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Abstract

Lustig and Verdelhan (2007) argue that the excess returns to borrowing US dol-
lars and lending in foreign currency �compensate US investors for taking on more US
consumption growth risk,� yet the stochastic discount factor corresponding to their
benchmark model is approximately uncorrelated with the returns they study. Hence,
one cannot reject the null hypothesis that their model explains none of the cross-
sectional variation of the expected returns. The fact that such contrasting conclusions
can be reached from the same set of data re�ects the statistically weak identi�cation
of their model.
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Hanno Lustig and Adrien Verdelhan (2007) claim that aggregate consumption growth risk

explains the excess returns to borrowing U.S. dollars to �nance lending in other currencies.

They reach this conclusion after estimating a simple consumption-based asset pricing model

using data on the returns of portfolios of short-term foreign-currency denominated money

market securities sorted according to their interest di¤erential with the U.S. They argue that

the R2 statistic corresponding to their benchmark estimates means that their model explains

about 87 percent of the cross-sectional variation in expected returns.

To the contrary, I argue that their evidence is consistent with consumption risk explaining

very little of the cross-sectional variation in the expected returns of their portfolios. Theory

predicts that the expected excess return on an asset, E(Ret ), is given by � cov(Ret ;mt),

wheremt denotes some proposed stochastic discount factor (SDF). Therefore, any risk-based

explanation of the cross-section of returns relies on signi�cant spread, across portfolios, in

the covariance between the returns and the SDF. For the SDFs that Lustig and Verdelhan

(henceforth, LV) calibrate and estimate in their 2007 article, one cannot reject the null

hypothesis that the covariances in question are all zero. Consequently, one cannot reject the

null hypothesis that consumption risk explains none of the cross-sectional variation in the

expected excess returns in their data set.

The lack of statistical spread, across portfolios, in the covariance between the returns

and the SDF re�ects that the model is, in a statistical sense, very poorly identi�ed. LV

build SDFs that are linear in a vector risk factors. They implement a widely-used two-pass

procedure to estimate these SDFs. The �rst pass is a time series regression of each portfolio�s

return on the risk factors. This regression determines the factor betas, �. The second pass

is a cross-sectional regression of average portfolio returns on these betas. This regression

determines the lambdas, �, or factor risk premia. When there are n portfolios and k risk

factors, � is an n�k matrix and � is a k�1 vector. For � to be identi�ed, � must have full
column rank. Statistical tests indicate that for LV�s model, in which k = 3, the rank of �

is very low, perhaps as low as 0. It is not surprising, in this situation, that the covariances

between the returns and the SDF are close to zero, because these covariances are given by a

linear combination of the columns of �.

The identi�cation problem raises three important issues. First, and most importantly,

it weakens inference in the sense that tests of the pricing errors based on the second pass

regressions have little power to reject misspeci�ed models (Raymond Kan and Chu Zhang,
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1999a; Craig Burnside, 2007). Second, con�dence regions for estimates of the factor risk

premia, �, generated using asymptotic standard errors become unreliable (Kan and Zhang,

1999b). Using methods that are robust to weak identi�cation, I show that LV�s data contain

almost no information about �. Third, LV are able to draw such favorable inference about

their model because they focus mainly on standard errors for � that treat the betas, �,

as known regressors, rather than generated regressors. This e¤ectively abstracts away the

identi�cation problem since � always has full column rank in a �nite sample. But even if one

accepts that � has full rank, treating � as known leads to a misleading level of con�dence

in the model. With conventionally calculated standard errors none of the estimated factor

risk premia in LV�s benchmark model, and none of the parameters of the corresponding

estimated SDF are statistically signi�cant.

Even if we discount all of these econometric considerations, however, there is still a

problem with LV�s �ndings. As is common in the �nance literature, LV include a constant

in the second-pass regression. If the model is true this constant should be zero, so, correctly

interpreted, the constant is really part of the model�s pricing error. It is not a component

of the expected return �explained�by the SDF. I show that without the constant the R2

of the model drops from 0:87 to a maximum of 0:34 across a range of model estimates.

The mean absolute pricing error increases from 0:4 percent to between 1:2 and 2:3 percent.

The economic interpretation of this �nding is that there is a large unexplained common

component of the expected excess returns of LV�s currency portfolios.

In their reply, LV defend their �ndings on two main grounds. First, they appeal to

a robustness check, described in their article, in which additional tests assets (six equity

portfolios and �ve bond portfolios) are included in the model estimation. Here, I show

that the inclusion of these test assets has little e¤ect on my conclusions. One still cannot

reject the null hypothesis that the covariances between the excess returns of LV�s currency

portfolios and the SDF are all zero. Thus, regardless of the statistical signi�cance of the

parameters that determine the factor loadings in the SDF, I cannot reject that the model

predicts that E(Ret ) = 0 for all of the currency portfolios. Including more test assets leads

to modest improvement on the identi�cation front, largely because the equity portfolios are

correlated with one of the model�s risk factors: the return to the aggregate US stock market.

Not surprisingly, this leads to some estimates of the model parameters being statistically

signi�cant. However, the model still does not explain the cross-section of foreign currency
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risk premia. The R2 for the currency portfolios alone is at best roughly zero, indicating that

the model cannot explain why some currency portfolios have signi�cantly positive returns

while others have signi�cantly negative returns.

Second, LV refer to evidence not in their original paper. They construct a new set of

seven portfolios from their original set of eight portfolios by considering strategies whereby

the investor short sells the low interest rate portfolio while going long in one of the seven

higher interest rate portfolios. They show that the �t of their model to these seven portfolios

is insensitive to the inclusion of a constant in the second pass regression. I discuss why

one should not be in any way surprised by the latter �nding in Section 5. However, the

evidence regarding the seven �di¤erenced�portfolios a¤ects none of my other conclusions.

Most importantly, since these portfolios are linear combinations of the original portfolios

one cannot reject the null hypothesis that the covariances between the excess returns of

the �di¤erenced�portfolios and the SDF are all zero, and, therefore, one cannot reject the

null hypothesis that E(Ret ) = 0 for all of the �di¤erenced� portfolios. Also, because the

�di¤erenced�portfolios are linear combinations of the original portfolios, working with these

portfolios can only make the identi�cation problem worse.

I conclude that, taken as a whole, the evidence for LV�s consumption-based model is

weak. I cannot reject that the model predicted expected returns of the currency portfolios

they study are all zero. It is also true that it is impossible to reject their model using formal

statistical tests. But this re�ects lack of information in the data about the factor betas of

currency portfolios. It is not, I would argue, a re�ection of the model�s �success�.

In Section 1 I brie�y review their model, data and methodological approach. In Section

2, I present the �rst-pass estimates of the betas that underlie their estimates of the factor

risk premia and demonstrate that there is little evidence of signi�cant covariance between

the portfolio returns and the risk factors. In Section 3, I discuss the identi�cation problem

and its implications. In Section 4, I discuss the second-pass estimates of the factor risk

premia and the interpretation of the pricing errors, and calculate standard errors for factor

risk premia that correctly account for estimation of the betas. I discuss robustness of my

negative �ndings in Section 5. Section 6 concludes.
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1 Model, Data, Estimation and Inference

LV work primarily with a log-linearized version of Motohiro Yogo�s (2006) model, in which

the stochastic discount factor is given by

mt = �[1� bc(�ct � �c)� bd(�dt � �d)� br(rWt � �r)]: (1)

Here ct represents the logarithm of a representative household�s consumption of nondurable

goods, dt is the logarithm of the household�s durable consumption, rWt is the logarithm of

the gross aggregate return to wealth, �c = E (�ct), �d = E(�dt) and �r = E(rWt).

LV study the returns to borrowing U.S. dollars in the money market to �nance short-

term securities denominated in foreign currency. They form eight portfolios of such positions,

which are created by sorting the currencies according to their interest di¤erential versus the

U.S. I refer to these portfolios as P1, P2, : : : , P8 with the order running from low interest

rate currencies to high interest rate currencies.1

LV estimate the model by exploiting the null hypothesis that the approximated stochastic

discount factor (SDF),mt, prices the n�1 vector of portfolio excess returns, Re
t . The pricing

equation is

E(Re
tmt) = 0: (2)

I rewrite (1) generically as

mt = �[1� (ft � �)0 b], (3)

where ft is a k � 1 vector of risk factors, � = E(ft), b is a k � 1 vector of coe¢ cients, and �
is a scalar representing the mean of the SDF.

1.1 The Beta Representation and Two-Pass Regressions

It follows from (3) and (2) that

E(Re
t) = cov(R

e
t ; f

0
t)b = cov(R

e
t ; f

0
t) var(ft)

�1| {z }
�

var(ft)b| {z }
�

: (4)

where � is a n� k matrix of factor betas, and � is a k � 1 vector of factor risk premia.
LV estimate � and � using a two-pass procedure associated with Eugene Fama and James

D. MacBeth (1973). The �rst pass is a time series regression of each portfolio�s excess return

1Further details of the model, portfolio formation, and data sources can be found in LV�s article and in
an appendix to this comment available from the author.
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on the vector of risk factors:

Reit = ai + f
0
t�i + �it, t = 1; : : : ; T , for each i = 1; : : : ; n: (5)

Here �0i represents the ith row in �. LV estimate the system of equations represented by (5)

using equation-by-equation OLS. Given (4), the second pass is a cross-sectional regression

of average portfolio returns on the estimated betas:

�Rei = �̂
0
i�+ �i, i = 1; : : : ; n; (6)

where �Rei =
1
T

PT
t=1R

e
it, �̂i is the OLS estimate of �i obtained in the �rst stage, and �i is a

pricing error. Let the OLS estimator of � be �̂ = (�̂
0
�̂)�1�̂

0 �Re, where �Re is an n� 1 vector
formed from the individual mean returns. The model�s predicted mean returns are �̂�̂ and

the pricing errors are the residuals, �̂ = �Re � �̂�̂.
The model�s �t is assessed using the following statistic:

R2 = 1� (
�Re � �̂�̂)0(�Re � �̂�̂)
(�Re � �Re)0(�Re � �Re)

; (7)

where �Re = 1
n

Pn
i=1

�Rei is the cross-sectional average of the mean returns in the data.

The model is tested on the basis of the estimated pricing errors using the statistic C�̂ =

T �̂0
̂�1�̂ �̂, where 
̂�̂ is a consistent estimator for the asymptotic covariance matrix of
p
T �̂

and the inverse is generalized. John H. Cochrane (2005) discusses how to form 
̂�̂ and shows

that C�̂
d! �2n�k.

It is common to include a constant in the second-pass regression as follows:

�Rei = 
 + �̂
0
i�+ ui, i = 1; : : : ; n: (8)

The constant, 
, is often interpreted as the model�s pricing error for the risk free rate, but

this error is shared by all assets. The statistical argument for running the regression without

the constant is that we know with certainty that the excess return to a risk free asset, or any

other zero-beta asset, is zero. One argument for including the constant is the notion that

the risk free rate is imperfectly measured as the real return on T-bills.

Including the constant in the regression does not bias estimates of �, since, if the model

is true and identi�ed, plim 
̂ = 0. At the very least, however, the economic and statistical

signi�cance of 
̂ should be considered before a model is deemed reasonable. We should also

be skeptical if inclusion of the constant signi�cantly boosts the R2 of the model since, if

the model is true, the probability limit of the R2 statistic is 1, whether or not a constant is

included in the second-pass regression.
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1.2 GMM Estimation

Cochrane (2005) describes a generalized method of moments (GMM, Lars P. Hansen 1982)

procedure that produces the same point estimates as the two pass regression method, but

allows for heteroskedasticity-robust inference. When the constant is included in the model

the moment restrictions are

E(Reit � ai � �0ift) = 0, i = 1; : : : ; n: (9)

E[(Reit � ai � �0ift)f 0t] = 0, i = 1; : : : ; n: (10)

E(Reit � 
 � �0i�) = 0, i = 1; : : : ; n: (11)

When the constant is excluded from the model, the last set of moment restrictions is replaced

by

E(Reit � �0i�) = 0, i = 1; : : : ; n: (12)

In both cases, an identity matrix is used to weight the moment conditions.

The model can also be estimated using a GMM procedure that treats the SDF as the

primary object of interest. This procedure, described in more detail in Cochrane (2005),

estimates the model, (3), using the moment conditions:

EfRe
t [1� (ft � �)

0 b]g = 0 (13)

E(ft � �) = 0 (14)

The parameter � is unidenti�ed and is set equal to 1. The moment condition (13) can also

be modi�ed to allow for a common pricing error across assets:

EfRe
t [1� (ft � �)

0 b]� 
g = 0: (15)

When an identity matrix is used to weight the moments in (15), and the GMM procedure is

set up in such a way that �̂ equals the sample mean of ft, the GMM procedure is numerically

identical to the two-pass regression method in terms of pricing errors.2

2 First-Pass Estimates of Betas

Table 1 presents �rst-pass estimates of the betas obtained by running the least squares

regressions described by (5). Standard errors are computed using either the standard system

2If an estimate of � is computed as �̂ = �̂f b̂, where �̂f sample covariance matrix of ft, this esti-
mate is identical to the two-pass estimate of �. The equivalence of the GMM and two-pass procedures is
demonstrated in an appendix available from the author.
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OLS formulas, or a GMM-based VARHAC procedure.3 The individual standard errors are

similar across the two procedures. None of the betas reported in Table 1 are individually

statistically signi�cant.

We can also test whether for each portfolio the three factor betas are jointly signi�cant.

As Table 1 indicates, at conventional signi�cance levels one cannot reject that �ij = 0 8j,
for each i = 1, : : : , n. Since the model-predicted expected return for each portfolio is given

by �0i� the hypothesis tests in Table 1 imply that one cannot reject the null that the model-

predicted expected return for each portfolio is zero. Of course, the success of an asset pricing

model does not rest on the statistical signi�cance of all the betas. And we would not expect

a portfolio with a zero average excess return to have signi�cant betas. When a portfolio,

however, has a non-zero and statistically signi�cant average excess return, presumably some

of its betas should be statistically signi�cant.

When there is spread in the expected returns across portfolios, there should also be

statistically signi�cant spread in the betas across portfolios. With this in mind, we can test

whether for each factor the eight factor betas are jointly signi�cantly di¤erent from zero.

As Table 1 indicates, at conventional signi�cance levels one cannot reject that �ij = 0 8i,
for each j = 1, : : : , k. Since the contribution of factor j to the vector of model-predicted

expected returns is �j�j these hypothesis tests imply that one cannot reject the null that

each factor�s risk premium contributes nothing to the model-predicted expected returns.

Finally, if we test whether literally all the betas are jointly zero, the �224 statistic has a

p-value of 0:64, although with VARHAC standard errors the p-value is very small. It turns

out that this result is entirely driven by a single beta. If we test whether every beta except

the durables beta of P7 is zero, the �223 statistic has an OLS p-value of 0:78 and a VARHAC

p-value of 0:06.

Another way to assess the model is to look for covariance between the SDF and the

portfolio returns. By forming SDFs that are linear combinations of the factors, we may

induce signi�cant cross-sectional spread in cov(mt; R
e
it) across i that is hard to detect in the

factor betas. One way to capture such spread is to measure the SDF betas. Using (3), (2)

can be rewritten as

E(Re
t) = � cov(Re

t ;mt)=E(mt): (16)

3The GMM-based standard errors I present are computed using a variant of the VARHAC procedure
described by Wouter J. den Haan and Andrew T. Levin (2000). Details are provided in an available appendix.
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With the normalization � = 1, (3) implies that E(mt) = 1, so we can rewrite (16) as

E(Re
t ) = �

cov(Re
t ;mt)

var(mt)
var(mt) = �m�m: (17)

To measure mt, using (3), we need values for the elements of b. Here I use three versions

of b taken directly from LV�s article. The SDF betas for these di¤erent values of b are shown

in Table 2.

In Table 2(a) I use the b vector corresponding to LV�s two pass estimates of �: bc = �21,
bd = 130 and br = 4:5. The beta for P7 is signi�cant at the 5 percent level. However, as

Table 2 indicates, the null hypotheses that �im = 0 or that �im = �m (a common constant)

for all i cannot be rejected.

Table 2(b) uses the b vector corresponding to LV�s GMM estimates of b: bc = 37, bd = 75

and br = 4:7. None of the estimated SDF betas is individually signi�cantly di¤erent from

zero at the 5 percent level. As Table 2 indicates, the null hypotheses that �im = 0 or that

�im = �m for all i cannot be rejected.

Table 2(c) repeats the exercise using the b vector corresponding to the calibrated model

discussed in section I.E of LV�s paper: bc = 6:7, bd = 23 and br = 0:31. As in case (a) only

the beta for P7 is signi�cant at the 5 percent level. However, as Table 2 indicates, the null

hypotheses that �im = 0 for all i or that �im = �m for all i cannot be rejected.

Linear factor models rely on there being signi�cant spread in the covariance between the

risk factors and the returns. The general lack of statistical signi�cance in the factor and SDF

betas and the lack of signi�cant spread of these betas across assets cast reasonable doubt

on the hypothesis that LV�s model explains the cross-section of the expected returns of their

portfolios.

3 Weak Identi�cation

In this section I argue that tests of the pricing errors fail to reject LV�s model at low lev-

els of signi�cance due to an identi�cation problem. In the second-pass regression with the

constant, the parameters 
 and � are identi�ed under the assumption that �+ = ( � � )

has full column rank, where � is an n � 1 vector of ones. In the second-pass regression
with no constant, � is identi�ed if � has full column rank. The same conditions must hold

for the GMM procedure used to estimate b. When the rank conditions fail, conventional

inference drawn from second pass regressions and GMM is unreliable because standard as-
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ymptotic theory does not apply. As Burnside (2007) discusses, t-statistics for �̂ and b̂ have

non-standard distributions, and, most importantly, pricing-error tests cannot reliably detect

model misspeci�cation.

It is straightforward to test whether LV�s model is identi�ed using a rank test from

Jonathan H. Wright (2003). Table 3 presents tests of the null hypothesis that � has reduced

rank. Since there are three risk factors in the model, � has reduced rank if rank(�) < 3. As

Table 3 indicates, it is not possible to reject that rank(�) = 1 at conventional signi�cance

levels. In fact, it is only when VARHAC standard errors are used that we can reject the null

hypothesis that rank(�) = 0, which is equivalent to the null that every element of � is zero.

Similar results are obtained when I test the rank of �+.

To see, intuitively, why lack of identi�cation limits the power of pricing-error tests, imag-

ine that a researcher was confronted with themt series constructed using the b corresponding

to LV�s benchmark two-pass estimates (bc = �21:0, bd = 130, br = 4:46). Suppose this re-
searcher used the two-pass procedure to estimate a linear factor model, treating �mt as a

risk factor. In the second pass, the researcher would regress the sample expected returns,
�Rei , against the SDF betas, �̂mi, presented in Table 2(a). A scatter plot of �R

e
i against �̂mi

is presented in Figure 1, with the estimated regression line The horizontal bar around each

estimate, �̂mi, represents a 95 percent con�dence interval for �̂mi treating b as known. The

width of the bars illustrates the enormous degree of uncertainty about the betas that we saw

in Section 2. The vertical bar around each estimate, �Rei , represents a 95 percent con�dence

interval for �Rei .

The estimated regression line corresponds to 
̂m = �2:9 and �̂m �= 5:8, and, as Figure

1 indicates, it �ts the scatter plot quite well. However, once the degree of uncertainty

associated with �Re and �̂m is taken into account, it is abundantly clear that a very wide range

of parameter pairs (
m; �m) would also �t the scatter plot reasonably well. This conjecture is

easy to verify formally. A standard tool for conducting inference under weak identi�cation is

to construct con�dence sets for the weakly identi�ed parameters using the objective function

corresponding to the continuously updated (CU) GMM estimator.4 Roughly speaking, the

con�dence set is constructed as follows. At each point, (
m; �m), in the parameter space

the CU-GMM objective function is evaluated, and the corresponding p-value is calculated.

Those pairs, (
m; �m), for which the p-value exceeds 0.05 lie in the 95 percent con�dence

4See James H. Stock and Wright (2000), Stock, Wright and Yogo (2002) and Yogo (2004) for details.
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set for (
m; �m). The di¤erence between this approach and standard GMM is that the

weighting matrix is recalculated at each (
m; �m), and no degrees of freedom are lost because


m and �m are not estimated. Figure 2 shows the robust 95 percent con�dence set for

(
m; �m) constructed using the mt series described above. Points outside the con�dence set

are indicated by grey shading. The two-pass estimate, (�2:9; 5:8), is indicated by the solid
dot. The CU-GMM estimate, (�4:2; 8:0), is indicated by the open dot. While the rank
tests are the de�nitive indication that the data are uninformative about �, the fact that the

con�dence set in Figure 2 is a vast, disjoint, and unbounded subset of the parameter space

provides a graphical illustration of the problem.

It is not surprising that points around the horizontal axis (�m = 0) lie outside the

con�dence set. The value of the CU-GMM objective function at �m = 0 and any value of


m is equivalent to a test statistic for the null hypothesis that E(R
e
i ) = 
m for all i. As long

as there is statistically signi�cant variation in the mean excess returns, this hypothesis will

be rejected for any proposed SDF.5

When con�dence sets for parameters are constructed using the CU-GMM objective func-

tion, lack of information about the parameters goes hand-in-hand with inability to reject the

model. Given the con�dence set in Figure 2, of course, we cannot formally reject the model.

It is easy to �nd parameter pairs where the test of the over-identifying restrictions fails to

reject. But this hardly seems like a signal of the model�s success.

4 Second Pass and GMM Estimates of the Model

The second pass and GMM estimates of the model provide us another opportunity to assess

LV�s proposed explanation of the cross-section of returns to foreign currency portfolios. Of

particular interest are the point estimates of � and b, the R2 measure of �t and the tests of

the pricing errors.

LV�s second pass regressions, which include the constant 
, are reproduced in Table 4(a).

When presenting their �ndings they compute standard errors� shown in the �OLS�column�

under the assumption that the �rst-pass betas are known. Given these standard errors, the

factor risk premia for consumption and durables are both positive and highly statistically

signi�cant. The R2 of the model is 0:87 and the p-value for the test for signi�cance of the

5In LV�s case, as Table 1 and Figure 1 indicate, the mean excess returns of P1 and P7 are signi�cantly
di¤erent from zero.
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pricing errors is 0:48. These results are the main basis of LV�s positive assessment of the

model.

There are three reasons our assessment should be less sanguine. One is that �OLS�stan-

dard errors are inappropriate given the estimation of the betas, and this turns out to matter

a great deal for inference. Once standard errors are computed correctly, estimates of � and

b are statistically insigni�cant. The latter �nding is especially important because it suggests

that the consumption factors do not help price currency returns. The second reason to be

doubtful about the model estimates is the identi�cation problem discussed earlier. Under

non-identi�cation or weak identi�cation even appropriately calculated asymptotic standard

errors are likely to understate the degree of uncertainty about the model parameters. The

third reason to be skeptical is that the model performs much more poorly when we impose

the restriction that the constant is equal to zero. The b parameters remain insigni�cant,

and the �t of the model deteriorates substantially.

4.1 Inference About Model Parameters

As Cochrane (2005) points out, the fact that the betas are estimated in the �rst pass matters

for inference about the factor risk premia, and this is true even asymptotically. There are

two standard ways to deal with this problem. One is to use the correction of the standard

errors suggested by Jay Shanken (1992). The other is to compute the standard errors using

the �rst of the two GMM procedures described above that replicates the point estimates.

By construction, the alternative approaches to calculating standard errors do not a¤ect the

point estimates of the factor risk premia. Also, the Shanken standard errors are a special

case of the GMM standard errors when the �it, in (5), are i.i.d. and homoskedastic. The

GMM procedure is more general, but as I show here, the two procedures deliver quite similar

results. I also show that correcting the errors matters quantitatively.

The Shanken and GMM-corrected standard errors for the model with the constant [Table

4(a)] are roughly two to three times larger than the OLS standard errors that ignore estima-

tion of the betas. Why is the Shanken correction so big? Let � = ( 
 �0 )0, � = E(�t�
0
t)

and �f = E[(ft � �)(ft � �)0], and let ~�f be a matrix with a leading column and row of
zeros, and �f in the lower right corner. When the betas are treated as known the covariance

matrix of
p
T (�̂ � �) is


�̂ = (�
+0�+)�1�+0��+(�+0�+)�1 + ~�f : (18)
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With the Shanken correction the covariance matrix is


�̂ = (1 + �
0��1

f �)(�
+0�+)�1�+0��+(�+0�+)�1 + ~�f : (19)

In some �nance applications the Shanken correction is small. For example, for the CAPM

estimated using annual returns of the Fama and Kenneth R. French�s (2003) 25 portfolios

sorted on size and book-to-market value over the period 1953�2002, the Shanken-correction

term, 1 + �2=�2f , is estimated to be 1:035. In LV�s case the estimate of 1 + �
0��1

f � is 6:79.

Although the individual �s in LV�s model are of the same order of magnitude as for the

CAPM, the consumption factors have much smaller variance than the market return. This

blows up the size of the Shanken correction substantially.

Using either the Shanken or GMM standard errors, none of the estimated factor risk

premia in Table 4(a) are statistically signi�cant at the 5 percent level, though the risk

premium corresponding to durables growth is signi�cant at the 10 percent level. These

results do not imply that the price of consumption risk is zero. Instead, they indicate that

the joint behavior of the currency returns and consumption factors is relatively uninformative

about the price of consumption risk.6

It is especially important to know whether the consumption factors help to price the

currency returns. This requires us to focus on the parameter vector b. GMM estimates of b

for the model with the constant are found in Table 5. The �rst stage of GMM is equivalent to

the second-pass regression in terms of point estimates. I also show GMM estimates from the

second stage, and after iterating over the weighting matrix to convergence. At all stages of

GMM, the estimates of b are statistically insigni�cant for every risk factor. Thus we cannot

reject the null hypothesis that consumption factors do not help price the cross-section of

currency returns. The statistical insigni�cance of the estimates of � is also robust to using

this GMM procedure to estimate the model.

6LV defend the statistical signi�cance of their �ndings on three grounds. First, they appeal to Ravi
Jagannathan and Zhenyu Wang (1998) to defend the use of �OLS�standard errors rather than the Shanken
correction. This is inappropriate. Jagannathan and Wang�s point is that under heteroskedasticity, the
Shanken correction is inappropriate, and that more general GMM errors are appropriate. Shanken�s proof
that corrected standard errors are necessarily bigger than OLS standard errors does not work for GMM
standard errors. GMM errors could be smaller than OLS standard errors, but in LV�s case they are not.
Second, in their footnote 11, they argue that the OLS standard errors are close in magnitude to the GMM
standard errors. This is because they use inappropriate GMM standard errors, as detailed in the appendix.
Third, they argue that standard errors from a bootstrap procedure are small enough to make the estimated
risk premia signi�cant. These standard errors are also calculated inappropriately as detailed in the available
appendix.

12



The lack of identi�cation we saw in Section 3, however, suggests that even appropriately

calculated asymptotic standard errors understate the degree of uncertainty we have about

� and b. Unfortunately, it is not possible to plot robust con�dence sets for these parameter

vectors, since they have three elements. We can, however, repeat the exercise of Section

3, in which we imagined a researcher confronted with the mt series constructed using the

benchmark two-pass estimates. Suppose this researcher used the two-pass procedure to esti-

mate a linear factor model, treating �mt as a risk factor. Suppose this researcher used his

estimates to construct con�dence sets for (
m; �m) using OLS, Shanken and GMM standard

errors. These con�dence sets are plotted in Figure 3, along with the robust con�dence set

calculated in Section 3. The GMM and Shanken procedures produce con�dence sets with

roughly nine to ten times the area of the OLS procedure. The con�dence sets certainly cast

doubt on the signi�cance of the parameter estimates. However, none of the con�dence sets

capture the uncertainty revealed by the robust con�dence set.

4.2 Imposing a Zero Intercept

Given the estimates in Table 4(a) the R2 of the model is 0:87, the cross-sectional mean

absolute pricing error (MAE) is 0:44 percent, and the test of the pricing errors fails to

reject the model regardless of how standard errors are calculated. The model�s high R2 is

attributable to the inclusion of the common pricing error parameter 
̂ that, by convention,

is treated as part of the model�s predicted expected returns. The theoretical model does not

include a constant and predicts that the expected returns depend only on the covariance

between the factors and the returns. So, whenever a constant is included in the second-pass

regression it is important to consider its economic and statistical signi�cance. In fact, as

Table 4(a) indicates, the constant is big, implying a �3 percent per annum pricing error for

the risk free rate. Measurement error in the estimated betas, and resulting downward bias

in the estimated factor risk premia, can explain a positive pricing error for the risk free rate.

So can a liquidity premium in T-bills. But a large negative pricing error for the risk free rate

is bad news for the model.

Table 4(b) presents two-pass estimates of the model obtained by imposing the restriction

that the constant is zero. In this case the factor risk premia for the consumption factors are

much smaller, none of factor risk premia are statistically signi�cant, the R2 is only 0:34, and

the mean absolute pricing error of the model is 1:17 percent.
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We can also estimate the model without the constant by GMM. In Table 6(a) I present

the results from the �rst stage of GMM. Here, none of the b coe¢ cients is individually

signi�cant, nor are any of the elements of �. The R2 of the model is 0:34 and the MAE

is 1:17 percent. Turning to the second stage of GMM [Table 6(b)] I reproduce LV�s point

estimates (their Table 14, Column C). Importantly, the R2 of the model is now negative

(�0:66), and the MAE is 1:86 percent. This is very bad news, because it indicates that
a constant would do a better job explaining the cross-sectional distribution of the returns

than the model does. While the individual �s associated with consumption and durables are

statistically signi�cant, the b parameter is only signi�cant for durables. Further iterations on

the weighting matrix [Table 6(c)] lead to a further deterioration of the model�s performance.

The R2 of the model drops to �1:45 and the MAE rises to 2:28 percent. The factor risk
premium for durables is statistically signi�cant, but none of the b parameters are signi�cant.

In summary, the model �ts very poorly absent the constant.

Unfortunately, excluding the constant from the model does not alleviate the identi�cation

problem alluded to earlier. The model with the constant is identi�ed if the �+ matrix has

full rank. The model without the constant is identi�ed if the � matrix has full rank. If the

problem with the model were simply that there was lack of spread in the betas for one factor,

then getting rid of the constant would solve the problem. As Table 3 indicates, however,

the rank of the � matrix appears to be 1 or less. The identi�cation problem is severe. If

we construct con�dence sets for �m with 
m set equal to zero, we obtain (�0:33; 2:28) with
OLS standard errors, (�1:32; 3:27) with Shanken standard errors and (�0:87; 2:82) with
GMM standard errors. The robust con�dence set constructed using the CU-GMM objective

function, (�1;�4:92) [ (1:78;+1), is much bigger and has little overlap with the other
con�dence sets. This is a classic indication of non-identi�cation.

A scatter plot of expected returns against factor betas would provide insight into the role

of the constant in the �t of the model, but constructing such a scatter plot is impossible for a

three factor model. I consider, instead, a scatter plot of expected returns against SDF betas.

Figure 4 shows a scatter plot of �Rei against �̂mi, i = 1, : : : , n, with mt being constructed

using the b vector corresponding to the calibrated model discussed in section I.E of LV�s

paper: bc = 6:74, bd = 23:3 and br = 0:31. Equation (17) implies that a scatter plot of E(Reit)

against the SDF betas, �mi, should lie on a line through the origin with slope �m = �
2
m. The

constructed mt series has sample variance �̂
2
m = 0:29, so I indicate an estimated version of
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this theoretical line, �m�̂
2
m, in bold black in Figure 4. This line correctly prices the risk free

asset, since the intercept is zero. It also correctly prices SDF risk because an SDF mimicking

portfolio has a beta of 1, and a risk premium �2m. The theoretical line, however, does not

correctly price LV�s portfolio returns because the values of (�̂mi; �R
e
i ), indicated by the small

circles in Figure 4, do not �t closely around the black line. Better �t can be obtained by

running a regression of �Rei on a constant and �̂mi. The regression line (indicated in bold

grey) has an intercept of 
̂m = �3:0 percent and a slope of �̂m = 1:3. This means that

although the regression line �ts the scatter plot reasonably well, it misprices the risk free

rate by �3 percent. It also misprices SDF risk because an SDF mimicking portfolio has a
beta of 1, and an implied expected return of 
̂m + �̂m = �1:7, rather than the theoretically
predicted expected return, �̂2m = 0:29. When LV report high R

2 statistics for the calibrated

model, it is because they measure �t with respect to the grey line, not the black line.

Figure 4 also sheds light on the degree to which we should be surprised by the good �t

of LV�s model with the constant. There are e¤ectively three data points: the P1 and P7

observations, plus the cluster of points formed by P2�P6 and P8. It is not too surprising that

a regression line with a free constant can do a good job of �tting three data points. When

the SDF is estimated (as opposed to being calibrated) the problem becomes worse because,

statistically, the P2�P6 and P8 portfolios have the same expected returns and betas as each

other and we have four free parameters in 
 and �.

By comparing Figure 5 (constructed using the estimate of b in Table 5a), with Figure 4

(constructed using the calibrated b) we can also see what estimation of the model accom-

plishes. By re-weighting the factors in the SDF, estimation of the model with the constant

forces the black line and the grey line to be parallel. That is, by construction, the regression

line has slope �̂m = �̂
2
m. Estimation of the model also, of course, unambiguously improves

the �t of the model. The important point, again, is that LV report high R2 statistics for the

estimated model because they measure �t with respect to the grey line, not the black line.

A further problem with the estimated version of the model is that the implied value

of �̂m is 2:4, while the mean of mt is 1, by assumption. Consequently, in sample, the

constructed mt is negative in 38 percent of the observations. Furthermore, the implied

structural parameters are theoretically implausible. In the original nonlinear model, the

parameter values corresponding to LV�s estimates of b imply that the marginal utility of

nondurables is always negative, the intertemporal elasticity of substitution is negative, and
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the coe¢ cient of relative risk aversion exceeds 100. This means that even if we accept the

point estimates we still have an asset pricing puzzle.

4.3 Summary Discussion

When a constant is included in the model it �ts well, as measured by the cross-sectional R2

and the mean absolute pricing error, and it passes formal tests of the pricing errors. But this

�success� is due to the convention which excludes the constant 
 from the pricing errors.

Furthermore, not one of the estimated factor risk premia, �̂, and model parameters, b̂, is

statistically signi�cant using appropriate approaches to inference. Robust con�dence sets for

(
m; �m) indicate that the data are even less informative about the model than appropriate

standard errors indicate.

If the constant is excluded from the model, it is still badly identi�ed, and its �t de-

teriorates markedly. The R2 is less than or equal to 0:34, while �̂ and b̂ are statistically

insigni�cant, with one exception. In two-stage and iterated GMM, some of the parame-

ters associated with nondurable consumption growth and durables growth are statistically

signi�cant, but the R2 of the model is negative and the mean absolute price error is large.

5 Robustness

In this section I consider the robustness of my �ndings to �ve di¤erent considerations. First,

I ask whether adding information from equity and bond portfolios improves identi�cation

and sheds additional light on whether the SDF prices the currency portfolios. Next, I check

whether considering a di¤erent set of currency portfolios a¤ects my conclusions. Third, I

consider the post-Bretton Woods subsample of the data set. Fourth, I discuss LV�s focus

on the returns to a particular portfolio. Finally, I discuss additional evidence from higher

frequency data in the post-Bretton Woods period.

5.1 Equity and Bond Portfolios

LV, in their reply, argue that the results in Section IV.C of their original paper are important,

because these show that the same SDF that prices currency portfolios also prices other test

assets, such as Fama and French�s (1993) six equity portfolios created by sorting stocks on

the basis of size and value, and �ve Fama bond portfolios (Center for Research in Security
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Prices, 2007) created by sorting bonds on the basis of maturity.7 Indeed, additional test

assets could be useful because they might alleviate the identi�cation problem alluded to

in Section 3. However, I �nd that these additional test assets have no e¤ect on my main

conclusion, that currency portfolios do not appear to be priced by consumption factors.

Of course, adding extra portfolios does not change the factor betas for the currency

portfolios. The tests in Section 2 still apply. Adding extra portfolios changes the estimates of

�, and therefore does change the estimates of the SDF betas. I discuss parameter estimates,

below, for two di¤erent cases. In both cases, the SDF betas of the currency portfolios are

jointly statistically insigni�cantly di¤erent from zero. Therefore, adding the equity and bond

portfolios does not change my conclusion, based on betas alone, that we cannot reject the

null that the predicted expected returns of the currency portfolios are all zero.

Adding the six Fama-French equity portfolios slightly alleviates the identi�cation problem

because equities have statistically signi�cant betas with respect to the market return factor,

rW . However, the rank tests in Table 7 indicate that the � matrix still appears to have

reduced rank. The identi�cation problem does not go away with the further addition of the

�ve Fama bond portfolios.

Estimates of the model without the constant using the currency and equity portfolios as

test assets are presented in Table 8. As the table indicates, with su¢ cient iterations over

the weighting matrix the factor risk premia for consumption growth and durables growth

are statistically signi�cant. However, the �t of the model with respect to currency portfolios

is very poor. When the R2 statistic is calculated just for currency portfolios it ranges from

0:03 (at the �rst stage of GMM) to �0:82 (for iterated GMM). The mean absolute pricing
error for the currency portfolios ranges from 1:43 (at the �rst stage of GMM) to 1:93 (for

iterated GMM).

Why do I compute these statistics just for currency portfolios? First, the goal is to explain

the cross-section of returns of currency portfolios. Why do some currency portfolios (like

P7) earn high returns, and why do other currency portfolios (like P1) earn low returns, on

average? Second, we are not trying to explain why the currency portfolios all have relatively

low returns compared to the equity portfolios. That is not a puzzle, given that currency

portfolios are only weakly correlated with risk factors that price equity portfolios. To see

how this point a¤ects the interpretation of R2 statistics, consider the following example.

7These data are described in detail in an appendix available from the author.
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Suppose we have a factor model that predicts that all six of the Fama-French portfolios

have a mean return of 9:4 percent, and, because the factor is uncorrelated with the currency

portfolios, predicts that all of them have a mean return of zero. This factor explains none of

the cross-section of the Fama-French portfolios, nor does it explain the cross-section of the

currency portfolios, but the R2 across all assets is 0:82. If the factor explains the cross-section

of the equities, but none of the cross-section of the currencies the R2 across all assets is 0:94.

The R2 across all assets does not tell us whether the model explains why some currency

portfolios earn high returns and others earn low returns.

Adding the �ve Fama bond portfolios leads to the results presented in Table 9. At the �rst

two stages of GMM the results are quite similar to those obtained using only the currency

and equity portfolios, although further iterations over the weighting matrix eventually drive

out consumption growth and durables growth as signi�cant risk factors. Once again, the �t

of the model with respect to currency portfolios is very poor. If the R2 statistic is calculated

just for currency portfolios it ranges from 0:03 (at the �rst stage of GMM) to �1:33 (for
iterated GMM). The mean absolute pricing error for the currency portfolios ranges from 1:40

(at the �rst stage of GMM) to 1:64 (for iterated GMM).

5.2 Di¤erent Currency Portfolios

In their reply, LV argue that they can explain the excess returns to the strategy of holding

Pi and shorting P1, for i = 2, : : : , 8. They claim that their paper is really about these

seven �di¤erenced�portfolios, which I refer to as D2, D3, : : : , D8, and not really about the

original eight portfolios. Given that the entire article is about the P-portfolios this comment

is surprising, especially given the following statement in the original article: �consumption-

based models can explain the cross-section of currency excess returns if and only if high

interest rate currencies typically depreciate when real US consumption growth is low, while

low interest rate currencies appreciate�. Notice that these statements are not about whether

there is a di¤erence between the rates of return of the portfolios, it is a statement about the

rates of return themselves.

LV also argue for working with the D-portfolios on the basis that �large swings in the

dollar make it hard to accurately estimate the constant�, the constant being 
 in the model

for the P-portfolios. This argument is not persuasive because the intercept can be �esti-

mated�with perfect accuracy. We know that the mean excess return of a zero beta asset is
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zero, so we can set 
 equal to zero without even having to estimate it.

Nonetheless, what of LV�s point that the constant no longer plays an important role in

explaining the cross-section once we consider the seven D portfolios? LV are right, but this

point can easily be made without new tables of point estimates. Consider the model with

the constant. The estimates of the second pass regression satisfy:

�Rei = 
̂ + �̂
0
i�̂+ ûi; i = 1; : : : ; n: (20)

This is equation (8) with 
 and � replaced by 
̂ and �̂ (the two-pass estimates) and ui

replaced by ûi (the idiosyncratic pricing error or residual). Now suppose we consider the

new set of excess returns, Rdi = R
e
i �Re1, for i � 2. Given the de�nition of Rdi and equation

(20), it follows that the sample mean of Rdi is given by:

�Rdi = (�̂i��1)0�̂+ ûi � û1. (21)

P1 is not just any asset. As can be seen in Figure 5, it happens to be an asset for which

the SDF beta is roughly zero (�01�̂ �= 0) and the idiosyncratic pricing error is very small

(û1 �= 0). Thus
�Rdi
�= �̂

0
i�̂+ ûi. (22)

If the game is to �t the cross-sectional distribution of �Rdi it will make little di¤erence whether

the model includes a constant, or not.

In their reply, it seems that LV concede that their model does not price the original

portfolios. But this means they have not identi�ed the true SDF. All of the portfolios (the

P and D-portfolios) should be priced by the same SDF. E¤ectively this means there must

be a missing factor that prices P1. Since this factor is responsible for the �t of the original

portfolios we are back to square one.

Are the D-portfolios priced by consumption growth? On the basis of factor betas the

answer is clearly �no�. The beta matrix for the D-portfolios is the same transformation of

the P-portfolios used to test whether they are equal to a common constant: �D = ��P

where � = ( �� In�1 ) and � is an (n � 1) � 1 unit vector. Not surprisingly, since we
could not reject the null hypotheses that �Pij = 0 for all i, and each j, we also cannot reject

the null hypotheses that �Dij = �
P
ij � �P1j = 0 for all i, and each j. The p-values associated

with the test are 0:818 for consumption growth, 0:471 for durables growth and 0:186 for the

market return. If we re-estimate the model using the D-portfolios, the SDF betas are also

statistically insigni�cant.
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Working with the D-portfolios also does not alleviate the identi�cation problem. The

identi�cation problem arises because there exists at least one non-zero k � 1 vector x such
that �Px �= 0, statistically. Given the de�nition of �D it follows that �Dx �= 0, statistically.
In fact, the identi�cation problem gets worse, because the transformation � is not invertible.

Any x such that �Px �= 0 implies that �Dx �= 0. But there may be additional x such that
�Dx �= 0 for which �Px �= 0. This analysis is hardly surprising. Throwing away information
is never likely to improve identi�cation. Formal test statistics verifying this are provided in

Table 7.8

5.3 Post-Bretton Woods Sample

LV present results for two sample periods, 1953�2002 and 1971�2002. The shorter sample

may be more relevant given that the BrettonWoods system was in place until 1971. Choosing

the shorter sample, however, does not greatly a¤ect my conclusions.

As in Section 2 we can test whether for each factor the betas (across portfolios) are

jointly signi�cantly di¤erent from zero. The p-values associated with these tests are 0:22 for

consumption growth, 0:12 for durables and 0:05 for the market return. While this suggests

that there may be some amount of spread across the betas in the shorter sample, this does

not translate into signi�cant spread across the SDF betas. For the SDF associated with the

two-pass regression, the p-value for a test that the SDF betas are all zero is 0:23. For the

SDF associated with the 2nd-stage GMM estimate the p-value is 0:32. The model is still

poorly identi�ed, as the rank tests in Table 7 indicates. This is not too surprising given the

extremely short sample. If the model is re-estimated without the constant over this period,

the R2 is never greater than 0:38 and the MAE is never less than 1:41.9

5.4 The D7 Portfolio

In their reply, LV emphasize a single portfolio, the D7 portfolio, which is formed by going long

in P7 and short in P1. I agree with LV that if one considers the D7 portfolio in isolation,

and if one considers individual factor betas, the consumption beta and durables beta are

individually statistically signi�cant. However, if the factor betas are estimated jointly (as

they are in the �rst-pass regressions) the consumption beta and durables beta of the D7

portfolio are not individually statistically signi�cant. Obviously this re�ects the degree of

8Detailed empirical results using the D-portfolios are available upon request.
9Detailed empirical results using the post-Bretton Woods subsample are available upon request.
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correlation between consumption growth and durables growth. Additionally, although the

SDF betas of the D-portfolios are jointly insigni�cantly di¤erent from zero, the SDF beta of

the D7 portfolio is statistically signi�cant at the 5 percent level.

The appropriate statistics indicate that the average return of the D7 portfolio is positive,

and its SDF beta is positive and statistically signi�cant. But there are six other D-portfolios.

Because they are formed by going short in P1 and because P1 has a signi�cantly negative

average return, several of these portfolios (D3, D4, D5, and, marginally, D6) also have a sig-

ni�cantly positive average excess return. But their SDF betas are statistically insigni�cant.

I conclude, from this evidence, that the cross-section of returns has not been explained.

5.5 Other Evidence from the Literature

My comment mainly discusses the conclusions we should draw from LV�s evidence. Burnside,

Martin Eichenbaum, Isaac Kleshchelski and Sergio Rebelo (2008) provide additional evidence

by studying carry-trade portfolios formed monthly over the period 1976 to 2007. They show

that the consumption, durables and market return betas of these carry-trade portfolios are

statistically insigni�cant. When consumption-based models are estimated using carry-trade

and equity portfolios as test assets the models, in many cases, cannot be formally rejected

using the test of the pricing errors. But this, as in LV�s case, re�ects the weak identi�cation

problem stemming from the imprecise estimation of the betas. In almost every case, however,

the pricing errors of the currency portfolios, alone, are statistically signi�cant.

6 Conclusion

To explain cross-sectional variation in expected returns, a risk-based story requires that at

least some of the returns be correlated with the risk factors. As the �rst-pass regressions

reported in Section 2 demonstrate, however, LV�s risk factors are very close to being un-

correlated with the returns they study. A symptom of this is that there is no statistically

signi�cant spread in the factor betas. Given this fact, one cannot reject that LV�s estimates

are consistent with consumption risk explaining none of the cross-sectional variation in the

expected returns they studied.

I have argued that the statistical insigni�cance of the betas leads to two additional

problems with LV�s conclusions. First, it implies that one cannot ignore sampling uncertainty

in the betas when conducting inference about factor risk premia. The statistical signi�cance
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LV point to largely vanishes when standard errors appropriately re�ect this uncertainty.

Second, the degree of uncertainty about the betas implies that the factor risk premia are

very weakly identi�ed. This makes asymptotic inference less reliable. Con�dence sets that

are robust to weak identi�cation suggest that LV�s data are approximately uninformative

about consumption risk.

Finally, I have argued that LV are able to report strikingly high R2 measures of �t

because their model includes a constant pricing error, which is treated as part of the model�s

predicted expected returns. When this constant is excluded from the model, the R2 statistics

are much smaller and, in many cases, negative.

A central point of my discussion is that the betas of consumption factors are very poorly

estimated, and this is why a consumption-based model is di¢ cult to reject using a formal test

of the pricing errors. If a great deal more data were collected, one might obtain su¢ ciently

precise estimates of the betas to enable sharper conclusions about the model. I conclude,

however, that there are no grounds for drawing the sharp conclusion that consumption risk

does explain the currency returns in LV�s data set.
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TABLE 1: First-Pass Estimates of the Betas

Portfolio �Rei Factor (j) Test of

(i) �c �d rW �ij = 0 8j

P1 �2:336 0:201 0:028 �0:068
(0:897) (0:852) (0:612) (0:055) (0:600)
[0:906] [0:643] [0:563] [0:049] [0:483]

P2 �0:873 0:740 0:091 �0:034
(0:937) (0:889) (0:638) (0:058) (0:579)
[0:947] [0:620] [0:466] [0:062] [0:157]

P3 �0:747 �0:639 0:962 0:019
(0:935) (0:882) (0:633) (0:057) (0:464)
[1:361] [1:026] [0:682] [0:047] [0:513]

P4 0:329 �0:546 0:982 �0:089
(1:190) (1:095) (0:786) (0:071) (0:156)
[1:202] [1:075] [0:760] [0:068] [0:068]

P5 �0:151 0:180 0:485 0:009
(1:053) (1:006) (0:722) (0:065) (0:740)
[1:063] [0:754] [0:708] [0:065] [0:740]

P6 �0:213 �0:755 1:079 0:023
(1:148) (1:089) (0:781) (0:071) (0:556)
[1:160] [0:958] [0:830] [0:068] [0:592]

P7 2:988 0:036 1:234 �0:027
(1:144) (1:044) (0:749) (0:068) (0:101)
[1:155] [0:797] [0:755] [0:062] [0:129]

P8 2:031 �1:342 1:426 0:079
(1:756) (1:674) (1:201) (0:108) (0:684)
[2:586] [1:646] [0:762] [0:116] [0:251]

Test of (0:813) (0:623) (0:365)
�ij = 0 8i [0:799] [0:668] [0:511]

Notes: Annual data, 1953�2002. The regression equation is Reit = ai + f
0
t�i + �it, where R

e
it is the excess

return of portfolio i at time t, ft = ( �ct �dt rWt )
0, �c is real per household consumption (nondurables

& services) growth, �d is real per household durable consumption growth, and rW is the value weighted US
stock market return. The portfolios are equally-weighted groups of short-term foreign-currency denominated
money market securities sorted according to their interest di¤erential with the United States, where P1 and
P8 are the portfolios with, respectively, the smallest and largest interest di¤erentials. The table reports �ij
and the sample mean of each portfolio return, �Rei . The table also reports p-values for tests of the hypotheses
that �ij = 0 8j for each portfolio i, and �ij = 0 8i for each factor j. For estimates of betas, OLS standard
errors are in parentheses and GMM-VARHAC standard errors are in square brackets. For test statistics,
corresponding p-values are presented.
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TABLE 2: Estimates of the SDF Betas for Specific Values of b

Portfolio Estimates of �im

(i) Model (a) Model (b) Model (c)

P1 0:059 �0:030 0:638
(0:373) (0:452) (1:665)
[0:544] [0:658] [2:594]

P2 0:335 0:437 1:925
(0:387) (0:468) (1:720)
[0:241] [0:285] [1:064]

P3 0:549 0:513 2:229
(0:381) (0:465) (1:709)
[0:542] [0:526] [2:617]

P4 0:539 0:308 2:692
(0:489) (0:597) (2:178)
[0:702] [1:031] [2:288]

P5 0:467 0:559 2:158
(0:433) (0:524) (1:932)
[0:470] [0:553] [2:031]

P6 0:603 0:556 2:422
(0:470) (0:573) (2:106)
[0:705] [0:684] [3:233]

P7 0:999 1:038 4:714
(0:454) (0:557) (2:018)
[0:465] [0:566] [2:043]

P8 0:694 0:653 2:403
(0:723) (0:879) (3:245)
[0:696] [0:844] [3:481]

Hypothesis Tests
�im = 0 8i (0:469) (0:443) (0:505)

[0:306] [0:170] (0:329)

�im = �m 8i (0:508) (0:477) (0:575)
[0:688] [0:589] [0:602]

Notes: Annual data, 1953�2002. The regression equation is Reit = ai +mt�im + �it, where R
e
it is the excess

return of portfolio i at time t, mt = 1 � (ft � �f)0b, ft = ( �ct �dt rWt )
0, �c is real per household

consumption (nondurables & services) growth, �d is real per household durable consumption growth, rW
is the value weighted US stock market return, �f is the sample mean of ft and the vector b takes on one
of the following three values: (a) b = ( �21:0 129:9 4:46 )0, (b) b = ( 37:0 74:7 4:65 )0 and (c)
b = ( 6:74 23:3 0:31 )0. The portfolios are described in Table 1. This table reports estimates of �im and
p-values for tests of restrictions on the �ims. For estimates of betas, OLS standard errors are in parentheses
and GMM-VARHAC standard errors are in square brackets. For test statistics, corresponding p-values are
presented.
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TABLE 3: Tests of the Rank of the Factor Beta Matrix

Test of H0: rank(�) = r Test of H0: rank(�
+) = r + 1

r p-value r + 1 p-value

2 (0:615) 3 (0:529)
[0:657] [0:699]

1 (0:643) 2 (0:618)
[0:444] [0:326]

0 (0:639) 1 (0:562)
[0:000] [0:003]

Notes: Annual data, 1953�2002. The matrix � is obtained by running the regressions described in Table
1. The matrix � must have full column rank (3) for � to be identi�ed in the two-pass procedure without
the constant. The matrix �+ = ( � � ) must have full column rank (4) for 
 and � to be identi�ed in
the two-pass procedure with the constant. The table presents tests of the null hypothesis that these rank
conditions fail. The p-values for the tests are presented in parentheses (OLS standard errors) and square
brackets (GMM-VARHAC standard errors).
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TABLE 4: Second-Pass Estimates of the Factor Risk Premia

(a) Model With a Constant (b) Model Without a Constant

Standard Error of �̂ Standard Error of �̂

Factor �̂ OLS Shanken GMM �̂ OLS Shanken GMM

Constant (
) �2:94 (0:86) [2:23] f2:66g
�c 2:19 (0:83) [2:11] f2:48g 0:59 (0:73) [1:01] f1:17g
�d 4:70 (0:97) [2:42] f2:41g 1:10 (1:02) [1:40] f1:69g
rW 3:33 (7:59) [18:8] f23:1g 11:7 (7:40) [10:1] f10:6g

R2 0:87 0:34
MAE 0:44 1:17

P-value for Cû P-value for C�̂

OLS Shanken GMM OLS Shanken GMM

Pricing Error Test 0:483 0:972 0:994 0:001 0:059 0:173

Notes: Annual data, 1953�2002. Part (a) reports results from running the cross-sectional regression �Rei =


+ �̂
0
i�+ui.where �R

e
i is the mean excess return of portfolio i and �̂i is the vector of factor betas of portfolio

i estimated in the �rst pass regression. The portfolios are described in Table 1. Part (b) reports results from

the a cross-sectional regression without the constant: �Rei = �̂
0
i� + �i. For the factor risk premia (�̂) OLS

standard errors are in parentheses, Shanken standard errors are in square brackets, and GMM-VARHAC
standard errors are in braces. For the tests of the pricing errors I compute the test statistic for each of the
three methods of computing the covariance matrix of û or �̂, and report the p-value associated with the
test-statistic. The R2 statistic from the second-pass regression is reported along with the mean absolute
pricing error (MAE).
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TABLE 5: GMM Estimates of the Model with the Constant

(a) 1st Stage (b) 2nd Stage (c) Iterated GMM

Factor b̂ �̂ b̂ �̂ b̂ �̂

Constant (
) �2:94 �3:02 �3:56
(2:63) (2:23) (2:01)

�c �21:0 2:19 27:2 2:73 59:5 2:94
(87:7) (1:88) (76:2) (2:81) (74:2) (1:59)

�d 129:9 4:70 108:3 4:85 88:4 4:81
(97:4) (3:16) (97:3) (3:15) (76:4) (2:62)

rW 4:46 3:33 2:53 0:78 0:15 �3:87
(4:83) (13:0) (4:38) (10:9) (4:03) (11:8)

R2 0:87 0:81 0:50
MAE 0:44 0:42 0:66
Pricing Error Test 0:703 0:915

Notes: Annual data, 1953�2002. The table reports GMM estimates of b, 
 and � obtained by exploiting the
moment restrictions EfRe

t [1�(ft � �)
0
b]�
g = 0, E(ft��) = 0 and E[(ft��)(ft��)0��f ] = 0, whereRe

t is
a vector of currency portfolio returns described in Table 1, ft = ( �ct �dt rWt )

0, �c is real per household
consumption (nondurables & services) growth, �d is real per household durable consumption growth, rW
is the value weighted US stock market return. GMM-VARHAC standard errors are in parentheses. For the
test of the pricing errors I report the p-value associated with the test-statistic.
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TABLE 6: GMM Estimates of the Model with no Constant

(a) 1st Stage (b) 2nd Stage (c) Iterated GMM

Factor b̂ �̂ b̂ �̂ b̂ �̂

�c �22:0 0:59 37:0 2:37 25:8 1:72
(62:9) (1:07) (45:2) (1:00) (40:6) (0:93)

�d 45:5 1:10 74:7 3:48 66:0 3:41
(50:3) (1:64) (33:0) (1:13) (47:4) (1:52)

rW 5:16 11:7 4:65 10:2 �2:14 �10:6
(2:88) (8:26) (2:70) (7:37) (2:94) (8:80)

R2 0:34 �0:66 �1:45
MAE 1:17 1:86 2:28
Pricing Error Test 0:068 0:281

Notes: Annual data, 1953�2002. The table reports GMM estimates of b and � obtained by exploiting the
moment restrictions EfRe

t [1�(ft � �)
0
b]g = 0, E(ft��) = 0 and E[(ft��)(ft��)0��f ] = 0, whereRe

t is a
vector of currency portfolio returns described in Table 1, ft = ( �ct �dt rWt )

0, �c is real per household
consumption (nondurables & services) growth, �d is real per household durable consumption growth, rW
is the value weighted US stock market return. GMM-VARHAC standard errors are in parentheses. For the
test of the pricing errors I report the p-value associated with the test-statistic. The appendix provides details
of the weighting matrices at each stage, and explains the equivalence of the GMM approach to the two-pass
method. It also explains why the test of the pricing errors is the same at both stages of GMM.
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TABLE 8: GMM Estimates of the Model with no Constant
Currency and Equity Portfolios as Test Assets

(a) 1st Stage (b) 2nd Stage (c) Iterated GMM

Factor b̂ �̂ b̂ �̂ b̂ �̂

�c 112:6 2:37 83:9 2:59 56:5 2:50
(79:7) (1:22) (54:2) (0:62) (50:7) (0:99)

�d �4:39 1:80 35:0 2:74 63:8 3:55
(65:6) (2:04) (28:1) (0:89) (46:8) (1:64)

rW 2:09 11:0 4:24 13:6 2:62 5:47
(3:34) (3:82) (1:70) (6:2) (2:16) (4:91)

R2 0:03 �0:09 �0:82
MAE 1:43 1:39 1:93

Notes: Annual data, 1953�2002. The table reports GMM estimates of b and � obtained by exploiting
the moment restrictions EfRe

t [1 � (ft � �)
0
b]g = 0, E(ft � �) = 0 and E[(ft � �)(ft � �)0 � �f ] = 0,

where Re
t is a vector of excess returns that includes the currency portfolios described in Table 1 as well

as Fama and French�s (1993) six equity portfolios created by sorting stocks on the basis of size and value,
ft = ( �ct �dt rWt )

0, �c is real per household consumption (nondurables & services) growth, �d is
real per household durable consumption growth, rW is the value weighted US stock market return. GMM-
VARHAC standard errors are in parentheses. The R2 statistic and mean absolute pricing error (MAE) are
presented for currency portfolios only, and are comparable to the statistics in Table 6.
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TABLE 9: GMM Estimates of the Model with no Constant
Currency, Equity and Bond Portfolios as Test Assets

(a) 1st Stage (b) 2nd Stage (c) Iterated GMM

Factor b̂ �̂ b̂ �̂ b̂ �̂

�c 88:0 1:65 91:5 1:79 14:3 �0:020
(59:3) (1:06) (32:5) (0:45) (24:0) (0:82)

�d �14:6 0:92 �13:0 0:97 �28:6 �1:36
(52:1) (1:74) (20:6) (0:67) (23:5) (0:75)

rW 1:90 10:3 3:00 13:7 5:85 20:7
(2:61) (3:19) (1:24) (5:5) (1:50) (10:6)

R2 0:03 0:04 �1:33
MAE 1:40 1:42 1:64

Notes: Annual data, 1953�2002. The table reports GMM estimates of b and � obtained by exploiting the
moment restrictions EfRe

t [1� (ft � �)
0
b]g = 0, E(ft ��) = 0 and E[(ft ��)(ft ��)0 ��f ] = 0, where Re

t

is a vector of excess returns that includes the currency portfolios described in Table 1, the equity portfolios
described in Table 8, and �ve Fama bonds portfolios sorted by maturity (from the Center for Research in
Securities Prices, 2007), ft = ( �ct �dt rWt )

0, �c is real per household consumption (nondurables &
services) growth, �d is real per household durable consumption growth, rW is the value weighted US stock
market return. GMM-VARHAC standard errors are in parentheses. The R2 statistic and mean absolute
pricing error (MAE) are presented for currency portfolios only, and are comparable to the statistics in Table
6.
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FIGURE 1: SDF Betas, Expected Returns and Two Standard Error Bars for
the Benchmark Estimated Model
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Note: Filled circles represent (SDF beta, mean excess return) pairs for LV�s eight currency portfolios,
described in Table 1. The �SDF beta�, �̂mi, for portfolio i is the slope coe¢ cient from a regression of the
portfolio excess return, Reit, on the SDF, mt = 1 �

�
ft ��f

�0
b, where ft = ( �ct �dt rWt )

0, �c is real
per household consumption (nondurables & services) growth, �d is real per household durable consumption
growth, rW is the value weighted US stock market return, �f is the sample mean of ft and b corresponds to
LV�s two pass estimates of �: bc = �21:0, bd = 130 and br = 4:46. The horizontal lines at each circle are
two standard error bands around each �̂mi. �Actual ER� is the sample mean of the portfolio return, �R

e
i .

The vertical lines are two standard error bands around �Rei . The black line corresponds to �m�̂
2
m where �̂2m

is the variance of the constructed SDF. The grey line is the estimated regression line �Rei = 
̂m + �̂m�mi.
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FIGURE 2: Robust Confidence Sets for the Constant and the Price of SDF Risk
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Note: The white area in the �gure represents a robust 95 percent con�dence set for (
m; �m) when the
SDF is speci�ed by mt = 1 �

�
ft ��f

�0
b, ft = ( �ct �dt rWt )

0, �c is real per household consumption
(nondurables & services) growth, �d is real per household durable consumption growth, rW is the value
weighted US stock market return, �f is the sample mean of ft and b corresponds to LV�s two pass estimates
of �: bc = �21:0, bd = 130 and br = 4:46. The con�dence set is constructed using the CU-GMM objective
function. The �lled dot in the �gure is the two-pass estimate of (
m; �m). The open dot in the �gure is the
CU-GMM estimate of (
m; �m).
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FIGURE 3: Various Confidence Sets for the Constant and the Price of SDF Risk
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Note: The white area in the �gure represents a robust 95 percent con�dence set for (
m; �m) when the
SDF is speci�ed by mt = 1 �

�
ft ��f

�0
b, ft = ( �ct �dt rWt )

0, �c is real per household consumption
(nondurables & services) growth, �d is real per household durable consumption growth, rW is the value
weighted US stock market return, �f is the sample mean of ft and b corresponds to LV�s two pass estimates
of �: bc = �21:0, bd = 130 and br = 4:46. The con�dence set is constructed using the CU-GMM objective
function. The �lled dot in the �gure is the two-pass estimate of (
m; �m). The 95 percent con�dence sets
based on asymptotic standard errors are indicated by their respective labels, OLS, Shanken, and GMM.
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FIGURE 4: SDF Betas and Expected Returns for the Calibrated Model
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Note: Filled circles represent (SDF beta, mean excess return) pairs for LV�s eight currency portfolios de-
scribed in Table 1. The �SDF beta�, �̂mi, for portfolio i is the slope coe¢ cient from a regression of the
portfolio excess return, Reit, on the SDF, mt = 1 �

�
ft ��f

�0
b, where ft = ( �ct �dt rWt )

0, �c is real
per household consumption (nondurables & services) growth, �d is real per household durable consumption
growth, rW is the value weighted US stock market return, �f is the sample mean of ft and b corresponds
to the calibrated model with bc = 6:74, bd = 23:3 and br = 0:31. �Actual ER� is the sample mean of the
portfolio return, �Rei . The black line corresponds to �m�̂

2
m where �̂

2
m is the variance of the constructed SDF.

The grey line is the estimated regression line �Rei = 
̂m + �̂m�mi. The empty circle marked ER
e
f signi�es

that a risk free asset has a zero beta, and a zero excess return. The empty circle marked EReS signi�es that
an SDF mimicking portfolio has a beta of 1 and expected excess return of �2m.
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FIGURE 5: SDF Betas and Expected Returns for the Benchmark Estimated Model
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Note: Filled circles represent (SDF beta, mean excess return) pairs for LV�s eight portfolios described in
Table 1. The �SDF beta�, �̂mi, for portfolio i is the slope coe¢ cient from a regression of the portfolio excess
return, Reit, on the SDF, mt = 1 �

�
ft ��f

�0
b, where ft = ( �ct �dt rWt )

0, �c is real per household
consumption (nondurables & services) growth, �d is real per household durable consumption growth, rW
is the value weighted US stock market return, �f is the sample mean of ft and b corresponds to LV�s two
pass estimates of �: bc = �21:0, bd = 130 and br = 4:46. �Actual ER�is the sample mean of the portfolio
return, �Rei . The black line corresponds to �m�̂

2
m where �̂

2
m is the variance of the constructed SDF. The grey

line is the estimated regression line �Rei = 
̂m + �̂m�mi. The empty circle marked ER
e
f signi�es that a risk

free asset has a zero beta, and a zero excess return. The empty circle marked EReS signi�es that an SDF
mimicking portfolio has a beta of 1 and expected excess return of �2m.
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