R
D

))
K
≥ 1

2
DK, yKc =

(
B−1

(
R
D

))
Kc

<
1

2
DKc

}
,

(18)

The next result states that the sets NK(D,B) are the correct resolution to study the problem.

The time of escape from these sets lower bounds τπ which, per Proposition 1, controls the regret.

Proposition 2. Let B be the optimal offline basis and set K⊆J . Given ϵ > 0, define

τ ϵ,K :=min{t≤ T : d∞(Rt,NK(p,B))> ϵ}. (19)

Then, there exists a choice of ϵ > 0 such that τ ϵ,K ≤ τπ, where π=BudgetRatio is as spelled out

in Algorithm 1 and, as defined in Proposition 1, τπ+1 is the first time that π does not perform a

basic allocation.
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Proposition 2 immediately implies that, as long as Rt is close to NK(p,B), BudgetRatio is

performing basic allocations. The next proposition further guarantees that Rt remains close to

NK(D,B) for much of the horizon. Recall that E[R0] = 1
T
I0 + ϱ and E[D0] = p, hence at time t= 0

we can identify the set K such that E[R0] ∈NK(E[D0]); it is obtained the first time we solve the

deterministic relaxation.

Proposition 3. Let K be such that E[R0]∈NK(E[D0]) =NK(p), ϵ > 0 and τ ϵ,K be as in Propo-

sition 2. Then, there is a constant M such that E[T − τ ϵ,K+W τϵ,K ]≤M , where W t is the wastage

at time t (see Definition 6).

We now have the ingredients to prove part 1. of Theorem 1.

Proof of Theorem 1 (Regret bound). By Proposition 2 we have that τ ϵ,K ≤ τπ, hence the

policy performs only basic allocations over the interval [1, τ ϵ,K]. By Proposition 3, the expected

wastage and remaining time T − τ ϵ,K are bounded by a constant and so is, by Proposition 1, the

regret. □

It remains to prove Propositions 2 and 3. The former is proved at the end of §4.2 and the latter

in §5.

4.2. The geometric characterization of action regions: Centroids and basic cones.

Definition 7 (Centroids). A subset K⊆J is a centroid if, for some D ∈Rn>0, there exists

a solution (y,u, s) to LP(AKD,D) such that uK = 0 (no request in K is unmet) and yKc = 0 (no

request in Kc is accepted). For a centroid K, rK(D) :=AKDK is the centroid budget.

Intuitively, a set K is a centroid if, given the exact budget required in expectation for all requests

K—this is rK(p) =AKpK—it is optimal in the deterministic relaxation to accept all requests K and

no others. In the one-dimensional setting of Section 3, the centroids are the sets [j] for j = 1,2, . . . , n

and their corresponding budgets are rK(p) = r[j](p) = F̄ (vj). Fig. 1 has (in red) the centroid budgets

rK(p) for our two-dimensional base example.

The optimization problem Eq. (LP(R,D)) has multiple optimal bases at R = rK(D) = AKDK

and they are all degenerate: the solution (y,u, s) at rK(D) is, per Definition 7, yK =DK, uKc =DKc

with all other variables equal to zero. Because K∪Kc =J , only n of the basic variables are strictly

positive, whereas the dimension of the right-hand side is n+ d; there must then be d zero-valued

basic variables.

Definition 8 (Zero Valued Basic Variables). Fix a centroid K for some D̂ as in Defini-

tion 7 and let B be a basis that is optimal at rK(D̂), i.e., optimal for LP(rK(D̂), D̂), with (y,u, s)

the associated solution. Define the sets of basic variables

K+ := {j ∈J : yj ∈B, yj = 0}, K− := {j ∈J : uj ∈B, uj = 0}, K0 := {i∈R : si ∈B, si = 0}.
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We sometimes write K+(B),K−(B),K0(B) to make explicit the dependence on the basis B.
The characterization of centroids, bases and zero-valued variables associated with them does not

depend on the demand distribution D, but only on the matrix A and the rewards v. In particular,

K is a centroid under both the theoretical distribution (D = p) and the empirical distribution

(D0 = 1
T
ZT ).

Lemma 3. Let K be a centroid for some D̂ ∈Rn>0 as in Definition 7. Then, the same property

holds for any D̃ ∈Rn>0, i.e., LP(AKD̃K, D̃) has the solution uK = 0 and yKc = 0. Similarly, the bases

and the sets of zero-valued basic variables in Definition 8 are the same under D̂ and D̃.

Finally, we define a useful relation between centroids.

Definition 9 (Neighbors). Let K be a centroid. If the basis B is optimal at the centroid

budget rK(D), we say that B is associated to K. Another centroid K′ is a neighbor of K if there is

a basis B that is associated to both K and K′.

Like the centroids themselves, the relation of “neighbor” does not depend on the demand dis-

tribution D. Once we fix K and an associated basis B, we can obtain neighbors of K based on the

zero-valued basic variables; see Definition 8. In Lemma 4 we prove that NK(D,B), which deter-

mines the exit time of interest in Proposition 2, can be characterized in terms of the focal centroid

K and its neighbors. The characterization facilitates the analysis of the exit time in Proposition 2.

Lemma 4 (characterization of NK(D,B) and neighbors). Fix a centroid K with associ-

ated basis B. Let (K+,K−,K0) be the zero-valued basic variables (Definition 8). Then,

1. The basis B is optimal for any right-hand side (R,D) of the form

R= rK(D)+α(Aκ+Dκ+ −Aκ−Dκ−)+ b,

where κ+ ⊆K+, κ− ⊆K−, α∈ [0,1], and b∈Rd≥0 is zero for components not in K0, i.e., bi = 0

for i ̸∈K0. In particular, the set K∪κ+\κ− is a centroid and a neighbor of K.
2. The basis B is optimal for (R,D) if and only if R is of the form

R= rK(D)+
∑

κ+⊆K+,κ−⊆K−

α(κ+,κ−)(Aκ+Dκ+ −Aκ−Dκ−)+ b, (20)

where b is as before, α≥ 0, and
∑

κ+⊆K+,κ−⊆K− α(κ+,κ−) = 1.

3. R ∈NK(D,B) if and only if

R− rK(D) =AK+xK+ −AK−xK− + b,

where xj ∈ [0,Dj/2] for j ∈K+ ∪K− and b is as in item 1.
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Ratio a

Ratio b

Ratio a

Ratio b

Figure 5. Geometric properties in the base example for the centroid {1,2} whose budget is r= (1/4, 1/4): (LEFT) The

extreme points and convex subsets, and (RIGHT) the cone, with orange boundaries, corresponding to (K+,K−,K0) =

({3},{2},∅). The dashed vectors are the outer normals, ψ1 = (−1,1)′ and ψ2 = (−1,0)′ that characterize the cone.

In Fig. 5 (RIGHT) we plot three neighbors of the centroid K= {1,2} in our base example. For

the direction (κ+, κ−) = ({3},{2}) the neighboring centroid is K′ = {1,3}. In moving from K to K′

the request variable y2 and the unmet variable u3 leave the basis, and y3 and u2 enter the basis.

One optimal basis at the centroid K = {1,2} has K+ = {3} and K− = {2}. The neighboring

centroids with κ+ ∈K+ and κ− ⊆K− are {1,3}, {1}, and {1,2,3}. The set NK(D,B) is the convex
hull of the mid-points of the lines leading to those neighbors and corresponds to the yellow-colored

set; it is the intersection of the action region NK(D) with the cone defined by the arrows.

Definition 10 (Basic Cone). Let K be a centroid with associated basis B and (K+,K−,K0)

be the zero-valued basic variables (Definition 8). Define

cone(K,B) = {ξ ∈Rd : ξ =AK+xK+ −AK−xK− + bK0 , for some x∈Rn+, b∈Rd+}.

This definition of the basic cone depends only on (K,B) and not on D.

Lemma 5. Let K be a centroid with basis B. Then, NK(D,B) =NK(D)∩ (rK(D)+cone(K,B)).

The properties of the outward normals to the cone are central to the proof of oracle containment

(see Theorem 3). Fig. 5 (RIGHT) visualizes these vectors.

The existence of a finite family of separating vectors Ψ(K,B) := {ψl, l ∈ L(K,B)} such that

ξ ∈ cone(K,B) if and only if maxψ∈Ψ(K,B)ψ
′ξ ≤ 0 follows from the Minkowski-Weyl thoerem; see

e.g. [Bertsimas and Tsitsiklis, 1997, Chapter 4.9]. The next lemma explicitly characterizes Ψ(K,B)
in terms of immediate centroid neighbors: those that either add or remove one type relative to K.
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Lemma 6. Fix a centroid K with associated basis B. The set Ψ(K,B) of separating vectors

contains one vector ψ[κ] for each κ = (κ+, κ−, κ0) ∈K+(B)×K−(B)×K0(B) with |κ+|+ |κ−|+
|κ0|= 1. These vectors satisfy the following properties:

1. ψ[κ]′AK+\κ+ = 0, ψ[κ]′AK−\κ− = 0, and ψ[κ]′eK0\κ0 = 0. Also, ψ[κ]′Aκ+ < 0 if |κ+| = 1,

ψ[κ]′Aκ− > 0 if |κ−|= 1, and ψ[κ]′eκ0 < 0 if |κ0|= 1.

2. For any other basis B̄ ≠ B associated to K: if κ as above is in both K+(B)×K−(B)×K0(B)
and K+(B̄)×K−(B̄)×K0(B̄), then: ψ[κ]′Aj ≥ 0 for j ∈K+(B̄)\K+(B), ψ[κ]′Aj ≤ 0 for j ∈
K−(B̄)\K−(B), and ψ[κ]′ei ≥ 0 for i∈K0(B̄)\K0(B).

The separating vectors are defined by κ+ ∈K+, κ− ∈K−, κ0 ∈K0 with |κ+|+ |κ−|+ |κ0| = 1.

Because |K+| + |K−| + |K0| = d, the number of separating vectors for the basic cone of B is

L(K,B) = d.

When the surplus coordinate κ0 = ∅, we write ψ[κ+, κ−] instead of ψ[κ]. This allows us to focus

on the values of κ+, κ− which determine the centroid’s neighbor.

Remark 4 (generating the geometry of LP(R,D)). Lemma 4 provides a tractable pro-

cedure to construct the action map—as in Fig. 1—and to identify the bases associated with each

centroid set.

We first identify a single centroid set K0. Having solved LP(rK0(D),D) (the LP at the centroid’s

budget) and identified all the optimal bases at this centroid, the sets K+,K−,K0 give us, via

Lemma 4, the centroid neighbors of K0. We repeat the procedure for each of these neighbors.

This requires solving at most n LPs per centroid2 and produces the following outputs: (i) a map

so that, at a time t and with budget-ratio being Rt we can identify K such that Rt ∈NK(D), and

(ii) the bases associated with a centroid set K and the set of dual variables ΛK in Eq. (5). In turn,

at a time t, we can compute the max-bid prices in Definition 2; see also Remark 7.

Because there are at most n! centroids (as the number of paths on the integer set [n] from the

empty centroid to the centroid K= [n]), the computational burden of generating the full map is at

most the solution of (n+1)! packing LPs.

When Rt ∈ NK(D,B) ⊆ NK(D), BudgetRatio accepts only requests in K. Lemma 7 below

shows that, as long as Rt is in the proximity of NK(D,B), BudgetRatio performs only basic

allocations. In Fig. 4(RIGHT): as long as Rt is in the proximity of the yellow subset of N{1,2}—

it is either in N{1,2} or in one of the neighbors N{1}, N{1,3}, N{1,3}—it accepts only requests in

{1,2}∪ {3}.

2 This is because the cones are characterized by immediate neighbors, for each type j ∈ K, we only need to find
whether K\{j} is a centroid, and for each j ∈ J \K if K∪ {j} is a centroid. Verifying that K⊆J is a centroid only
requires solving LP(rK(D),D).
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Henceforth, we fix

ϵ0 :=
1

8
min{pj}∧min{ϱi : ϱi > 0}. (21)

Lemma 7 (optimal bases and BudgetRatio actions). There exist constants M1,M2 such

that, if d∞(Rt,NK(B, p))≤ ϵ0

M1
, BudgetRatio performs basic allocations at t: it serves only (but

not necessarily all) requests in K∪K+(B) and it rejects only requests in Kc ∪K−(B). Moreover,

Iti ≤M2(T − t) for all i /∈K0(B).

Proof of Proposition 2. Let B be the optimal offline basis and recall that τ ϵ,K =min{t≤ T :

d∞(Rt,NK(B, p))> ϵ}. Setting ϵ= ϵ0/M1, Lemma 7 guarantees that BudgetRatio performs basic

allocations at t if d∞(Rt,NK(B, p))≤ ϵ. In turn, with this choice of ϵ, τ ϵ,K ≤ τπ as stated. □

To complete the proof of Theorem 1 (constant regret), it remains to prove Proposition 3. That

is the focus of the next section.

5. Analysis of BudgetRatio’s dynamics. To prove Proposition 3, we must bound the

time τ ϵ,K =min{t≤ T : d∞(Rt,NK(B, p))> ϵ}, where B is the optimal offline basis and ϵ is as in

Lemma 7.

We will lower bound τ ϵ,K by two auxiliary exit times:

τ ϵ
′,K

region := inf
{
t≤ T : d(Rt,NK(p))> ϵ

′} (22)

τ ϵ
′,B

cone := inf{t≤ T : max
ψ∈Ψ(K,B)

ψ′(Rt− rK(p))> ϵ′}, (23)

where the vectors ψ ∈Ψ(K,B) are as in Lemma 6 and ϵ′ > 0 depends on ϵ. Recall (Lemma 5) that

NK(B, p) is the intersection of NK(p) and the cone rK(p)+ cone(K,B). To exit NK(B, p) it suffices,

then, to exit either of the two; this is formalized in Lemma 8.

Lemma 8 (exit times). Let K be a centroid with associated basis B and fix ϵ > 0. There

exists ϵ′ > 0 that depends on (ϵ,A, v) only, such that, for any R ∈ Rd, if d(R,NK(D)) ≤ ϵ′ and

maxψ∈Ψ(K,B)ψ
′(R− rK(D))≤ ϵ′, then d∞(R,NK(B,D))≤ ϵ. Consequently, τ ϵ,K ≥ τ ϵ′,Kregion ∧ τ ϵ

′,B
cone.

Theorem 2 is a bound on τ ϵ
′,K

region and Theorem 3 is a bound on τ ϵ
′,B

cone. Together, these will provide

a lower bound on τ ϵ,K which we use to prove Proposition 3.

Theorem 2 (sticky boundaries). Let K be the centroid such that E[R0] ∈ NK(E[D0]) =

NK(p) and τ
ϵ′,K
region as in Eq. (22) with ϵ′ as in Lemma 8. Then,

P[T − τ ϵ′,Kregion > ℓ]≤m1e
−m2ℓ,

where m1,m2 > 0 do not depend on (T, I0) but possibly depend on p, ϱ,A, v and ϵ′.
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Figure 6. Representation of Lemma 8 for the base example. The red circles are the budgets and different centroids.

We focus on the action region NK(D) for K = {1,2}. The shaded region is NK(B,D) for the basis B that has

(K+,K−) = ({3},{2}). The two rays ψ1 and ψ2 define cone(K,B). At the bottom left we have a ratio R /∈NK(B,D)

and the dashed arrows represent the distance from R to NK(D) and cone(K,B), respectively. The solid blue arrow

represents the distance from R to NK(B,D) that is bounded by the two previous distances by virtue of Lemma 8.

Note that the two extreme rays lead to two different neighboring centroids (second part of Lemma 8): one leads to

K0 = {1} and the other to K0 = {1,2,3}. The centroid {1,3} has κ− = {2}, κ+ = {3}, hence |κ−|+ |κ+|> 1. It is in

the interior of the cone.

Theorem 3 (cone containment). Let K be the centroid such that E[R0] ∈ NK(E[D0]) =

NK(p), the basis B be such that maxψ∈Ψ(K,B)ψ
′(E[R0]− rK(p))≤ ϵ′/2, and τ ϵ

′,B
cone be as in Eq. (23).

Then, for all ℓ∈ [T ],

P[T − τ ϵ′,Bcone > ℓ,R
0− rK(D0)∈ cone(K,B)]≤m1e

−m2ℓ,

for constants m1,m2 that do not depend on (T, I0). In particular, letting B be the (random) optimal

offline basis, we have that P[T − τ ϵ′,Bcone > ℓ]≤m1e
−m2ℓ.

Proof of Proposition 3. From Theorems 2 and 3 it follows immediately that E[T − τ ϵ′,Kregion ∧
τ ϵ

′,B
cone]≤ E[T − τ ϵ′,Kregion] +E[T − τ ϵ′,Bcone]≤M . By Lemma 8, E[T − τ ϵ,K]≤ E[T − τ ϵ′,Kregion ∧ τ ϵ

′,B
cone]≤M . By

the second claim in Lemma 7, we have that Iti ≤M(T − t) for all i /∈K0(B) and all t < τ ϵ,K. In turn,

because It+1
i ≤ Iti +1, E[W τϵ,K ]≤M(E[T − τ ϵ,K]+1). Overall, we have E[T − τ ϵ,K+W τϵ,K ]≤M, as

stated. □

The two remaining sub-sections include the proofs of Theorems 2 and 3.

5.1. Proof of Theorem 2. We start with some preparatory lemmas. Define the set of request

variables consistent with the action region NK(D):

Y(K,D) := {y : ∃R ∈NK(D) s.t. for some (u, s), (y,u, s) solves LP(R,D)}.
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This definition translates, through LP(R,D), centroid neighborhoods—which are functions of

budget R and demand D—to decision neighborhoods. In proving Theorem 2—instead of showing

directly that Rt remains close to NK(D)—we show that the solution y at Rt remains close to the

solution θK(y,D) at a point R ∈NK(D). Lemma 9 introduces and characterizes this reference point

θ.

Lemma 9. Fix K and a neighbor K0 = K ∪ κ+\κ−. Fix R ∈ NK0(D) and let (y,u, s) be the

solution to LP(R,D). Let

(θK(y,D))j =

{
yj if j ̸∈ κ+ ∪κ−

Dj/2 if j ∈ κ+ ∪κ−.

Then, the following holds:

1. θK(y,D)∈ closure(Y(K,D)) and (y− θK(y,D))j = 0 for all j /∈ κ+ ∪κ−.

2. If y is the optimal request variable for LP(R,D) with optimal basis B and B̄ is adjacent

(κ+ ∪κ− ⊆ (K+(B)∪K−(B))∩ (K+(B̄)∪K−(B̄))), then
(
B̄−1

(
R
D

))
j

= yj for j ∈ κ+ ∪κ−.

In the one-dimensional case of Fig. 2, take K= {1,2}, K0 =K∪{3}\{∅}= {1,2,3}. For R ∈NK0 ,

y1 = p1, y2 = p2 and y3 ≥ p3/2; the point θ{1,2}(y) = (p1, p2, p3/2) is the closest point to y that is in

Y(K, p).

In the proof, we use a surplus-corrected ratio. Let yR,D, sR,D be the value of the request and

surplus variables at LP(R,D). The surplus-corrected budget ratio is given by

R• :=R− sR,D =AyR,D. (24)

The value of the optimal request variables y are the same for LP(R,D), and LP(R − s,D) for

s = s(R,D). In particular, R ∈ NK(D) if and only if R• ∈ NK(D). Lemma 10 shows that the

proximity (not only inclusion) of R to an action region implies that of R•, and vice versa.

Lemma 10. There exists ϵ′ and a constant M so that, for all ϵ̌≤ ϵ′, d(R,NK(D))≤Mϵ̌ if and

only if d(R•,NK(D))≤ ϵ̌.

Finally, we have a simple lemma that shows that the optimal request variables y cannot change

too much over one time period.

Lemma 11. Let Rt be the budget at time t under BudgetRatio and (yt, ut, st) be the solution

to LP (Rt, p). Then, there exist M1,M2 such that

∥yt+1− yt∥ ≤ M1

T − t , for all t≤ T −M2.
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Proof of Theorem 2. Take ϵ̌= ϵ′/M withM as in Lemma 10. We will show that if E[R0]∈NK(p)

as assumed (in particular E[R0]• ∈NK(p)) then

P

[
sup

t∈[1,T−ℓ]
d(Rt

•,NK(p))> ϵ̌

]
≤m1e

−m2ℓ.

This implies the same for R by virtue of Lemma 10.

To simplify notation we write θt = θK(y
t, p), where θK(y

t, p) is as in Lemma 9. We define δt :=

yt− θt and the quadratic Lyapunov function

gt := d2(yt,Y(K, p)) = ∥yt− θt∥2 = ∥δt∥2.

Whenever gt ≤ ϵ̌2/nd, we also have d(Rt
•,NK(p))≤ ϵ̌. Indeed, if gt ≤ ϵ̌2/nd then by the Cauchy-

Schwarz inequality, |Ayt−Aθt|2i = (a′i(y
t− θt))2 ≤ ϵ̌2/d; we also use here the fact that A is a binary

matrix. Since θt ∈ closure(Y(K, p)) (Lemma 9), we have that Aθt ∈ NK(p) and Ayt = Rt
•, hence

||Ayt−Aθt||2 ≤ ϵ̌2 implies d(Rt
•,NK(p))≤ ϵ̌.

Setting ε2 := ϵ̌2/nd, we conclude that gt ≤ ε2 implies d(Rt
•,NK(p)) ≤ ϵ̌. This requirement is

satisfied at t= 1. Indeed, we may assume without loss of generality that I0i ≤ 2T (otherwise we can

remove the ith capacity constraint at both t= 0 and t= 1). It is then a matter of simple algebra

that |R1
i −E[R0

i ]|=O
(

1
T

)
and by the Lipschitz continuity of the LP [Cook et al., 1986, Mangasarian

and Shiau, 1987]3 that ∥R1
•−E[R0]•∥= ∥Ay1−Ay0∥=O

(
1
T

)
. Because E[R0]∈NK(p) we have, for

T large, that g1 ≤ ε2/2.
We next prove the following drift condition: for some constants M,M̄ , and all t≤ T − M̄ ,

E[gt+1− gt|Ft]≤−
M

T − t , whenever g
t ∈ [ε2/2, ε2]. (25)

Assuming Eq. (25) and using g1 ≤ ε2/2, concentration arguments as in [Arlotto and Gurvich, 2019,

Theorem 2] show that P[maxt∈[1,T−ℓ] g
t > ε2]≤m1e

−m2ℓ for constants (m1,m2) that depend on M

only. This proves the theorem.

The remainder of the proof is thus devoted to Eq. (25). Fix t and K0 such that Rt ∈NK0(p) with

K0 =K∪κ+ \κ−, then using Lemma 9 (item 1) we obtain

E[gt+1− gt|Ft] =E[∥δt+1− δt∥2|Ft] + 2E[(δt+1− δt)′δt|Ft]

=E[∥δt+1− δt∥2|Ft] + 2E[(δt+1− δt)′κ(δt)κ|Ft],

where κ= κ+∪κ−. Our aim is to prove E[∥δt+1− δt∥2|Ft] =O( 1
(T−t)2 ) and E[(δt+1− δt)′κ(δt)κ|Ft]≤

− M
T−t , which together would imply Eq. (25). We divide the proof into two parts: the linear bound

E[(δt+1 − δt)′κ(δt)κ|Ft] ≤ − M
T−t and the quadratic bound E[∥δt+1 − δt∥2|Ft] = O( 1

(T−t)2 ). We start

with a fact about the different neighborhoods that the process Rt visits during its evolution.

3 This is the first of multiple places throughout our proofs where we use the Lipschitz continuity of linear programming
in the right hand side. Henceforth, we will do so without citation.
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Property of visited neighbors. For a vector y ∈Y(K, p), by definition, yj ≥ pj/2 for j ∈K and

yj < pj/2 otherwise. Hence, by the Lipschitz continuity of the LP, if gt ≤ ε2,

ytj ≥ pj/2− ε ∀j ∈K and ytj ≤ pj/2+ ε ∀j /∈K. (26)

Let B be the optimal basis of LP(Rt,D) and B̄ be the optimal basis at LP(Rt+1,D). Recall that

Rt ∈NK0(D). We claim that

Rt+1
•,i −Rt

•,i =O

(
1

T − t

)
, ∀i∈ [d] and κ+ ∪κ− ⊆ (K+(B)∪K−(B))∩ (K+(B̄)∪K−(B̄)). (27)

The first fact follows directly from Lemma 11 recalling that Rt
• =Ayt. For the second fact, take j ∈

κ+∪κ−, then Eq. (26) implies ytj =
1
2
pj±ε and, in particular, that j ∈K+(B)∪K−(B). Because the

solutions to the LP are Lipschitz continuous in the right-hand side, |ytj − yt+1
j | ≤M ||Rt

•−Rt+1
• ||=

O( 1
T−t), so that for all t≤ T − M̄ it must be that yt+1

j = 1
2
pj ± 2ε and hence (with ε small enough)

that j ∈K+(B̄)∪K−(B̄).

Linear bound. We claim that, if Rt ∈NK0(p) and gt ≤ ε2/2, then

E[δt+1
j − δtj|Ft]≤−

M

T − t j ∈ κ+,

E[δt+1
j − δtj|Ft]≥

M

T − t j ∈ κ−. (28)

Assuming Eq. (28), if gt ≥ ε2/2, then there exists j ∈ κ+ s.t. δtj = ytj −Dj/2 ≥ ε/
√
2 or some

j ∈ κ− s.t. δtj − ytj −Dj/2≤−ε/
√
2, hence from Eq. (28) we can bound

E[(δt+1− δt)′κ(δt)κ|Ft]≤−
M

T − t .

Recall that K0 is such that Rt ∈NK0(p) and that σtj is the indicator that a request j is accepted

at time t. Since only requests in K0 may be accepted at t, we have the identity E[It+1] = ϱ+ It−
E[AK0σtK0 ], which implies Rt+1(T − t− 1) =Rt(T − t)−E[AK0σtK0 ] and, in turn,

E[Rt+1−Rt|Ft] =
1

(T − t− 1)
(Rt−AK0E[σtK0 ]).

Let B is the optimal basis for LP(Rt, p) and B̄ be the optimal basis for LP(Rt+1, p), then Byt+st =
Rt, B̄yt+1 + st+1 =Rt+1 so that (since D= p does not change with t)

E

 B̄
yt+1

ut+1

st+1

−B
ytut
st

∣∣∣∣∣∣Ft
=

1

T − t− 1

(
Rt−AK0E[σtK0 ]

0

)
=

1

T − t− 1

[(
Rt

p

)
−
(
AK0E[σtK0 ]

p

)]
.

By (27), B and B̄ are adjacent in the sense of Lemma 9 (item 2). Multiplying by B̄−1 and using

the lemma we have that

E[(yt+1− yt)κ|Ft] =
1

T − t− 1
(yt−E[σtK0 ])κ, (29)
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where κ= κ+ ∪κ−.

Because Rt ∈K0, a request of type j ∈ κ+ that arrives at time t is accepted; Lemma 2 guarantees

that it is feasible to do so. Hence E[σtj] = E[1{Jt=j}] = pj; where, we recall, J t = j means that the

arrival at time t is of type j. Because ytj ≤ pj/2+ ε for j ∈ κ+ (see Eq. (26)), we then have using

Eq. (29) that

E[δt+1
j − δtj|Ft] =

1

T − t− 1
(ytj −E[σtj])≤

1

T − t− 1
(−pj/2+ ε), for j ∈ κ+, (30)

This establishes the first row of Eq. (28). For j ∈ κ−, since j /∈K0, from Eq. (29) we have

E[δt+1
j − δtj|Ft] =

1

T − t− 1
ytj ≥

1

T − t− 1
(pj/2− ε), for j ∈ κ− (31)

where we used ytj ≥ pj/2− ε (see Eq. (26)). This concludes the proof of Eq. (28).

Quadratic bound. Finally, we prove that ||δt+1−δt||=O( 1
T−t). By Lemma 9 (item 1) we have δt =

(yt− 1
2
p)κ and δt+1 = (yt+1− 1

2
p)κ̃, where κ̃= κ̃+∪ κ̃− defines the neighbor K̃ visited at time t+1. If

either j ∈ κ∩ κ̃ or j /∈ κ∪ κ̃, δt+1
j −δtj = yt+1

j −ytj; in the first case (θK(y
t+1, p))j = (θK(y

t, p))j =Dj/2

and in the latter (θK(y
t+1, p))j = yt+1

j , (θK(y
t, p))j = ytj.

Now consider what happens in the remaining coordinates. If j ∈ κ̃+ (in particular j /∈ K) but

j /∈ κ+, then yt+1
j ≥ pj/2 ≥ ytj so that δtj = 0, |δt+1

j − δtj| = |δt+1
j | = |yt+1

j − pj/2| ≤ |yt+1
j − ytj|. An

identical argument applies to the case that j ∈ κ̃− (in particular j ∈K) but j /∈ κ−. It follows that

||δt+1− δt|| ≤ ||(yt− yt+1)κ∪κ̃|| ≤ ||yt− yt+1||.

The norm on the right-hand side is bounded using Lemma 11. □

Remark 5 (sticky boundaries). The arguments in the proof of Theorem 2 imply that, once

close to the boundary, the process Rt stays there. Formally, let

τ 0∂ = inf{t≤ T : d(Rt, ∂NK(p))≤ ϵ′}, and τ 1∂ = inf{t≥ τ 0∂ : d(Rt, ∂NK(p))≥ 2ϵ′}.

Then, P{T − τ 1∂ ≥ ℓ} ≤m1e
−m2ℓ.

Remark 6 (centroids visited). Because d(Rt,NK(p)) ≤ ϵ′ up to τ ϵ
′,K

region, centroids visited

must be of the form K∪K̄+\K̄− where K̄+ ⊆∪BK
+(B) (with the union taken over bases associated

to K) and K̄− ⊆∪BK
−(B).

Indeed, by the continuity of LP in the right-hand side, we have up to τ ϵ
′,K

region that ytj ≤Mϵ′ for

all j /∈K∪ (∪BK
+(B)). Similarly, ytj ≥ pj/2−Mϵ′ for all j ∈K\(∪BK

+(B)).
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5.2. Proof of Theorem 3. We start with some preparatory lemmas. We first relate basic

cones to the optimality of a basis B for offline, The empirical demand distribution, recall, is D0 =

1
T
ZT =: Z̄T and the empirical budget ratio is R0 = 1

T
(I0 + Zt) = 1

T
I0 + Z̄t where Z̄t = 1

T
Zt. By

Lemma 5, B is optimal for offline if (i) R0 ∈NK(D
0), and (ii) R0− rK(D0)∈ cone(K,B). The next

lemma shows that, on the high probability event

Aϵ0 :=
{
ω ∈Ω : ∥(Z̄T , Z̄t)′− (p, ϱ)′∥∞ ≤ ϵ0

}
,

where ϵ0 is as in (21), we can replace the requirement that R0 ∈NK(D
0) with one where R0 and

D0 are replaced with their expectations, E[R0]∈NK(E[D0]).

Lemma 12. Let K be the centroid such that E[R0]∈NK(E[D0]) =NK(p) and let

M(B) :=
{
ω ∈Ω :R0− rK(D0)∈ cone(K,B)

}
.

Then, on the event Aϵ0, M(B) = {B is offline optimal}: B is an optimal offline basis if and only

if R0− rK(D0)∈ cone(K,B).

Lemma 13 below is used for a sub-case in the proof of Theorem 3. It says that if R is in the

proximity of d+1 centroid neighbrhoods, it must in the strict interior of an explicitly identifiable

basic cone and hence will take actions consistent with that basis.

Lemma 13. Fix K. Let Ki =K∪κ+
i \κ−

i , i∈ [d] be d other centroids. There exists ϵ′′, δ > 0 such

that: if ∃R such that d(R,NKi
(D))≤ ϵ′′, i∈ [d], then

1. K,Ki, i ∈ [d] share a basis B associated to K: ∪i∈[d]κ
+
i ∈ K+(B), ∪i∈[d]κ

−
i ⊆ K−(B), and

∪i∈[d]κ
0
i ⊆K0(B).

2. R is in the strict interior of cone(K,B), i.e., for the vectors Ψ(K,B) characterizing cone(K,B)
in Lemma 6, we have maxψ∈Ψ(K,B)ψ

′(R− rK(D))≤−δ.

We note, in passing, that one cannot have the intersection of strictly more than d+1 different

action regions. This is because if R ∈ NK(D) and d(R,NKi
(D))≤ ϵ′′ for some R and d+ 1 other

centroids Ki, then there would |K|+ |Kc|+ | ∪i κ+
i |+ | ∪i κ−|= n+ d+1 strictly positive variables

at the solution to LP (R,D), while an optimal solution has at most n+ d basic variables.

The following lemma is the last ingredient for the proof of Theorem 3. We define the random set

Ψ0 = {ψ ∈Ψ(K,B) :ψ′(Rτ
ϵ′,B
cone − rK(p))> ϵ′}; (32)

if τ ϵ
′,B

cone =∞, we set Ψ0 = ∅. These are the separation conditions that are violated at the exit from

the cone. We define also V = V[τ ϵ′,Bcone] the be the random variable that count how many centroid

neighborhoods—in addition to K for which E[R0]∈NK(p)—-are visited by time τ ϵ
′,B

cone.



A. Vera, A. Arlotto, I. Gurvich and E. Levin: Dynamic Resource Allocation 35

Lemma 14. Let K be the centroid such that E[R0] ∈ NK(E[D0]) = NK(p) and let Ki = K ∪
K̄+
i \K̄−

i for i∈ [V] be the ith centroid visited after K.
Given d0 < d, there exist m1,m2 > 0 and an event Cℓ, with P[V = d0, (Cℓ)c]≤m1e

−m2ℓ on which

the following holds: if T − τ ϵ′,Bcone > ℓ and V = d0, then Ψ0 does not contain any of the vectors

ψ[κ+, κ−]∈Ψ(K,B) for κ+ ∈∪i∈[d]K̄
+
i , κ

− ∈∪i∈[d]K̄
−
i .

If V = 0, Ψ0 might contain any of the vectors in Ψ(K,B).

Proof of Theorem 3. Throughout, K and the basis B are fixed. Because E[R0] ∈ NK(p), we

have by Theorem 2 that

P[T − τ ϵ′,Kregion > ℓ]≤m1e
−m2ℓ where τ ϵ

′,K
region = inf{t≤ T : d(Rt,NK)≥ ϵ′}. (33)

Recall that M(B) := {ω ∈Ω :R0− rK(D0)∈ cone(K,B)}. Define the events D := {T − τ ϵ
′,B

cone >

ℓ,M(B)}.

Outline of the proof. To bound the measure of D∩Ωℓ, we consider two cases. In the first, at most

d−1 action region other than NK(p) are visited during the horizon (V <d); this corresponds to the

case where the process starts close to the boundary of the cone and it is therefore the challenging

case. The second case, where d or more other action regions are visited turns out to be easier. This

is because, by Lemma 13, this only happens when the process moves in the strict interior of the

cone where analysis is simpler; see Fig. 7.

First case (boundary):V <d. Assume that over the interval [1, τ ϵ
′,B

cone] at most d0 centroids other K
are visited: NK(p) and neighbors NKi(p), i∈ [d0]. The case that exactly one centroid neighborhood

is visited during the horizon—namely that Rt ∈ NK(p) for all t≤ τ ϵ′,Bcone—is a simplified version of

the argument for d0 ≥ 1, so we focus on the latter.

We will introduce a processes Gt with zero-mean increments that has the following properties

on the eventM(B):

G1 ≤ Tϵ′/2 and GT ≤ 0 a.s. and τ ϵ
′,B

cone ≤ T − ℓ⇐⇒Gt > (T − t)ϵ′ for some t∈ [1, T − ℓ].

The event τ ϵ
′,B

cone < T − ℓ, requires the process Gt to grow faster than the linear target (T − t)ϵ′;
an event that, we will prove, has an exponentially small probability.

Let Ψ0 be as in (32). By Lemma 14 we have the existence of an event Cℓ with probability

P[V = d0, (Cℓ)c]≤m1e
−m2ℓ such that if the ith centroid to be visited corresponds to K0 =K∪κ+ \κ−

then Ψ0 does not contain ψ[κi] where Ki =K∪κ+
i \κ−

i .

We next study sample paths of Rt on the event {V = d0} ∩ Cℓ. We have the inventory equation

Is = I0 +Zs−AY s. Since (T − s)Rs = Is+(T − s)ϱ and (T − s)rK(p) = (T − s)AKpK,

Is− (T − s)rK(p) = I0 +Zs−AY s−TrK(p)+ sAKpK,
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{1,2}

{1,2,3}

{1,3}

{1}

ψ1

ψ2

R̃t

Rt

Figure 7. Two random walks for our base example. Solid lines enclose the region of interest N{1,2}(D) and dashed

lines enclose neighbouring action regions corresponding to {1} and {1,3}. The random walk Rt visits three regions,

namely {1,2}, {1}, and {1,3}, it is thus constrained to be in the interior of the cone, i.e., far away from the normals

ψ1,ψ2. On the other hand, R̃t evolves close to the boundary of the cone, but in doing so visits only two regions,

namely {1,2} and {1}.

and, after basic algebraic manipulations, that

(T − s)(Rs− rK(p)) = T (E[R0]− rK(p))+ Ẑs−AY s+ sAKpK, (34)

where we define the centered process Ẑt := Zt − tϱ. Over the interval [1, τ ϵ,Bcone) and on the event

{V = d0} ∩ Cℓ, the only requests accepted correspond to K∪ κ+
0 where κ+

0 = ∪i∈[d0]κ
+
i , hence Y

s =

Y s
K +Y s

κ+0
. Additionally, all of the requests in K\κ−

0 , where κ
−
0 =∪i∈[d0]κ

−
i , are accepted. Thus, we

have Y s

K\κ−0
=ZsK\κ−0

. By Lemma 6 any ψ ∈Ψ0 is orthogonal to the columns of A corresponding to

κ0−+ and κ−
0 , so we arrive at the identities

ψ′AY s =ψ′AK\κ−0
ZsK\κ−0

and ψ′AKpK =ψ′AK\κ−0
pK\κ−0

.

Defining the centred process Ẑt :=Zt− tp and using these identities together with Eq. (34) we have

(T − s)ψ′(Rs− rK(p)) = Tψ′(E[R0]− rK(p))+ψ′(Ẑs−AK\κ−0
ẐsK\κ−0

) ∀s < τ ϵ′,Bcone.

Define the process

Gt
ψ := Tψ′(E[R0]− rK(p))+ψ′(Ẑt−AK\κ−0

ẐtK\κ−0
), t∈ [1, T ].
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Then, Gt
ψ = (T − s)ψ′(Rs− rK) for all t < τ ϵ

′,B
cone and

τ ϵ
′,B

cone ≤ T − ℓ⇐⇒max
ψ∈Ψ0

Gt
ψ > (T − t)ϵ′ for some t∈ [0, T − ℓ]. (35)

The process Gt
ψ has zero-mean increments and G0

ψ = Tψ′(E[R0]− rK(p))≤ Tϵ′/2 by assumption.

Finally, GT
ψ ≤ 0. This is because ψ is orthogonal to the columns Aκ−0

, so that

GT
ψ = Tψ′(E[R0]− rK(p))+ψ′(ẐT −AKẐ

T
K)

=ψ′(I0 +ZT −AKZ
T
K),

In the eventM(B) we have, by definition, 1
T
(I0+ZT −AKZ

T
K) =R0− rK(D0)∈ cone(K,B) so that

GT
ψ = Tψ′(R0− rK(D0))≤ 0.

We conclude that D⊆∪ψ∈Ψ0
{GT

ψ ≤ 0,∃t∈ T − ℓ :Gt
ψ > (T − t)ϵ′}. From Eq. (35), we deduce

P[D,{V = d0}]≤ P[V = d0, (Cℓ)c] +P
[
D,Cℓ,{V = d0}

]
+

≤ P[V = d0, (Cℓ)c] +
∑

ψ∈Ψ(K,B)

P

 ⋃
t∈[T−ℓ]

{
Gt
ψ ≥ (T − t)ϵ′

}
,GT

ψ ≤ 0

≤m1e
−m2ℓ,

for some m1,m2 > 0. The final bound follows from the analysis of a random walk crossing a positive

moving threshold conditional on being negative at the end of the horizon. This is formally proved

in Lemma 16 in the appendix.

Second case (strict interior): V ≥ d. Let Ki be the ith centroid visited after K. Let τ ϵ′,Kregion be

the exit time from NK(p) as in Theorem 2. Let τ 0∂,i, τ
1
∂,i be as in Remark 5 for Ki. Define the event

Ωℓ = {T − τ ϵ
′,K

region < ℓ,T − τ 1∂,i < ℓ, i ∈ [d]}, where we set τ 1∂,i =∞ if V < i (fewer than i centroids

other than K are visited).

From Theorem 2 and Remark 5 we have P[V ≥ d, (Ωℓ)c]≤m1e
−m2ℓ. On the event Ωℓ ∩ {V ≥ d}

we have by Lemma 13 that maxψ∈Ψ(K,B)ψ
′(Rt − rK) ≤ −δ for all t < T − ℓ and, in particular,

P[Ωl,V ≥ d,T − τ ϵ
′,B

cone > ℓ] = 0.

P[D,V ≥ d]≤ P[T − τ ϵ′,Bcone > ℓ,V ≥ d,Ωℓ] +P[V ≥ d, (Ωℓ)c]≤ P[V ≥ d, (Ωℓ)c]≤m1e
−m2ℓ.

Combining the two cases, we conclude that P[D] =∑d−1

d0=0 P[D,V = d0] +P[D,V ≥ d]≤m1e
−m2ℓ.

The last implication in the theorem follows from Lemma 12 that guarantees that if E[R0]∈NK(D)

then, on the event Aϵ0 , B is the offline optimal if and only ifM(B) holds. In turn,

P
[
T − τ ϵ′,Bcone > ℓ,B is optimal

]
= P

[
T − τ ϵ′,Bcone > ℓ,B is optimal,Aϵ0

]
+P

[
T − τ ϵ′,Bcone > ℓ,B is optimal, (Aϵ0)c

]
= P

[
D,Aϵ0

]
+P

[
T − τ ϵ′,Bcone > ℓ,B is optimal, (Aϵ0)c

]
≤ P[D] +P

[
B is optimal, (Aϵ0)c

]
. (36)
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Figure 8. Action regions with true and misspecified probabilities (p and p̃). (LEFT) Action regions of BudgetRatio

when it is executed relative to p. (RIGHT) Action regions when BudgetRatio uses p̃j = pj − 1
16

for j = 1,3 and

p̃j = pj +
1
16

for j = 2,4.

By standard concentration results, there exist m̄1, m̄2 > 0 such that P[(Aϵ0)c]≤ m̄1e
−m̄2T . Summing

up the right hand side of (36) over bases B we get that

P
[
T − τ ϵ′,Bcone > ℓ

]
≤m1e

−m2l+ m̄1e
−m̄2T ,

Because ℓ≤ T , we have the statement of the theorem with modified constants m1,m2. □

6. Parameter misspecification. In this section we prove equations (7) and (8) of Theorem

1, and further discuss and illustrate their implications.

Demand perturbation. Fig. 8 illustrates a key idea behind equation (8). When p is replaced

with an estimate p̃ that satisfies (8), the centroids remain unchanged, but the shape of the centroid

action regions is affected. Crucially, under Eq. (8), the true centroid budgets (dashed circles) lie in

the interior of the (misspecified) actions regions. This guarantees that BudgetRatio, although

equipped with wrong probabilities, achieves constant regret.

Proof of Theorem 1(Equation (8): demand robustness). Since (p̃, ϱ̃) satisfies slow restock,

Lemma 2 does not change. Our constructions of the action regions NK(D) and their subsets

NK(D,B) are for arbitrary D. Proposition 2 holds with D there set to p̃; so does Lemma 8. Hence,

bounded regret depends on whether Theorems 2 and 3 hold with the perturbed probabilities.

Importantly, the centroid sets, the bases associated with them and centroid neighbors are all

invariant to D. For Theorem 2, by assumption (8), we have that rK(p)∈NK(p̃) so that the initial
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condition is preserved and the proof of Theorem 2 uses the action region NK(p̃) (instead of NK(p)).

The true probability p appears only in the expectation E[σtK0 ] there. The condition (8) guarantees

that the drift is still negative in (30) and positive in (31) with Dj/2 replaced there with Dj/4.

The proof of Theorem 3 does not change because of the invariance centroid neighbors and basic

cones to D. □

Proof of Corollary 1(Equation (10)). In the one-dimensional case, the centroids are of the

form [j] so that

δ= min
j=1,...,n−1

e′[j+1]p[j+1]− e′[j]p[j] =min
j
pj,

where we define [0] :=∅. With this, (8) immediately reduces to (9). □

Learning the demand distribution. When p, ϱ are not known a priori, the controller must

make decisions while learning the correct type probabilities p and ϱ. The controller observes the

type of the request j ∈ [n] and that of the restocked resource i∈ [d] at each period and builds the

empirical estimates p̂tj =
1
t

∑t

τ=1 1{Jτ=j}, where J
τ is the type of the request arrival at τ , and ϱ̂ti is

similarly defined.

Corollary 2 (regret with demand learning). Assume that the centroids are δ-separated

(see Definition 4). Then, without prior knowledge of p, a modification of BudgetRatio achieves

O(logT ) regret.

Proof. Fix the constant ϵ= δ
4n
. We build a simple policy of the form “learn, then act”. We take

an initial exploration phase of length c logT (for some c= c(ϵ)> 0) during which all requests are

rejected but the revealed types are used to build the empirical estimates p̂t and ϱ̂t. By standard

concentration results, we can choose c large enough to guarantee that P[||(p, ϱ)′−(p̂c logT , ϱ̂c logT )||>
ϵ]≤ 1/T . After time c logT , BudgetRatio is executed with the estimates p̂c logT , ϱ̂c logT and achieves

constant regret in the remaining periods by virtue of Theorem 1 and equation (8) there. On the

event that ||(p, ϱ)′−(p̂c logT , ϱ̂c logT )||> ϵ the regret is at most T maxj∈[n] vj; this event’s contribution

to regret is at most T maxj∈[n] vj × 1/T =maxj∈[n] vj =O(1). □

Reward perturbation. To prove (7), we show that, under the δ-complementarity condition

(see Definition 3), the centroids are stable to local perturbation of v and so is, in turn, the regret.

In the standard form (LP(R,D)) there are d resource-consumption constraints of the form Ay+

s=R and n demand constraints of the form y+u=D; a total of d+n dual variables. An optimal

primal-dual pair (y,λ) ∈Rn ×Rd+n must satisfy the complementarity properties: si > 0⇒ λi = 0,

uj > 0⇒ λj = 0, and, from the dual constraints, ([A′|In]λ)j > vj⇒ yj = 0. There is the possibility
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that, for yj non-basic (hence yj = 0), we have ([A′|In]λ)j = vj, i.e., complementarity is not strict.

Definition 3 requires strict complementarity.

Recall that we associate to v the extended reward vector v̄ := (v,0,0)∈Rn×Rn×Rd, where the

zeros correspond to unmet and surplus variables. Also, recall that the dual variable λ associated

with (B, v) is λ= (B−1)′v̄B.

Proof of Theorem 1(Equation (7): reward robustness). Fix a basis B associated to some

centroid K under rewards v. Let λ be the dual variables associated to (B, v). By Lemma 1, λ≥ 0

and Ā′λ≥ v̄. By virtue of Lemma 1, to prove that B is also an optimal basis under the rewards ṽ,

it suffices to show that the dual variables λ̃ associated to (B, ṽ) satisfy
(i) λ̃≥ 0, and

(ii) Ā′λ̃≥ ¯̃v.

First, we claim that λ= (B−1)′v̄ must have λj = 0 for j : uj ∈B, λi = 0 for i : si ∈B. Indeed, for a
basis associated with K we have by Lemma 4 that there exists R ∈NK(D,B) in which the solution

is non-degenerate (xK+ , xK− > 0 and bi > 0, i ∈K0). At such R, complementary slackness implies

that the d+ n dual variables associated with this basis are the unique solution to the following

d+n independent linear equations:

([A′|In]λ)j = vj j s.t. yj ∈B

λj = 0 j s.t. uj ∈B

λi = 0 i s.t. si ∈B.

The dual vector λ= (B−1)′v̄ is the unique solution to this linear system. Define now λ̃= (B−1)′ ¯̃v

where ¯̃v= (ṽ,0,0)′. Then λ̃j = 0 for j : uj ∈B and λ̃i = 0 for i : si ∈B. Also,

||λ̃−λ||= ||(B−1)′ ¯̃v− (B−1)′v̄|| ≤ c||¯̃v− v̄||,

where c= {||B−1||∞ :B basis }.
For (i) (λ̃≥ 0), because λ̃j = 0, uj ∈ B and λ̃i = 0, si ∈ B we only need to study the case uj /∈ B

or si /∈ B. For λ̃j, uj /∈ B, δ-complementarity and the requirement in (7) guarantee that λ̃j ≥ δ −
c||v̄− ¯̃v||∞ ≥ 0, as desired. The same argument applies to λ̃i, si /∈B. For (ii) (Ā′λ̃≥ ṽ), by the same

reasoning, we need to study only the dual constraints ([A′|In]λ̃)j ≥ ¯̃vj for yj /∈B. Let us denote the
j-th row of [A′|In] by η. By δ-complementarity, we have

([A′|In]λ̃)j = ηλ̃≥ δ+ vj + η(λ̃−λ)≥ vj + δ− (||Aj||1 +1)c||v̄− ¯̃v||∞ ≥ vj,

where the last inequality follows from Eq. (7) noting that ||Aj||1 ≤ d+1.
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Lemma 1 allows us to conclude that all centroids and their bases remain the same under ṽ. We

conclude by observing that all our constructions depend on identifying the centroids only and the

rewards v are used nowhere else, thus none of our proofs change. □

Proof of Corollary 1(Equation (10)). The primal and dual problems with a single resource

(d= 1) are
max v′y
s.t.

∑
j yj + s =R
y+u =D

yj, uj, s ≥ 0

min Rλ0 +
∑

jDjλj
s.t. λ0 +λj ≥ vj ∀j ∈ [n]

λ0, λj ≥ 0.

Here λ0 denotes the resource multiplier and λj the demand multipliers for j ∈ [n]. Consider a

basis of the form B = {yj : j = 1, . . . , k + 1} ∪ {uj : j = k + 1, . . . , n}, i.e., all requests j ∈ [k] are

completely accepted, j = k+1 is partially accepted, and all other requests are completely rejected.

By inspection, the dual variables associated to this basis are as follows: λ0 = vk+1, λj = vj − vk+1

for j ∈ [k] and λj = 0 for j > k.

We now verify conditions (i)-(iii) of Definition 3. For (i), we need vk+1 ≥ δ. For (ii), we need

vj − vk+1 ≥ δ for j ∈ [k]. Finally, for (iii) vk+1 ≥ vj + δ for j = k + 2, . . . , n. This establishes that

δ-complementarity reduces in this case to vj ≥ δ for all j ∈ [n] and |vj − vj′ | ≥ δ for all j ̸= j′. □

Learning the rewards. If v is not known, the controller must make decisions while learning the

correct rewards v from their random realizations. In this setting, type-j requests draw a reward

Vj ∼ Fj, where Fj is some unknown distribution, and vj = E[Vj] represents the true expectation.

At each time, she observes the type j ∈ [n] and, if the request is accepted, the controller observes

a realization of Vj, and uses it to estimate v through its empirical average.

Corollary 3 (learning the reward distribution). Assume that all the bases are δ-

complementary for some δ > 0. Further assume that the distributions Fj are sub-Gaussian. Then,

a modification of BudgetRatio achieves O(logT ) regret.

Proof. Fix the constant ϵ= δ
c(d+2)

. We again use a “learn, then act” policy. We set an an initial

exploration phase of length c′ logT , for some c′ = c′(ϵ) > 0, where all requests are accepted and

we build the empirical estimates v̂tj =
∑t

τ=1 V
τ1{Jτ=j}∑t

τ=1 1{Jτ=j}
, where V τ is the reward observed at time τ

and Jτ is the type of the request at time τ . By standard concentration results, we can choose c

so that P[||v− v̂c logT ||> ϵ]≤ 1/T . Starting at t= c′ logT we run BudgetRatio. Constant regret is

guaranteed by Theorem 1, specifically equation (7) there. On the event that ||v− v̂c logT ||> ϵ the

regret is at most T maxj∈[n] vj; this event’s contribution to regret is at most T maxj∈[n] vj × 1/T =

maxj∈[n] vj =O(1). □
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7. BudgetRatio as a max-bid-price. The proposition below concerns item (4) of Theorem

1. It formalizes the equivalence between the primal and the bid-price versions of BudgetRatio.

Proposition 4. Assume that all the bases are δ-complementary (Definition 3) for some δ > 0.

Then, primal BudgetRatio is equivalent to the max-bid price BudgetRatio in Definition 2:

on any realization of Z,Z and at any time t, BudgetRatio as specified in Algorithm 1 accepts an

arriving request of type j, if and only if the max-bid price algorithm in Definition 2 does.

Proof. Suppose that Rt ∈ NK(p). We divide the analysis into j ∈ K (acceptance) and j /∈ K
(rejection). The case j ∈ K ̸= ∅ follows easily since, at the centroid budget rK(p), yj = pj > 0 for

all bases B associated to K—so that yj ≥ pj/2 for any R ∈ NK(p)—we have by complementary

slackness that vj ≥ Ā′
jλ for the dual variable associated with any of these bases. We note that

because j ∈ K, then j /∈ ∂(K) so that Ā′
jλ

∂
K = 0. Overall, vj ≥maxλ∈Λ(Rt) Ā

′
j(λ+ λ∂(Rt)) so that

max-bid price accepts request j.

We are left to prove the case j /∈K and hence not accepted by primal BudgetRatio.

We claim that if j /∈ K, either (i) j ∈ ∂(K) in which case (λ∂K)j ≥ 2vjej so that vj <

maxλ∈Λ(Rt) Ā
′
j(λ+ λ∂(Rt)) and j is rejected by max-bid price, or (ii) there is a basis B associated

with K such that yj /∈ B. If that is the case, δ-complementarity yields vj ≤ Ā′
jλ− δ, so that j fails

acceptance condition of the policy with λ being the dual vector associated to this basis B. In turn,

vj <maxλ∈Λ(Rt) Ā
′
jλ and max-bid price, as well, rejects request j.

It only remains to prove, then, that if j /∈K and j /∈ ∂(K) there exists an optimal basis associated

with K for which yj /∈B.
Suppose that yj ∈ B for all bases associated with K. Because j /∈K, it must be that j ∈K+(B)

for all bases associated with K. Because j /∈ ∂(K), there exists ζ > 0 such that rK ≥ ζAj. By the

Lipschitz continuity of LPs R= rK± ζAj ∈NK(p) for all ζ sufficiently small (yj ≥Dj−Mζ ≥Dj/2

for all j ∈K). Let B be the optimal basis at R= rK− 1
2
ζAj and let (y,u, s) be the optimal solution.

Because yj ∈K+(B) we have by Lemma 4 that

(B−1rK)j =

(
B−1

(
R− 1

2
ζAj

p

)
+B−1

(
1
2
ζAj
0

))
j

= yj +
1

2
ζ > 0;

a contradiction to the fact that j /∈K. □

Remark 7 (Adaptively generating bid-prices). In Remark 4 we discussed how the

geometry—the centroids and associated bases—can be pre-computed and, in turn, so can the

max-bid prices. There is an adaptive alternative to this, possibly expensive, pre-computation.

The initial centroid K (the one for which E[R0]∈K) is easily identifiable. It contains the requests

that have yj ≥ p̄j/2 in the solution to LP (E[R0], p). We need to solve at most n LPs (as the number



A. Vera, A. Arlotto, I. Gurvich and E. Levin: Dynamic Resource Allocation 43

of request types) to identify all the centroid neighbors of (hence all the bases associated to) K. It
is only upon entry to a new centroid, that we must compute the new collection of bases.

Proposition 3 (and Theorems 2 and 3 that support it) imply that Rt spends most of its horizon

in NK and its neighbors. By the proof of Theorem 3 at most d+ 1 centroid action regions will

be visited for most of the horizon. With high likelihood, then, at most (d+1)n LP computations

would be required over the horizon.

8. Concluding remarks We consider a family of resource allocation problems and, extending

existing results, show that a simple resolving algorithm achieves constant regret in terms of the

total rewards collected. We provide a new proof that is geometric and based on a parametric

characterization of the packing LP.

Our fundamental definition is that of centroids, which correspond to subsets of requests that

should be fully accepted. For each demand D, a centroid K is associated with an action region

NK(D). The key to our analysis is to understand how the budget-ratio process (Rt, t∈ [T ]) evolves
relative to these regions NK(D) and their basic subsets NK(B,D).

This geometric stochastic-process view has appealing explanatory power. By showing how the

process is attracted to the the “basic” subset NK(B,D) consistent with the offline basis, we uncover

the mechanism used by the online policy to dynamically build a nearly optimal solution to the

offline problem.

Relying on this infrastructure, we were able to identify the “robustness boundaries” of

BudgetRatio.

1. Modelling assumptions: Inventory arrivals are allowed but they must be slow. In the absence

of such an assumption, no algorithm can achieve constant regret. In the presence of slow-

restock, a suitably tuned BudgetRatio achieves constant regret. Within slow restock, the

aggressiveness parameter α∈ (0,1) can be tuned to the rate of restock.

2. Implementation: We proved that—under a suitable complementarty assumption, BudgetRa-

tio is equivalent to a max-bid price control. A request is accepted if its reward exceeds a

maximum of several shadow prices; these correspond to all the bases associated with the

centroid. The max-bid prices can be adaptively and efficiently computed.

3. Model parameters: We considered the effect of runningBudgetRatio with misspecified arrival

probabilities (p, ϱ) and rewards v. We proved that, if the parameters (p, ϱ) and v are estimated

within a constant error, BudgetRatio still achieves constant regret. Crucially, both robust-

ness results hinge on the notion of centroids. These provide a language through which we can

generalize to multiple dimensions separation conditions that were previously provided only in

the single-dimensional case.



44 A. Vera, A. Arlotto, I. Gurvich and E. Levin: Dynamic Resource Allocation

We introduced sufficient conditions that guarantee the robustness of BudgetRatio to both

parameter perturbation, and restock rates. It is possible that tighter characterization are possible

on both fronts:

1. Perturbation conditions and learning. The separation conditions in Definitions 4 and

Definition 3, while sufficient, may not be necessary for the robustness of BudgetRatio. For

instance, while the δ-complementarity is necessary for the one-dimensional case (d= 1), it is

unclear whether our generalization for d> 1 is necessary.

2. Restock rate. Our analysis of restock reveals that as the rate of restock increases, the prob-

lem “transitions” from one concerning the allocation of finite inventory, to one concerning the

control of so-called loss networks (or loss queues); the restock of inventory in our problem

corresponds to the release of servers in the corresponding loss-network. In loss queues, cus-

tomers that arrive and find all servers taken must be rejected. When restock rates are high,

much of the forecasted inventory is embedded in future arrivals. Requests that we might ide-

ally want to accept cannot be accepted because there is no on-hand inventory. Loss networks

are difficult and the regret is generally of the order of
√
T ; see the examples in Appendix

A. The slow restock requirement is, then, one that guarantees that the relative simplicity

of inventory-allocation problems is maintained. A more complete characterization of restock

levels that permit this simplicity is interesting to pursue.
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regret via bellman inequalities. Operations Research, 69(3):821–840, 2021.

Huasen Wu, R Srikant, Xin Liu, and Chong Jiang. Algorithms with logarithmic or sublinear regret

for constrained contextual bandits. In Advances in Neural Information Processing Systems, pages

433–441, 2015.

Appendix A: Restock and feasibilty of constant regret. If Assumption 1 fails, it is not

generally possible to achieve constant regret relative to the offline (2). Consider, as an example,

a problem with a single resource and three customer types with rewards (v1, v2, v3) = (200,100,0),

arrival probabilities p= (0.4,0.2,0.4) and restock probability ϱ= 0.41. There is no initial budget

(I0 = 0). This example violates Assumption 1 because ϱ> r{1} = 0.4.

We computed the optimal dynamic-programming policy for horizons T = 1, . . . ,2000. For each

horizon, we ran 1000 replication of both the optimal policy and the offline upper bound in (2). In

Fig. 9 we display, for each T , the average (over replications) gap between the two. Evidently, the

regret of the optimal policy—in turn, of any online policy—is proportional to
√
T .

If ϱ< 0.4, the slow-restock assumption is satisfied and constant regret is guaranteed by Theorem

1. With ϱ > 0.6 there are enough resources for both types 1 and 2 and it is easy to show that

the regret is constant. With further simulations it can be verified that any ϱ ∈ [0.4,0.6] does not

produce constant regret. In other words, the set of restock probabilities that imply constant regret

is the disconnected set [0,0.4)∪ (0.6,1].
Below is another example with a single type of requests where we can prove that the regret

exhibits
√
T grows. A slow restock assumption is necessary here; when it fails, offline is no longer

a useful benchmark for performance measurement.
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Lemma 15. There exists a resource allocation network that violates Assumption 1 and such

that, for some c > 0,

V ∗
off(T )−V ∗

on(T ) = c
√
T + o(

√
T ), as T →∞,

where V ∗
on(T ) is the value of the optimal policy for the horizon [T ]. Hence, no policy can achieve

o(
√
T ) regret.

This counter example is a network with one request type and one resource, both arriving with

probability p. It is a so-called two-sided queue where one side balks immediately if not served upon

arrival. Fig. 10 is the numerical illustration of the
√
T regret.

2000 4000 6000 8000 10000

Figure 10. Single RAN with restock. The first line depicts the expected remaining inventory of offline. The second

line depicts the expected remaining inventory of the optimal online policy. The difference is the regret. The expectation

is computed as an average over 10000 replications. The y-axis is the (expected) ending inventory divided by
√
T .

We label the request by 1, the resource by a, and set v1 = 1, p1 = ϱa = p. Let Zt be the number

of request arrivals by time t and let Zt be the restock by time t. Let IToff (respectively ITon) be

the end-of-horizon residual inventory under offline (respectively online) policies. Then, V ∗
off(T ) =

E[min{Zt,Zt}] =E[ZT − IToff].
The optimal online policy servs any arriving request if there is inventory available. Let Y t be the

number of requests accepted by the online policy by (and including) time t. Then, V ∗
on = E[Y T ] =

E[ZT − ITon]. Thus, V ∗
off(T )−V ∗

on(T ) =E[ITon]−E[IToff].

We study the two (end-of-horizon) inventory levels, starting with offline, which satisfies:

IToff = (ZT −ZT )+.
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The process Zt−Zt is a random walk starting at 0 and with i.i.d zero-mean increments X1, . . . ,XT

taking values {−1,0,1} with probabilities p(1 − p),1 − 2p(1 − p), p(1 − p); Xt is the difference

between the restock at t (0 or 1) and the request arrival (0 or 1). Write GT =
∑T

t=1Xt. By the

central limit theorem
1√
T
GT ⇒N (0, σ2), as T ↑∞,

where σ2 := 2p(1−p). Since IToff = (GT )+, we have by the continuous mapping theorem that 1√
T
IToff⇒

(N (0, σ2))+, and the convergence here also holds in expectation. On the other hand, the online

inventory satisfies the queueing recursion It+1
on = [Iton +Xt]

+ so that

ITon = sup
t≤T

(GT −Gt).

The so-called reflection principle implies the equivalence in law

sup
t≤T

(GT −Gt)
L
= sup

t≤T
Gt.

We also have that
1√
T
sup
t≤T

Gt⇒Z, as T ↑∞,

where Z is distributed as the supremum of a Brownian motion over [0,1]. This standard result

follows from Donsker’s theorem [Billingsley, 2013] and the continuity of the supremum map in the

space of continuous functions. This convergence also holds in expectation. The reflection principle

for Brownian motion then guarantees that, for a≥ 0, P{Z ′ ≥ a}= 2P{N (0, σ2)≥ a} so that E[Z ′] =

2E[(N (0, σ2))+] and this allows us to conclude that

E[ITon]/E[IToff]→ 2 and
1√
T
(E[ITon]−E[IToff])→E[N (0, σ2)+]> 0, as T →∞.

Appendix B: Proofs of Lemmas.

Proof of Lemma 1. The dual problem of LP(R,D) is

min{(R,D)′λ : Ā′λ≥ v̄, λ≥ 0}.

For any basis B, our defined vector λ= (B−1)′v̄B is dual-feasible if it satisfies conditions (i) and (ii).

The associated primal variables are x′
B = (y,u, s)′B =B−1

(
R
D

)
. By construction (R,D)′λ= x′

Bv̄ so

that, by weak duality, B is optimal provided that xB is primal feasible, i.e., x′
B = B−1

(
R
D

)
≥ 0;

see [Bertsimas and Tsitsiklis, 1997, Corollary 4.2]. Conversely, for any (R,D), when the simplex

algorithm terminates it produces an optimal basis B where λ= (B−1)′v̄B is an optimal dual solution

(the reduced costs are non-negative); see [Bertsimas and Tsitsiklis, 1997, Chapter 3]. Notice that

the packing problem is always primal feasible because x= (0,D,R) is feasible. □
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Proof of Lemma 2. The first part follows by definition of NK(p). For the second part we claim

that if Rt ∈NK(p), then I
t
i ≥ |{j ∈K :Aij = 1}| for some M and all t≤ T −M which proves that

there is sufficient inventory to serve an arriving request in K.
Fix j ∈ K and i ∈ [d] such that Aij = 1. The fact that (y,u, s) solves LP(Rt, p) implies Ay ≤

1
T−tI

t + ϱ. Since j ∈ K it must be that yj ≥ 1
2
p̄j, for all j ∈ K. In turn, for each i ∈ R such that

Aij = 1 for some j ∈K, we have that

Iti ≥ (T − t)[(Ay)i− ϱi]≥ (T − t)
[∑
j∈K

Aij
1

2
p̄j − ϱi

]
.

By Assumption 1,
∑

j∈KAij
1
2
p̄j − ϱi > 0 so that taking M = max

i:
∑

j∈KAij≥1

|{j ∈K :Aij = 1}|∑
j∈KAij

1
2
p̄j − ϱi

we

obtain the claim for all t≤ T −M .

We note, finally, that 1/2 can be replaced everywhere with α∈ (0,1) that matches the slow restock

condition; i.e., such that ρi <α(rK)i □

Proof of Lemma 3. Let B be an optimal basis of LP(AKD̂, D̂). In particular, B is invertible and

λ= (B−1)′v̄B satisfies properties (i) and (ii) in Lemma 1. We will prove that B is also optimal for

LP(AKD̃, D̃) and has an associated solution (y,u, s) = (D̃K, D̃Kc ,0).

Since B has the basic variables yK and uKc , by inspection we have the following:

B

 D̃K
D̃Kc

0

=

(
AKD̃K
D̃

)
=⇒B−1

(
AKD̃K
D̃

)
≥ 0.

Since B satisfies properties (i) and (ii) in Lemma 1, we have by that lemma that B is optimal for

the right-hand side (AKD̃K, D̃). Also, per our derivation above, the associated solution is indeed

(y,u, s) = (D̃K, D̃Kc ,0). Because the set of optimal bases, as we have now shown, is identical under

D̂ and D̃, so are the sets of zero-valued basic variables. □

Proof of Lemma 4.

Item 1. Because B is optimal at (rK(D),D) it is invertible and satisfies properties (i) and (ii)

in Lemma 1. To prove that it is optimal also at (R,D), with R of the stated form, it suffices by

Lemma 1 to show that B−1

(
R
D

)
≥ 0.

Recall the augmented matrix Ā is given by

Ā=

[
A 0 Id
In In 0

]
,

where the columns are associated, from left to right, to request variables y ∈Rn, unmet variables

u∈Rn and surplus variables s∈Rd. The basic sub-matrix B has a subset of these columns and can

be written as

B=

[
AK∪K+ 0 Id

K0

InK∪K+ InKc∪K− 0

]
, (37)



50 A. Vera, A. Arlotto, I. Gurvich and E. Levin: Dynamic Resource Allocation

where InK∪K+ has the columns of In corresponding to the request variables in K∪K+. The matrix

B is of dimension (n+ d)× (n+ d), and each column is associated to either a variable yj, uj, or si.

We write vectors of dimension n+d in this same order, specifying the components associated to

y,u, and s respectively from top to bottom.

By the definition of centroid, all request variablesK are saturated at rK(D), henceK+ =K+(B)⊆
Kc; in other words, zero-valued requests cannot come from K. Similarly, unmet variables Kc are

saturated at rK(D), therefore K− = K−(B) ⊆ K. We deduced the inclusions κ+ ⊆ Kc ∩K+ and

κ− ⊆K∩K−. By inspection we then have the identities

B

 Dκ−

−Dκ−

0

=

(
Aκ−Dκ−

0

)
, B

 Dκ+

−Dκ+

0

=

(
Aκ+Dκ+

0

)
, B

 0
0
bK0

=

(
bK0

0

)
.

Pre-multiplying these identities by B−1, and taking R of the stated form, we have

B−1

(
R
D

)
=B−1

[(
AKDK
D

)
+α

(
A+
κD

+
κ

0

)
−α

(
A−
κD

−
κ

0

)
+

(
b
0

)]

=

DK
DKc

0

+α

 Dκ+

−Dκ+

0

−α
 Dκ−

−Dκ−

0

+

 0
0
bK0

 .

Because κ+ ⊆Kc ∩K+ and κ− ⊆K∩K−, the right-hand side above is non-negative.

Item 2. Assume R has the stated form and let us prove that B is optimal. If two right-hand sides

have the same optimal candidate basis, then, by virtue of Lemma 1, any non-negative combination

of the right-hand sides has the same optimal basis. By the first item of the lemma, we are taking

non-negative combinations of right-hand sides which have B as optimal basis, so we conclude

optimality.

We turn to prove that, if B is optimal, then R has the stated representation. Let (y, u, s)′ =

B−1

(
R
D

)
, where y are the request variables, u are unmet variables s are surplus variables. Let

K+ =K+(B), K− =K−(B) and K0 =K0(B) be as in Definition 8. By the definition of centroid

and the optimality of B, we have the following:

yj =Dj and uj = 0 ∀j ∈K\K−,

yj = 0 and uj =Dj ∀j ∈Kc\K+.

For all other indices j, uj =Dj−yj and yj, uj ≥ 0. Since R ∈NK we also have that yj ≥Dj/2 for

all j ∈K− and yj <Dj/2 for all j ∈K+. From the vector (y,u, s) we subtract the vector (ȳ, ū, s̄)

given by

ȳj =


Dj for j ∈K\K−,
0 for j ∈Kc\K+,
Dj/2 for j ∈K−

0 otherwise.

ūj =

{
Dj/2 for j ∈K−,
Dj for j ∈K+ ,
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and s̄= s (subtracting fully the budget slack variables). Since R ∈NK(D) we have, by definition,

that y≥ ȳ and u≤ ū. Thus, (y− ȳ, u− ū, s− s̄) = (y− ȳ, u− ū,0)≥ 0. We will study next the vector

z = (y− ȳ, u− ū).
For convenience, let us re-label (and re-order) the indices so that indices in K+ ∪K− are at the

top of the vector (y,u, s). The vector z then has the form

z =

 yK+

yK− −DK−/2
uK+ −DK+

uK− −DK−/2

=

 yK+

yK− −DK−/2
−yK+

DK−/2− yK−

 .

We will identify a representation for z that will help us show that R has the desired form. Since all

other entries of (y,u, s) have fixed values, we will then append those to all vectors in the resulting

combination.

We apply the following transformation

x= Pz where P = 2diag(1/DK+ ,1/DK− ,1/DK+ ,1/DK−).

By definition, all request elements of Pz are in [0,1] and unmet elements are in [−1,0]. If x can

be written as a convex combination of vectors x1, . . . , xm then z = (y− ȳ, u− ū) can be written as

a convex combination of P−1x1, . . . , P
−1xm.

Vectors x= Pz are elements in the polyhedron
xK+

xK−

sK+

sK−

 : xj + sj = 0, xj ∈ [0,1], sj ∈ [0,1]

.
This polyhedron is integral because the constraint matrix is totally unimodular consisting, as

it does, of only {0,1} entries and having a single 1 per column. In turn, we can write each such

vector as a convex combination of binary vectors of the form xK+

xK−

−xK+

−xK−

 ,

where xj ∈ {0,1}. For such a vector x we have a set κ+ ⊆K+ of entries such that xj = 1 for j ∈ κ+

and a set κ− ⊆K− with xj = 0 for j ∈ κ−. Thus, each of these binary vectors can be written as

eκ+
0K+\κ+
0κ−

eK−\κ−
−eκ+
0K+\κ−
0κ−

−eK−\κ−


,
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for some subsets κ+ ⊆K+ and κ− ⊆K−. Transforming back (multiplying by D−1 and adding ȳ, ū),

we have that we can write (y,u, s) as a convex combination of vectors of the form

Dκ+/2
0K+\κ+
Dκ−/2
DK\κ−
Dκ+/2
DK+\κ+
Dκ−/2
0K\κ−
s


.

Notice that multiplying this vector by B we get a vector of the form

rκ+,κ−,u = rK +Aκ+Dκ−/2−Aκ−Dκ+/2+ s

where we use the fact that Bs (multiplying by vector of surplus) gives back the surplus. We conclude

that we can write the top elements of y as a sum of a vector s and a convex combination of vectors

(y,u) of the desired form.

Item 3. We just proved that B is optimal for (R,D) if and only if it can be written as

R= rK(D)+
∑

κ+⊆K+,κ−⊆K−

α(κ+,κ−)(Aκ+Dκ+ −Aκ−Dκ−)+ b.

Observe that the sum ranges over subsets of K+,K−. Let us group it instead for each j ∈K+∪K−.

With this end, define

αj :=
∑

(κ+,κ−):j∈κ+
α(κ+, κ−) for j ∈K+ and αj :=

∑
(κ+,κ−):j∈κ−

α(κ+, κ−) for j ∈K−.

Now, if we put xj := αjDj, we can write R = rK(D) + AK+xK+ − AK−xK− . We claim that the

solution (y,u, s) associated to the right-hand side (R,D) isyu
s

=

DK
DKc

0

+

 xK+ −xK−

−xK+ +xK−

b

 .

Assuming this claim, we can conclude since, by definition, R ∈NK(D,B) if (1) the basis B is optimal

and (2) we have yK ≥ 1
2
DK and yKc < 1

2
DKc . Indeed, condition (2) follows by recalling K+ ⊆ Kc,

K− ⊆K and our definition xj = αjDj.

We are left to prove the claim. Using that the variables {yj, uj : j ∈K− ∪K+} and sK0 are in

the basis B we have

B

 xK+ −xK−

−xK+ +xK−

bK0

=

(
AK+xK+ −AK−xK− + b

0

)
.
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Finally, by the definition of centroid

B

DK
DKc

0

=

(
rK(D)
D

)
.

The last two equations together prove the claim by virtue of Lemma 1. □

Proof of Lemma 5. If R ∈ NK(D,B) then in particular R ∈ NK(D) = ∪BNK(D,B) and from

Lemma 4 (item 3) we have R− rK(D) =AK+xK+ −AK−xK− + b, hence R ∈ rK(D)+ cone(K,B).
If R ∈ NK(D) ∩ (rK(D) + cone(K,B)), then necessarily R = rK(D) +AK+xK+ −AK−xK− + bK0

because it is in the cone. Also, as in the proof of Lemma 4 we have that (B−1R)j = xj for j ∈K+

and (B−1R)j = Dj − xj for j ∈K−. Because R ∈ NK(D) it must then be that xj ≤ Dj/2 for all

j ∈K+ ∪K−. We can then use Lemma 4 (item 3) to conclude that R ∈NK(D,B). □

Proof of Lemma 6. The existence of a finite family of separating vectors such that ξ ∈ cone(K,B)
if and only if maxψ∈Ψ(K,B)ψ

′ξ ≤ 0 follows from the Minkowski-Weyl theorem; see e.g. [Bertsimas

and Tsitsiklis, 1997, Chapter 4.9]. We construct these explicitly for cone(K,B).
Per our construction of the set NK(B,D) a vector ξ is in the cone if and only if ξ can be written

as

ξ =
∑

(κ+⊆K+,κ−⊆K−)

α[κ+, κ−, κ0](Aκ+zκ+ −Aκ−zκ−)+ bκ0 ,

where b, z ≥ 0. It is immediate that in the convex combination it suffices to include κ+, κ−, κ0 that

are minimal, i.e., with |κ+|+ |κ−|+ |κ0|= 1. These are the extreme rays of the cone; by Lemma 4

we have, for instance,

(
B−1

(
Ak+
0

))
j

= 0 for all j ̸= κ+.

Take Ψ :=− (B−1)K+∪K−∪K0,d (the resource columns for the rows corresponding to K+ ∪K− ∪
K0). By Lemma 4, ψ[κ]′Aj = 0, j ∈K+(B)\κ+ and ψ[κ]′Aj = 0, j ∈K−(B)\κ−, and ψ[κ]′ei = 0,

for i ∈ K0(B)\κ−. Similarly, ψ[κ]′Aκ+ = −1 < 0 if |κ+| = 1, ψ[κ]′Aκ− = −1 < 0 if |κ−| = 1, and

ψ[κ]′eκ0 < 0 if |κ0|= 1.

We turn to the second item in the lemma. Take j ∈K+(B̄) andR= rK(D)+Aj. Then, B̄−1

(
R
0

)
≥

0 by Lemma 4. As in the proof of Lemma 9 for j ∈K+(B)∩K+(B̄), we have(
B−1

(
R
0

))
j

=

(
B̄−1

(
R
0

))
j

≥ 0,

so recalling that Ψ :=− (B−1)K+∪K−∪K0,d we have that ψ[κ]′Aj ≤ 0 as required. The argument is

the same for j ∈K−(B̄) or j ∈K0(B̄). □

Proof of Lemma 7. The basis B is fixed for the proof and we write K+,K−,K0 for the corre-

sponding sets in Definition 8. Let (ȳ, ū, s̄) be the solution to LP(Rt, p) and define

Y = {(y,u, s) : ∃R ∈NK(B, p) s.t. (y,u, s) solves LP(R,p)}.
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By assumption d∞(Rt,NK(B, p)) ≤ ϵ0

M
. By the Lipschitz continuity of the LP solution, we can

choose M large enough (depending on A) such that d∞((ȳ, ū, s̄),Y)≤ ϵ. Let (y0, u0, s0)∈Y be such

that d∞((ȳ, ū, s̄), (y0, u0, s0))≤ ϵ0. Since for all j ∈ K\K− we have that y0j = pj then we also have

that ȳj ≥ pj − ϵ0 ≥ pj/2 so that all these requests are accepted. Also, for any j /∈K∪K+, we have

that u0
j = pj so that ū0

j ≥ pj − ϵ0 and hence ȳ0j < pj/2 so these requests are rejected. Hence, the

policy is making basic allocations at t.

Finally, s0i = 0 for all i /∈ K0, hence s̄i = Rt
i − (Aȳ)i ≤ ϵ0 for all such i, which implies Rt

i =

1
T−tI

t
i + ϱi ≤ (Ay)i+ ϵ and using y≤ p we get, as required, that Iti ≤ (T − t)((Ap)i+ ϵ0) for i /∈K0.

□

Proof of Lemma 8. The basis B is fixed for the proof and we write K+,K−,K0 for the corre-

sponding sets in Definition 8. We will argue that that for any ϵ′′ we can choose ϵ′ small enough so

that under the assumptions of the lemma:

(i) yj ≥Dj/2− ϵ′′ for all j ∈K, and
(ii) yj ≤ ϵ′′ for all j /∈K∪K+, and uj ≤ ϵ′′ for all j ∈K\K−.

We would then have that R• := R− s = R̄± ∥A∥∞ϵ′′ where R̄ = rK(D) +AK+xK+ −AK−xK−

for some x with xj ∈ [0,Dj/2] for all j ∈K+ ∩K−; hence R̄ ∈NK(B,D). Choosing ϵ′ (and subse-

quently ϵ′′) so that ϵ′′ ≤ ϵ
∥A∥∞ , we will conclude that d∞(R•,NK(B,D))≤ ϵ. Finally, we have that

d∞(R•,NK(B,D))≤ ϵ, if and only if d∞(R,NK(B,D))≤Mϵ; see the proof of Lemma 10.

Item (i): Because, d∞(R,NK(D))≤ d(R,NK(D))≤ ϵ′, the Lipschitz continuity of LPs implies

that yj ≥ Dj/2−Mϵ′ for all j ∈K− and some constant M that depends on (p, ϱ,A, v). Taking

ϵ′ = ϵ′′/M proves this item.

Item (ii): First, by the continuity of LPs, we have that yj ≤ ϵ′′ for all j /∈ K ∪ (∪B′K+(B′))

where the union is overall bases B′ associated with K. For the same reason uj ≤ ϵ′′ for all j ∈
K\ (∪B′K−(B′)). It remains only to consider bases that are associated to K.

Take R /∈NK(B,D) that satisfies the assumptions and consider two cases:

First case (maxψ∈Ψ(K,B)ψ
′(R − rK(D)) ≤ 0): In this case R − rK(D) ∈ cone(K,B). Recall the

equivalent definition of NK(D,B) in item 3 of Lemma 4 and let N+
K (D,B) ⊃ NK(D,B) has xj ∈

[0,Dj] (instead of xj ∈ [0,Dj/2]) for j ∈K+ ∪K−. Let

N+
K (D) =∪BN+

K (D,B). (38)

In words, this is the neighborhood obtained taking convex combination of the full lines connecting

centroids rather than mid-points. With ϵ′ small, d(R,NK(D)) ≤ ϵ′ implies that R ∈ N+
K (D). Per

Lemma 4, we then have that yj = 0 for all j /∈K ∪K+ and uj = 0 for all j ∈K\K− as required.
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Second case (maxψ∈Ψ(K,B)ψ
′(R− rK(D)) > 0): Here 0 <maxψ∈Ψ(K,B)ψ

′(R− rK(D)) ≤ ϵ′. Let B̄
be such that R ∈ cone(K, B̄) for B̄ ≠B. We can write R as

R= R̄+
∑

j∈K+(B̄)\K+(B)

Ajyj −
∑

j∈K−(B̄)\K−(B)

Ajyj +
∑

i∈K0(B̄)\K0(B)

bi,

where

R̄= rK(D)+
∑

j∈K+(B)∩K+(B̄)

Ajyj −
∑

j∈K−(B)∩K−(B̄)

Ajyj +
∑

i∈K0(B)∩K0(B̄)

bi.

First, we claim that the maximizer in maxψ∈Ψ(K,B)ψ
′(R − rK(D)) > 0 cannot be ψ[κ0] for κ0

that is in both K+(B)×K−(B)×K0(B) and K+(B̄)×K−(B̄)×K0(B̄). Let us assume that κ0

has |κ+
0 | = 1 (the other cases are treated identically). By the second part of Lemma 6, we have

ψ[κ0]
′(R̄− rK(D))≤ 0 as well as ψ′(R− R̄)≤ 0. In turn, ψ[κ0]′(R− rK(D))≤ 0, contradicting the

assumption of this case.

Hence, the maximum cannot be attained at any κ that is on the face between the two bases;

it must be attained at ψ[κ∗] such that yκ∗ = 0. Such ψ[κ∗] notice has, by Lemma 6, ψ[κ∗]
′Aj = 0

for all j ∈K+(B̄)∩K+(B) or j ∈K−(B̄)∩K−(B) as well as ψ[κ∗]
′ei = 0 for i∈K0(B̄)∩K0(B). In

particular, ψ[κ∗]
′(R̄− rK(D)) = 0.

Overall, we have that

ϵ′ ≥ max
ψ∈Ψ(K,B)

ψ′(R− rK(D)) = max
ψ∈Ψ(K,B)

ψ′(R− R̄) (39)

= max
ψ∈Ψ(K,B)

ψ′

 ∑
j∈K+(B̄)\K+(B)

Ajyj −
∑

j∈K−(B̄)\K−(B)

Ajyj +
∑

i∈K0(B̄)\K0(B)

bi


≥ ζ

[(
min

j∈K+(B̄)\K+(B)
yj

)
∧
(

min
j∈K−(B̄)\K−(B)

yj

)
∧
(

min
i∈K0(B̄)\K0(B)

bi

)]
,

where ζ > 0 is a constant. Before proving the last inequality, we note that all the elements on the

right-hand side must now be smaller than ϵ′/ζ and get the desired result by taking ϵ′ small enough.

Finally, the inequality in (39), is argued as follows. Suppose that j0 ∈K+(B̄)\K+(B) is such that

yj0 is the minimizer on the right hand side of the last row of (39). We then have

max
ψ∈Ψ(K,B)

ψ′

 ∑
j∈K+(B̄)\K+(B)

Ajyj −
∑

j∈K−(B̄)\K−(B)

Ajyj +
∑

i∈K0(B̄)\K0(B)

bi


= yj0 max

ψ∈Ψ(K,B)
ψ′

Aj0 + ∑
j∈K+(B̄)\K+(B),j ̸=j0

Ajxj −
∑

j∈K−(B̄)\K−(B)

Ajxj +
∑

i∈K0(B̄)\K0(B)

βi


≥ yj0 min

x,β≥0
max

ψ∈Ψ(K,B)
ψ′

Aj0 + ∑
j∈K+(B̄)\K+(B),j ̸=j0

Ajxj −
∑

j∈K−(B̄)\K−(B)

Ajxj +
∑

i∈K0(B̄)\K0(B)

βi

 .
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The fact that the minimum in the last row is strictly positive follows then from the fact that

Aj0 /∈ cone(K,B). □

Proof of Lemma 9. First we argue θ = θK(y,D) ∈ closure(Y(K,D)). Since y solves LP(R,D)

and R ∈NK0(D):

yj ≥
Dj

2
, j ∈K\κ−, yj ≥

Dj

2
, j ∈ κ+, and yj <

Dj

2
, j ∈ κ−.

This implies θj ≥ Dj

2
for j ∈ K and θj ≤ Dj

2
for j ∈ Kc; in turn, θK(y,D) ∈ closure(Y(K,D)). That

(y− θK(y,D))j = 0 for all j /∈ κ+ ∪κ− follows immediately from our definition of θ.

In fact, θ is optimal at the ratio Rθ :=Aθ. Indeed, if we take B as the basis that K and K0 share,

then the support of θ is all basic variables and we have

B

 θ
D− θ
0


B

=

(
Rθ

D

)
⇒B−1

(
Rθ

D

)
=

 θ
D− θ
0


B

≥ 0,

which proves the optimality of θ at Rθ by Lemma 1.

For the second item, let u and s be the unmet and surplus variables for LP(R,D). Since both

bases share the request variables κ := κ+ ∪κ−, we can write

B

yκ0
0

= B̄

yκ0
0

 , and B

yκ0
0

+B

yB\κ
uB
sB

=

(
R
D

)
=⇒B̄−1

(
R
D

)
= B̄−1B

yκ0
0

+ B̄−1B

yB\κ
uB
sB


=

yκ0
0

+ B̄−1B

yB\κ
uB
sB

 ,

where the second equation is from the optimality of B. Finally, we claim that B̄−1B has an identity

in the columns corresponding to κ, which proves the result. To see this, note that by assumption

B̄κ =Bκ and we can separate by columns B= [B̄κ|0κc ] + [0κ|Bκc ] = B̄+ [0κ|Bκc − B̄κc ]. □

Proof of Lemma 10. We prove a slightly stronger result than stated; that for all ϵ̌ ≤ ϵ′,

d∞(R,NK(B,D))≤Mϵ̌ if and only if d∞(R•,NK(B,D))≤ ϵ̌. This immediately implies the stated

result recalling that NK(D) =∪BNK(B,D) and that d∞(x, y)≤ d(x, y)≤
√
d× d∞(x, y).

In the first direction, suppose that d∞(R,NK(B,D)) ≤ ϵ̌ and let (y,u, s) be the solution to

LP(R,D). Let R̄ ∈NK(B,D) be such that d∞(R, R̄) = d∞(R,NK(B,D). By the Lipschitz continuity

of LPs, we must have |yj − ȳj| ≤Mϵ̌ for all j ∈ [n]. In turn, ∥R• − R̄•∥ = ∥Ay −Aȳ∥ ≤Mϵ̌. By

Lemma 4, R̄• ∈NK(B,D) if R̄ ∈NK(B,D), so that we can conclude that d∞(R•,NK(B,D))≤Mϵ̌.

For the other direction, assume that d∞(R•,NK(B,D)) ≤ ϵ̌. Let (y,u, s) be the solution at

LP(R,D), and R̄ ∈NK(B,D) be such that d∞(R•, R̄) = d∞(R•,NK(B,D))≤ ϵ̌. Notice that

R=Ay+ s=R• +
∑

i∈K0(B)

si+
∑

i/∈K0(B)

si.

We use the following claim:
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(*) i /∈K0(B), if and only if there exists κ+ ⊆K+(B) such that ei ≥Aκ+ .
By item (3) of Lemma 4, R̄+

∑
i∈K0(B)

si ∈NK(B,D). Because

d∞

R• +
∑

i∈K0(B)

si, R̄+
∑

i∈K0(B)

si

= d∞
(
R•, R̄

)
= ϵ̌.

it suffices to show that si = 0 for all i /∈K0(B), to conclude that d∞(R, R̄+
∑

i∈K0(B)

si) = ϵ̌ and, in

turn, d∞(R,NK(B,D)) = ϵ̌.

Because R̄ ∈ NK(B,D), ȳj ≤Dj/2, j ∈K+(B). By the Lipschitz continity of LPs, yj ≤Dj/2 +

Mϵ̌, j ∈K+(B) (these variables are not saturated under the optimal solution at LP(R,D)). If si > 0

for some i /∈K0(B), then by the claim (*), for small enough δ, y+Aκδ is feasible at R and, because

vj > 0 for all j ∈ [n], has higher objective function value than y, contradicting the optimality of y.

It must be, then, that si = 0 for all i /∈∪BK
0(B). We may conclude then that

d∞

R, R̄+
∑

i∈K0(B)

si

= d∞
(
R•, R̄

)
= ϵ̌,

as required.

It remains to prove the claim (*). Suppose that there exists no κ+ ∈K+(B) with ei ≥Aκ+ . Take
R in the interior where the slack is 0 (the centroid budget is one such choice). Increase Ri→Ri+ δ

for small enough δ so that Ri+ δ ∈NK(B,D). Because there exists no κ+ as desired it means that

the slack i must enter the basis. In turn, si must be in B for some B associated with K.
For the other direction, suppose that there exists κ+ ∈ K+(B) with ei ≥ Aκ+ then because

yκ+ ≤ Dκ+/2 we can increase yκ+ . This increases the objective function value contradicting the

optimality of R. In turn, si cannot be in B. □

Proof of Lemma 11. Define R̄t
i =

Iti∧M(T−t)
T−t +ϱi, where M = 2

∑
j∈[n] pj. Because y

t
j ≤ pj, j ∈ [n],

it is immediate that LP (Rt,D) has the same optimal request-variable values as LP (R̄t,D).

R̄t+1
i − R̄t

i =
It+1
i ∧M(T − t− 1)

T − t− 1
− I

t
i ∧M(T − t)

T − t .

Because It+1
i ≤ Iti +1, It+1

i ∧M(T − t− 1)≤ Iti ∧M(T − t)+ 1 so that

|R̄t+1
i − R̄t

i| ≤
1

T − t− 1
+

Iti ∧M(T − t)
(T − t)(T − t− 1)

≤ M +1

T − t− 1
.

Finally, the Lipschitz continuity of LPs guarantees that ∥yt+1− yt∥∞ ≤ ∥R̄t+1− R̄t∥∞. □

Proof of Lemma 12. Let N+
K (D0) be as in (38) with D0 replacing D there. By assumption

E[R0] = 1
T
I0+ϱ∈NK(p) and (Z̄T , Z̄T )∈Aϵ0 . Because R0 = 1

T
I0+ Z̄T , we then have d(R0,NK(p))≤
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2ϵ0 = 1
4
min{pj} ∧ min{ϱi : ϱi > 0}. Because, on Aϵ0 , d(∂N+

K (D0),NK(p)) ≥ minj(D
0
j − pj/2) ≥

minjpj/2− ϵ0 ≥ 3ϵ0, we have that R0 ∈N+
K (D0).

It then follows from item 2 of Lemma 4 (with D replaced with D0 there) that R0 −AKZ̄
0
K =

R0− rK(D0)∈ cone(K,B) if and only if B is offline optimal. □

Proof of Lemma 13. Let us write Ki = K ∪ κ+
i \κ−

i . By assumption d(R,NKi
(D)) ≤ ϵ′′ for all

i ∈ [d]. By the Lipschitz continuity of the LP, y that solves LP(R,D), must have for some ϵ̌(ϵ′′)

that yj ≥Dj/2− ϵ̌ for all j ∈ ∪i∈[d]κ
+
i (because at centroid i, yj ≥Dj/2 for j ∈ κ+

i ) as well as yj ≥
Dj/2− ϵ̌ for all j ∈∪i∈[d]κ

−
i (because j ∈K). Additionally, yj ≤ ϵ̌ for all j /∈K∪(∪i∈[d]κ

+
i )\(∪i∈[d]κ

−
i ).

We choose ϵ′′ (in turn ϵ̌) so that ϵ̌ < minjDj/2. Thus, because we are considering d neighbors

| ∪i∈[d] κ
+
i |+ | ∪i∈[d] κ

−
i | = d. Overall, we have |K|+ |Kc|+ | ∪i∈[d] κ

+
i |+ | ∪i∈[d] κ

−
i | = n+ d strictly

positive, hence basic, variables. The optimal basis then must be the one that has these variables

in the basis.

For the second item of the lemma we can assume Bi =B0. Because there are d different centroids

Ki considered and they are different, the set (∪iκ+
i )∪ (∪iκ−

i ) contains at least d different j. Because

of the construction of the d vectors ψ, there exists no κ∈ (∪iκ+
i )∪ (∪iκ−

i ) such that ψ[κ]′Aκ̃ = 0 for

all κ̃∈ (∪iκ+
i )∪(∪iκ−

i ). Thus, for any such ψ we have, by Lemma 6, that for all κ ψ[κ]′(A∪iκ
+
i
D∪iκ

+
i
−

A∪iκ
−
i
D∪iκ

−
i
)≤−ζminjDj. In turn, we have max′

ψ∈Ψ(K,B)(R−rK(D))≤Mϵ̌−ζminjDj. The right-

hand side is negative for small ϵ̌. □

Proof of Lemma 14. We prove this for d= 2, the proof for d> 2 is identical. Let

τ 0∂ = inf{t≤ T : d(Rt, ∂NK(p))≤ ϵ′}, and τ 1∂ = inf{t≥ τ 0∂ : d(Rt, ∂NK(p))≥ 2ϵ′},

and

Cℓ := {T − τ 1∂ ≤ ℓ},

where we define τ 1∂ = −∞ if τ 0∂ ̸< T . On the event V := V[τ ϵ′,Bcone] = 1, τ∂0 < T and, by Remark 5,

P[V = 1, (Cℓ)c]≤m1e
−m2ℓ.

On the event {V = 1} ∩ Cℓ ∩ {T − τ ϵ
′,B

cone > ℓ}, τ 1∂ ≥ τ ϵ
′,B

cone and there exist t0 < τ ϵ
′,B

cone such that

d(Rt, ∂NK(p))≤ 2ϵ′ for all t∈ [t0, τ ϵ
′,B

cone].

Fix such t, and let y be the optimal solution to LP (Rt, p). Because d(Rt, ∂NK)≤ 2ϵ′ and t≤ τ ϵ′,Bcone,

there exists M such that |yj| ≤Mϵ′ for all j /∈ K ∪K+(B)\K−(B) and yj ≥ pj/2 −Mϵ′ for all

j ∈K∪κ+ where K0 =K∪κ+\κ− is the second centroid visited.

Notice that for i /∈K0(B), and t < τ ϵ
′,B

cone, si = 0 so that Rt
i = (Ayt)i+ si ≤M for some M > 0, so

that Iti ≤M(T − t). Simple algebra then establishes that Rt+1
i −Rt

i =O
(

1
T−t

)
for such i; see e.g.

the proof of Lemma 11.
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t = Tt = 0

(T − t)p3

2

t = T/2

b

t = Tt = 0

(T − t)p3

2

t = T −
√
T

b

Figure 11. Paths on M= {R−eKZ̄T
K ≤ 0}. The two paths illustrate unlikely events. On the left: because the random

walk has variation O(
√
t) it cannot hit the target line by a time t of the form t= T −Ω(T ). On the right: the path

could hit the target by a time of the form t= T −O(
√
T ). In this case, however, it does not have enough time to get

back to 0 which it must on the event M

Suppose that |κ+| = 1 (the proof is the same if |κ−| = 1). Take ψ = ψ[κ]. Using Lemma 6, we

then have, for all t≤ τ ϵ′,Bcone, that

ψ′(Rt− rK(p)) =ψ′(AK+yK+ −AK−yK−)

=ψ′(Aκ+yκ+ −Aκ−yκ−)≤ψ′(Aκ+pκ+/2−Aκ−pκ−/2)+Mϵ′ ≤ 0.

The first equality and first inequality follow from Lemma 6. The last inequality follows by choosing

ϵ′ small enough. Thus, it must be that a vector ψ ∈Ψ for which ψ′(Rτ
ϵ′,B
cone − rK(p))> ϵ′ is distinct

from ψ[κ]. □

Lemma 16 below was used in the proof of Theorem 3.

Lemma 16. Fix ϵ > 0. Consider a random walk G of the form Gt =G0 +
∑t

s=1Xt where the

increments Xt, t ∈ [T ] are zero-mean i.i.d and bounded (E[Xt] = 0 and P[|Xt| ≤ b] = 1 for some

b > 0) and independent of G0 which satisfies |G0| ≤ ϵ/2. Let

τ = inf{t≥ 0 : (T − t)ϵ≤Gt}∧T.

Then, for all t∈ [T ]
P[T − τ > t,GT ≤ 0]≤m1e

−m2t,

for constants m1,m2 > 0 that may depend on b, ϵ.

Proof. Fig. 11 is a graphic illustration of the event whose probability we wish to bound. Notice

{τ ≤ t}= {∃s≤ t : (T − s)ϵ−Gs ≤ 0}. In turn, {τ ≤ t,GT ≤ 0} ⊆ {infs≤t(GT −Gs+ ϵ(T − s))≤ 0}
so that

P[τ ≤ t,GT ≤ 0]≤ P[inf
s≤t

GT −Gs+ ϵ(T − s)≤ 0]

= P[ inf
u≥T−t

Gu+ ϵu≤ 0]≤m1e
−m2(T−t),
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where the last inequality is a generalized version of Azuma’s inequality; see, e.g., [Ross, 1995,

Theorem 6.5.2]. Replacing t← T − ℓ gives the result. □
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