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Online Appendix

These notes consist of three sections. Section 1 defines and establishes the basic prop-

erties of the three algorithms in the large economy with a continuum of agents. Section 2

describes our simulation procedures in a greater detail than in the paper. Section 3 presents

some omitted proofs of the paper.

1 Extensions of Algorithms to the Continuous Envi-

ronment

It is convenient to explicitly model the randomizing device used to break the ties. For our

purpose, it is sufficient to consider a vector ω = (ω1, ..., ωn) ∈ [0, 1]n =: Ω of uniformly

and independently generated numbers. (The vector of ω will be sufficiently rich enough to

model the procedures we study.) Formally, we augment the type space by incorporating

the random draw to V × Ω =: Θ, with its generic element denoted θ := (v, ω), and endow

it with a product measure η = µ × ξ1 × ... × ξn, where ξa is a uniform measure satisfying

ξ([0, ωa]) = ωa for each ωa ∈ [0, 1]. This formalism avoids appealing to the law of large

numbers (on the continuum of agents), by ensuring that a fraction ωa of the student mass

draws ωa or less on each a-th random variable. A student of type θ = (v, ω) is then

interpreted as having values v and drawing a vector ω. The student never observes ω, so

her action required by the procedure will be measurable with respect to only v; whereas

(part or all of) ω component is “discovered” by the schools for their use in tie-breaking.

An ex post allocation is a measurable function ψ := (ψ1, ..., ψn) : Θ 7→ ∆ such that

ψa(θ) ∈ {0, 1} and that
∫
ψa(θ)η(dθ) = 1 for each a ∈ S. Namely, ψ assigns a student

with v to school a upon drawing ω such that ψa(v, ω) = 1. Let Y be the set of all ex post

allocations. Later, we shall describe how each procedure generates an ex post allocation.

Some procedures may not use the entire vector of ω, so the ex post allocation they produce

may be measurable with respect to only some components of ω.
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We define the alternative DA procedures here.

Ordinal preferences. In any DA algorithm, every student submits a ranking of

schools. Formally, students’ ordinal preferences are represented by a measurable func-

tion P : Θ → Π, where P (v, ω) ∈ Π is an ordered list of n schools (ordered not necessarily

according to true preferences). Since the ω is unobserved by the students (at least at the

time of submitting the ordinal preferences), we require that P (v, ω) = P (v′, ω′) whenever

v = v′. We say a DA algorithm is ordinally strategy-proof if it is a (weak) dominant

strategy for each student with v to choose P (v, ω) = π(v).

School priorities (tie-breaking rules). We introduce a tie-breaker function which

determines the priority of each student for each school as a function of the random draw

(as well as their auxiliary message in the case of CADA), in the event of a tie. Formally,

tie-breaker function for school a is a bounded measurable function Fa : Θ 7→ R, such that a

student θ′ is interpreted as having a higher priority than student θ if Fa(θ
′) < Fa(θ). A tie-

breaker is a profile F = {Fa : a ∈ S} of tie-breaker functions. Specifically, the tie-breakers

for DA-STB, DA-MTB, and CADA are determined as follows:

• DA-STB: The STB rule uses the same tie-breaker function for all schools. This is

modeled by a tie-breaker with

Fa(v, ω1, ..., ωn) = ω1,

θ = (v, ω1, ..., ωn), for every school a ∈ S. In other words, a draw’s draw ω1 serves as

a priority number for all schools. Heuristically, a real number ω1 is drawn randomly

from an interval [0, 1], for each student, which then serves as her priority score.1

• DA-MTB: The MTB rule produce a randomly and independently drawn priority list

for each school. This is modeled by a tie-breaker, with

Fa(v, ω1, ..., ωn) = ωa,

for a ∈ S and for each θ = (v, ω1, ..., ωn). In other words, for each student, a vector

(ω1, ..., ωn) of independent draws determines her priority scores at different schools.

• CADA: In CADA, each student sends an auxiliary message of a target school (in

addition to their ordinal preferences over schools). Given a (measurable) strategy

profile s : V → S determining the auxiliary message for each intrinsic type v, the

1This heuristics invokes a law of large numbers, but our formal method does not rely on it for we assume
a well-behaved randomization device.
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tie-breaker function for school a is given by

Fa(v, ω1, ..., ωn) =

{
ω1 if s(v) = a

1 + ω2 if s(v) 6= a

That is, under Fa, ties are broken first in favor of students who target a, within them

according to the random draw ω1, and then ties among the rest are broken according

to a random draw ω2 + 1 (where 1 act as a “penalty score” 1). Clearly, Fa is a

measurable function since ω1 and s are measurable.

Definition of DA algorithms: Given ordinal preferences P and a tie-breaker F =

{Fa : a ∈ S}, a DA algorithm is defined as follows. First, we define a measurable function

ChFa over subsets of Θ as the set of best ranked students for school a ∈ S according to Fa

from a given set up to the capacity. Formally, for any measurable X ⊂ Θ, let

ChFa(X) := sup{Y ⊂ X|η(Y ) ≤ 1, Fa(θ) < Fa(θ
′),∀θ ∈ Y, θ′ ∈ X\Y }

denote the set of students chosen from X such that the set does not exceed the capacity

and that the chosen students have a higher priority than those not chosen.

Next, we define the DAF (deferred acceptance) mapping. Consider first a mapping

Q : Θ → Π, where Q(θ) is an ordered list of any k ≤ n schools. (Recall P (θ) is a special

case involving the full set of schools.) The DA mapping, Q′ = DAF(Q) ∈ Π is determined

as follows. Every student with θ applies to her most preferred school in Q(θ). Every school

a (tentatively) admits from its applicants in the order of Fa. If all of its seats are assigned, it

rejects the remaining applicants. If a student θ is rejected by a, Q′(θ) is obtained from Q(θ)

by deleting a in Q(θ). If a student θ is not rejected, then Q′(θ) = Q(θ). More formally, let

Ta(Q) = {θ ∈ Θ : a is ranked first in Q(θ)} be the set of students that rank a as first choice.

Note that Ta(Q) is measurable. Then each school a admits students in ChFa(Ta(Q)) and

rejects students in Ta(Q)\ChFa(Ta(Q)). If θ ∈ Ta(Q)\ChFa(Ta(Q)) for some a ∈ S, then

Q′(θ) is obtained from Q(θ) by deleting a from the top of Q(θ); otherwise Q′(θ) = Q(θ).

Since Q is a measurable function, Q′ is also measurable.

Repeated application of the DAF mapping gives us the DA algorithm. That is, given

a problem (P,F), let Q0 = P and define Qt = DAF(Qt−1) for t > 0. Then Qt converges

almost everywhere to some measurable Q∗ (Theorem 0 below). The matching can be then

found by assigning θ to its top choice of Q∗(θ). Formally, define a mapping ψ(P,F) : Θ 7→ ∆

such that ψ
(P,F)
a (θ) = 1 if a is the top choice of Q∗(θ), and ψ

(P,F)
a (θ) = 0 otherwise. Since

the schools’ capacities are respected in each round and also in the limit, the mapping must

be an ex post allocation.

We present two main results:

3



Well-definedness of the Procedure. The existence of ψ(P,F) follows from the next

theorem.

Theorem 0. For every (P,F), DAt
F(P ) converges almost everywhere to some measur-

able Q∗ : Θ → Π.

Proof: Define the set of rejected students as Rt = {θ : θ ∈ Ta(Q
t)\ChFa(Ta(Q

t)) for

some a ∈ S}. Then η(Rt) goes to zero as t goes to infinity. Otherwise, if η(Rt) ≥ κ > 0 for

all t, all the schools in every student’s preference would be deleted in finite time because

of finiteness of the number of schools, which in turn would imply that η(Rt) goes to zero,

a contradiction. Therefore, DAt
F(P ) converges almost everywhere to some Q∗. Since every

Qt = DAt
F(P ) is measurable, Q∗ is also measurable.

2 The Simulation Procedure

There are 5 schools each with a capacity of 20 seats and 100 students. Fix α. We indepen-

dently draw 100 sets of vNM values for students. Let {ṽs
ia} denote a draw of vNM values,

where superscript s denote the draw and ṽs
ia denotes student i’s vNM value for school a.

We normalize the level and the scale of each student’s vNM utilities as follows:

vs
ia =

ṽs
ia − min

a′
ṽs

ia′

max
a′
ṽs

ia′ − min
a′
ṽs

ia′

Given a normalized draw {vs
ia}, fix the mechanism, define the following: ps

ia is the

probability that student i is assigned school a under the mechanism. πs
k(i) is the school

that is ranked k-th in i’s preference list. P s is the set of popular schools. Os is the set of

oversubscribed schools in an equilibrium of CADA with no naive players.

A first best or utilitarian maximum solves

vs
FB =

1

100
max
{p̂s

ia}

∑
i

∑
a

p̂s
iav

s
ia

Let {p̄s
ia} denote a solution to the first best. There may be multiple solutions, we arbitrarily

pick one.

Furthermore, we calculate

δs
1 =

1

100

∑
i

∑
a

ps
ia · 1(πs

1(i) = a)

where δs
1 is the average probability of assigning a student to her first choice.
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In the CADA experiments with naive players, we divide the set of students into two: N

is the set of naive players who always target their first choice, and S is the set of strategically

sophisticated players who play their best response strategies given others’ strategies. We

calculate utilitarian welfare as before. We also compute the number of students targeting

their k-th choice in equilibrium, which we denote by T s
k , k ∈ {1, 2, 3, 4}.

Given a draw {vs
ia}, the set P s is determined trivially. Next we describe how the other

numbers are computed.

A single tie breaker is a list of 100 randomly drawn lottery numbers, one for each

student. Under DA-STB the ties at a school are broken according to students’ single

random numbers. In CADA, we draw two single tie breakers, one to be used to break ties

at one’s target school, the other to be used at one’s other schools. A multiple tie breaker

is a list of 100 × 5 = 500 randomly drawn numbers, one for each student at each school.

Under DA-MTB, the ties at a school are broken according to students’ tie breaker numbers

at that school.

For each draw {vs
ia}, we independently draw 2,000 single tie breakers for DA-STB, and

an additional set of 2,000 single tie breakers for CADA, and 2,000 multiple tie breakers for

DA-MTB. Then ps
ia for a mechanism is computed by

Number of tie breakers at which i is assigned a

2, 000
.

The equilibrium of CADA is computed with single tie breakers being fixed. Given the

strategies of other students, a student’s best response is found by computing that student’s

expected utility over those tie breakers. Then Os, the set of oversubscribed schools, is

found by using students’s equilibrium target schools. In experiments with naive players,

naive players’ target schools are fixed at their first choice.

Note that we are approximating the equilibrium by drawing (two sets of) 2,000 indepen-

dent tie-breakers. The exact numbers are computed by considering 100! single tie-breakers

and (100!)5 multiple tie breakers, which is beyond the capabilities of our computational re-

sources. Any further increase in the number of tie breakers beyond 2,000 does not increase

the precision of our computations significantly.

For each zs ∈ {vs, vs
FB, π

s
1, T

s
1 , T

s
2 , T

s
3 , T

s
4 , |P s|, |Os|}, we compute the average of zs by

z =
1

100

100∑
s=1

zs.

Note that we drop all “s” from a variable to denote its mean over 100 iterations of an

experiment. We report 100 v
vFB

in our welfare figures.
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3 Omitted Proofs

3.1 Ordinal Strategy-proofness.

Fix arbitrary ordinal preferences P . Let P−v : V\{v} → Π denote the ordinal preferences

of all students but v determined by P. Recall that π(v) ∈ Π represents the truthful ordinal

preference induced by v, that is π(v) lists a before b if and only if va > vb. To simplify

the notation, let ψP := ψ(P,F), with F suppressed, and let ψ∗ := ψ(π[·],P−[·],F) denote the

matching outcome for any given type when it submits its ordinal preferences truthfully and

the others report P . When students report P , a student with type v receives expected

utility of

Eω

[
v · ψP (v, ω)

]
.

Theorem 2. For every (P,F), it is a (weak) dominant strategy for every student to submit

her ordinal preferences truthfully to DA, that is, for all v ∈ V , P ,

Eω [v · ψ∗(v, ω)] ≥ Eω

[
v · ψP (v, ω)

]
.

Proof. It suffices to show that, for all θ = (v, ω),

v · ψ∗(v, ω) ≥ v · ψP (v, ω).

Suppose to the contrary that

v · ψ∗(v, ω) < v · ψP (v, ω), (1)

for some θ = (v, ω) and P . We show that there exists a finite many-to-one matching

problem for which a DA algorithm fails strategy-proofness, which will then constitute a

contradiction to the standard strategy-proofness result (Dubins and Friedman, 1981; Roth,

1982).

To begin, fix any K ∈ N+, and construct a discretization of (P, F ) for θ as follows: For

every z = (z1, ..., zn) and y = (y1, ..., yn) where za, yb ∈ {0, ..., K}, consider a set

Θz,y =

{
(ṽ, ω̃) ∈ Θ :

za

K
≤ ṽa ≤ za + 1

K
,
nyb

K
≤ ω̃b ≤

n(yb + 1)

K
, a, b ∈ S

}
.

Let ηK,min = min
Θz,y

η(Θz,y), and let #Θz,y be the integer part of η(Θz,y)

ηK,min
.

Pick #Θz,y students in total from every set Θz,y at random without repetition. Let

{θl} denote the set of students that are picked. If |{θl}|
n

is not an integer, pick additional

students from the larger sets until obtaining an integer |{θl}|
n
. Note that the number of

additional students to be picked this way is less than n and n is fixed, therefore this will be
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negligible in the limit as K goes to infinity. Now consider the problem in which the set {θl}
of students are to be assigned to a set S of schools each with capacity |{θl}|

n
. Each student

θl = (vl, ωl)’s strict ordinal preference is given by P (θl). The schools’ strict preferences are

given by F . Denote this problem by ({θl}, S, P,F)K , and the associated ex post allocation

ψP
K . As K goes to infinity, ({θl}, S, P,F)K approximate (Θ, S, P,F) arbitrarily closely.

Hence, ψP
K →a.e ψ

P and ψ
π(v),P−v

K →a.e. ψ
∗ as K → ∞. Hence, if (1) holds, then there

exists K such that

v · ψ∗
K(v, ω) < v · ψP

K(v, ω).

This contradicts the fact that, in every finite problem, submitting true preferences to the

student-proposing deferred acceptance mechanism is a dominant strategy for every student

(Dubins and Friedman, 1981; Roth, 1982).

3.2 Welfare Performances of CADA with Naive Students

Theorem 8. In the presence of naive students, the equilibrium allocation of CADA sat-

isfies the following properties: (i) The allocation is OE, and is thus pairwise PE. (ii) The

allocation is PE within the set K of oversubscribed schools. (iii) If every student is naive,

then the allocation is PE within K ∪ {l} for any undersubscribed school l ∈ J := S\K.

Proof: Part (i) is precisely the same as Part (i) of Theorem 5 and is a consequence of Part

(ii) below and of Part (ii) of Lemma 5 (which does not depend on whether the students are

naive or not). Hence it is omitted. To prove Part (ii), it is useful to establish the following

lemma. As before, let φ∗ denote the ex ante allocation arising from the CADA game and

let K and J = S\K be respectively the sets of oversubscribed and undersubscribed schools

in equilibrium.

Lemma N. Any reassignment of φ∗(v) within K will make a naive student with v strictly

worse off, for almost every v.

Proof: Consider a naive student with v. Assume without loss of generality that she

prefers a strictly over all other schools (i.e., va > vb, ∀b 6= a). (This is without loss of

generality since the values are distinct for almost every student type.) Since the student is

naive, she subscribes to school a with probability 1. If school a is undersubscribed, then the

result is trivial since φ∗
k(v) = 0 for all k ∈ K. Hence, suppose school a is oversubscribed.

Then, any reassignment x ∈ ∆K
φ∗(v) := {(x1, ..., xn) ∈ ∆ |xa = φ∗

a(v), ∀a ∈ S \ K} must

satisfy ∑
b∈K

xb = φ∗
a(v).
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Since va > vb ∀b 6= a, for any x ∈ ∆K
φ∗(v), x 6= φ∗

a(v), we must have∑
b∈K

xbvb <
∑
b∈K

xbva = φ∗
a(v)va,

which implies that the student must be strictly worse off from any such reassignment. ‖

We are now ready to prove Parts (ii) and (iii):

Part (ii): We make use of the proof of Theorem 5. By Lemma N, a type-v naive

student’s assignment from the CADA, φ∗(v), is a unique solution to [P (v)], for a.e. v,

even without the constraint ∑
a∈K

paxa ≤
∑
a∈K

paφ
∗
a(v). (2)

Since φ∗(v) is feasible under (2), this must be a unique solution to [P (v)].

For a non-naive student with a.e. v, the proof of Theorem 5 follows directly, so φ∗(v),

is also a unique solution of [P (v)]. Since the equilibrium assignment of both types solves

[P (v)], the rest of the argument in the proof of Theorem 5 applies, proving that we φ∗ is

PE within K. ‖

Part (iii): Again let φ∗ be the ex ante allocation arising from CADA. Suppose to the

contrary that there exists a within-K ∪ {l} reallocation φ̃ of φ∗ that Pareto dominates φ∗.

By Part (ii), φ∗ is PE within K, so φ̃l(v) 6= φ∗
l (v) for a positive measure of v, which in

turn implies that there exists a set A ⊂ V with µ(A) > 0 such that φ̃l(v) > φ∗
l (v) for each

v ∈A. Since φ̃(v) ∈ ∆
K∪{l}
φ∗(v) ,

∑
b∈K∪{l} φ̃b(v) =

∑
b∈K∪{l} φ

∗
b(v), so∑

b∈K

φ̃b(v) <
∑
b∈K

φ∗
b(v) for all v ∈A.

Assume without loss that v satisfies va > vb for all a ∈ K and for all b 6= a. (a 6= l since

φ̃l(v) > φ∗
l (v) is impossible if a = l.) Then, the type-v student’s expected payoff from φ̃ is∑

b∈S

φ̃b(v)vb =
∑
b∈K

φ̃b(v)vb + φ̃l(v)vl +
∑

b∈J\{l}

φ∗
b(v)vb

<
∑
b∈K

φ̃b(v)va +
(
φ̃l(v) − φ∗

l (v)
)
va + φ∗

l (v)vl +
∑

b∈J\{l}

φ∗
b(v)vb

=

 ∑
b∈K∪{l}

φ̃b(v) − φ∗
l (v)

 va +
∑
b∈J

φ∗
b(v)vb

=
∑
b∈S

φ∗
b(v)vb.

Since this inequality holds for almost every v ∈ A, and since µ(A) > 0, φ̃ cannot Pareto

dominate φ∗.
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4 Finite Market Approximation of the CADA Equi-

libria

We shall argue in several steps to show how the results by BC be applied in our setting to

establish the finite market approximation of the main results.

4.1 Preliminaries.

Continuum Economy It is useful to develop a further formalism on the CADA. Con-

sider the augmented type space Θ0 := V × ΩR × ΩT , where its generic element θ0 =

(v, ωR, ωT ) represents a student’s vNM values, his regular lottery draw and his target lot-

tery draw. The type space is endowed with a product measure η0 := µ × ξR × ξT , where

ξi, i = R, T is a uniform measure, with associated distribution U(ξi) = ξi. Consider the

target strategy α : V → S, a measurable mapping from his values to a target school. Note

that by Theorem 3 we can without loss focus on pure strategies. The original type θ0

together with the target strategy α induces a “modified type” θ := v×ω1 × ...×ωn, where

ωa is the priority score at school a that is derived using the target choices as well as the

lottery draws. (Recall the lower the score is the better it is for a student, as before.) Let

η denote the measure of the types. Note η is no longer a product measure, given the way

ωa’s are constructed (see the Fa construction in Section 1). We shall sometimes say that

(µ, α) induces a measure η of this modified types.

We now associate a continuum economy by a pair E = (η0, α), and focus on η it

induces. In the paper, we had focused on the outcome of the student proposing DA. But

for our current purpose, we shall consider a stable matching of the economy E. Following

Azevedo and Leshno (2013), a stable matching is characterized by the vector of cutoffs

c = (c1, ..., cn). We shall say a sequence of continuum economies Ek converges to E, if the

associated ηk
0 converges to η0 in the weak-* sense and the targeting strategies αk converges

pointwise to α, as k → ∞. Obviously, if Ek converges to E, then ηk weak-* converges to

η.

Finite Economies We shall also study finite economies indexed by N , the number of

students. An N -economy is described by an arbitrary sample of N drawings from Θ0 such

that the lottery numbers are distinct across all students, their target strategies ᾱ : V → S,2

and the capacity vector q = (q1, ..., qn). The student types are described by measure η̄0.

As with the continuum economy, Ē := (η̄0, ᾱ) induces the measure on the modified types,

2That is, we define the strategies for the entire domain of V. Obviously, the values of ᾱ outside the
sampled v’s will not be relevant. But this formalism is useful for defining the notion of convergence.
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denoted by η̄. A cutoff for a school a ∈ S in a finite economy is the marginal (i.e., the

highest) modified lottery number attained by any students assigned to that school. We

shall say that a sequence of finite economies (ĒN , qN) converges to a continuum economy

E = (η0, α), if the associated η̄N
0 converges to η0 in the weak-* sense and the targeting

strategies αN converges pointwise to α, and nqa/N → 1 for all a ∈ S, as N → ∞. Again

when ĒN converges to E, then η̄N weak-* converges to η.

4.2 Uniqueness of stable matching in the continuum economy.

Next we shall fix a continuum economy E = (η0, α), and argue that it admits a unique

stable matching.3 To this end, note that E induces a set SO of oversubscribed schools and

a set SU of undersubscribed schools.4 Based on Lemma 5, we can without loss of generality

assume that if α(v) ∈ SO, then the student type v prefers α(v) over any undersubscribed

schools, and if α(v) ∈ SU , then that student applies to that school for sure. This restriction

is without loss since they are implication of an equilibrium. Our focus on pure strategies

also without restriction given our Theorem 3.

Given this, a student who targets an oversubscribed schools applies to that school before

she applies to any undersubscribed school, and she is rejected by all other oversubscribed

schools that the student didn’t target. It then follows that the cutoff of any oversubscribed

school a ∈ SO is uniquely pinned down by U−1(1/ma) = 1/ma, where ma is the measure

of students who targeted a. For each undersubscribed school b ∈ SU , given that all those

students targeting b are guaranteed seats, all that matters is how the remaining seats are

allocated to those who targeted oversubscribed schools but failed to be assigned to them.

Hence, the assignments of these seats in any stable matching is characterized by a stable

matching in a subeconomy consisting only of the remaining seats of the undersubscribed

schools and those students who targeted but failed to get into the oversubscribed schools.

The fact that the target lotteries are uniform means that the distribution of values, and

thus ordinal preferences, of students who targeted but failed oversubscribed schools is

uniquely determined. Further, by the construction of CADA priority rule, the priorities of

these students are determined by the uniform “regular” lottery draws, so priorities of these

students are common among all undersubscribed schools, and independent of their value

types. Hence, the cutoffs of these schools are determined uniquely much in the same way

as with DA-STB, following the arguments of Lemma 3.

3It is important to note that the uniqueness does not imply that the CADA equilibrium is unique since
α is endogenous. We use the uniqueness of stable matching for the purpose of applying the results of
Bodoh-Creed (2013).

4Formally, a ∈ SO if ma :=
∫
v

1{α(v)=a}dµ(v) ≥ 1, and a ∈ SU if not.
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Combining the results, we conclude that there is unique stable matching, characterized

by unique “equilibrium” cutoffs.

4.3 Continuity and convergence

The uniqueness of stable matching admitted by our continuum economy E offers a couple

of useful implications. Consider a sequence {Ek, ck} of continuum economies Ek and the

associated market clearing cutoffs ck. And suppose Ek converges to E and E admits unique

cutoffs c. Then, Lemma B3 of Azevedo and Leshno (2013) shows that ck converges to c.

Let’s call this the limit-economy continuity.

Next, suppose a sequence of finite economies ĒN converges to a continuum economy

E that admits a unique stable matching c.5 And ĒN admits a cutoff vector cN . Then,

by Lemma B4 of Azevedo and Leshno (2013), cN → c as N → ∞. We label this result

finite-economy convergence.

4.4 Application of the properties

We now show how the two results from Subsection 4.3 allow us to apply Theorems 6 and 7 of

Bodoh-Creed (2013). To this end, we need to check a couple of conditions. Let u(v, a, E) =∑
a∈S vaPa(v, a, E) denote the expected utility of the agents in the CADA game of the

continuum economy E, when a student with type v targets a, where Pa(v, a, E) is the

probability of assignment to school a. By the limit-economy continuity from Subsection

4.3, as Ek converges to E, the associate cutoff vectors ck also converge to the unique cutoff

vector c of E in the CADA game. Since a student’s assignment probabilities Pa(v, a, E)’s,

given his target choice a and his ordinal preferences, are completely pinned down by the

cutoffs, what this means is that u(v, a, Ek) → u(v, a, E) for all (v, a), since V × S is

compact, the continuity requirement of Theorem 6 of Bodoh-Creed (2013) holds.6

The second condition deals with the convergence of expected utility uN(v, a, ĒN) =∑
a∈S vaP

N
a (v, a, ĒN) to the continuum economy expected utility u(v, a, E) as ĒN con-

verges to E. This follows from the finite convergence property of Subsection 4.3. As a

sequence of finite economies ĒN converges to E (along with nqa/N → 1 for all a ∈ S), the

5Recall a stable matching is characterized by a cutoff vector.
6In the Bodoh-Creed’s specification, the payoff is expressed as a function of profile of mixed strategies

of agents in the economy. We can effectively describe this by the economy E. By the law of large numbers,
mixed strategies entail a “deterministic” economy. We also proved that the equilibrium strategy must be
effectively pure (Theorem 3), so it is without loss to focus on pure target choice. Finally, Bodoh-Creed
(2013) focuses on ex post payoff function depending also on the state. The continuity in expected utility
works also for his proof.
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associated market-clearing cutoff vectors c̄N converge also to the unique cutoff vector c of

E in the CADA game. Since a student’s assignment probabilities given his target school

a and his ordinal preferences are completely pinned down by the cutoffs, it follows that

uN(v, a, ĒN) → u(v, a, E) as ĒN → E, for all (v, a). Again the compactness of V×S makes

the convergence uniform. This satisfies the convergence requirement used in Theorems 6

and 7 of Bodoh-Creed (2013).
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