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Abstract

We study an auction design problem where the auctioneer anticipates that bidders
collude tacitly. We model tacit collusion in the following way: whichever auction the
auctioneer announces, it becomes the stage game of a corresponding repeated game,
and out of all sequential equilibria of the resulting repeated game, bidders play the one
that maximizes their total ex ante payoff. We show that an optimal auction in this
model takes the form of a public good provision game.
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1 Introduction

We study an auction design problem where the auctioneer anticipates that bidders will
always collude tacitly when they play any announced auction mechanism. We model tacit
collusion in the following way: whichever auction mechanism the auctioneer announces, it
would become the stage game of a corresponding repeated game, and out of all sequential
equilibria in this corresponding repeated game, bidders play the one that maximizes their
total ex ante payoff. We show that an optimal auction in this model exhibits qualitative fea-
tures quite opposite to those in a standard model. Instead of creating negative externalities
among bidders in the sense that when one bidder bids higher every other bidder gets a lower
payoff, here an optimal auction should actually create positive externalities among bidders
in the sense that when one bidder bids higher every other bidder gets a higher payoff. We
show that one auction that delivers such properties is one that takes the form of a public
good provision game (Theorem 1).

These results echo those of a highly related paper by Che and Yoo (2001; hereafter CY).
CY studied the optimal multi-agent incentive contract design problem in a similar repeated-
interaction setting. They also found that an optimal contract in their model exhibits qual-
itative features quite opposite to those in a standard model. In particular, while optimal
contracts in a standard model usually take the form of relative performance evaluation, an
optimal contract in their model takes the form of joint performance evaluation. Note that
the logic behind relative performance evaluation is to create negative externalities among
workers (when one worker works harder every other worker gets a lower payoff), and that
behind joint performance evaluation is to create positive externalities among workers (when
one worker works harder every other worker gets a higher payoff). CY use this observation
to explain why ”teams” arise. The main difference between CY and this paper is that, while
their problem is a moral harzard one, ours is an adverse selection one. But the intuition
behind both papers is the same.

Our model fits better the story of an auction house who faces more or less the same set
of serious bidders over time but cannot afford to change its auction mechanism frequently.
As an extension to our main result, we also study an alternative model in Section 5, where
the auctioneer can change her auction mechanism every period, but cannot commit to which
auction mechanisms she will use in the future. In this alternatively model, the implication of
our way to model tacit collusion is very strong. In particular, in the sequential equilibrium
that maximizes bidders’ total ex ante payoff, bidders jointly capture all the surplus. Note
that in deriving this strong result, we allow the auctioneer to use secretive selling mechanisms
(i.e., we allow the auctioneer to approach one of the bidders in secret and to promise this
bidder not to disclose any trade details to any third party).

1.1 Related Literature

There are many studies on communicative collusion. If the communication channel is
rich enough, pre-play communication can be modelled as a message game. Depending on
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whether the outcomes of the message game are to be enforced by side contracts or by repeated
interaction, the literature can be divided into two corresponding categories. For example,
Graham and Marshall (1987), McAfee and McMillan (1992), and Marshall and Marx (2002)
belong to the side-contract category; whereas Athey and Bagwell (2001) and Aoyagi (2002)
belong to the repeated-interaction category. These papers do not deal with mechanism
design, as they restrict their attention to fixed (subsets of) mechanisms.

A relatively smaller literature touches upon tacit collusion. How the mechanism designer
manages to forbid agents from talking to each other before playing the announced mechanism
is usually not modelled. But the assumption that she somehow manages to do so is not
unrealistic. Cramton (1995) documents probably the most entertaining example of tacit
collusion in auction history, where bidders of the first FCC auction used the last few digits
of their bids to communicate their preferences to each other. The fact that bidders needed
to communicate their preferences during the auction can be viewed as an evidence that
the auction designer (the FCC in this example) somehow managed to forbid bidders from
communicating before the auction.

If the announced mechanism already possesses multiple equilibria, then tacit collusion
can be modelled as an equilibrium selection rule such that agents always play the most
“collusive” equilibrium. Otherwise, tacit collusion can still be studied in a model of re-
peated interaction. Examples of repeated-interaction model of tacit collusion include Athey,
Bagwell, Sanchirico (2000), Athey and Bagwell (2001), Blume and Heidhues (2001), and
Skrzypacz and Hopenhayn (2001). All these papers restrict their attention to fixed (subsets
of) grand mechanisms. Once again, these papers do not deal with mechanism design, as
they restrict their attention to fixed (subsets of) mechanisms.

Laffont and Martimort (1997, 2000) deal with mechanism design with communicative
collusion. This paper is parallel to their papers, and deals with mechanism design with tacit
collusion.

2 The Model

There is one auctioneer and a set N of n ≥ 2 symmetric bidders. The auctioneer has
one (perishable) object to sell every period. The object is indivisible, and is worth nothing
to the auctioneer. Each bidder i has a private valuation vit ∈ [0, 1] over the object being
sold in period t, where vit is IID across i and t. For any i and t, vit follows the probability
distribution function F , which has a strictly positive density function f over [0, 1].

There are infinitely many periods (i.e., t = 1, 2, . . .). Before the beginning of period 1
(say in period 0), the auctioneer has one single chance to choose an auction game. Then, in
each period t, bidders first learn their private valuations, and then play the auction game
chosen in period 0.

It is important for the reader to distinguish two kinds of game here: (i) the auction game
which is played period by period, and (i) the repeated game which has infinite horizon.
Formally, an auction game is a selling mechanism (S, p, q,M, α), where:
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• S := ×i∈NSi is a vector of message spaces; each Si is a set of possible messages bidder
i can send to the auctioneer, with the restriction that Si = {0i} ∪ Ŝi, where 0i is the
“non-participation” message;

• p : S → {(p1, . . . , pn) ∈ [0, 1]n |
∑

i∈N pi ≤ 1} is an allocation function that specifies
the probabilities with which each bidder will get the object, with the restriction that
∀i, pi(· · · , 0i, · · · ) ≡ 0 (non-participating bidders never get the object);

• q : S → R
n is a payment function that specifies the amount each bidder has to pay the

auctioneer, with the restriction that ∀i, qi(· · · , 0i, · · · ) ≡ 0 (non-participating bidders
never pay the auctioneer);

• M := ×i∈NMi is a vector of message spaces; each Mi is a set of possible messages the
auctioneer can send to bidder i; and

• α : S → ∆(M) is an announcement function that specifies what information the
auctioneer would disclose to each bidder after the auction.

The above definition of an auction game is standard except for the announcement func-
tion. The specification of the announcement function is not important in any one-shot
auction game, as it will not affect bidders’ incentives. It becomes important when we study
repeated auctions, as it now affects bidders’ ability to collude. In the definition above, αi
(the projection of α onto ∆(Mi)) specifies the (potentially random) message the auctioneer
tells bidder i after the auction, and these messages can be correlated across bidders.1

All players are risk neutral: the auctioneer’s period-t payoff ut is simply her revenue in
period t; and each bidder i’s period-t payoff uit is equal to pivit−qi, where pi is his probability
of obtaining the object in period t, and qi is the amount he pays the auctioneer in period t.
Notice that if a bidder does not participate in the period-t auciton game, his period-t payoff
will be zero.

All players have common discount factor δ.2 We follow the convention in the repeated-
game literature and normalize a player’s discounted sum of payoffs by the factor (1− δ). For
example, if bidder i’s period-t payoffs are uit, t = 1, 2, . . ., then his normalized dicounted
sum of payoffs will be (1− δ)

∑∞
t=1 δ

t−1uit.

Once the auctioneer has chosen an auction game in period 0, the bidders are playing
an induced repeated game. Typically, this repeated game will have multiple sequential
equilibria. Our way of modelling tacit collusion is to focus on the sequential equilibrium
that maximizes bidders’ total payoff (hereafter the bidder-optimal equilibrium). In other
words, we model collusive bidding by assuming that bidders can coordinate on their favorite

1More generally, we should allow the announcement function to depend on the realization of the winner
when the winner is being picked randomly. This can easily be done with extra notations.

2That the auctioneer has the same discount factor bidders have is both important and unimportant. It is
important because otherwise infinite surplus can be generated out of thin air by simply having players trade
intertemporally. It is however not important for our main result that an optimal auction takes the form of
a public good provision game. See also Footnote 5.
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sequential equilibrium. If there are more than one sequential equilibrium that maximizes
bidders’ total payoff, we focus our attention to the one that maximizes the auctioneer’s
payoff.

Finally, the following definitions will prove useful in subsequent sections. We shall use W ∗

to denote each period’s expected social surplus; i.e., W ∗ := E max{v1t, . . . , vnt} =
∫ 1

0
vdF (v)n

(after normalization W ∗ is also the discounted sum of social surplus). We shall use w∗ to
denote each period’s per-bidder expected social surplus; i.e., w∗ := W ∗/n.

When we mention the “CGK auction,” we mean the following auction: all participating
bidders submit sealed bids, the good is transferred to the highest bidder, and each partici-
pating bidder i pays bi− 1

|B|−1

∑
i6=j∈B bj, where B is the set of participating bidders, and the

auctioneer discloses everything to every bidder after the auction. Notice that, in the CGK
auction, bidder’s total payment to the auctioneer is always zero. On top of this property,
Cramton, Gibbons, and Klemperer (1987) prove that the CGK auction also has an efficient
equilibrium. In this efficient equilibrium, even a bidder with the lowest type (i.e., a bidder
with valuation 0) will receive strictly positive expected payoff. Let w > 0 denote this strictly
positive expected payoff a bidder with the lowest type will receive in the CGK auction’s
efficient equilibrium. Define W := nw.

For any probability distribution function F , we always have W ∗ > W . For example, if
n = 2, and F is the uniform distribution on [0, 1], then W ∗ = 2

3
, and W = 1

3
.

When we mention the null auction, we mean the seller simply refuses to transact; i.e.,
∀i, Si = {0i}.

3 The Main Result

We arrive at the conclusion that an (almost) optimal auction takes the form of a public
good provision game in two steps. The first step is to observe that there is an upper bound
on the auctioneer’s payoff. The second step is to verify that an auction that takes the form
of a public good provision game almost achieves that upper bound.

Consider the following auction, which takes the form of a public good provision game:3

• Bidders simultaneously decide whether or not to contribute to a public good (say,
building a temporary auction house).

• If every bidder contributes, the auctioneer runs the CGK auction.

• If at least one bidder refuses to contribute, the auctioneer runs the null auction.

• The amount of contribution is q∗ := (1− δ)w + δw∗.

3Note the slight abuse of terminology below: both the CGK and the null “auctions” are actually parts of
the auction we are constructing, and hence strictly speaking do not by themselves qualify as real auctions
(as defined in Section 2). However, we believe there should be no confusion.
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• The auctioneer discloses everything to every bidder after the auction.

Once the auctioneer has chosen this auction game in period 0, bidders will find them-
selves playing a repeated game. A typical approach to analyze such a repeated game would
be to use the APS machinery (Abreu, Pearce, and Stacchetti (1990)) to characterize the
set of equilibrium payoffs, and then identify the one that maximizes bidders’ total payoff.
However, since this repeated game is deliberately designed to have certain properties, we
can actually derive the bidder’s optimal sequential equilibrium directly without using of the
APS machinery.

Let’s ignore incentives for a moment and ask what the most efficient outcome (from
bidders’ point of view) is. We shall then show that this efficient outcome can be supported
as a sequential equilibrium outcome. Finally, we shall show that, in that bidder-optimal
equilibrium, the auctioneer’s payoff is

(1− δ)W + δW ∗.

Since W ∗ is an upper bound of the auctioneer’s payoff, the auction described above is hence
almost optimal when δ is close to 1.

Ignore incentives for a moment. Suppose a social planner can mandate some behavorial
rule for each bidder, and aims at maximizing the sum of bidders’ payoffs. What should such
a social planner mandate each bidder to do? Since the auction game will remain the same
in the next period regardless of what the planner mandates the bidders to do in the current
period, the planner’s problem can be collapsed into a single-period problem. If the CGK
auction is ever played, the social planner should tell each bidder to use the same strictly
increasing bidding function. This would guarantee that the winner of the CGK auction is
the highest-valuation bidder, and hence maximize bidders’ total payoff. The social planner
still has to decide when the bidders should contribute, which amounts to trading-off the
benefit of running the CGK auction against the cost of paying the contribution. Since each
bidder’s contribution decision can only be measurable with respect to his own valuation but
not the others’, the optimal contribution decision should take the form of a threshold rule,
such that a bidder contributes if and only if his valuation is above a certain threshold.

Let a := (a1, . . . , an) be a vector of thresholds, and

W (a) :=
∑
i∈N

(1− F (ai))(−q∗) +

∫ 1

v1=a1

· · ·
∫ 1

vn=an

max{v1, . . . , vn}dF (vn) · · · dF (v1)

is the corresponding sum of bidders’ payoffs. We shall first prove that the optimal thresholds
must be symmetric (i.e., a1 = · · · = an). Suppose a is not symmetric. Without loss of
generality assume a1 < a2. Let b ∈ (a1, a2) be such that

2F (b) = F (a1) + F (a2),
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and define a′ = (b, b, a3, . . . , an). It suffices to prove that W (a′) > W (a). Let

φ(v1, v2) :=

∫ 1

v3=a3

· · ·
∫ 1

vn=an

max{v1, v2, v3, . . . , vn}dF (vn) · · · dF (v3),

and notice that φ(·, ·) is a symmetric function. Then, using the definition of b, we have

W (a′) =
∑
i∈N

(1− F (ai))(−q∗) +

∫ 1

v1=b

∫ 1

v2=b

φ(v1, v2)dF (v2)dF (v1)

=
∑
i∈N

(1− F (ai))(−q∗)

+

∫ 1

v1=b

∫ 1

v2=a2

φ(v1, v2)dF (v2)dF (v1) +

∫ b

v1=a1

∫ 1

v2=a2

φ(v1, v2)dF (v2)dF (v1)

+

∫ 1

v1=b

∫ a2

v2=b

φ(v1, v2)dF (v2)dF (v1)−
∫ b

v1=a1

∫ 1

v2=a2

φ(v1, v2)dF (v2)dF (v1)

= W (a) +

∫ 1

v1=b

∫ a2

v2=b

φ(v1, v2)dF (v2)dF (v1)−
∫ b

v1=a1

∫ 1

v2=a2

φ(v1, v2)dF (v2)dF (v1)

= W (a) +

∫ a2

v1=b

∫ a2

v2=b

φ(v1, v2)dF (v2)dF (v1)

+

∫ 1

v1=a2

∫ a2

v2=b

φ(v1, v2)dF (v2)dF (v1)−
∫ b

v1=a1

∫ 1

v2=a2

φ(v1, v2)dF (v2)dF (v1)

> W (a) +

∫ a2

v1=b

∫ a2

v2=b

φ(v1, v2)dF (v2)dF (v1)

+

∫ 1

v1=a2

∫ a2

v2=b

φ(v1, b)dF (v2)dF (v1)−
∫ b

v1=a1

∫ 1

v2=a2

φ(b, v2)dF (v2)dF (v1)

= W (a) +

∫ a2

v1=b

∫ a2

v2=b

φ(v1, v2)dF (v2)dF (v1)

+

∫ 1

v1=a2

φ(v1, b)(F (a2)− F (b))dF (v1)−
∫ 1

v2=a2

φ(b, v2)(F (b)− F (a1))dF (v2)

= W (a) +

∫ a2

v1=b

∫ a2

v2=b

φ(v1, v2)dF (v2)dF (v1)

> W (a),

which verifies our claim.

From now on we can restrict our attention to symmetric thresholds, and we shall slightly
abuse notation and write W (a) instead of W (a, . . . , a). We want to prove that W (a) is
maximized at a = 0.
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For any a ∈ [0, 1], let

Zn(a) :=

∫ 1

v1=a

· · ·
∫ 1

vn=a

max{v1, . . . , vn}dF (vn) · · · dF (v1) ≥ 0,

and notice that Zn(0) = W ∗. Define Zn−1(a) similarly. Also notice that ∀a ∈ (0, 1),

Z ′n(a) = −f(a)nZn−1(a) < 0,

so Zn(a) is monotone decreasing in a. Similarly Zn−1(a) is monotone decreasing in a as well.4

We can now rewrite W (a) as

W (a) = Zn(a)− nq∗(1− F (a)),

and notice that ∀a ∈ (0, 1),

W ′(a) = f(a)[nq∗ − nZn−1(a)].

Since Zn−1(a) is monotone decreasing in a, [nq∗ − nZn−1(a)] is monotone increasing in a,
and hence W (a) is quasi-convex. W (a), being a quasi-convex function, is maximized either
at a = 0 or a = 1. Since

W (0) = W ∗ − nq∗ = (1− δ)(W ∗ −W ) > 0 = W (1),

W (a) is maximized at a = 0.

In summary, the social planner should tell the bidders to always contribute, and then
play the efficient equilibrium in the CGK auction.

Can this planner’s ideal outcome be supported as a sequential equilibrium outcome? The
answer is affirmative, and the proof is constructive. Consider the following strategy:

1. In the first period, contribute regardless of the period-1 valuation, and if the CGK
auction is run, play the efficient equilibrium.

2. In any subsequent period,

(a) if there exists at least one bidder who once refused to contribute in the past, do
not contribute regardless of the current-period valuation;

(b) otherwise, contribute regardless of the current-period valuation, and if the CGK
auction is run, play the efficient equilibrium.

We claim that it is a sequential equilibrium for every bidder to follow the above strategy.
First notice that it is a sequential equilibrium for every bidder not to contribute in any

4This is true even when n = 2.
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period regardless of his valuation. So the strategy described above is essentially a grim-
trigger strategy. Then, by the one-stage deviation principle, it suffices to check the following
two kinds of one-stage deviations:

1. A bidder cannot benefit from not contributing when he should. This follows from the
facts that (i) if he does not contribute, his current-period and continuation payoffs will
both be zero, whereas (ii) if he contributes, his current-period payoff will be at least
(1− δ)(w− q∗), his continuation payoff will be δ(w∗− q∗), and these two sum up to at
least ((1− δ)w + δw∗)− q∗ = 0.

2. When a CGK auction is run, a bidder cannot benefit from not playing the efficient-
equilibrium bidding strategy. This follows from the facts that (i) his opponents’ future
behavior will not depend on how he bids in the current-period CGK auction, and
(ii) the efficient-equilibrium bidding strategy is the best response to his opponent’s
current-period bidding strategies.

When bidders play the above mentioned strategies, they contribute every period. So the
auctioneer’s payoff is (1−δ)W+δW ∗, which is arbitrarily close to the upper bound W ∗ when
δ is arbitrarily close to 1 (i.e., when bidders are patient). This concludes that the auction
described above is almost optimal when bidders are patient.5

Theorem 1 When there are two or more bidders, and when bidders are patient, an almost
optimal auction takes the form of a public good provision game (as described above).

It is illuminating to compare the above auction with Myerson’s (1981) auction. In the
extreme case when δ = 0, bidders are completely impatient and hence cannot tacitly collude
at all. In that case, the optimal auction is Myerson’s auction, which boils down to the second
price auction with reserve price. Note that in Myerson’s auction, when a bidder bids higher,
every other bidder gets a lower payoff, both because the winner may need to pay a higher
second-price, and because every other bidder has a lower chance of winning the object.

However, as δ increases from 0 to 1, and bidder’s ability to tacitly collude increases,
Myerson’s auction finally under-performs relative to the above auction. Even if Myerson’s
auction employs a disclosure rule that discloses nothing to every bidders after every round,
the auctioneer’s payoff in Myerson’s auction is uniformly bounded away from W ∗ regardless
of δ. This bound can be computed as follows. First notice that honest bidding is a stage-game
equilibrium for the Myerson auction, and hence bidding honestly every period is a sequential

5This is a good place to go back to our earlier claim that our result does not depend on the assumption that
the auctioneer shares the same discount factor with the bidders. (See Footnote 2.) Suppose the auctioneer
has a different discount factor that is far away from 1. Suppose intertemporal trade contracts are not
enforceable and hence we do not need to worry about the infinite surplus that can potentially be generated
from players having different discount factors. If the auctioneer uses the public-good-provision auction, she
will still collect the same contributions every period, and hence her normalized discounted sum of expected
payoff–normalized and discounted by her own far-away-from-1 discount factor–will still be (1− δ)W + δW ∗

and is arbitrarily close to the upper bound of W ∗ as bidders’ discount factor δ goes to 1.
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equilibrium in the repeated game where bidders play the Myerson auction repeatedly. Let
W be the sum of bidders’ payoffs in this sequential equilibrium, and by construction W does
not depend on δ. Now, the bidder-optimal sequential equilibrium (which depends on δ) may
give bidders an even higher total payoff: W (δ) ≥ W . Therefore, for any δ, the auctioneer’s
payoff cannot be bigger than W ∗ − W (δ), which in turn is no bigger than W ∗ − W . So
W ∗ −W is a uniform bound for the auctioneer’s payoff regardless of δ.

4 Discussions

4.1 Renegotiation-Proofness

One apparent problem with the public-good-provision auction is that the bidder-optimal
sequential equilibrium is not renegotiation-proof. Once a bidder deviates and refuses to
contribute in a particular period, every bidder will receive zero payoff in the continuation
equilibrium. This gives rise to the possibility of renegotiation among bidders after such a
deviation. However, this problem can be fixed with some modification to the public-good-
provision auction when n ≥ 3. The idea is to allow any (n − 1)-coalition to punish the
remaining bidder by excluding him from the auction. If we can make the total expected
payoff collected by this (n− 1)-coalition the same as the total expected payoff collected by
the grand coalition along the equilibrium path, then we can say that the planner’s ideal
outcome (i.e., to have all bidders contribute in every period regardless of their valuations)
can be supported as a renegotiation-proof sequential equilibrium outcome.

Let z∗ be the per-bidder expected payoff in an (n−1)-CGK auction (i.e., a CGK auction
among a group of (n−1) bidders), and z be the expected payoff a bidder with the lowest type
will receive in an (n − 1)-CGK auction. Recall that in the public-good-provision auction,
bidders’ total expected payoff along the equilibrium path is n(w∗ − q∗). Let q̂ be implicitly
defined by

(n− 1)(z∗ − q̂) = n(w∗ − q∗).

Roughly speaking, q̂ would be the amount we should ask each member of a punishing coalition
to contribute in order to maintain renegotiation-proofness. But q̂ may be too large, and
a member of a punishing coalition may not be willing to contribute this much when his
valuation is low. So we need to adjust it a little bit. Let q̃ be the amount of per-bidder
contribution if we were to apply the public-good-provision auction to a group of (n − 1)
bidders; i.e., q̃ := (1 − δ)z + δz∗. Let M̂ := min{0, q̂ − q̃}. Now the adjusted amount of
contribution, q̂ − M̂, would be small enough for any member of a punishing coalition to
swallow. To maintain renegotiation-proofness, we need to adjust q∗ as well. Let M∗ be
implicitly defined by

(n− 1)[z∗ − (q̂ − M̂)] = n[w∗ − (q∗− M∗)].

Now we can describe our modified auction:
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• Bidders simultaneously decide whether or not to contribute to a public good.

• If bidder i chooses to contribute, he has to report a pair (bi, xi) ∈ R+ ×N ; i.e., he has
to report a bid, and name a fellow bidder to punish.

• If at least two bidders refuse to contribute, then every contributing bidder pays a
contribution of (q∗− M∗), and the auctioneer runs the null auction.

• If exactly one bidder (say j) refuses to contribute,

– if ∀i 6= j, xi = j, then every contributing bidder pays a contribution of (q̂ − M̂),
and the auctioneer runs the (n−1)-CGK auction among the contributing bidders;

– otherwise, every particpating bidders pays a contribution of (q∗− M∗), and the
auctioneer runs the null auction.

• If every bidders contributes,

– if there exists j such that ∀i 6= j, xi = j, then every bidder (except j) pays a
contribution of (q̂− M̂), and the auctioneer runs the (n− 1)-CGK auction among
the (n − 1) bidders other than j (i.e., the auctioneer in effect treats j as not
contributing);

– if ∀i, xi = i, then every bidder pays a contribution of (q∗− M∗), and the auctioneer
runs the CGK auction;

– otherwise, every bidder pays a contribution of (q∗− M∗), and the auctioneer runs
the null auction.

• The auctioneer discloses everything to every bidder after the auction.

Using exactly the same argument as in Section 3, and using the definitions of (q̂− M̂) and
(q∗− M∗), we can continue to argue that one of the social planner’s ideal outcomes is to have
all bidders contribute in every period regardless of their valuations. A renegotiation-proof
sequential equilibrium that supports this planner’s ideal outcome is as follows:

• In any period that belongs to the normal state (to be specified below), every bidder i
contributes regardless of his valuation, and reports xi = i.

• In any period that belongs to the i-punishment state (to be specified below), i does not
contribute, and every bidder j 6= i contributes regardless of his valuation, and reports
xj = i.

• The first period belongs to the normal state.

• If in any period there exists i who deviates, then the next period belongs to the i-
punishment state.
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The proof that the above strategy profile is indeed a sequential equilibrium is largely
the same as that in Section 3. On the equilibrium path, bidders contribute in every period
regardless of their valuations. Ex post efficiency is achieved. Bidders’ total expected payoff
is at most (n − 1)(z∗ − q̃) = (1 − δ)(n − 1)(z∗ − z) ≈ 0. So the auctioneer’s payoff almost
achieves the upper bound of W ∗, and hence the above auction is also almost optimal.

4.2 Entry and Exit

Imagine that there is a large number of potential bidders in any period, but only n of
them are serious. The identities of these serious bidders may change over time, and individual
bidders need not know the identities of these serious bidders in any particular period. In
this situation, the auction described in Section 3 can be modified such that as long as the
auctioneer manages to collect n contributions, she will run the CGK auction among those
who contribute. The modified sequential equilibrium is that each bidder contributes if and
only if (i) he is serious, and (ii) there was a CGK auction in the last period.

Alternatively, imagine that there is a pool of n bidders. But every once a while some
bidders will die and being replaced by new comers. If bidders have constant probability of
dying, then the above modification will also work.

5 When the Auctioneer is one of the Players

The model in Section 2 fits better the story of an auction house who faces more or less
the same set of serious bidders over time but cannot afford to change its auction mechanism
frequently. As an extension to our main result, we study an alternative model in this section,
where the auctioneer can change her auction mechanism every period, but cannot commit
to which auction mechanisms she will use in the future. In this alternatively model, the
implication of our way to model tacit collusion is very strong. In particular, in the sequential
equilibrium that maximizes bidders’ total ex ante payoff, bidders jointly capture all the
surplus. Note that in deriving this strong result, we allow the auctioneer to use secretive
selling mechanisms (i.e., we allow the auctioneer to approach one of the bidders in secret
and to promise this bidder not to disclose any trade details to any third party).

This alternative model in effect turns the whole game into a repeated game, with the
auctioneer one of the players. In every stage game of this repeated game, the auctioneer
moves first, announces an auction, and then bidders play this auction game. This repeated
game has multiple sequential equilibria. Once again, we follow our earlier convention and
focus our attention to the bidder-optimal sequential equilibrium.

The proof that, if the auctioneer is herself a player of a bigger repeated game, her profit
would be driven down to zero in the bidder-optimal sequential equilibrium is contructive.
Consider the following strategy profile:

• In the first period, the auctioneer announces the CGK auction.
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• In any period, unless it is in the punishment phase (to be defined below), the auctioneer
announces the CGK auction.

• In any period, if it is in the punishment phase, the auctioneer announces the null
auction.

• In any period, every bidder refuses to participate if the auctioneer announces any auc-
tion different from the CGK auction, and plays the CGK auction’s efficient equilibrium
if the auctioneer announces the CGK auction.

• The transitional dynamics between the normal state and the punishment phase is as
follows:

1. The first period belongs to the normal state.

2. In any normal-state period,

(a) if the auctionner announces the CGK auction, the next period will belongs
to the normal state;

(b) if the auctioneer announces an auction different from the CGK auction,

i. if no bidders participate, then the next period belongs to the normal state;

ii. if two or more bidders participate, then the next period belongs to the
normal state;

iii. if exactly one bidder participates, then the next period becomes the first
period of an m-period-long punishment phase, where m is any large but
finite integer that satisfies

δw∗ ≥ (1− δ) + δm+1w∗. (1)

3. In any period during a punishment phase,

(a) if the auctioneer announces the CGK auction, then the next period belongs
to the normal state;

(b) if the auctioneer announces an auction different from either the CGK auction
or the null auction,

i. if no bidders participate, then the next period belongs to the normal state;

ii. if two or more bidders participate, then the next period belongs to the
normal state;

iii. if exactly one bidder participates, then the next period becomes the first
period of an m-period-long punishment phase.

(c) if the auctioneer announces the null auction, and if it is the m′-th consecutive
period in the current punishment phase, where m′ < m, then the next period
remains in the punishment phase;

(d) if the auctioneer announces the null auction, and if it is the m′-th consecutive
period in the current punishment phase, where m′ ≥ m, then the next period
belongs to the normal state.
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Note that inequality (1) will be satisfied by some m if bidders are patient enough; i.e., if
δ is large enough such that δw∗ > 1− δ.

Also note that bidders’ strategies do not depend on whether the current period belongs to
the normal state or the punishment phase, and hence bidders do not need to know what other
bidders have done in the past in order to follow these strategies. In particular, bidders can
follow the prescribed strategies regardless of the disclosure policy employed by the auctioneer.

If players follow this strategy profile, then the auctioneer will announce the CGK auction
every period and get zero payoff, whereas each bidder will get an expected payoff of w∗. To
see that this strategy profile is indeed a sequential equilibrium, all we need is to invoke the
one-stage deviation principle and check all possible one-stage deviations.

1. If the auctioneer announces the CGK auction, bidder i knows that (i) his fellow bidders
will play the CGK auction’s efficient equilibrium strategies, and (ii) the next period
will belong to the normal state. So it does not pay to deviate from also playing the
CGK auction’s efficient equilibrium strategy.

2. If the auctioneer announces the null auction, bidder i has no ways to deviate anyway.

3. If the auctioneer announces an auction different from either the CGK auction or the
null auction, bidder i knows that his fellow bidders will not participate. If he does not
participate, the next period will belong to the normal state, and hence his continuation
payoff will be δw∗. If he participates, his current-period payoff is at most 1, but he has
to endure an m-period-long punishment phase. So his (normalized) payoff is at most
(1 − δ)1 + δm+1w∗, which by inequality (1) is no bigger than δw∗. So it does not pay
to deviate from not participating.

4. In any period, the auctioneer is indifferent between announcing the CGK auction and
announcing the null auction. Deviating from announcing either of these will not make
any difference as bidders will not participate anyway.

This exhausts all possible one-stage deviations and verifies that the above strategy profile
is indeed a sequential equilibrium.

6 Concluding Remark

In this paper we have shown that if an auctioneer anticipates tacit collusion (modelled
as bidders interacting repeatedly and play their best equilibrium), then an optimal auction
would take the form of a public good provision game. However, this public-good-provision
auction is performing well only when bidders are patient enough. This prompts the questions
of how the optimal auction would look like when δ is in the intermediate range. This optimal
auction design problem is highly non-trivial because the auctioneer may want to choose an
auction that does not disclose information regarding bids, identity of winners, etc., to the
bidders at the end of each auction game. Such a non-disclosure policy has natural appeal to
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the auctioneer because it can potentially inhibit collusion (as deviations will be more difficult
to detect). So solving the optimal auction design problem inevitably requires analyzing how
well bidders can do when they play auctions with this kind of non- or partial-disclosure
policies repeatedly, which in turn requires analyzing repeated games with private monitoring–
an area of repeated games theory that we still do not know much about.6 In this paper, we
circumvented the problem of private monitoring because the public-good-provision auction
always has the auctioneer discloses everything to every bidder after every auction. This did
not hurt our case because we looked at cases where δ is large. But the same is unlikely to
be true once we move beyond cases of large δ.
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