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A substantial experimental literature confirms that subjects exhibit trust and practice reci-

procity. For example, Berg, Dickhaut and McCabe (1995) consider the trust game, in which

one subject (the investor) has income and can invest by sending some or all of this income to

another subject (the trustee), where the income sent grows en route and is received as a larger

amount. The trustee may then choose to reciprocate, by returning some income to the investor.

An investor that gives income to the trustee has shown trust, since the investor has incurred

a cost and cannot be sure that the trustee will reciprocate. Berg, Dickhaut and McCabe find

that subjects often exhibit trust and practice reciprocity. In particular, evidence of positive

reciprocity is reported: many subjects reward kind behavior with a kind response. de Quervain

(2004) et al. study a modified trust game, in which the investor can incur a cost and punish

the trustee if the latter does not reciprocate. They observe that such punishments often occur,

indicating that subjects may also practice negative reciprocity, whereby they punish unkind

behavior with an unkind response.1

In this paper, we study how trusting and reciprocal behaviors may emerge from cooperation

among self-interested players in a repeated interaction with private information. In making the

assumption of self-interested players, our purpose is not to deny that individuals have social

preferences that perhaps include an instinct for trust and reciprocity. Rather, our purpose is

to better understand the underlying advantages that trusting and reciprocal behaviors afford

when players have private information and gains from cooperation are present.

In the stage game of our repeated trust game with private information, either player a is given

income, player b is given income, or neither player is given income. Each player is privately

informed as to whether or not he is the investor. Thus, if a player does not receive income,

then the player does not observe whether neither player received income or the other player

received income. Next, if one player receives income, then that player may choose to exhibit

trust and invest by sending some or all of his income to the other player. If a transfer is made,

then the level of the investment is publicly observed; however, while the investment is value

enhancing on average, the outcome is random. The investment either succeeds or fails, and

the investment is completely lost when it fails. The trustee privately observes the investment

1de Quervain, et al (2004) also use PET scans and investigate the neural basis of punishment, finding evidence
that humans derive satisfaction from the punishment of defectors. See also King-Casas, et al (2005) for related
evidence of positive and negative reciprocity in a multi-round trust game. As Fehr and Gächter (2000a) observe,
subjects in public-good games may also practice negative reciprocity. See Camerer (2003) and Fehr and Gachter
(2000b) for excellent surveys of experimental work. In our working paper (Abdulkadiroğlu and Bagwell, 2005),
we provide further discussion of pyschological and anthropological studies of trust and reciprocity.
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outcome. If the investment is successful, then the trustee can reciprocate within the period

and send some or all of the returns back to the investor. Thus, if the investor exhibits trust

and reciprocation does not occur within the current period, then the investor does not observe

whether the trustee elected not to immediately reciprocate or the investment failed.

This game is highly stylized, but it serves to introduce two key incentive problems. First,

when a player is selected as the investor, the gains from cooperation can be enjoyed only if this

player has incentive to reveal that he is the investor and exhibits trust by investing in the other

player. If a player reveals that he is the investor and exhibits trust, then the player has given a

favor to the other player. As the investor always has the option of pretending that he has not

received income, some gain must be anticipated when a favor is extended in this way. This gain

may take the form of a favor that the current trustee now owes the current investor. This favor

may be paid in the current period if the investment is successful, or it may be paid in the future

if the players then adopt a path of play for the continuation that favors the current investor.

We think of the former payment as immediate reciprocity and the latter payment as dynamic

reciprocity. Second, in the event of a successful investment, if the cooperative equilibrium calls

for immediate reciprocity, then the trustee must be given incentive to reciprocate and thereby

reveal that the investment was successful.

More generally, the repeated trust game with private information serves as a simple frame-

work within which to explore the provision of favors among individuals in on-going relationships.

A self-interested individual that extends a favor naturally hopes for some gain in return. But

the individual may not be able to determine when the recipient is in a position to return the

favor. The recipient may not be in a position to reciprocate immediately, and we capture this

possibility by assuming that the investment may be unsuccessful. As well, while at some point

in the future the recipient will be in a position to pay the favor, the individual may not be

able to observe the date at which this occurs. Further, the individual may find that he is in a

position to extend another favor before having been paid for his last favor. We capture these

possibilities with the assumption that each player is privately informed as to whether he is the

investor, where there is a chance that neither player is the investor.2

In our formal analysis, we follow Abreu, Pearce and Stacchetti (1986, 1990) and characterize

equilibria using the concept of self-generation. We thus look for a set of payoffs that can be

enforced using only continuation payoffs that are drawn from that set. We may capture different

2As discussed in the Conclusion, the model may also be interpreted in the context of the market for referrals.
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forms of trust relations by considering different self-generating sets. For any given form of trust

relation, our approach is then to construct and interpret the optimal cooperative strategies of

players with bounded patience levels. Our approach thus differs from the usual folk-theorem

analysis, which analyzes the payoffs of players with (approximately) unlimited patience.3

In our main analysis, we consider a trust relation in which the players implement a symmetric

self-generating line (SSGL) of payoffs. For this trust relation, the self-generating set of payoffs

is a line along which total payoffs sum to a constant value. The line is symmetric around the

45◦ line. We show that such a trust relation requires that the sum of the investment levels

that the players are prepared to make in a given period is constant over time. Thus, an SSGL

captures trust relations in which investment levels across players may change over time but the

overall level of investment does not. We also find that dynamic reciprocity is required for the

implementation of any payoff pair along a SSGL. In particular, the continuation value for the

investor exceeds that of the trustee following a period without immediate reciprocity.

In this form of trust relation, optimal cooperation among players occurs when a highest

symmetric self-generating line (HSSGL) is implemented. We construct an implementation of a

HSSGL. If, for example, players seek to implement the symmetric utility pair on the HSSGL,

and if, say, player b is the first player to receive income, then player b exhibits trust and sends a

portion of this income to player a. In the following period, the players initiate a favor-exchange

relationship, in which player b begins as the favored player. Specifically, in the following period,

the players implement the corner utility pair that represents the lowest (highest) payoff for

player a (b) along the HSSGL. The implementation of this utility pair initially requires that

player a transfers all income if he is the investor, while player b transfers less than all income

if he is the investor. If player a is selected as the investor and transfers all income, we may

understand that player a’s favor is paid, and the game moves to the opposite corner utility

pair, at which player a (b) receives his highest (lowest) payoff along this HSSGL. The opposite

corner is implemented analogously. Here, it is player b that owes the favor. In this way, when

a player owes a favor, the player is induced to admit that he is the investor and pay the favor,

since the player gains the future reward of becoming the favored player.

A novel prediction arises from this implementation: the size of the favor that is owed

3Fudenberg, Levine and Maskin (1994) consider a general class of repeated games with private information
and establish conditions under which suffi ciently patient players can achieve approximately effi cient payoffs.
We may directly apply their findings to our setting and conclude that suffi ciently patient players can achieve
approximately the symmetric first-best payoffs even in the absence of immediate reciprocity.
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diminishes with the realization of every successive “neutral” state (i.e., the state in which

neither player has income). Thus, if player a owes a favor to player b, then player a transfers

all income if player a is immediately selected as the investor; however, if a neutral state is

experienced first and player a is selected as the investor in the next period, then player a can

fulfill his favor obligation by transferring less than all income. Similarly, if two neutral states

are encountered and then player a is selected as investor, then player a can fulfill his obligation

with an even smaller transfer. Intuitively, this process gives player b incentive to transfer some

income when he is the investor, since otherwise a neutral state would be observed and in the

next period player b would be favored to a smaller extent. Thus, following several neutral

periods, the disfavored player acknowledges that a favor is owed but holds that less is now

required to fulfill the obligation. One may imagine the disfavored player remarking: “Yeah, but

what have you done for me lately?”The prediction that the size of the favor owed deteriorates

over time when neutral states are experienced is novel to our framework. Another interesting

feature is that implementation of HSSGL does not require the use of immediate reciprocity.

In independent work, Hauser and Hopenhayn (2008) study the continuous-time model with-

out immediate reciprocity. In this setting, they show that the Pareto frontier is self-generating

and thus renegotiation-proof. Hauser and Hopenhayn also provide arguments in support of

their conjecture that effi cient equilibria are characterized by a “forgiveness”property. As dis-

cussed above, our HSSGL exhibits a similar property following neutral states. Interestingly,

and as we show (see Section VII.J), the Pareto frontier fails to be renegotiation-proof in our

discrete-time model when immediate reciprocity is not available.4

Our characterization of HSSGL is also related to work by Athey and Bagwell (2001), who

characterize the HSSGL of a repeated game in which colluding firms are privately informed

about their respective costs. For a two-type model, they construct a HSSGL that utilizes

“future market share favors”and achieves first-best payoffs for colluding firms.5 Intuitively, in

both models, players’actions in a given period serve two goals: they determine the extent to

which effi ciency is achieved in that period, and they are the means through which transfers are

provided among players as a reward or penalty for past behavior. In the present paper, however,

4Using a different argument, Hopenhayn and Hauser (2008) also briefly consider a discrete-time model and
provide similar conditions under which the frontier is not self-generating.

5For related contributions to collusion theory, see Aoyagi (2003), Athey and Bagwell (2008), Athey, Bagwell
and Sanchirico (2004) and Skryzpacz and Hopenhayn (2004). Related themes are also explored in macroeco-
nomics; early contributions include Green (1987) and Wang (1995).
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the players do not have suffi cient instruments with which to simultaneously accomplish both

goals; therefore, a HSSGL does not achieve first-best payoffs.6 We thus develop arguments with

which to identify the total payoff that is achieved on a HSSGL, and we characterize this payoff

as a function of model parameters. As well, we construct a HSSGL without using a public-

randomization device and thereby offer an equilibrium interpretation for favors that decline in

size as successive neutral phases are experienced.

The second trust relation that we consider corresponds to the set of strongly symmetric

equilibria (SSE).7 Here, the self-generating set of payoffs is a line that rests along the 45◦ line.

In such equilibria, asymmetric continuation values are not allowed, and so players cannot use

future favors as they do in a HSSGL. But the players can provide incentives for trust, if a

period without an investor triggers a symmetric punishment. Likewise, the players can provide

incentives for immediate reciprocity, if a symmetric punishment may be initiated once an invest-

ment is not reciprocated. We show that this trust relation has a feast-or-famine characteristic.

In particular, players are completely unable to cooperate in SSE, if both informational asym-

metries are significant (i.e., if a period without an investor often occurs and investments are

often unsuccessful). But, when either informational asymmetry is less significant, the players

can construct SSE with payoffs that exceed those under autarky. The optimal SSE may then

even offer a total payoff exceeding that attained on a HSSGL. In fact, as either informational

asymmetry gets suffi ciently small, the optimal SSE yields approximately first-best payoffs.

Intuitively, if the probability that neither player is selected as the investor is small, then the

players may impose a severe and symmetric punishment when neither player reports income.

This punishment gives each player a great incentive to be honest when he is the investor;

furthermore, the punishment is rarely experienced along the equilibrium path. It is then possible

to use such a construction to generate equilibrium payoffs that lie above the HSSGL. One

interesting feature of this construction is that it offers an equilibrium interpretation of negative

reciprocity. If neither player is “nice” to the other, then the relationship runs the risk of

deteriorating, with both players being “mean”to each other in the future.

We refer to our third trust relation as a hybrid equilibrium since it builds from the HSSGL

and SSE constructions. In such an equilibrium, players begin with a “honeymoon”period that

6In Athey and Bagwell’s (2001) collusion model, by contrast, when the firms have the same cost level, they
may allocate market share asymmetrically and thereby achieve transfers without sacrificing effi ciency.

7In models of collusion, SSE are analyzed by Abreu, Pearce and Stacchetti (1986) and Athey, Bagwell and
Sanchirico (2004).
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is characterized by a high level of trust. If in the first period some player is chosen as the

investor and makes the appropriate transfer, then the players proceed in the next period and

thereafter to implement a HSSGL. The player that made the first-period investment begins as

the favored player. Alternatively, if no income is reported in the first period, then the players

suffer a symmetric punishment (“break up”). Thus, in a hybrid equilibrium, favor-exchange

relationships and negative reciprocity are both predicted.

We first compare the optimal hybrid equilibrium with equilibria that implement a HSSGL.

For a large set of parameters, we show that a honeymoon period is valuable: the optimal hybrid

equilibrium offers a greater total payoff than is achieved on a HSSGL. The underlying insight

here is that the first period is unique, since then players are not encumbered by obligations

that are derived from past favors; hence, players may exhibit full trust in the first period.8 In

a second comparison, we show that a large set of parameters also exists over which the optimal

hybrid equilibrium offers a greater total payoff than is obtained in the optimal SSE. We show,

however, that the optimal SSE can offer a greater total payoff if the probability that neither

player is selected as the investor is suffi ciently small.

Möbius (2001) also studies equilibrium favor provision when the ability to provide a favor

is private information. Möbius studies a continuous-time game in which immediate reciprocity

is not allowed and focuses on a class of equilibria that corresponds to a “chips mechanism.”9

For applications, a potential weakness of the continuous-time model is that a player’s capacity

to provide a favor evaporates in the next instant. In a companion paper (Abdulkadiroğlu and

Bagwell, 2012), we characterize the optimal equilibria of this class for our discrete-time frame-

work. We identify an intermediate range of discount factors for which the optimal equilibrium

of this class corresponds to a simple favor-exchange relationship, in which a player waits until

his favor is reciprocated before extending another favor and favors owed do not diminish in size

following neutral states. This relationship offers a strictly lower total payoff than is achieved

on a HSSGL.

In a discrete-time model without immediate reciprocity, Nayyar (2009) reports parameter

restrictions under which the implementation of payoffs on the Pareto frontier requires that

8This prediction is of some special interest in light of Engle-Warnick and Slonim’s (2006) experimental finding
that subjects in indefinitely repeated trust games exhibit greater trust in the first round.

9In a chips mechanism, each player begins the game with an integer N ≥ 1 chips, an investor sends all income
and receives a chip from the trustee if the trustee currently has a chip, and an investor sends no income if the
trustee is currently out of chips. For a given discount factor, equilibrium incentive constraints limit the number
of chips, N , that may be used. See also Skrzypacz and Hopenhayn (2004).
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continuation values are drawn from the outer boundary of the equilibrium set, where the outer

boundary includes the Pareto frontier but is potentially larger. She also provides a partial

characterization of the strategies that support payoffs on the Pareto frontier. Kalla (2010)

studies two important extensions in discrete time.10 First, he introduces incomplete information

regarding players’discount factors. He characterizes suffi cient conditions under which patient

players can separate from impatient players and then implement a favor-exchange relationship.

He shows that separation under symmetric equilibria has to take place within a finite time

period, after which beliefs diverge and separation becomes impossible. Second, in a complete-

information setting, Kalla introduces scope for risk sharing via concave utility functions. He

shows that some form of a favor-exchange relationship then becomes possible for all discount

factors.

Finally, our paper is also related to Watson’s (1999, 2002) work on long-term partnerships

with persistent and two-sided incomplete information. In this setting, a role for learning is

present, and players may “start small;”by contrast, in our model, a role for learning does not

arise, and indeed players may “start big”with an initial honeymoon period.

The paper is organized as follows. Section I presents the model. Section II provides our

findings for HSSGL. Section III contains our analysis of SSE. Section IV characterizes optimal

hybrid equilibria. Section V concludes. All proofs and the discussion of intermediate results

are located in the Appendix.

I. The Model

We study a stylized model with two players, a and b. In the stage game, either player a is given

an income of $1, player b is given an income of $1, or neither player is given an income. The

former two events each occur with probability p ∈ (0, 1/2) and the latter event thus occurs

with probability 1−2p. In any period, a player who receives income becomes an investor. Each

player is privately informed as to whether or not he is the investor. Thus, if a player does not

receive income, then the player does not observe whether neither player received income or the

other player received income. If a player receives income, then that player may choose to exhibit

trust and invest by sending any x ∈ [0, 1] to the other player. The transfers between players are

publicly observed. The outcome of the investment is random. The investment either succeeds

10Lau (2011) also studies a model with favor exchange. In his model, the costs and benefits of favors are
stochastic, and the cost of providing a favor may be private information.
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or fails, where success occurs with probability q < 1. The investment produces kx when it is

successful, and the investment is completely lost otherwise. We assume qk > 1; that is, the

investment is value enhancing on average. The trustee is the player to whom an investment is

sent. The trustee privately observes the investment outcome. If the investment is successful,

then the trustee can reciprocate within the period and send some or all of the returns back to the

investor. Thus, if the investor exhibits trust and reciprocation does not occur within the current

period, then the investor does not observe whether the trustee elected not to reciprocate in the

current period or the investment failed. We assume risk neutral players in order to abstract

from insurance arrangements, and we let β ∈ (0, 1) denote the players’common discount factor.

Let t denote the time index. For i ∈ {a, b}, let wit = 1 if player i receives income and wit = 0

otherwise. Player i privately observes W i
t = {wiz}tz=1. Let τt = (j, x) if player j invests in the

amount of x > 0 in period t and τt = 0 otherwise. Both players observe Tt = {τz}tz=1. Let
κit = 1 if player j invests in player i and the investment succeeds, κit = 0 if player j invests in

player i and the investment fails, and κit = ∅ if player j does not invest in player i. The trustee
privately observes Ki

t = {κiz : κiz 6= ∅}tz=1. Since κiz is relevant only when player j invests, we
do not consider κiz = ∅ as part of player i’s private history. Let θt = (i, r) if player j invests

and player i reciprocates in the amount of r > 0, and θt = 0 otherwise. Both players observe

Rt = {θz}tz=1. Note that θt = 0 when τt = 0; that is, if there is no investment, then there is no

reciprocity by the other player either. Thus, the private history of player i at time t is denoted

hit = (W i
t , K

i
t), and the public history is denoted Ht = (Tt, Rt). Let Hi

t denote the set of possible

private histories, and Ht denote the set of public histories at t.

A strategy σi for player i consists of an investment decision I it : Hi
t × Ht−1 → [0, 1], such

that I it(h
i
t, Ht−1) = 0 when wit = 0, and I it(h

i
t, Ht−1) ∈ [0, 1] if wit = 1; and a reciprocity decision

Ri
t : Hi

t × (Ht−1, τt) × [0, 1] → [0, k] such that Ri
t(h

i
t, Ht−1, τt) = 0 if τt 6= (j, Ijt ) or κ

i
t = 0 and

Ri
t(h

i
t, Ht−1, τt = (j, Ijt )) ∈ [0, kIjt ]. Note that τt = (j, Ijt ) if and only if I

j
t > 0, and θt = (i, Ri

t)

if and only if Ri
t > 0.

Following Fudenberg, Levine and Maskin (1994), we use the solution concept of perfect

public equilibrium (PPE). A strategy for player i is public if at every period t, it depends only

on player i’s current-period private information, (wit, κ
i
t), and the public history, Ht−1. A PPE

is a profile of public strategies that forms a Nash equilibrium at any date, given any public

history. Following Abreu, Pearce and Stacchetti (1990), we can define an operator B which
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yields the set of PPE values, Ψ∗, as the largest self-generating set:11

For any set Ψ ⊂ <2, consider the following mapping: B(Ψ) = {(u, v) : ∃ (uiθ, viθ) ∈ Ψ, for

i ∈ {a, b} and θ ∈ {0, 1}; (uo, vo) ∈ Ψ;x, y ∈ [0, 1], r ∈ [0, kx] and s ∈ [0, ky] such that:

IR : u, v, uiθ, viθ, uo, vo ≥
p

1− β , (1)

ICa
x : 1− x+ q(r + βua1) + (1− q)βuao ≥ 1 + βuo, (2)

ICb
y : 1− y + q(s+ βvb1) + (1− q)βvbo ≥ 1 + βvo, (3)

ICa
θ : ky − s+ βub1 ≥ ky + βubo, (4)

ICb
θ : kx− r + βva1 ≥ kx+ βvao, (5)

PKa : u = p[1− x+ q(r + βua1) + (1− q)βuao] (6)

+ p[q(ky − s+ βub1) + (1− q)βubo] + (1− 2p)βuo,

PKb : v = p[1− y + q(s+ βvb1) + (1− q)βvbo] (7)

+ p[q(kx− r + βva1) + (1− q)βvao] + (1− 2p)βvo}.

Observe that we use u to denote player a’s payoff, x to denote investment level by player

a, and r to denote the amount that player b reciprocates when the investment is successful.

Similarly, we use v to denote player b’s payoff, y to denote the investment level by player

b, and s to denote the amount that player a reciprocates when the investment is successful.

The utility pairs that are induced may depend on the public path of play: we use (uo, vo) to

denote the continuation values that are induced when neither player reports income, and we

11To this end, let us note that players’strategy spaces are effectively finite. Using terminology provided by
Athey, Bagwell and Sanchirico (2004), we say that a deviation is an off-schedule deviation (i.e., observable, as
a deviation, to other players) if it contains a positive investment or positive reciprocity that differs from the
equilibrium value. Such deviations can be avoided by the threat of reverting to autarky. Thus, a deviation
is relevant to our analysis only if it is an on-schedule deviation (i.e., unobservable, as a deviation, to other
players). In such a deviation, a player selects zero investment or zero reciprocity, even though the equilibrium
strategy calls for a positive value. A player effectively chooses between the action that is suggested by his
equilibrium strategy and an on-schedule deviation with zero investment or zero reciprocity. Therefore, a player
reveals his income or the investment outcome truthfully when the PPE calls for positive values of investment
and reciprocity. Equivalently, if an income level or investment outcome represents the player’s type, then a
player’s action space consists of this finite type space. We can thus directly apply the dynamic programming
techniques of Abreu, Pearce and Stacchetti (1990).
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use (u
iθ
, v

iθ
) to denote the continuation values that are induced when player i ∈ {a, b} invests

and the other player reciprocates (θ = 1) or not (θ = 0). For a given Ψ, we will say that

{x, y, r, s, uiθ, viθ, uo, vo}, for i = a, b and θ = 0, 1, implements a utility pair (u, v) if all of the

constraints above are satisfied.

We now mention two important benchmarks. First, the Nash equilibrium of the static game

is autarky: no player invests, and so each player expects a payoff of p. In the Nash benchmark,

in every period, the players use the Nash equilibrium of the stage game. The payoffs for the

repeated game are then u = v = p
1−β , and so u+v = 2p

1−β . The Nash benchmark payoff is used in

the IR constraint above, since autarky is the worst punishment. Second, given our assumption

that qk > 1, the first-best benchmark occurs when each player invests all of his income. The

players’joint per-period payoff is then 2pqk. Thus, in the first-best benchmark, u+ v = 2pqk
1−β .

We observe that the first-best benchmark could be achieved by patient players, if either

informational asymmetry were absent. If some player always receives income (i.e., p = 1/2),

then in any period it is common knowledge among the two players as to which player received

income. When the players are suffi ciently patient, they can then support an equilibrium with

first-best payoffs, by threatening an infinite reversion to the autarky equilibrium of the static

game in the event that a player with income does not invest all income. Likewise, if an invest-

ment is always successful (i.e., q = 1), then in any period it is common knowledge among the

two players that the trustee has received k > 1 and is thus able to reciprocate immediately this

entire quantity. If the players are suffi ciently patient, they can again support an equilibrium

with first-best payoffs, by threatening an infinite reversion to the autarky equilibrium of the

static game in the event that the trustee does not immediately reciprocate the quantity k > 1.

II. Highest Symmetric Self-Generating Lines

In this section, we consider PPE that can be characterized in terms of symmetric self-generating

lines. We begin with the benchmark of a simple favor-exchange relationship. We then argue

that PPE characterized by symmetric self-generating lines involve trust and dynamic reciprocity.

Finally, we provide an implementation of the utility pairs that rest upon a highest symmetric

self-generating line, and we also characterize the unique features of such an implementation.
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A. Preliminaries

Formally, a line (segment) is defined by a closed and convex set of utility pairs, (u, v), that

sum to the same total; thus, a line is defined by (u, v) → (u, v) where u + v ≡ T ∈ < along
the line. A self-generating line is a line such that, for any utility pair (u, v) on the line, the

pair can be implemented using some (x, y, r, s) and continuation values, (uiθ, viθ, uo, vo), where

the continuation values are all drawn from the given line. Thus, if a pair (u, v) is on a self-

generating line, with u + v = T, then it is necessary that uo + vo = T and uiθ + viθ = T, for

all i and θ. A symmetric self-generating line is then a self-generating line for which u = v and

u = v. A highest symmetric self-generating line (HSSGL) is a symmetric self-generating line

that achieves the highest value for T = u+ v.

Our game allows for a rich set of instruments, and a given utility pair on a HSSGL may

have multiple implementations. In addition, it is possible that multiple HSSGL’s exist. All

such lines must, by definition, achieve the same value for T = u+ v; however, the corner utility

pairs, (u, u) and (u, u), may differ across HSSGL’s, in which case one HSSGL may be wider

than another. Accordingly, we say that a HSSGL is widest if the associated u− u is largest.12

Fix an implementation of a utility pair, (u, v), that rests on a self-generating line. We define

the level of trust in the implementation as x + y, and we say that player a (b) exhibits more

trust if x > y (x < y). Likewise, we say that player a (b) exhibits immediate reciprocity if s > 0

(r > 0). Further, we say that the implementation embodies dynamic reciprocity if uao > ubo

and vbo > vao. In other words, dynamic reciprocity is present if the continuation value for the

investor exceeds that of the trustee following a period without immediate reciprocity. Finally,

we say that player a (b) is the favored player if u > v (v > u).

Henceforth, we maintain the assumption that β is suffi ciently large, so that

β ≥ β∗ ≡ 1

1 + p(qk − 1)
. (8)

For any β > 0, this constraint is sure to hold for qk suffi ciently large. At the other extreme,

this constraint can only hold for β near unity when qk is close to unity.

12Given a symmetric self-generating line, it is straightforward to use the techniques of Abreu, Pearce and
Stacchetti (1990) and establish the existence of a widest self-generating line that contains the given line.
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B. Simple Favor-Exchange Relationship

To fix ideas and illustrate the role of (8), we consider a simple favor-exchange relationship. In

such a relationship, one player begins as the favored player while the other player is initially

the disfavored player. If the favored player receives income, then no transfer is made and the

identity of the favored player is unchanged; however, if the disfavored player receives income,

then that player transfers all income and thereby becomes the favored player in the following

period. Finally, if neither player receives income, then the identify of the favored player again

remains unchanged. A key feature of the simple favor-exchange relationship is that a player

that provides a favor (i.e., transfers income) does not do so again - at any level - until after the

other player provides a favor. Notice also that immediate reciprocity is not utilized.

We may characterize this relationship in terms of a self-generating line, in which the players

move deterministically between two corner utility pairs, (u, u) and (u, u). The utility pair (u, u)

is implemented when player b is the favored player. In this case, we may understand that player

a owes the favor. Formally, the players implement this utility pair as follows: (i) if player a

receives income, then player a transfers all income (x = 1); (ii) if player b receives income, then

no transfer (y = 0) is required; and (iii) if neither player receives income, then no transfer is

feasible. In case (i), player a’s favor is paid, and it is then player b’s turn to provide a favor.

The players thus implement the other corner utility pair, (u, u), in the next period. In cases

(ii) and (iii), player a’s favor is not yet paid, and the players implement (u, u) again in the next

period. The utility pair (u, u) is implemented in similar fashion, except here player a is favored.

We now provide a formal characterization of a simple favor-exchange relationship.

Proposition 1. There exists a symmetric self-generating line that specifies a simple favor-

exchange relationship, in which x+ y = 1 and T = p[1 + qk]/(1− β). In particular, let

u =
p2β(1 + qk)

(1− β)(1− β + 2βp)
,

u =
p(1 + qk)(1− β + βp)

(1− β)(1− β + 2βp)
.

The corner utility pair (u, u) can be implemented using the following specification: r = s = 0,

uao = ua1 = u, ubo = ub1 = uo = u, vao = va1 = u, vbo = vb1 = vo = u, and x = 1 > 0 = y. The

corner utility pair (u, u) can be implemented symmetrically, by interchanging x with y and u

with v in the above specification.
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A key step in the proof of Proposition 1 is to show that the disfavored player is willing to

transfer all income. In particular, to implement (u, u), we require that (2) is satisfied so that

player a is willing to transfer all income (x = 1). For the proposed specification, we find that (2)

holds if u− u ≥ 1/β, where u and u are defined in Proposition 1. Simple calculations confirm

that this inequality holds if and only if β ≥ β∗. Thus, we may understand our maintained

assumption (8) as ensuring that players have suffi cient patience to implement a simple favor-

exchange relationship.

The simple favor-exchange relationship generates payoffs that exceed the autarkic payoffs

that arise under repeated play of the Nash equilibrium of the stage game. Thus, this intuitive

relationship can be interpreted as effi ciency enhancing. An important limitation of this relation-

ship, however, is that the benefit of investment is not exploited when the same player receives

income in successive periods. We thus next characterize the more sophisticated favor-exchange

relationship that implements a HSSGL.

C. Implementation of HSSGL

To characterize behavior along a HSSGL, we must first analyze the general features of symmetric

self-generating lines. In the Appendix, we provide all of the proofs and an extensive discussion of

these features. We show there that the same level of trust is used when implementing any utility

pair along a given self-generating line, where higher self-generating lines are associated with

higher levels of trust. We also show that dynamic reciprocity is necessary for the implementation

of any utility pair along a symmetric self-generating line, where a greater level of trust is

associated with a larger degree of dynamic reciprocity (i.e., a larger value for uao − ubo). We
show as well that the implementation of the corner utility pair, (u, u), on a given HSSGL

requires full trust (i.e., x = 1) by player a and an upper bound on the investment level by

player b (specifically, y ≤ β−β∗
β+β∗ ).13 Intuitively, the disfavored player is willing to exhibit full

trust only if the future reward of becoming the favored player is suffi ciently large, which in turn

implies an upper bound for the investment level required of the favored player. These results

imply an upper bound for the level of trust that can be supported in a symmetric self-generating

line; thus, if we can implement a self-generating line that achieves this bound (i.e., for which

x+ y = 2β
β+β∗ ), then we can be assured that we have constructed a HSSGL.

13As discussed in the Appendix, an implication is that first-best total payoffs cannot be achieved using a
symmetric self-generating line.
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As we show in the Appendix, we may implement a HSSGL using a public-randomization

device. Under this approach, the key task is to implement the corner utility pair, (u, u).

The other corner utility pair, (u, u), can then be implemented in an analogous way, and all

intermediate utility pairs can be realized, in expectation, by using a public-randomization device

that induces a lottery over the two corner utility pairs.14 To implement (u, u), we specify that

player a transfers all income if he is the investor and that player b transfers less than all income

(specifically, y = β−β∗
β+β∗ ) if he is the investor. If player a is selected as the investor and exhibits

full trust, then the opposite corner utility pair, (u, u), is implemented in the following period. If

instead player b is selected as the investor and makes the required (partial) transfer of income,

then the corner utility pair, (u, u), is implemented again in the following period. Finally, if

neither player reports income, then an intermediate utility pair is induced in expectation in

the following period, where the intermediate utility pair favors player b but to a smaller extent

than did the initial corner utility pair.

The implementation has two interesting features. First, the extent to which a player is

favored diminishes in expectation when a “neutral”state (i.e., a state in which no player has

income) is encountered. Intuitively, this feature ensures that a player is willing to transfer some

income even when that player provided the most recent favor. For example, by transferring

some income (namely, y = β−β∗
β+β∗ ) in this situation, player b ensures that the corner utility pair

(u, u) is implemented again in the following period rather than an intermediate utility pair in

which player b is favored to a smaller extent. Second, the implementation does not require the

use of immediate reciprocity.

Building on these findings, we now consider the implementation of a HSSGL when a public-

randomization device is unavailable. The intermediate utility pair that follows a neutral state

must then be directly implemented, which leads to new predictions about the evolution of

cooperative relationships when successive neutral states are encountered.

Proposition 2. There exists a HSSGL that can be implemented without a public-randomization

device and in which x+ y = 2β/(β+β∗) and T = p[2 + 2β
β+β∗ (qk− 1)]/(1−β). In particular, let

u =
p+ β−β∗

β+β∗
1
β∗

1− β , u = u+
2

β + β∗
, (9)

and consider any utility pair (u, v) along the line connecting (u, u) and (u, u). This pair can be

implemented using the following specifications: r = s = 0, uao = ua1 = u+ (x+ y)/β = u, ubo =

14Athey and Bagwell (2001) assume a public-randomization device and use a related approach.
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ub1 = u, vao = va1 = u, vbo = vb1 = u, and

x = ββ∗[
v − p
β
− u], (10)

y = ββ∗[
u− p
β
− u], (11)

uo = β∗[
u− p
β

+
u(1− β∗)

β∗
], (12)

vo = β∗[
v − p
β

+
u(1− β∗)

β∗
]. (13)

In the implementation featured in Proposition 2, any utility pair (u, v) on the line that

connects (u, u) and (u, u) as defined in (9) can be implemented using only continuation values

drawn from that line. For example, at the start of the game, the players might seek to implement

a symmetric utility pair corresponding to the midpoint of this line. Let (ũ, ũ) denote the

midpoint:

ũ ≡ u+ u

2
=
p+ β(1−β∗)

β+β∗
1
β∗

1− β . (14)

Notice from (10) and (11) that x = y when u = v; thus, since x + y = 2β/(β + β∗), we have

that x = y = β/(β + β∗) in the first period. Suppose, for example, that player b receives

income in the first period. The implementation then calls for player b to exhibit trust and

send y = β/(β + β∗) to player a. Play then moves to the second period, at which point the

players seek to implement the corner utility pair (u, u). This asymmetric pair rewards player

b for reporting income and showing trust toward player a in the first period. Player b thus

becomes the favored player, since v = u > u = u.

To implement (u, u) in the second period, the players use the corresponding values for x

and y that are given by (10) and (11). When (u, v) = (u, u), it is direct to confirm that these

values are given by x = 1 and y = (β−β∗)/(β+β∗), indicating that player a now exhibits more

trust than player b.15 Thus, if player a receives income in the second period, then player a sends

x = 1 to player b and thereby becomes the favored player in the third period, at which point

the opposite corner utility pair (u, u) is implemented. If instead player b again receives income

in the second period, then player b sends y = (β − β∗)/(β + β∗) to player a. By transferring

some income in this way, player b ensures that the utility pair (u, u) is implemented again in

the third period.
15As suggested above, this implementation is also used for the corner utility pair of the same HSSGL when

players have access to a public randomization device. See also Proposition 9 in the Appendix.
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The remaining possibility is that no income is reported in the second period. Going into the

third period, the players then seek to implement the utility pair (uo, vo), as given by (12) and (13)

when (u, v) = (u, u). As Proposition 2 shows, this pair may be implemented deterministically

(i.e., without a public-randomization device). To determine the implementation for the pair

(u, v) = (uo, vo), we again refer to (10)-(13). At this point, it is important to use the notation

with care. Given (u, v) = (uo, vo), we may think of the two left-hand-side variables determined

by (12) and (13) as a pair (ũo, ṽo) that represents the utilities that the players seek to implement

at the start of the fourth period, in the event that no income is reported in the third period.

In this general manner, for any given path of income realizations for the infinite game, we may

refer to (10)-(13) and determine the path of trust (i.e., the amounts of income that are given

from one player to another) for the infinite game.

As the discussion above suggests, one interesting possibility is that the players report no

income over successive periods. Continuing with the example above, suppose player b sends

income to player a in the first period, so that player b is the favored player in the second period,

and suppose neither player reports income in the second, third, etc., periods. Does player b

remain the favored player, until a period finally arrives in which player a has income? Is the size

of the favor that player a owes reduced in each successive period that no income is reported?

These questions are readily answered using (10)-(13). To this end, we may use (10) and

(11) to find that

x− y = β∗[v − u]. (15)

Equation (15) captures a basic relationship between the utility pair that the players seek to

implement and the extent to which each player exhibits trust. In particular, if the players seek

to implement a utility pair in which player b is favored (i.e., in which v > u), then player a

must exhibit more trust (i.e., x > y). Next, given the expressions for u and ũ presented in (9)

and (14), respectively, we may use (12) to derive that

uo − ũ =
β∗

β
[u− ũ]. (16)

Of course, given that 2ũ = uo + vo = u+ v = u+ u, we may equivalently restate (16) as

ũ− vo =
β∗

β
[ũ− v]. (17)

Equations (16) and (17) indicate key relationships between the utility pair (u, v) that the players

seek to implement in a given period and the utility pair (uo, vo) that they seek to implement in

the next period in the event that no income is reported in the given period.
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Consider first the possibility that β = β∗. Using (16) and (17), we see then that (u, v) =

(uo, vo). In this case, when the players seek to implement (u, v) and neither player reports

income, then the players again seek to implement (u, v) = (uo, vo) at the beginning of the

next period. As (15) confirms, the trust levels that players are expected to exhibit are then

unchanged. Put differently, the favor that is owed does not diminish as successive no-income

states are encountered. Consider next the case in which β > β∗. If u = v = ũ, then once again

the favor owed does not diminish as successive no-income states are experienced. In this case,

if no income is reported in the given period, then the players again seek to implement the same

utility pair, (u, v) = (uo, vo) = (ũ, ũ), in the next period. In particular, x and y both remain at

the symmetric level, β/(β + β∗).

The final possibility is that β > β∗ and (u, v) 6= (ũ, ũ). In this case, patient players seek

to implement an asymmetric utility pair. For simplicity, let us focus on the situation in which

player b is favored: v > ũ > u. We thus have from (15) that x > y. Now suppose that neither

player reports income in the current period. Referring to (16) and (17), we see then that the

players proceed to the next period and seek to implement (uo, vo), where uo < ũ < vo. Given

β∗/β < 1, we may further observe that u < uo and vo < v. Thus, when β > β∗ and the players

seek to implement (u, v) such that v > ũ > u, if no income is reported, then in the next period

the players seek to implement (uo, vo) such that u < uo < ũ < vo < v. Applying (15), we see

that in the next period player a continues to exhibit more trust than does player b; however,

the extent of the trust differential is reduced (i.e., x remains larger than y, but x− y is lower).
Recalling the two questions posed above, we thus conclude that player b remains the favored

player until a period occurs in which player a has income. But the size of the favor that player

a owes is reduced in each successive period that no income is reported.

Thus, when player b is the favored player and a period is experienced in which neither player

reports income, player a acknowledges that a favor is still owed but insists that the favor is

now smaller in size. We may imagine player a exclaiming, “Yeah, but what have you done for

me lately?”The key intuition is associated with the ICb
y constraint. As (3) indicates, when the

players are attempting to implement a utility pair that favors player b, they must be sure to

give player b the incentive to report income (and thus send y to player a). To accomplish this,

they use a utility pair (uo, vo) that penalizes player b somewhat when no income is reported.

We may summarize the discussion above as follows:

Corollary 1. Consider the implementation of a HSSGL that is specified in Proposition 2.

17



If β = β∗ or (u, v) = (ũ, ũ), then (uo, vo) = (ũ, ũ) and so the values for x and y are not

altered following a period in which no income is reported. If β > β∗ and v > ũ > u, then

u < uo < ũ < vo < v and so x− y remains positive but is reduced following a period in which
no income is reported. Likewise, if β > β∗ and u > ũ > v, then v < vo < ũ < uo < u and so

y − x remains positive but is reduced following a period in which no income is reported.

Finally, it is interesting to compare the total payoff achieved in the HSSGL of Proposition 2

with that achieved in the simple favor-exchange relationship of Proposition 1. If β > β∗, then

the level of trust, and thus the total payoff, is strictly higher in a HSSGL than in the simple

favor-exchange relationship. Intuitively, when β > β∗, the featured HSSGL offers a strictly

higher payoff, because a player transfers some income even when that player provided the most

recent favor. As explained above, an incentive for such behavior is provided, since the size of a

favor owed deteriorates in size following the experience of a neutral state.16

D. Uniqueness

The implementation of a HSSGL is not unique. As Proposition 1 establishes, the implementa-

tion of a HSSGL can be achieved without the use of immediate reciprocity (i.e., r = s = 0 in

this implementation). As we show in the Appendix, however, alternative implementations of a

HSSGL exist in which immediate reciprocity is used. In addition, and as we discuss above and

confirm in the Appendix, alternative implementations of a HSSGL may be constructed that

utilize a public-randomization device. Despite these findings, we next establish that, for any

utility pair on the widest HSSGL, every implementation is characterized by the same values

for x, y, uo and vo.

To present this result, we define a notion of uniqueness. Fix any (u, v) on the widest

HSSGL. Let {x, y, r, s, uiθ, viθ, uo, vo} and {x′, y′, r′, s′, u′iθ, v′iθ, u′o, v′o} be two implementations of
(u, v), where each implementation uses only continuation values that are drawn from a HSSGL.

We then say that (u, v) is implemented uniquely (up to {r, s, uiθ, viθ}) if, for any such two
implementations, we have x = x′, y = y′, uo = u′o and vo = v′o. Otherwise, we say that there

exists multiple implementations for (u, v). Thus, we define uniqueness in terms of the trust

16In our companion paper (Abdulkadiroğlu and Bagwell, 2012), we consider equilibria that correspond to a
“chips mechanism”and identify a range of intermediate discount factors for which the optimal equilibrium in
this class corresponds to a simple favor-exchange relationship (i.e., a chips mechanism with a single chip). For
such discount factors, it then follows that a HSSGL offers a strictly higher total payoff than the optimal chips
mechanism.
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relationship (i.e., the values of x and y) and the manner in which utility pairs evolve following

neutral states (i.e., the values of uo and vo). Then:

Proposition 3. Every (u, v) on the widest HSSGL is implemented uniquely.

With this proposition, we have a uniqueness result for our prediction that the size of the favor

that is owed diminishes in expectation when a neutral state is encountered.

This concludes our characterization of HSSGL’s. In the following sections, we compare the

total payoff achieved along the HSSGL with alternative benchmarks.

III. Strongly Symmetric Equilibria

In the analysis above, we allow that players can promise future favors through asymmetric

continuation values, but we do not allow that players may threaten a symmetric punishment

whereby u = v is lowered following certain public outcomes. We now consider strongly sym-

metric equilibria (SSE) and thus adopt the opposite emphasis: players’utilities are no longer

allowed to move asymmetrically along a negatively sloped line, but players’utilities are now

allowed to move symmetrically along the 45-degree line. We characterize optimal SSE and, in

particular, identify specific circumstances under which SSE generate a symmetric payoff for the

game that exceeds that obtained on a HSSGL.

A. Characterization of Optimal SSE

We proceed now to characterize optimal SSE. To begin, we follow Abreu, Pearce and Stacchetti

(1990) and define an operator Bss which yields the set of strongly symmetric PPE values, ψ∗s ,

as the largest self-generating set. Denoting the autarky payoff for a player as uaut = p
1−β , we

may define this operator as follows:

For any ψs = [uaut, u] consider the following mapping: Bss(ψs) = {v : ∃ x ∈ [0, 1], r ∈
[0, kx], vo, v10, v11 ∈ ψs such that:

ICx : 1− x+ q(r + βv11) + (1− q)βv10 ≥ 1 + βvo (18)

ICθ : kx− r + βv11 ≥ kx+ βv10 (19)
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PK : v = p[1− x+ q(r + βv11) + (1− q)βv10] (20)

+ p[q(kx− r + βv11) + (1− q)βv10] + (1− 2p)βvo}.

Let ψ∗s = [uaut, umax] be the maximal fixed point of Bss. That is, if [ul, uh] is a fixed point of

Bss, then [ul, uh] ⊂ [uaut, umax].

Observe that this operator requires symmetry across players, with u denoting the payoff

enjoyed by each player, x denoting the investment that a player makes in the current period

if that player receives income, r denoting the reciprocity that the trustee then offers in the

current period if the investment is successful, and vo, v11 and v10 denoting the continuation

values that each player receives in the future if the current period has no investor, a successful

investment and an unsuccessful investment, respectively. For a given ψs = [uaut, u], we thus say

that {x, r, v10, v11, vo} implements v if all of the constraints above are satisfied.
We refer to a pair (q, p) as an information structure. Consider the set I = {(q, p) : q ∈

( 1
k
, 1], p ∈ [0, 1

2
)}, which is the set of all feasible information structures. The characterization of

optimal SSE reveals that behavior differs depending upon which of three different information-

structure regions is in place. The respective regions are illustrated in Figure 1. We now describe

the behavior that emerges in each region. The proofs are contained in the Appendix.

A.1. Region I1: Low q and not so high p

Let q∗ = k+
√
k2+8k
4k

∈ (1
2
, 1). Consider I1 = {(q, p) ∈ I : q ≤ q∗ and p ≤ 1

qk+1
}. In this region,

we find that umax = uaut. Thus, under this information structure, the players are unable to

cooperate using SSE. Intuitively, given that p is small, no-investor states are common. Hence,

if players attempt to provide incentives for trust by using the threat of a symmetric punishment,

then this punishment often would be experienced on the equilibrium path. Further, with q being

small as well, the value of future cooperation is not huge. The players are thus unable to enforce

a strongly symmetric equilibrium in which trust is exhibited. Clearly, if β is suffi ciently high

that a HSSGL exists, then the players earn a higher total payoff in a HSSGL than in the optimal

(autarkic) SSE.

A.2. Region I2: Not so high q but high p

Consider now I2 = {(q, p) ∈ I : p ≥ 2q−1
2q

and p > 1
qk+1
}. For β > 1

p(qk+1)
, we find that

umax = uaut + p(qk+1)−1
1−β . The following implements the optimal SSE in the latter case: x =

1, v10 = v11 = umax, r = 0 and vo = umax − 1
β
> uaut.
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We observe that implementation of umax is achieved without use of immediate reciprocity

(i.e., r = 0), and that players incur a moderate punishment when the neutral (no-investor)

state is experienced (i.e., umax > vo > uaut). We also find that lim
p→1/2

umax = lim
p→1/2

ueff , where

ueff = pqk
1−β is the payoff that a player enjoys in the first-best benchmark. This implies that,

when p is suffi ciently close to 1
2
, patient players achieve a higher total payoff in the optimal

SSE than they do on a HSSGL. Intuitively, when p is close to 1
2
, the neutral state is rare; thus,

the players can use the threat of a symmetric punishment in this state to provide incentives for

trust while only rarely experiencing the punishment on the equilibrium path.

A.3. Region I3: High q but not so high p

Finally, consider I3 = {(q, p) ∈ I : q > q∗ and p < 2q−1
2q
}. Define β̂ = 1

1+p(2kq2−qk−1) . Then β̂ < 1

if and only if q > q∗. For β ≥ β̂, we find that umax = uaut + λ
1−β , where λ = p(2kq2−qk−1)

2q−1 ≥ 0

since q ≥ q∗. The following implements the optimal SSE in the latter case: x = 1, vo = v11 =

umax, v10 = umax − 1
β(2q−1) ≥ uaut and r = 1

2q−1 > 0.

We observe that implementation of umax is achieved without punishment in the neutral

(no-investor) states (i.e., vo = umax). Instead, players punish one another when there is no

immediate reciprocity (i.e., v10 < umax). Thus, in this implementation, immediate reciprocity

plays an important role (i.e., r > 0). We also find that lim
q−→1

umax = lim
q−→1

ueff . This implies that,

when q is close to 1, patient players achieve a higher total payoff in the optimal SSE than they

do on a HSSGL. Intuitively, when q is close to 1, investment is almost always successful; thus,

the players can use the threat of a symmetric punishment when immediate reciprocity is not

offered to provide incentives for trust while only rarely experiencing the punishment on the

equilibrium path.

B. Comparisons

It is interesting to compare regions I2 and I3. Start with (q, p) ∈ I2, where immediate reciprocity
plays no role. As we increase q, we reach I3, where immediate reciprocity begins playing a

role. Also, as we move from I2 to I3, the punishment phase shifts from following a neutral (no-

investor) state to following the state in which trust is exhibited but immediate reciprocity is not

offered. As suggested above, the intuition is that players provide incentives most effi ciently by

emphasizing the information asymmetry for which the “bad”outcome (no investor, unsuccessful

investment) is unlikely. Further, it is precisely in those circumstances where a bad outcome is
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very unlikely that the optimal SSE offers a total payoff that exceeds that in a HSSGL.

We have not specified whether a punishment-phase utility is itself implemented or if it is

achieved in expectation via a public-randomization device that induces a lottery over umax and

uaut. The latter interpretation is immediate and requires no further analysis. Under this inter-

pretation, any punishment phase entails the risk of permanent autarky. Similarly, it is possible

to implement a punishment-phase utility with a lottery in which the players risk temporary

autarky, whereby in each period the players leave autarky (return to umax) with a constant

hazard rate. To implement in expectation a given punishment-phase utility, the lottery must

place a higher probability on going to autarky when the autarky relationship is temporary.

For future reference, we now collect our findings for payoffs:

Proposition 4. Let umax represent the utility achieved in the optimal SSE. (i). For (q, p) ∈ I1,
umax = uaut. (ii). For (q, p) ∈ I2, if β ≥ 1

p(qk+1)
, then umax = uaut+

p(qk+1)−1
1−β . (iii). For (q, p) ∈ I3,

if β ≥ β̂, then umax = uaut + λ
1−β , where λ = p(2kq2−qk−1)

2q−1 ≥ 0.

Thus, throughout region I1, the optimal SSE offers a strictly lower payoff than does a HSSGL.

For β suffi ciently high, however, the optimal SSE offers a strictly higher payoff than does a

HSSGL in subsets of region I2 and I3 within which p is suffi ciently close to 1
2
and q is suffi ciently

close to 1, respectively.

As Proposition 4 confirms, our analysis of the optimal SSE in regions I2 and I3 imposes

additional restrictions on β beyond our maintained assumption that β ≥ β∗. The restrictions

are important. For example, consider the subset of region I2 in which q ≤ 1
2
and β < 1

p(1+qk)
.

Letting ps ≡ 1
β(1+qk)

, we may state the latter inequality as ps > p. We observe that ps < 1
2
when

q = 1 if and only if β > 2
1+k

. But simple calculations confirm that β∗ > 2
1+k
. Given β ≥ β∗, we

thus conclude that ps < 1
2
when q = 1. As Figure 2 illustrates, Proposition 4 part (ii) refers to

that portion of region I2 that lies above the ps = p curve. In contrast, our present interest is in

the subset of region I2 that rests below the ps = p curve and in which q ≤ 1
2
.

We now provide our main finding for this subset.

Proposition 5. Let umax represent the utility achieved in the optimal SSE. For (q, p) ∈ I2, if
q ≤ 1

2
and β < 1

p(1+qk)
, then umax = uaut.

Thus, in this subset of region I2, the optimal SSE corresponds to autarky and therefore offers

a strictly lower payoff than does a HSSGL.
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IV. Hybrid Equilibria

Our discussion above characterizes HSSGL’s and optimal SSE. With these constructions estab-

lished, we are now able to consider the possibility of hybrid equilibria. In such equilibria, players

begin the game by exhibiting a high level of trust in period one. If some player receives and

transfers income in the first period, then the players thereafter exchange favors by implementing

a HSSGL, with that player being the favored player in the second period. Alternatively, if no

player receives income in the first period, then the players may revert to a symmetric punish-

ment in the second period. In broad terms, such equilibria are thus characterized by an initial

“honeymoon”period, after which the players either continue with a favor-exchange relationship

or experience a breakdown. In this section, we characterize the optimal hybrid equilibria and

compare the associated payoffs with those achieved in HSSGL’s and optimal SSE.

A. Characterization of Optimal Hybrid Equilibria

Recall the definition of implementation in Section I. For a given ψ = [uaut, u], we now say that

a pair {x, uo} implements u in a hybrid equilibrium if {x, y, r, s, uiθ, viθ, uo, vo}, for i = a, b and

θ = 0, 1, implements the utility pair {u, u} when x = y, r = s = 0, ua1 = uao = vb1 = vbo =

u, ub1 = ubo = va1 = vao = u and uo = vo ∈ [uaut, u], where u and u are defined by (9). In an

optimal hybrid equilibrium, x and uo are chosen to deliver the maximal value for u. Thus, in

a hybrid equilibrium, the players exhibit equal trust in the first period (i.e., x = y). If some

player receives income and transfers the amount x, then in period two the players implement a

HSSGL. At this point, the player that made the period-one transfer is favored and thus enjoys

a continuation value of u while the other player’s continuation value is u. If instead neither

player received income in period one, then in period two the players implement a symmetric

utility pair, (uo, uo).

Our next result states that an optimal hybrid equilibrium exists.

Proposition 6. There exists an optimal hybrid equilibrium. If 1 < p(1 + qk), then x = 1 and

uo = u − 1/β implement the optimal hybrid equilibrium, and the corresponding equilibrium

utility is given by

u = [p(qk + 1)− 1] + p+ β(1− p)u+ βpu (21)

If 1 > p(1 + qk), then x = β
β+β∗ and uo = ũ implement the optimal hybrid equilibrium, and

the corresponding equilibrium utility is given by ũ. If 1 = p(1 + qk), in all implementations of
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optimal hybrid equilibria, the corresponding equilibrium utility is given by ũ.

To see the intuition, suppose that 1 < p(1 + qk). If we increase the punishment that follows

an event in which no income is reported (i.e., if uo = vo is lowered), then the players can be

motivated to transfer a greater income (i.e., x = y can be raised). The benefit of an increase in

the size of the transfer is measured by qk−1 and happens with probability p. On the other hand,

the players then suffer a greater punishment when, in fact, neither player has income. This cost

is experienced with probability 1− 2p. Thus, the net gain is positive if 1− 2p < p(qk − 1), or

equivalently, if 1 < p(qk + 1).

B. Comparisons

We next compare the payoffs in optimal hybrid equilibria with those in HSSGL’s and optimal

SSE. As above, we use umax to represent the payoff that a player expects at the beginning of the

game, when players use an optimal SSE. Similarly, if players begin the game by implementing

the symmetric utility pair on a HSSGL, then ũ ≡ (u+u)/2 represents a player’s payoff. Finally,

if players implement an optimal hybrid equilibrium, we let uH represent the corresponding payoff

that a player expects at the beginning of the game.

We first compare optimal hybrid equilibria and HSSGL’s. Using Proposition 6, we have the

following corollary:

Corollary 2. If 1 < p(1 + qk), then the optimal hybrid equilibrium offers a strictly higher

total payoff than does any HSSGL, and thus uH > ũ. If 1 ≥ p(1 + qk), then all optimal hybrid

equilibria offer the same total payoff as does any HSSGL, and thus uH = ũ.

This finding follows directly from Proposition 6. When 1 < p(1+ qk), we may use (21), (14)

and (9) to compute the explicit expression for the payoff difference:

uH − ũ = {[p(qk + 1)− 1] + p+ β(1− p)u+ βpu} − {u+
1

β + β∗
}

=
[p(1 + qk)− 1]β∗

β + β∗
> 0.

As discussed above, the key point is that, when 1 < p(1 + qk), players can benefit by using

the threat of a symmetric punishment to enforce an initial “honeymoon”period in which the

level of trust is very high. Provided that some player receives and transfers income in the first
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period, the players then use a favor-exchange relationship (i.e., move along a HSSGL) in all

future periods.

If 1 < p(qk+ 1), we may easily verify that u > uH > ũ > u. Thus, as Corollary 2 indicates,

when a honeymoon period is included, the players earn a higher symmetric payoff at the start

of the game (uH > ũ). One perspective on this result is that the first period is a special period,

since players are not encumbered by obligations that are derived from past favors; hence, they

may set x = y = 1 and exhibit full trust in the first period. We observe as well that the player

that made a period-one transfer emerges as the favored player in period two and in fact then

enjoys a higher continuation value than at the start of the game (u > uH). Correspondingly,

the player that enters period two as the disfavored player experiences a reduced continuation

value (u < uH).

We next compare optimal hybrid equilibria and optimal SSE. We focus on region I2, where

1 < p(1 + qk). We provide two results. First, recall from Proposition 5 that the optimal SSE

generates the autarky payoff, uaut, in the subset of region I2 in which q ≤ 1
2
and β < 1

p(1+qk)
.

In Figure 2, members of this subset satisfy q ≤ 1
2
and rest below the ps = p curve, where

ps ≡ 1
β(1+qk)

. Using Proposition 5 and Corollary 2, we may thus conclude that:

Corollary 3. If q ≤ 1
2
and 1 < p(1 + qk) < 1/β, then the optimal hybrid equilibrium offers

a strictly higher total payoff than does the optimal SSE and any HSSGL. In fact, under these

conditions, uH > ũ > umax = uaut.

We have thus identified a subset of region I2 in which the optimal hybrid equilibrium offers a

strict improvement over HSSGL’s and optimal SSE.

To develop our second result, we recall Proposition 4. As indicated there, when p is suffi -

ciently close to 1
2
, players achieve a higher total payoff in the optimal SSE than in any HSSGL:

umax > ũ. We now confirm that, under similar circumstances, the optimal SSE also improves

upon the optimal hybrid equilibrium: umax > uH . Interestingly, this ranking obtains even though

the optimal hybrid equilibrium also employs symmetric punishments after neutral states.

Following Proposition 4, we focus on the subset of region I2 for which 1
β
< p(1 + qk), or

equivalently ps < p. As established previously and depicted in Figure 2, ps < 1
2
when q = 1. The

subset thus exists. Over this subset, we have from Proposition 4 that umax = uaut + p(qk+1)−1
1−β .

Next, since 1 < 1
β
< p(1 + qk), we may use (21) and write

uH − umax = [p(qk + 1)− 1] + p+ β(1− p)u+ βpu− uaut −
p(qk + 1)− 1

1− β .
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After further manipulations, we find that sign{umax − uH} = sign{p− p∗}, where

p∗ ≡ 1√
qk + 1

.

Simple calculations reveal that 1 < p∗(qk + 1), ∂p
∗

∂q
< 0 and lim

q→1/k
p∗ = 1/2. Using these facts,

and that ps = 1/2 when q = 2−β
kβ
, we may draw the following conclusion: For all q ∈ (2−β

kβ
, 1),

there exists pL(q) satisfying max{ps, p∗} ≤ pL(q) < 1
2
and such that, for all p ∈ (pL(q), 1

2
),

umax > uH .
17

We may now summarize as follows:

Corollary 4. There exists a subset of region I2 for which the optimal SSE offers a strictly

higher total payoff than does the optimal hybrid equilibrium, and thus uH < umax.

Finally, we note that the payoffs may also be easily compared in region I1. In this region, the

optimal SSE yields autarkic payoffs: umax = uaut. Throughout this region, the optimal hybrid

equilibrium corresponds to a HSSGL and thus yields the higher payoff uH = ũ > umax = uaut.

V. Conclusion

We study a repeated trust game with private information. In our main analysis, players are

willing to exhibit trust and thereby facilitate cooperative gains only if such behavior is regarded

as a favor that must be reciprocated, either immediately or in the future. Private information

is a fundamental ingredient in our theory. A player with the ability to provide a favor must

have the incentive to reveal this capability, and this incentive is provided by an equilibrium

construction in which favors are reciprocated.

Our study offers new predictions with respect to the social interactions of self-interested

individuals. In particular, we offer the novel prediction that the size of a favor owed may

decline over time, as neutral phases of the relationship are experienced in a favor-exchange

relationship. We also describe circumstances in which a relationship founded on favor exchange

may be inferior to a relationship in which an infrequent and symmetric punishment (e.g., a

risk of temporary or permanent autarky) keeps players honest. Finally, we show that a hybrid

17For higher values of q, it is possible that the relevant constraint is that p > 1 − 1
2q . In Figure 1, this

inequality corresponds to the positively sloped line that separates regions I2 and I3. It is thus possible that
max{ps, p∗} < pL(q).
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relationship, in which players begin with a honeymoon period and then either proceed to a favor-

exchange relationship or suffer a symmetric punishment, can also offer scope for improvement.

While we motivate our analysis in general terms as an equilibrium theory of trust, reciprocity

and favors, it may also be useful for specific economic applications. Following Garicano and

Santos (2004), consider for example the market for referrals. Suppose there are two players and

two tasks, where player a (b) has an advantage in performing task 1 (2).18 In a given period,

an individual may contact player a (b) and request that this player perform task 2 (1) for a

fee. It is also possible that no such contact occurs. Each player can profitably perform both

tasks; however, under effi cient cooperation, player a (b) would refer any individual requesting

task 2 (1) to player b (a). Assume one player does not observe when the other is contacted: the

capacity to provide a referral is private information. The contacted player may thus privately

perform the entire task or refer some or all of the task to the other player. If a referral is made,

then it is public; e.g., the contacted player may send a referral letter. When a referral is made,

the individual may not actually contact the other player: the referral may not be received. If

the referral is received, then the other player may elect to send a referral fee. Assume the other

player privately observes whether the referral is received. If we now think of a referral as a

favor and a referral fee as immediate reciprocity, then the repeated trust game with private

information can be reinterpreted as a repeated referral game with private information.

Much work remains. First, we hope that some of our predictions can be tested in the

laboratory. In part for this reason, we use the popular trust model. Second, future work might

consider whether other behavioral regularities might be interpreted using the theory of repeated

games with private information. Finally, the analysis developed here might be reinterpreted or

extended in such a way as to offer useful insight for other specific economic applications.
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VII. Appendix

A. Proof of Proposition 1

We show that the proposed specification implements the corner utility pair (u, v) = (u, u) for
a symmetric self-generating line. First, we observe that u + u = T = p[1 + qk]/(1 − β) =
uiθ + viθ = uo + vo , for all i ∈ {a, b} and θ ∈ {0, 1}. Second, we observe that u − u =
p(1+qk)/(1−β+2βp) ≥ 1/β, where the inequality is strict if β > β∗. Third, it is now direct to
confirm that the specifications satisfy the IR and IC constraints, (1)-(5), and also the promise
keeping constraints, (6) and (7). Finally, as explained in the statement of the proposition, we
may now implement the opposite corner utility pair, (u, u). �

B. Self-Generating Lines: Necessary Features

We begin by considering the level of trust along a self-generating line. Our first finding is that
the level of trust is fixed along a self-generating line.

Lemma 1. Along a self-generating line, total payoff is given as

T =
p[2 + (x+ y)(qk − 1)]

1− β , (22)

and so the same level of trust, x+y, is used when implementing any pair on the self-generating
line.

Proof: Using (6) and (7), if we can implement a pair (u, v) on a self-generating line, then

T ≡ u+ v = p{2− x− y + q(r + s+ β(ua1 + vb1)) + (1− q)β(uao + vbo)

+ q[k(x+ y)− (r + s) + β(ub1 + va1)] + (1− q)β(ubo + vao)}
+ (1− 2p)β(uo + vo).

Rearranging and using uo + vo = T = uiθ + viθ, we may solve for T and confirm (22). �

We now consider whether a self-generating line can take the form of a self-generating point.
In other words, can we implement a single utility pair, (u, v), using continuation values that
satisfy (uiθ, viθ) = (u, v) and (uo, vo) = (u, v)? Our next finding confirms that the opportunities
for such an outcome are quite limited.

Lemma 2. A point (u, v) constitutes a self-generating line if and only if u = v = p
1−β .
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Proof: Suppose uiθ = uo = u and viθ = vo = v. Using (2), it follows that qr ≥ x. Likewise, (3)
implies that qs ≥ y. Next, (4) and (5) respectively imply that 0 ≥ s and 0 ≥ r, from which it
follows (from feasibility) that s = 0 = r. It thus follows that 0 ≥ y and 0 ≥ x, from which it
follows (from feasibility) that x = 0 = y. Using uiθ = uo = u and s = r = x = y = 0, we may
solve (6) for u, finding that u = p

1−β . �

This finding indicates that a point is self-generating only if it entails no trust (i.e., x = y = 0)
and thus results in the Nash (autarky) payoff.
We consider now the implementation of the corner of a self-generating line, (u, v).We focus

here on symmetric self-generating lines, where u = v, and u = v. Our finding places some
structure on x and y.

Lemma 3. Consider any symmetric self-generating line with T > 2p
1−β . Let (u, u) denote the

point on the line at which player a’s utility is minimized. The implementation of (u, u) requires
x > y, and so player a exhibits more trust.

Proof: Given T > 2p
1−β , the line must not be a point (by Lemma 2). Thus, u < T/2. Using

Lemma 1, it follows that

u <
p[2 + (x+ y)(qk − 1)]

2(1− β)
. (23)

Next, using (2) and (4), we have from (6) that

u ≥ p(1 + βuo) + p{q(ky + βubo) + (1− q)βubo}+ (1− 2p)βuo

= p+ pqky + (1− p)βuo + pβubo

≥ p+ pqky + (1− p)βu+ pβu

= p+ pqky + βu,

where in the second inequality we use uo ≥ u and ubo ≥ u. It follows that

u ≥ p+ pqky

1− β . (24)

Using (23) and (24), it is clearly necessary that

f(x, y) ≡ p[2 + (x+ y)(qk − 1)]

2(1− β)
− p+ pqky

1− β > 0. (25)

Calculations confirm the following inequalities: fx > 0 > fy and f(x, x) ≤ 0. By the latter
inequality and (25), x = y is not possible. Likewise, if x < y, then a contradiction is reached
with (25), since the inequalities just stated then imply that f(x, y) < 0. �

Thus, a player’s utility can be driven to its minimum level along a self-generating line only
if that player exhibits more trust. In essence, the trust that the player shows is the means
through which that player’s utility is reduced.
In our model, players can achieve a first-best outcome only if they exhibit total trust (x =

y = 1). Building on Lemma 3, we now establish that players are not able to use a symmetric
self-generating line to achieve a first-best outcome.
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Corollary 5. There does not exist a symmetric self-generating line that yields first-best total
payoffs.

The argument is simple. By Lemma 1, if a self-enforcing line generates first-best total payoffs,
then x + y = 2 is required, so that total payoff is T = 2pqk/(1 − β). Given x ∈ [0, 1] and
y ∈ [0, 1], this means that each utility pair on the self-generating line is implemented using
x = y = 1. By Lemma 2, this total payoff cannot be achieved with a self-generating point.
Further, as shown in Lemma 3, when a symmetric line is used, we can implement the corner
only if x < y. An implication of Corollary 5 is that no PPE can yield first-best total payoffs.
We consider next a necessary condition that is associated with the implementation of any

(u, v) along a symmetric self-generating line. This condition establishes a key relationship
between the level of trust and dynamic reciprocity.

Proposition 7. Consider any symmetric self-generating line and associated value x + y. For
any (u, v) on this line to be implemented, it is necessary that

uao − ubo ≥
x+ y

β
. (26)

Proof: Consider the implementation of any utility pair (u, v) along a symmetric self-generating
line. Using uo + vo = T and uiθ + viθ = T, we may rewrite (3) as

1− y + q[s− βub1]− (1− q)βubo ≥ 1− βuo. (27)

We may now add (2) and (27) to obtain

uao − ubo + q[ua1 − ub1 − uao + ubo] ≥
x+ y − q(r + s)

β
. (28)

In similar fashion, using uiθ + viθ = T, we may rewrite (5) as

kx− r − βua1 ≥ kx− βuao. (29)

We may now add (4) and (29) to obtain

−(r + s)

β
≥ ua1 − ub1 − uao + ubo. (30)

Using (28) and (30), we see that implementation of (u, v) is possible only if (26) holds. �

This proposition reveals two important lessons. First, if players achieve a positive level of
trust, then dynamic reciprocity is necessary for the implementation of any utility pair along a
symmetric self-generating line. In words, when the two players are cooperating along a line,
player a must do better tomorrow when player a made an investment today and player b did
not reciprocate than when player b made an investment today and player a did not reciprocate.
It is perhaps surprising that dynamic reciprocity is required. After all, immediate reciprocity is
also possible. The important point is that players can use immediate reciprocity only when they
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have incentive to do so; thus, if player a makes an investment today and player b is expected to
immediately reciprocate (if possible), then player b must foresee a reduced continuation value
(i.e., a low vao) if immediate reciprocity is withheld. Along a self-generating line, this implies
in turn that player a must enjoy an increased continuation value (i.e., a high uao) when player
a makes an investment and immediate reciprocity fails to materialize. Second, as the players
increase the level of trust (i.e., as they implement larger values for x+y), incentive compatibility
implies that the degree of dynamic reciprocity (i.e., uao− ubo) must also grow. Greater trust is
associated with greater dynamic reciprocity.

C. Highest Symmetric Self-Generating Lines: Necessary Features

We focus on the implementation of a corner utility pair, (u, v) = (u, u), of a HSSGL. By the
symmetry of the environment, if we can implement the corner pair (u, u), then we can also
implement the other corner pair, (u, u). Following Athey and Bagwell (2001), if players have
access to a public-randomization device, then we can then implement any utility pair along the
HSSGL as a convex combination of the two corners.
Let {x, y, r, s, uiθ, viθ, uo, vo} implement (u, u) on a HSSGL. The pair (u, u) on a HSSGL

may admit distinct implementations; as well, multiple HSSGL’s may exist in that (u, u) and
(u, u)may differ across HSSGL’s. Our characterizations of necessary features thus take different
forms. Our strongest characterizations hold for any HSSGL and for any implementation of the
associated (u, u). But it is also useful to offer characterizations of necessary features that apply
only to certain HSSGL’s. By characterizing the necessary features of an implementation of the
widest HSSGL, we acquire insights that enable us to construct a HSSGL.19

We begin by confirming that a HSSGL must achieve some trust (i.e., x + y > 0) and thus
generate a total payoff that exceeds the Nash autarky payoff (i.e., T > 2p/(1−β)). To establish
these points, we construct a symmetric self-generating line in which x+ y = 1.

Lemma 4. There exists a symmetric self-generating line, in which x + y = 1 and thus T =
p[1 + qk]/(1− β) > 2p/(1− β).

Proof: We implement the corner utility pair (u, u) for a symmetric self-generating line with
x = 1 > y = 0. The opposite corner utility pair, (u, u), then can be implemented in symmetric
fashion (with y = 1 > x = 0), and all utility pairs on the line between the corners can be
implemented using a public-randomization device. Consider then the following specifications:
x = 1, y = 0, r = s = 0, uao = ua1 = u + 1/β, ubo = ub1 = uo = u, vao = va1 = u − 1/β
and vbo = vb1 = vo = u, where u = p/(1 − β) and u = pqk/(1 − β). Observe that u + u =
T = p[1 + qk]/(1 − β) = uaθ + vaθ = uo + vo, for all θ ∈ {0, 1}. It is direct to confirm
that the specifications satisfy the IR and IC constraints, (1)-(5), and also the promise keeping
constraints, (6) and (7). Finally, given that β ≥ β∗, calculations confirm that u+ 1/β ≤ u, and
so every specified utility pair indeed falls on the line that connects (u, u) and (u, u). �

Using Lemmas 2 and 4, we conclude that a HSSGL cannot be a point (i.e., u > u on a HSSGL).

19As noted in footnote 12, given a symmetric self-generating line, it is straightforward to establish the existence
of a widest self-generating line that contains the given line. The existence of a widest HSGGL is used below in
the proof of Lemma 7, for example.
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Our next result holds for any HSSGL and implementation of the associated (u, u).

Lemma 5. Fix any HSSGL. For any implementation of the associated (u, u), x = 1 and thus
y < 1.

Proof: Assume to the contrary that (u, u) is implemented on a HSSGL with x < 1. Recall from
Lemma 1 that T = p[2+(x+y)(qk−1)]

1−β . We obtain a contradiction by constructing an alternative
self-generating line with u + v = T ′ > T. To construct this alternative line, it is suffi cient to
implement a new corner pair, (u′, u′), on a line with T ′ > T. The rest of the alternative line can
be implemented using convex combinations of (u′, u′) and (u′, u′).

Starting from the implementation of (u, u), we implement the new corner pair (u′, u′) by
making several changes. First, we increase x by a small amount, ε > 0. This change leads to a
higher value for T, which increases in amount p(qk−1)

1−β ε ≡ γ. To place our new continuation pairs
on this higher line, we must ensure that u′ + u′ is higher than u + u by γ; likewise, we must
ensure that the values for uo + vo and uiθ + viθ increase by γ, for all i and θ. To this end, we
leave uo, ubo and ub1 at their original levels, increase uao and ua1 by ε/β, increase vao and va1 by
γ−ε/β, and increase vb1, vbo and vo by γ. Note that γ−ε/β ≥ 0 if and only if β ≥ β∗.We leave
s, r and y unaltered. Given that (u, u) was originally implemented, it is straightforward to
confirm that the new specifications satisfy the IR and IC constraints, (1)-(5). Referring to (6),
we calculate that u is unchanged (i.e., u = u′).We may use (7) to confirm that u has increased
by γ (i.e., u′ − u = γ). Thus, all new continuation values are at or above u′ and at or below
u′, given β ≥ β∗, and thus rest on the new - and strictly higher - self-generating line. This is a
contradiction, and so x = 1 is necessary. Finally, given Corollary 5, it follows immediately that
y < 1. �

Thus, when implementing the worst value on any HSSGL for player a, player a must exhibit
full trust (i.e., x = 1) even though player b does not (i.e., y < 1).
We next report two simple conditions that characterize any implementation of (u, u) along

the widest HSSGL.

Lemma 6. Consider the widest HSSGL. For any implementation of the associated (u, u), ubo =
u and (4) binds.

Proof: Consider any implementation of (u, u) along the widest HSSGL and suppose to the
contrary that ubo > u. Then vbo < u = T − u. Starting with this implementation, let us now
decrease ubo by ε > 0 and increase vbo by ε. Making no other changes, we observe that the new
specifications satisfy the IR and IC constraints (1)-(5). Referring to (6) and (7), we see that
the new corner utility pair, (u′, u′), satisfies u′ < u and u′ > u, contradicting the assumption
that the original implementation corresponded to the widest HSSGL.
Next, consider any implementation of (u, u) along the widest HSSGL and suppose to the

contrary that (4) is slack. Then β(ub1 − ubo) > s ≥ 0, and it follows that ub1 > u and ubo < u.
Starting with this implementation, let us now decrease ub1 by ε > 0 and increase vb1 by ε. We
note that (2) and (5) are unaffected by this change and thus continue to hold. Further, (3) is
now sure to hold with slack, and (4) holds provided that ε is suffi ciently small. Once again,
we refer to (6) and (7) and observe that the new corner utility pair, (u′, u′), satisfies u′ < u
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and u′ > u, contradicting the assumption that the original implementation corresponded to the
widest HSSGL. �

As this result confirms, when implementing the worst value for player a along the widest
HSSGL, player a’s continuation value remains at this worst value in the event that player a
fails to reciprocate in the current period.
We now consider specific implementations of the corner utility pair for the widest HSSGL.

In particular, we posit an implementation of the widest HSSGL and then show that an imple-
mentation must exist that satisfies useful properties.

Lemma 7. Consider the widest HSSGL. There exists an implementation of the associated
(u, u) in which (i). (5) binds, (ii). r = s = 0, ua1 = uao and ub1 = ubo, (iii). (3) and (2) bind,
(iv). uao = ubo + (x+ y)/β, and (v). x = 1, ubo = u and (4) binds.

Proof: To prove part (i), we fix any symmetric self-generating line and implementation of the
associated (u, u). Suppose that (5) is slack. Then β(va1 − vao) = β(uao − ua1) > r ≥ 0, and
it follows that ua1 < u and uao > u. Starting with this implementation, let us now decrease
uao by ε > 0 and increase ua1 by (1 − q)ε/q. Correspondingly, we increase vao by ε > 0 and
decrease va1 by (1− q)ε/q. For ε suffi ciently small, (5) continues to hold; furthermore, all other
constraints are unaffected by this change. Thus, the new specification also implements (u, u)
along the same self-generating line. We can proceed in this way until (5) binds.
For part (ii), we consider the widest HSSGL. By Lemma 6, we know that (4) binds in the

implementation of (u, u). Further, as just established, there exists an implementation of (u, u)
under which (5) binds. Thus, (u, u) can be implemented with a specification under which (4)
and (5) bind. For this implementation, we thus have that r+ βua1 = βuao and s+ βvb1 = βvbo.
Given uao and vbo, any values for r, s, ua1 and vb1 that satisfy these latter two equations and
feasibility constraints can also be used to implement (u, u). Thus, there exists an implementation
in which ua1 = uao, vb1 = vbo, r = 0 and s = 0.
For part (iii), we consider the widest HSSGL. We know there exists an implementation of

(u, u) in which (4) and (5) bind, and ua1 = uao, vb1 = vbo, r = 0 and s = 0. By Lemma 6,
we also know that ubo = u. Since x = 1 by Lemma 5, we may use Proposition 7 and further
conclude that ua1 = uao ≥ ubo + (x+ y)/β > u. Finally, we know from Corollary 5 that y < 1.

Let us now suppose that (3) is slack in this implementation. Using the properties just
reported, we then find that β[uo − ubo] > y ≥ 0, and so it follows that uo > u. We now derive
a contradiction, by implementing an alternative utility pair, (u′, u′), such that T ′ = u′ + u′ >
u + u = T. Starting with the original implementation, we first increase y by ε > 0, where
ε is small. This change generates an increase in T in amount γ = p(qk−1)

1−β ε. It also increases
the right-hand side of (6) by pqkε. Second, we decrease uao, ua1 and uo in amount δ, where δ
satisfies pβδ + (1 − 2p)βδ = pqkε and is thus given by δ = pqkε

β(1−p) . Third, we increase vao, va1
and vo in amount δ + γ. Finally, we increase vb1 and vbo in amount γ, while leaving ub1 and
ubo unaltered. It is straightforward to confirm that our new specifications satisfy the IR and
IC constraints (1)-(5), where (3) continues to hold if ε is suffi ciently small. Referring to (6),
we see that u′ = u. Since ua1, uao and uo all exceed u, all continuation values under our new
specification continue to exceed u′ = u, provided that ε is small. Referring to (7), we see that
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u′ = u+ γ > u. Since vao, va1 and vo are all less than u, all continuation values under our new
specifications rest below u′. The contradiction is now established.
Last, we suppose that (2) is slack in this implementation. Recalling the properties reported

above, we know that ua1 = uao > u and hence va1 = vao < u. We now derive a contradiction
by constructing a wider HSSGL. To this end, we start with the original implementation, and
then decrease ua1 by ε and increase va1 by ε. Making no other changes, we observe that the
new specifications satisfy the IR and IC constraints (1)-(5). Referring to (6) and (7), we see
that the new specification implements (u′, u′), with u′ < u and u′ > u. Thus, we can implement
a wider line without changing T, which is a contradiction.
For part (iv), we observe from above that there exists an implementation of (u, u) on the

widest HSSGL, in which all four incentive constraints (i.e., (2)-(5)) bind, and ua1 = uao, vb1 =
vbo, r = 0 = s, ubo = u and x = 1 > y. Given that all four incentive constraints bind, we may
follow the steps in the proof of Proposition 7 and confirm that the necessary condition (26)
then must hold with equality: uao − ubo = (x+ y)/β. Thus, uao = u+ (x+ y)/β.
Finally, part (v) simply lists properties (identified and used above) which we establish in

Lemmas 5 and 6 as being true in any implementation of the widest HSSGL. �

According to this result, if we can implement a corner utility pair and thereby construct the
widest HSSGL, then we can do so with an implementation for which (5) binds and in which
neither player exhibits immediate reciprocity. Referring to Proposition 7 and Lemma 7, we are
now able to summarize some key findings on dynamic and immediate reciprocity.

Corollary 6. For any symmetric self-generating line, any utility pair on the line can be imple-
mented only if the implementation embodies dynamic reciprocity. In particular, for any HSSGL,
the associated (u, u) can be implemented only if the implementation embodies dynamic reci-
procity. In the widest HSSGL, there exists an implementation of the associated (u, u) such that
neither player exhibits immediate reciprocity.

In short, dynamic reciprocity is necessary for constructing a HSSGL, but immediate reciprocity
is not.
We are now in position to derive an upper bound for y.

Proposition 8. Fix any HSSGL. For any implementation of the associated (u, u), x = 1 and
y ≤ β−β∗

β+β∗ .

Proof: Consider any HSSGL and the implementation of the associated (u, u). By Lemma 5,
x = 1. Suppose to the contrary that y > β−β∗

β+β∗ . Let us now consider the widest HSSGL. (Recall
that x + y is invariant across all HSSGL’s.) By Lemma 7, we can implement the associated
(u, u) with all four incentive constraints (i.e., (2)-(5)) binding, ua1 = uao = u + (1 + y)/β,
ub1 = ubo = u, and r = 0 = s. Referring to the binding (3), we find that uo may be expressed
as uo = u+ y/β. Using this expression, we may derive from (6) that

u =
p+ y[p(qk − 1) + 1]

1− β . (31)
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Using as well that uo + vo = uiθ + viθ = u+ u, we may derive from (7) that

u =
pqk − y
1− β . (32)

Recalling that ua1 = uao = u+ (1 + y)/β and using (31), we may derive that

uao =
1 + y − β[1− p− yp(qk − 1)]

β(1− β)
. (33)

Finally, we may use (32) and (33) to find that u ≥ uao if and only if y ≤ β−β∗
β+β∗ . Thus, under our

assumption that y > β−β∗
β+β∗ , it follows that u < uao, and so a contradiction is obtained. �

Intuitively, the disfavored player is willing to exhibit full trust only if the future reward of
becoming the favored player is suffi ciently large. This implies in turn an upper bound on the
investment that is provided by the favored player.
We note that Proposition 8 implies an upper bound for the total level of trust; in particular,

this proposition establishes that, in the HSSGL,

x+ y ≤ 2β

β + β∗
. (34)

Thus, Proposition 8 provides important guidance as we go forward and attempt to construct a
HSSGL: if we can implement a symmetric self-generating line with x + y = 2β/(β + β∗), then
we can be assured that we have constructed a HSSGL.

D. Highest Self-Generating Line: Implementation with a public randomization de-
vice

We now construct a HSSGL. We do this in two ways. First, in this subsection, we assume the
existence of a public-randomization device and achieve the construction by implementing the
corner utility pair (u, u) along a HSSGL. Using Proposition 8, we can be assured that we have
a HSSGL if x = 1 and y = β−β∗

β+β∗ . Under this approach, when the implementation calls for an
intermediate utility pair, the players may use the device to randomize over (u, u) and (u, u)
and generate the intermediate pair in expectation. Second, in the next subsection in which we
prove Proposition 2, we construct a HSSGL when players do not have a public-randomization
device. Any intermediate utility pair then must be directly implemented.
We begin with the situation in which players have access to a public-randomization device.

Proposition 9. There exists a HSSGL, in which x+y = 2β/(β+β∗) and T = p[2+ 2β
β+β∗ (qk−

1)]/(1− β). In particular, the corner utility pair (u, u) can be implemented using the following
specifications: x = 1, y = (β − β∗)/(β + β∗), r = s = 0, uao = ua1 = u + (1 + y)/β = u, ubo =
ub1 = u, uo = u+ y/β, vao = va1 = u, vbo = vb1 = u, and vo = u− y/β, where

u =
p+ β−β∗

β+β∗
1
β∗

1− β , and (35)

36



u = u+
2

β + β∗
. (36)

The corner utility pair (u, u) can be implemented symmetrically, by interchanging x with y and
u with v in the above specification. Finally, any utility pair on the line between the corners - and
specifically the utility pair (uo, vo) - can be implemented using a public-randomization device
so that each corner utility pair is selected for implementation with appropriate probability.

Proof: By Proposition 8, if a symmetric self-generating line exists for which x+y = 2β/(β+β∗),
then this line is a HSSGL. Thus, the proof is complete if we show that the specifications above
implement the corner utility pair (u, v) = (u, u) for a symmetric self-generating line. First, we
observe that u + u = T = p[2 + 2β

β+β∗ (qk − 1)]/(1 − β) = uiθ + viθ = uo + vo, for all i ∈ {a, b}
and θ ∈ {0, 1}. Second, we observe that u = uao = ua1 > uo ≥ u, where the final inequality is
strict when β > β∗. Third, it is direct to confirm that the specifications satisfy the IR and IC
constraints, (1)-(5), and also the promise keeping constraints, (6) and (7). In particular, the IC
constraints all bind. Finally, as explained in the statement of the proposition, it is now direct
to implement the opposite corner utility pair, (u, u), and we may then implement (uo, vo) by
using a public-randomization device. �

The players may achieve a symmetric ex ante payoff of (1/2)(u+ u) if they begin the game
with a coin toss that determines whether they implement (u, u) or (u, u). If, say, player b
wins the toss, they start by implementing (u, u) with player b as the favored player. In this
implementation, if player a receives the income, then player a exhibits full trust (x = 1) and
becomes the favored player in the next period when the players implement (u, u); if instead
player b receives the income, then player b exhibits partial trust (y < 1) and remains the favored
player in the next period when the players again implement (u, u); and finally if neither player
reports income, then in the next period the players utilize the public-randomization device
to implement in expectation the utility pair (uo, vo). Notice that v = vo > uo = u, and so
player b remains the favored player in the final case; however, if β > β∗ so that y > 0, then
player a’s expected utility following the event in which no income is reported is strictly greater
than player a’s expected utility at the beginning of the period. As explained in the text, the
implementation of (u, u) requires player b to report income (and thus send y to player a), and
this is accomplished by penalizing player b somewhat when no income is reported.
While the implementation of a HSSGL in Proposition 9 does not utilize immediate reci-

procity, alternative implementations of a HSSGL exist in which immediate reciprocity is used.
Consider the following specifications: x = 1, y = (β − β∗)/(β + β∗), ub1 − s/β = ubo = u, uao =
ua1 + r/β = u + (1 + y)/β = u, uo = u + y/β, vao = va1 − r/β = u, vbo = vb1 + s/β = u,
and vo = u− y/β. These specifications satisfy the IR and IC constraints, (1)-(5), and also the
promise keeping constraints, (6) and (7). Further, it is direct to confirm that u ≥ ub1 = u+s/β
if s ≤ β[u − u] = 1 + y; likewise, we see that u ≤ ua1 if r ≤ 1 + y. Recalling that s and r
are feasible if and only if s ∈ [0, ky] and r ∈ [0, kx], we may conclude that these specifications
also implement a HSSGL provided that s ∈ [0,min(ky, 1 + y)] and r ∈ [0,min(k, 1 + y)], where
y = (β−β∗)/(β+β∗).We note that this family of implementations includes the implementation
featured in Proposition 9 as a special case. Based on this discussion, we see that the practice of
immediate reciprocity implies that a player that extends trust enjoys a less valuable future when
some of that trust is reciprocated in the immediate period; for example, if the players seek to
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implement (u, u) and player a receives income, we see that ua1 < uao when r > 0. By contrast,
as Proposition 7 suggests, our analysis indicates that the extent of dynamic reciprocity, which
we define as uao − ubo, remains at the value u− u whether or not players exhibit immediate
reciprocity.

E. Proof of Proposition 2

Pick any utility pair (u, v) such that u ∈ [u, u], v ∈ [u, u] and u+ v = u+ u. From Proposition
9, we know that u + u = T = p[2 + 2β

β+β∗ (qk − 1)]/(1 − β). Simplifying, we have that u + u =
2p
1−β + 2β(1−β∗)

(β+β∗)(1−β)β∗ . We also know that u − u = 2/(β + β∗), where u is given by (35). Using
these facts, we may use (10) and (11) to confirm that x + y = 2β/(β + β∗). Thus, by setting
uao = ua1 = u, we also set uao = ua1 = u+ (x+ y)/β. We now proceed as follows. First, using
(12) and (13), we may confirm that u+ u = uiθ + viθ = uo + vo, for all i ∈ {a, b} and θ ∈ {0, 1}.
Second, we may use (10)-(13) to confirm that the values for x, y, uo and vo are feasible. In
particular, using (10), we find that x ≥ 0 since v ≥ u and β ≥ β∗, where x > 0 if v > u or
β > β∗; and we find that x ≤ 1 since v ≤ u, where x < 1 if v < u. Similarly, using (11), we
find that y ≥ 0 since u ≥ u and β ≥ β∗, where y > 0 if u > u or β > β∗; and we find that
y ≤ 1 since u ≤ u, where y < 1 if u < u. Next, we may use (12) to confirm that uo ≤ u since
u ≤ u and β ≥ β∗, where uo < u if u < u or β > β∗; and we find that uo ≥ u since u ≥ u and
β ≥ β∗, where uo > u if u > u or β > β∗. Finally, given that u + u = uo + vo = u + v, it now
follows that vo ≥ u since v ≥ u and β ≥ β∗, where vo > u if v > u or β > β∗; and it follows as
well that vo ≤ u since v ≤ u and β ≥ β∗, where vo < u if v < u or β > β∗. Third, it is direct to
confirm that the specifications satisfy the IR and IC constraints, (1)-(5), and also the promise
keeping constraints, (6) and (7). In particular, the IC constraints all bind. Thus, any (u, v)
along the line connecting (u, u) and (u, u) can be implemented using only continuation values
drawn from that line. �

F. Proof of Proposition 3

Consider the widest HSSGL. Let λ be the set of points on this HSSGL for which there exist
multiple implementations. Suppose to the contrary that λ 6= ∅. Then it is straightforward to
show that λ is convex and symmetric around the 45-degree line; therefore, λ contains (ũ, ũ),
the middle point of this HSSGL. We will show that (ũ, ũ) is uniquely implemented, which then
establishes that λ = ∅.
Consider a point (u, v) on the widest HSSGL and an implementation of it, i = {x, y, r, s, uiθ, viθ, uo, vo}.

Following the proof of Lemma 7, given any implementation, we can find an alternative imple-
mentation such that (4) and (5) bind, r = s = 0 and ui0 = ui1 ≡ ui, with all other variables
remaining the same. For such an implementation, suppose that (2) is slack; that is, suppose
β(ua − uo) > x ≥ 0. Then, for small ε > 0, if we decrease ua by ε, increase uo by

p
1−2pε, and

change nothing else, the resulting implementation is feasible and implements (u, v). The same
argument applies to a slack (3) as well. Therefore, given any implementation, we can find
another implementation with the same values for x and y and with (2) and (3) binding.
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We know that ĩ = {x̃ = ỹ = β
β+β∗ , r̃ = s̃ = 0, ũaθ = ṽbθ = u, ũbθ = ṽaθ = u, ũo = ṽo = ũ}

implements (ũ, ũ).
We now argue that (ũ, ũ) is uniquely implemented. Suppose to the contrary that there exists

another implementation i = {x, y, r, s, uiθ, viθ, uo, vo} of (ũ, ũ). As established above, we can
focus on an implementation i such that (4), (5),(2) and (3) bind, r = s = 0, and ui0 = ui1 ≡ ui.
Define the following: ∆x ≡ x− x̃,∆y ≡ y − ỹ,∆uπ ≡ uπ − ũπ,∆vπ ≡ vπ − ṽπ for π ∈ {a, b, o}.
Then ∆x = −∆y, since x+ y = x̃+ ỹ.
First, suppose that x 6= x̃. As (2) and (3) bind under both ĩ and i, we have that ∆x =

β(∆ua − ∆uo) and ∆y = β(∆vb − ∆vo) = −β(∆ub − ∆uo). Further, the promise-keeping
constraint, (6), must hold under both ĩ and i. Thus,

0 = −p∆x+ pqk∆y + β[p∆ua + p∆ub + (1− 2p)∆uo]

= −p∆x+ pqk∆y + β[p(∆ua −∆uo) + p(∆ub −∆uo) + ∆uo],

which implies

∆uo =
p(qk − 1)

β
∆x.

Since ∆x 6= 0 and p(qk−1)
β

> 0, ∆uo and ∆x have the same sign. Recall that ũaθ ≡ ũa = u.

Thus, ∆ua ≤ 0. Now, if ∆x = β(∆ua −∆uo) > 0, then ∆uo < 0, which is a contradiction. So,
∆x ≤ 0 must hold. Using a similar argument, we can show that ∆y ≤ 0 must hold as well.
Then ∆y = −∆x implies ∆x ≥ 0, so that ∆x = ∆y = 0.
Second, suppose that∆uo 6= 0 and∆x = ∆y = 0. As (2) and (3) bind under both ĩ and i, we

have that ∆ua = ∆uo and ∆ub = ∆uo. As just argued, ∆ua ≤ 0. Similarly, with ũbθ ≡ ũb = u,
∆ub ≥ 0. Thus, it must be that ∆uo = 0.
We conclude that (ũ, ũ) is uniquely implemented. Thus, λ = ∅. That is, every point (u, v)

on the widest HSSGL is implemented uniquely. �

G. Strongly Symmetric Equilibria (SSE)

We provide here proofs concerning strongly symmetric equilibria (SSE). Given any ψs =
[uaut, u], following APS (Abreu, Pearce and Stacchetti , 1990), define

Bss(ψs) = {v : ∃x ∈ [0, 1], r ∈ [0, kx], vo, v10, v11 ∈ ψs such that
ICx : 1− x+ q(r + βv11) + (1− q)βv10 ≥ 1 + βvo,

ICθ : kx− r + βv11 ≥ kx+ βv10,

PK : v = p[1− x+ q(r + βv11) + (1− q)βv10]
+ p[q(kx− r + βv11) + (1− q)βv10]
+ (1− 2p)βvo}.

Let ψ∗s = [uaut, umax] be the maximal fixed point of Bss. That is, if [ul, uh] is a fixed point of
Bss, then [ul, uh] ⊂ [uaut, umax].
Refer to a pair (q, p) as an information structure. Consider the set I = {(q, p) : q ∈ ( 1

k
, 1],

p ∈ (0, 1
2
]}, which is the set of all feasible information structures.
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H. Solving for ψ∗s

Start with a very large u1. Given un, by slightly abusing the notation, define un+1 as follows:

un+1 = Bss(un) = max v =p[1− x+ q(r + βv11) + (1− q)βv10]
+ p[q(kx− r + βv11) + (1− q)βv10]
+ (1− 2p)βvo

=p[1 + (qk − 1)x+ 2β(qv11 + (1− q)v10)]
+ (1− 2p)βvo

subject to

x ∈ [0, 1], r ∈ [0, kx], vo, v10, v11 ∈ [uaut, u
n],

ICx : 1− x+ q(r + βv11) + (1− q)βv10 ≥ 1 + βvo,

ICθ : kx− r + βv11 ≥ kx+ βv10.

We will employ APS to solve for umax. Accordingly, if u1 > umax, then Bss(un) < un and
lim
n→∞

un = umax = Bss(umax). Let ueff = pqk
1−β be the average utility of the first-best solution,

i.e. investing x = 1 every period when some agent receives positive income. Then umax ≤ ueff ;
therefore, it would suffi ce to start with u1 = ueff.
Proposition: For any u ≥ uaut, ICx and ICθ bind at the solution of Bss(u).

Proof: The proof proceeds via three claims.
Claim 1: v11 = u.
Proof: If v11 < u, then increasing v11 increases the objective without violating ICx and ICθ.
Contradiction.�
Claim 2: ICθ is binding.
Proof: Suppose in contrary that ICθ is slack. Then u−v10 > r

β
≥ 0, i.e. u > v10. Now increase

v10 by ε > 0. ICx becomes slack, ICθ continues to hold if ε is small enough. The objective
increases. Contradiction.�
Claim 3: ICx is binding.
Proof: To the contrary, suppose that ICx is slack. Then vo = u and x = 1. To see this, check
the following: If vo < u, then increase vo by ε > 0. ICx is not violated if ε is small enough; ICθ
is not affected; and the objective increases. Contradiction. If x < 1, then increase x by ε > 0.
ICx is not violated if ε is small enough; ICθ is not affected; and the objective increases since
qk > 1. Contradiction.
Substituting vo = u and x = 1, ICx becomes q(r+ βu) + (1− q)βv10 > 1 + βu, equivalently

qr > 1+(1−q)β(u−v10). Binding ICθ yields r = β(u−v10). These together imply (2q−1)r > 1.
Thus, a contradiction is immediate unless 2q−1 > 0. In that event, r > 1

2q−1 > 0, and so u > v10.

We can thus increase v10 by ε > 0, and decrease r by βε, and ICθ continues to hold. Then the
total change on the left hand side of ICx can be computed as (1 − 2q)βε. Since ICx is slack
by supposition, ICx continues to hold if ε is small. The total change in the objective can be
computed as 2p(1− q)βε > 0, so the objective increases. Contradiction.�
This completes the proof of the proposition.
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Now, binding ICx and binding ICθ imply vo = 2qu+ (1− 2q)v10 − x
β
. Substituting v11 = u,

vo = 2qu+ (1− 2q)v10 − x
β
, and r = β(u− v10) yields

Bss(u) = max p+ 2q(1− p)βu+ (p(qk + 1)− 1)x+ (1− 2q(1− p))βv10

subject to

v10, vo = 2qu+ (1− 2q)v10 −
x

β
∈ [uaut, u], (37)

0 ≤ x ≤ 1, (38)

β(u− v10) ≤ kx. (39)

The following three curves will be crucial in characterizing the optimal strongly symmetric
equilibrium:

Curve 1 : p =
1

qk + 1
,

Curve 2 : p =
2q − 1

2q
,

Curve 3 : p =
k(2q − 1)− 1

qk − 1
.

Curve 1 is convex and decreasing in q. Curves 2 and 3 are both concave and increasing in q.
Furthermore, all three curves intersect at q∗ = k+

√
k2+8k
4k

∈ (1
2
, 1). For q < q∗ , curve 1 lies above

curve 2, which lies above curve 3. For q > q∗, curve 3 lies above curve 2, which lies above curve
1. The three curves partition the set of information structures into six subsets. See Figure 3.
We drop the superscript of un to simplify the notation.

Case 1: p ≥ 2q−1
2q
, i.e. above curve 2.

Consider two subcases:

Case 1.1: p ≤ 1
qk+1

, i.e. below curve 1.
The coeffi cient of x and v10 are nonpositive and nonnegative, respectively, in the objective

of Bss(u). Therefore, the objective function is nonincreasing in x and nondecreasing in v10.
Setting x = 0, v10 = u, check that vo = u and r = 0 so that all the constraints are satisfied.
This implies Bss(u) = p + βu for all u. Then Bss(u) < u as long as u > uaut. Therefore,
u∞ = lim

n→∞
un = uaut. Hence, umax = uaut in this case.

Case 1.2: p > 1
qk+1

, i.e. above curve 1.
The coeffi cient of x is positive and the coeffi cient of v10 is nonnegative in the objective of

Bss(u). Check whether x = 1 and v10 = u is a solution for Bss(u). Substituting x = 1 and
v10 = u , we obtainBss(u|x = 1, v10 = u) = p+βu+p(qk+1)−1. Also, Bss(u|x = 1, v10 = u) < u
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if and only if u > uaut + p(qk+1)−1
1−β = γ. Therefore, starting with u1 = ueff > γ, we obtain a

decreasing sequence of {un} with u∞ = lim
n→∞

un = γ.

Now check feasibility of the solution x = 1 in the limit: vo = u∞ − 1
β
≥ uaut if and only if

β ≥ 1
p(qk+1)

. Since p(qk + 1)− 1 > 0, i.e. 1
p(qk+1)

< 1, in these regions, there exists β ≥ 1
p(qk+1)

.

Then, for all u ≥ umax, all the constraints are satisfied when x = 1, v10 = u. Therefore,
umax = uaut + p(qk+1)−1

1−β . Furthermore, check that lim
p→1/2

umax = lim
p→1/2

ueff .

To address the possibility raised in Proposition 5, we now further suppose that q ≤ 1/2 and
β < 1

p(qk+1)
. Suppose that both x < 1 and v10 < umax is satisfied in the solution of Bss(umax).

Then, we may increase v10 by ε and increase x by (1 − 2q)βε. If ε > 0 is small enough, x < 1
and v10 < umax continue to hold. Furthermore, vo remains the same as defined by (37). Thus,
all constraints hold and the objective of Bss(umax) increases, which is a contradiction. As a
result, either x = 1 or v10 = umax in the solution of Bss(umax). Suppose x = 1. Given q ≤ 1/2,
we may use (37) to find that

vo = 2qumax + (1− 2q)v10 −
1

β
≤ 2qumax + (1− 2q)umax −

1

β
= umax −

1

β
.

Arguing as in the previous paragraph, we may now use β < 1
p(qk+1)

and conclude that it
is not possible that x = 1 in the solution of Bss(umax). Thus, it can only be that x < 1
and v10 = umax hold in the solution of Bss(umax). Note that (37) is the only constraint that
causes x < 1. Therefore, (37) is binding from below in the solution of Bss(umax). This yields
vo = 2qumax + (1− 2q)umax− x

β
= uaut, so that x = β(umax− uaut). Substituting v10 = umax and

x = β(umax − uaut) into the objective of Bss(umax), we obtain

umax = Bss(umax) = p+ βumax + (p(qk + 1)− 1)β(umax − uaut).

Simplifying and using β < 1
p(qk+1)

, we obtain umax = uaut.

Case 2: p < 2q−1
2q
, i.e. below curve 2.

The coeffi cient of v10 is negative in the objective function. Also p <
2q−1
2q
implies q > 1

2(1−p) >
1
2
, so the coeffi cient of v10 in (37) is negative as well. Consider following subcases:

Case 2.1: p < 1
qk+1

, i.e. below curve 1.

The coeffi cient of x is negative in the objective function. q varies between 1
2
and 1. Curve

3 intersects the q-axis at q = 1+k
2k
. We will consider the following three subsubcases:

Case 2.1.1 : q < 1+k
2k
, i.e. to the left of where curve 3 intersects the q-axis.

Note that 2q − 1
k
∈ (0, 1). So, (2q − 1

k
)u + (1 − 2q + 1

k
)v10 ∈ [uaut, u] if v10 ∈ [uaut, u].

Also, if (39) binds, vo = (2q − 1
k
)u + (1 − 2q + 1

k
)v10. Now, suppose that (39) is slack at the

optimal solution. Then decrease x so that (39) binds. Then vo ∈ [uaut, u] holds because of the
previous argument, and the objective increases. A contradiction. Therefore, (39) is binding at
the optimal solution.

42



Now consider x > 0, v10 < u, and a decrease in x by ε > 0. In order to satisfy β(u−v10) = kx,
increase βv10 by kε. This changes the objective by ∆ = −(p(qk + 1)− 1)ε+ (1− 2q(1− p))kε.
Check that ∆ > 0 ⇔ p > k(2q−1)−1

qk−1 , which holds in this case. Therefore, check x = 0 and
v10 = u. All the constraints are satisfied when x = 0 and v10 = u. So, x = 0 and v10 = u hold
at the optimal solution for all u > umax. Then Bss(u) = p+ βu, and Bss(u) < u⇔ u > uaut, so
that we have umax = uaut.
Case 2.1.2 : 1+k

2k
≤ q < q∗.

Suppose that (39) binds at the optimal solution. Then vo = (2q − 1
k
)u + (1− 2q + 1

k
)v10 is

(weakly) decreasing in v10, and vo = u when v10 = u. Suppose k+1
2k

< q. Then vo ≤ u implies
that v10 = vo = u, which implies x = 0. Alternatively, suppose k+1

2k
= q. Then vo = u for all

v10. If x > 0 and v10 < u, we can follow the argument above (for Case 2.1.1), and decrease x by
ε > 0 and increase βv10 by kε. We then satisfy (39) and induce ∆ > 0, since p > k(2q−1)−1

qk−1 = 0.

Thus, v10 = vo = u and x = 0 again follows. So, in either case, Bss(u) = p+ βu.
Now suppose that (39) is slack. If vo = 2qu+(1−2q)v10− x

β
< u, we can increase the objective

by decreasing x. So, vo = u must hold. Then x = β(2q − 1)(u− v10). Substituting x in Bss(u),

and taking its partial derivative with respect to v10, we obtain
∂Bss(u)
∂v10

= pβ[−2kq2+ qk+ 1] > 0
since q < q∗. Also check that v10 = u implies x = 0 and vo = u. That is, all the constraints
are satisfied. Therefore, v10 = vo = u and x = 0 hold in the solution of Bss(u). Again,
Bss(u) = p+ βu.
We obtain Bss(u) = p+βu in both cases. Hence, by taking the limit, we obtain umax = uaut

in this case.
Case 2.1.3 : q ≥ q∗.
Suppose that (39) binds at the optimal solution of Bss(umax). The same argument in Case

2.1.2 applies: vo = (2q − 1
k
)u + (1 − 2q + 1

k
)v10 is decreasing in v10, and vo = u when v10 = u.

Then vo ≤ u implies that v10 = vo = u, which implies x = 0. So, Bss(umax) = p+ βumax, which
yields umax = uaut. We will rule out this possibility next.
Now suppose that (39) is slack. Then, by the same reasoning in Case 2.1.2, vo = u and

x = β(2q−1)(u−v10). Substituting these in Bss(u), we obtain ∂Bss(u)
∂v10

= pβ[−2kq2+qk+1] < 0

since q ≥ q∗. Therefore choose, vo = u, x = β(2q − 1)(u − v10), and v10 as small as possible
subject to x ≤ 1 and v10 ≥ uaut. Check that β(u− v10) ≤ kx is equivalent to q ≥ 1+k

2k
, which is

satisfied in this case. So, either (i) v10 = uaut and x = β(2q− 1)(u−uaut) ≤ 1, or (ii) x = 1 and
v10 = u− 1

β(2q−1) ≥ uaut holds in the solution. As we start with a large u, x = β(2q−1)(u−uaut)
will exceed 1, therefore case (ii) will hold for large u.
Now check if case (ii) holds in the limit. In case (ii), we have

Bss(u) = p+ 2q(1− p)βu+ (p(qk + 1)− 1) + (1− 2q(1− p))β(u− 1

β(2q − 1)
)

= p+ βu+ λ

where λ = (p(qk + 1)− 1)− 1−2q(1−p)
2q−1 = p

2q−1(2kq
2 − qk − 1) ≥ 0 since q ≥ q∗.

In the limit, we obtain u∞ = uaut + λ
1−β . So, v10 = u∞ − 1

β(2q−1) ≥ uaut is equivalent to

β ≥ β̂ = 1
1+p(2kq2−qk−1) . So, for β ≥ β̂, we obtain umax = uaut + λ

1−β and lim
q→1

umax = lim
q→1

ueff .
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This also rules out binding (39). Note that β̂ < 1⇔ q > q∗.

Case 2.2: p ≥ 1
qk+1

, i.e. above curve 1
In this case, the coeffi cients of x and v10 in the objective of Bss(u) are nonnegative and

negative, respectively. So, the objective function is nonincreasing in x and decreasing in v10.
Obviously, all the constraints cannot be slack at the optimal solution. Consider x < 1 and

v10 > uaut. Decrease v10 by ε and increase x by β(2q − 1)ε. Then vo remains unchanged. The
left hand side of (39) increases by βε. The right hand side of (39) increases by k(2q−1)βε. Note
that q > 1+k

2k
i.e. k(2q − 1) > 1 in this case. Therefore, (39) becomes slack and the objective

increases. So (39) is slack in the optimal solution.
The same argument also implies that (i) if x < 1 then v10 = uaut, and (ii) if v10 > uaut then

x = 1. Otherwise it would be possible to increase the objective as above.
In case (i), x < 1 would also imply vo = uaut. Otherwise, a small increase in x would

increase the objective without violating any constraint. Similarly, in case (ii), v10 > uaut would
also imply vo = u. Otherwise, a small decrease in v10 would increase the objective without
violating any constraint, since (39) is slack.
In case (i), solving x from vo = 2qu+(1−2q)v10− x

β
, we get x = 2qβ(u−uaut). Then x < 1 is

equivalent to u−uaut < 1
2qβ
. In case (ii), solving v10 from vo = 2qu+(1−2q)v10− x

β
∈ [uaut, u], we

obtain v10 = u− 1
β(2q−1) . Then v10 > uaut is equivalent to u−uaut > 1

β(2q−1) . Since
1
2qβ

< 1
β(2q−1) ,

u−uaut < 1
2qβ

and u−uaut > 1
β(2q−1) cannot hold simultaneously. For large u, u−uaut >

1
β(2q−1)

holds. Thus, for large u, by setting x = 1, vo = u and v10 = u− 1
β(2q−1) , we getB

ss(u) = p+βu+λ

and u∞ = uaut + λ
1−β as above. Also, v10 = u∞− 1

β(2q−1) ≥ uaut is equivalent to β ≥ β̂ as above.

So, for β ≥ β̂, we obtain umax = uaut + λ
1−β and lim

q→1
umax = lim

q→1
ueff . �

I. Characterization of Optimal Hybrid Equilibria

We begin with the following lemma:

Lemma 8. In any implementation of an optimal hybrid equilibrium, (2) and (3) bind and

u = p+ βuo[1− p(1 + qk)] + pβ[qku+ u]. (40)

Proof: Suppose (2) is slack. If x = y < 1, then we can raise x and y by a small amount
while keeping uo = vo fixed. This new implementation satisfies all constraints and generates
a higher utility, contradicting the hypothesis that the original specification implemented an
optimal hybrid equilibrium. Likewise, if x = y = 1 and uo = vo < u, then we can obtain
a contradiction by increasing uo = vo a small amount while keeping x = y = 1. Finally, if
uo = vo = u and x = y = 1, then u < u− 1/β < u− 1/(β+β∗) = (u+u)/2 ≡ ũ, where the first
inequality follows from the supposition that (2) is slack. A contradiction is now obtained, since
players may implement a hybrid equilibrium that generates the higher utility ũ, by using the
implementation of a HSSGL that is specified in Proposition 2 when (u, v) = (ũ, ũ) = (uo, vo).
(See also Corollary 1.) Thus, (2) is binding, and by symmetry so is (3). Next, given that (2)
and (3) bind, we may substitute for x and y in (6) and thereby derive (40). �

44



Our next finding indicates that the characterization of optimal hybrid equilibria is sensitive
to the sign of 1− p(1 + qk).

Lemma 9. Suppose {x, uo} implements u in an optimal hybrid equilibrium. If 1 < p(1 + qk),
then x = 1, uo = u− 1/β and

u = [p(qk + 1)− 1] + p+ β(1− p)u+ βpu. (41)

If 1 > p(1 + qk), then x = β
β+β∗ and uo = u = ũ. If 1 = p(1 + qk), then u = ũ.

Proof: First, suppose {x, uo} implements u in an optimal hybrid equilibrium and that 1 <
p(1+qk). Using (40), we see that u is greater when uo is lower. Lemma 8 indicates that (2) must
bind; thus, it is necessary that uo = u−x/β. Suppose x < 1.We then have that uo = u−x/β >
u− 1/β ≥ u ≥ uaut, where the weak inequalities are strict if β > β∗.With x < 1 and uo > uaut,
we may thus increase x = y by ε and decrease uo = vo by ε/β. All constraints remain satisfied.
Using (6), we see that utility is increased by −pε+pqkε+(1−2p)β(−ε/β) = ε[p(qk+1)−1] > 0,
a contradiction. Thus, if {x, uo} implements u in an optimal hybrid equilibrium, then x = 1
and uo = u− 1/β. Using (40), we may then confirm that u is given as in (41).
Second, suppose {x, uo} implements u in an optimal hybrid equilibrium and that 1 > p(1 +

qk). As noted in the proof of Lemma 8, we may implement a hybrid equilibrium that generates
the payoff ũ. Thus, it is necessary that u ≥ ũ. Suppose u > ũ. Since (2) and (3) bind in the
implementation of ũ, we may reason as in the proof of Lemma 8 and conclude that ũ satisfies

ũ = p+ βũ[1− p(1 + qk)] + pβ[qku+ u]. (42)

Likewise, u and uo must satisfy (40). Subtracting (42) from (40) and using β[1− p(1 + qk)] ∈
(0, 1), we obtain u − ũ = β[1 − p(1 + qk)](uo − ũ) < uo − ũ, and so it follows that uo > u.
This contradicts the requirement that uo = vo ∈ [uaut, u]. It follows that the optimal hybrid
equilibrium utility is ũ, when 1 > p(1+qk). Correspondingly, we then have x = β(u−ũ) = β

β+β∗ .

Finally, suppose {x, uo} implements u in an optimal hybrid equilibrium and that 1 = p(1 +
qk). Using (40), we see that u is then independent of uo, when (2) binds. Using (40), the
corresponding payoff is u = p+ pβ[qku+ u]. By (42), when 1 = p(1 + qk), u = ũ. �

As discussed in the text, the key intuition is that a greater symmetric punishment is costly
when experienced but also generates an increase in the size of the investment. The net effect
is positive if 1 < p(qk + 1).

We now give the proof of Proposition 6.

Proof of Proposition 6: Suppose 1 < p(1 + qk). The proposed implementation satisfies all
constraints, provided that uo = u − 1/β ∈ [uaut, u], where u is given in (41). To this end, we
observe that uo = u − 1/β ≥ u ≥ uaut, where the weak inequalities are strict if β > β∗. Next,
uo = u − 1/β < u − 1/(β + β∗) = ũ < u. When 1 ≥ p(1 + qk), we may implement ũ by using
x = β

β+β∗ and uo = ũ, as explained in the proof of Lemma 8. �
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J. The Pareto Frontier fails to be renegotiation-proof when immediate reciprocity
is not available

We now show that, in our discrete-time model when immediate reciprocity is not available, the
Pareto frontier is not self-generating and thus fails to be renegotiation-proof.

Proposition 10. Suppose that immediate reciprocity is not available, p(qk + 2) > 2 and
q ≤ 1

2(1−p) . Then the Pareto frontier is not renegotiation-proof for β ∈ [β∗, β̂] 6= ∅, where

β̂ =
qk

2qk − p(qk + 1)
.

Proof: Suppose that the Pareto frontier (PF) is renegotiation-proof (RP). Consider the sym-
metric point, (uPF , uPF ) at the intersection of the PF and the 45o line. We first show that
x = y = 1 at the symmetric point of the PF. Suppose to the contrary that x < 1 at the
symmetric point. Consider ICa

x with r = 0 :

1− x+ βua ≥ 1 + βuo.

By RP, we have uo = uPF . If ICa
x is slack, x and y can be increased, which in turn increases

uPF , a contradiction. So ICa
x must be binding. Increase x and y by ε and decrease uo and vo

by ε
β
. Then the total change in uPF is given by

∆ = −pε+ pqkε− (1− 2p)ε.

Now ∆ > 0 if and only if pqk + p > 1 or equivalently β̃ = 1
p(qk+1)

< 1, which is implied
by p(qk + 2) > 2. So x = 1 at the symmetric point of the PF. In the absence of immediate

reciprocity, the maximum feasible payoff for a player is given by
pqk+p(1− 1

qk
)

1−β , taking into account
the other player’s individual rationality constraint (IR). This payoff is generated for a player,
say a, when b invests all of $1, and a invests only $ 1

qk
in order to meet b’s IR. So we obtain an

upper bound of
pqk+p(1− 1

qk
)

1−β for ua. Replacing that upper bound, x = 1 and uo = uPF in ICa
x

above, we obtain

βuPF ≤ β
pqk + p(1− 1

qk
)

1− β − 1. (43)

Note that the parameters fall into region I2. When β > β̃ = 1
p(qk+1)

, the maximum payoff that
can be generated by SSE in region I2 is

uSSE =
p+ p(qk + 1)− 1

1− β . (44)

If the right hand side of (43) is less than β times the maximum value in (44), we obtain a
contradiction, as uPF ≥ uSSE must hold. Check that

β
pqk + p(1− 1

qk
)

1− β − 1 < β
p+ p(qk + 1)− 1

1− β
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is equivalent to β < β̂. Note that

β∗ =
1

1 + p(qk − 1)
< β̃ =

1

p(qk + 1)
.

Also

β̃ =
1

p(qk + 1)
< β̂ =

qk

2qk − p(qk + 1)

if and only if
0 < p+ qk(pqk − 2(1− p))

which is satisfied if p(qk+2) > 2. For large values of k, there exists p and q such that p(qk+2) > 2
and the constraints of I2, q ≤ 1

2(1−p) and p(qk + 1) > 1, are all satisfied. In that case, there

exists β ∈ [β∗, β̂] 6= ∅ and we obtain a contradiction of uPF < uSSE for such β, so the PF
cannot be RP for small values of β when immediate reciprocity is not available. �
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Figure 1: The Partition for the Information Structure 
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