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1. Key Elements of the Model

Government Transfers We assume that the economy is in initially in a steady state

with a constant flow of lump-sum transfers from the government to households equal to v.

Initially agents assume that this constant flow will persist indefinitely. At time 0 agents

learn about a future increase in lump-sum transfers beginning at time T �  0. Specifically

we assume that �
vt = v
vt ≥ v

for 0 ≤ t < T �,
for t ≥ T �.

and ] ∞

0

e−rt(vt − v)dt =
] ∞

T �
e−rt(vt − v)dt = φ > 0. (1.1)

Thus, φ denotes the present value of the increase in transfers.

Money Demand We assume that the demand for money takes the familiar Cagan form:

ln(
Mt

Pt
) = ln(θ) + ln(yt)− ηRt, (1.2)

whereMt is nominal money balances, Pt is the consumer price index, yt is real GDP, and Rt

is the nominal interest rate. Since our model is one in which agents have perfect foresight

from period 0 forward, we have Rt = r + πt where πt ≡ d ln(Pt)/dt = Ṗt/Pt.
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Tradables and Nontradables We allow for two types of goods: tradable goods whose

wholesale price is given by P Tt , and nontradable goods whose price is given by P
NT
t . We

assume that selling a unit of the tradable good in the domestic market requires the use of

δ units of the nontradable good.1 Hence, the retail price of tradables is given by P Tt + δPNTt .

The Consumer Price Index The CPI is defined as the geometric average of the price of

nontradables and the retail price of tradables:

Pt ≡ (P Tt + δPNTt )ω(PNTt )1−ω.

Purchasing Power Parity We assume that PPP holds for the wholesale price of tradable

goods: P Tt = StP
T∗
t , where St is the nominal exchange rate expressed as units of local

currency per unit of foreign currency, and P T∗t is the foreign price of tradable goods. To

simplify we normalize the foreign price of tradables to one, i.e. we let P T∗t = 1. Hence PPP

implies

P Tt = St.

Local Price Stickiness Motivated by the data we assume that PNTt = 1 until some period

T1 > 0. At time T1 the price of nontradables will start growing at the same rate as Pt.

The Time of a Speculative Attack We use the notation t∗ to denote the time at which

the speculative attack against the local currency takes place, and the fixed exchange rate

regime is abandoned.

The Path of Output To model the effect on government finances of a possible recession

in the wake of a speculative attack, we assume that the level of output is constant and equal

to y until t∗. Between periods t∗ and t∗ +∆ we assume that output declines exponentially

at the rate ρ. Then from t∗ +∆ to t∗ + 2∆ we assume that output increases exponentially

at the rate ρ. From t∗ + 2∆ forward, we assume that output is once again constant at the

level y. To summarize

1We think of the nontradables as providing distribution services in the retail sector.

2



yt =


y for 0 ≤ t < t∗
ye−ρ(t−t

∗) for t∗ ≤ t ≤ t∗ +∆
yt∗+∆e

ρ[t−(t∗+∆)] for t∗ +∆ < t < t∗ + 2∆
y for t ≥ t∗ + 2∆.

(1.3)

Government Debt The government that has two types of debt. Dollar-denominated debt

is denoted by bt. This debt earns the interest rate r in dollar terms, or R̃t = r+ πTt , in local

currency terms. Here πTt ≡ Ṗ Tt /Pt, denotes the inflation rate for the wholesale price of

tradables.

In addition, we assume that prior to time 0 the government had issuedD consols, yielding

a constant coupon denominated in local currency. These nominal bonds were issued before

agents learned about the increase in transfers. The coupon rate is equal to the nominal

interest rate before the shock–since expected inflation was zero before the shock, this implies

that the value of the bond is the same as its face value. To simplify our notation we assume

that all debt issued after time 0 is dollar-denominated.

Government Spending In addition to the transfers, vt, referred to above (which we

assume are measured in units of the tradable good), we imagine that the government has

additional spending commitments. We assume that the government purchases a constant

quantity of tradable goods, gT , at the price P Tt . Furthermore, we assume that the government

is commited to purchasing a constant quantity of nontradable goods, gNT , at the price PNTt .2

Finally, we assume that the government has some transfer commitments denominated in units

of local currency, Zt.3 Total real spending by the government, exclusive of vt, measured in

units of the tradable good is gT +(PNTt gNT +Zt)/P
T
t . For symmetry we will assume that Zt

is constant at the level Z until some time T2 ≥ T1. After time T2 it increases exponentially
at the same rate as Pt.

Taxes We assume that the government raises tax revenue at a constant rate τ , so that

revenue in units of local currency is given by P Tt τyt.

2One example of such a commitment might be the government wage bill.
3One example might be social security payments.
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The Government Budget Constraint The government’s flow budget constraint for

t ≥ 0 is

Ḃt = R̃tBt + rD + P
T
t (g

T + vt − τyt) + P
NT
t gNT + Zt − Ṁt.

where Bt = P Tt bt is the local-currency value of the dollar-denominated bonds. This implies

that

ḃt = rbt +
rD

P Tt
+ gT + vt − τyt +

PNTt gNT + Zt
P Tt

− ṁT
t − πTt m

T
t (1.4)

where mT
t =Mt/P

T
t is real balances in units of the tradable good.

4

At some points in time, t ∈ I, the money supply may jump discretely, although the
price level will not. At such instants in time, the government’s budget constraint is ∆Bt =

−∆Mt, where ∆Xt is the magnitude of the jump in variable Xt at time t. It follows that

∆bt = −∆mT
t .

Initially Sustainable Government Finances We assume that before the shock at time

0, a fixed exchange rate regime in which St = S for all twould have been sustainable. By this

we mean that with St = S, vt = v, Zt = Z , yt = y for all t, the paths of P Tt , P
NT
t , Pt,Mt and

bt would all be constant with P Tt = S, P
NT
t = 1, Pt = P = (S + δ)ω, Mt = M = (θe−ηr)Py

and bt = b0, such that

r(b0 +D/S) = τy − gT − v − g
NT + Z

S
. (1.5)

The Threshold Rule Under the fixed exchange rate regime, the government must acco-

modate money demand. We assume that the government immediately abandons the fixed

exchange rate regime if money demand falls to the level e−χM for χ > 0.

New Monetary Policy Given the increase in transfers announced at time 0, we assume

that the government implements a new monetary policy. At some period T > 0 we assume

that the government increases the money supply to the level MT = eγM for some γ > 0.

4To see that this condition follows, notice that the budget constraint implies

Ḃt
PTt

= R̃bt +
rD

PTt
+ gT + vt − τyt +

PNTt gNT + Zt
PTt

− Ṁt

PTt
.

Since Bt = btPTt we have Ḃt = ḃtP
T
t + btṖ

T
t and Ḃt/P

T
t = ḃt+πTt bt. Similarly, Ṁt/P

T
t = ṁt+πTt mt. Since

R̃ = r + πTt , the equation in the text follows.
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Furthermore, we assume that from date T forward, the money growth rate is µ, so that

Mt =MTe
µ(t−T ) for t ≥ T .

What about the period prior to T? Initially the government keeps the exchange rate

fixed. Suppose the exchange rate stays fixed up to time t∗. Then for 0 ≤ t < t∗, Mt = M .

As we saw above, the government would abandon the fixed exchange rate regime at time t∗

if money demand fell to the level e−χM . We assume that for t∗ ≤ t < T the money supply
remains at this level.

Timing We assume that T2 ≥ T1 ≥ T and that T � ≥ T .

2. Solving the Model

To solve the model we calculate t∗ given the various parameters describing the economy

and government policy. It turns out that given all the other parameters, the parameters of

monetary policy cannot be set arbitrarily. For example, given arbitrary values of T and γ, the

value of µ is restricted by the condition that the government must satisfy its lifetime budget

constraint. Hence, in this case, we must solve simultaneously for µ and t∗. Alternatively we

can set T and µ and solve for γ and t∗.

Fortunately we can obtain a closed-form solution for t∗ in terms of an arbitrary choice

of µ, γ and T (and other parameters). This considerably simplifies the process of finding a

(µ, γ, T ) triple such that the government’s lifetime budget constraint is satisfied.

In this section, we first describe how we solve for t∗. We then describe our numerical

algorithm for obtaining, say, the value of µ, given arbitrary values of all the other parameters.

2.1. Solving for t∗

The key equation in determining the time of the speculative attack is the money demand

function, (1.2), which can be used to solve for the price level for any time t at which exchange

rate is floating. Notice that (1.2) can be rewritten as a differential equation in pt ≡ lnPt:

pt = ηr − ln θ + ln(Mt/yt) + ηṗt.

It follows that

lnPt = ηr − ln θ + 1
η

] ∞

t

e−(s−t)/η ln(Ms/ys)ds. (2.1)
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is the solution.5

By definition, the currency is floated at time t∗, so that

lnPt∗ = ηr − ln θ + 1
η

] ∞

t∗
ln(Ms/ys)e

−(s−t∗)/ηds. (2.2)

The instant before the currency is floated, we know, from above, that money demand is

given by

lnM − lnP = ln θ + ln y − ηr. (2.3)

Furthermore, we know that the absence of arbitrage opportunities in currency trading re-

quires that St∗ = S. This combined with the fact that PNTt∗ = 1 implies that Pt∗ = P =

(S + δ)ω. Hence lnPt∗ = lnP = ηr− ln θ+ lnM − ln y. Combining this result with (??), we
get

lnM − ln y =
1

η

] ∞

t∗
ln(Ms/ys)e

−(s−t∗)/ηds

=
1

η

] ∞

t∗
lnMse

−(s−t∗)/ηds− 1
η

] ∞

t∗
ln yse

−(s−t∗)/ηds. (2.4)

Our next step is to evaluate the two integrals on the right-hand side of (2.4). The first

of these integrals depends on the path of the money supply after the speculative attack.

The monetary policy rule we described above implies that Mt = e
−χM for t∗ ≤ t < T , and

Mt = e
γ+µ(t−T )M for t ≥ T .6 Hence, the first term on the right hand side of (2.4) is

1

η

] ∞

t∗
lnMse

−(s−t∗)/ηds =
1

η

] T

t∗
lnMse

−(s−t∗)/ηds+
1

η

] ∞

T

lnMse
−(s−t∗)/ηds

In the appendix we show that this can be rewritten as

1

η

] ∞

t∗
lnMse

−(s−t∗)/ηds = lnM − χ
�
1− e−(T−t∗)/η�+ (γ + µη)e−(T−t∗)/η. (2.5)

5To verify that this is indeed the solution differentiate both sides with respect to t to obtain

ṗt = −1
η
ln(Mt/yt) +

1

η2

] ∞
t

e−(s−t)/η ln(Ms/ys)ds

which implies

ηṗt = − ln(Mt/yt) +
1

η

] ∞
t

e−(s−t)/η ln(Ms/ys)ds

= − ln(Mt/yt) + pt − a.

6Implicit in this description is the assumption that a solution for t∗ such that t∗ < T exists. We will see
that this assumption is valid.
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The second integral on the right-hand side of (2.4) can be evaluated using (1.3) as follows:

1

η

] ∞

t∗
ln yse

−(s−t∗)/ηds =
1

η

] t∗+∆

t∗
ln yse

−(s−t∗)/ηds+

1

η

] t∗+2∆

t∗+∆
ln yse

−(s−t∗)/ηds+
1

η

] ∞

t∗+2∆
ln ysds

In the appendix we show that this can be rewritten as

1

η

] ∞

t∗
ln yse

−(s−t∗)/ηds = ln y − ρη
�
1− e−∆/η�2 . (2.6)

Subsitituting (2.5) and (2.6) into (2.4) we get

χ− ρη
�
1− e−∆/η�2 = (χ+ γ + µη)e−(T−t

∗)/η.

This equation can be solved for t∗. The time of the speculative attack is given by

t∗ = T − η ln

%
χ+ γ + µη

χ− ρη (1− e−∆/η)2
&

(2.7)

Since the numerator is positive, we must assume that

χ > ρη
�
1− e−∆/η�2

in order to obtain a solution for the time of the attack. Second, notice that if a solution

exists t∗ < T since the numerator is larger than the denominator. Finally, note that if the

solution implied by (2.7) is less than 0, the attack happens immediately, i.e. t∗ = 0.

In the case where there is no post-attack recession, the second term in the denominator

is zero. That is

t∗ = T − η ln

�
χ+ γ + µη

χ

�
.

This means that the attack happens sooner if there is a post-attack recession than it would

if output was constant. The reduction in output is a negative money demand shock. This

means that if we keep the path of money constant, there is more inflation than in the model

with constant output. These higher rates of inflation translate into a quicker attack.

This completes our determination of the time of the attack. We turn next to our analysis

of the government’s lifetime budget constraint.
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2.2. The Government Budget Constraint

Above, we noted that the government’s flow budget constraint is given by (1.4). We also

noted that if we allow for jumps in real debt at specific points in time, these will satisfy:

∆bt = −∆mT
t . Given our description of monetary policy, we know that the dates at which

such jumps occur are t∗ and T . Using this fact and (1.4), in the appendix we show that the

government faces the following intertemporal budget constraint:

b0 = −
] ∞

0

�
rD

P Tt
+ gT + vt − τyt +

PNTt gNT + Zt
P Tt

− ṁT
t − πTt m

T
t

�
e−rtdt+

e−rt
∗
∆mT

t∗ + e
−rT∆mT

T . (2.8)

The last two parts of this expression reflect the jumps in real balances (and government

debt) occurring at times t∗ and T .

In the appendix we show that (2.8) can be rewritten as

φ =

] ∞

t∗
(ṁT

t + πTt m
T
t )e

−rtdt+ e−rt
∗
∆mT

t∗ + e
−rT∆mT

T −

τ

] t∗+2∆

t∗
(y − yt)e−rtdt+

] ∞

t∗

�
gNT

S
− g

NTPNTt

St

�
e−rtdt+] ∞

t∗

�
Z

S
− Zt
St

�
e−rtdt+

] ∞

t∗

�
rD

S
− rD
St

�
e−rtdt. (2.9)

The left-hand side of (2.9) is the present value of the increase in lump-sum transfers (of

tradables) due to the shock at time 0. The right-hand side of (2.9) represents the different

sources of revenue generated or lost during and after the speculative attack at time t∗:

(i) the first three terms on the right hand side,
U∞
t∗ (ṁ

T
t +π

T
t m

T
t )e

−rtdt+e−rt
∗
∆mT

t∗+e
−rT∆mT

T ,

represent the present value of seignorage,

(ii) the fourth terms on the right hand side, −τ U t∗+2∆
t∗ (y − yt)e−rtdt, is present value of tax

revenues lost as a result of the post-crisis recession,

(iii) the fifth term, gNT
U∞
t∗ (1/S−PNTt /St)e

−rtdt, represents the reduced cost of the govern-

ment’s spending on nontradables,

(iv) the sixth term,
U∞
t∗ (Z/S−Zt/St)e−rtdt, represents the reduced cost of the government’s

local currency transfer commitments, and

(v) the seventh term, rD
U∞
t∗ (1/S − 1/St)e−rtdt, represents the devaluation of the govern-

ment’s nominal debt obligations acquired before the shock at time 0.

In the appendix we show that parts of (2.9) can be obtained analytically, while others
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must be calculated numerically. We turn next to a description of our algorithm for solving

the model.

3. Algorithm

We calibrate many of the parameters describing our economy. The full list of parameters

that we calibrate is η, χ, ∆, φ, . Let the vector containing all these parameters be Ψ. We

calibrate the parameters in Ψ with reference to empirical evidence for each of the countries

we examine. The remaining parameters are those describing the post-crisis monetary policy:

T , γ and µ. As we stated before, if the expression for t∗, (2.7), is substituted into (2.9), the

resulting equation is of the form f(Ψ, T, γ, µ) = 0. Hence, given calibrated values of Ψ, T

and γ, (2.9) can be solved for µ. However, this must be done numerically. Our algorithm

for finding the equilibrium value of µ can be described as follows:

1. Fix Ψ, T and γ and guess a value for µ,

2. Use (2.7) to compute t∗,

3. Subsitute t∗ into (2.9). If the two sides of (2.9) are approximately equal–within

some small tolerance–µ is the solution and the algorithm stops. If they are not, the

algorithm iterates by repeating step 1.

Once the algorithm has converged, we have the equilibrium values of the time of the

attack, t∗, and the new steady state money growth rate, µ.

4. Appendix

4.1. Some Useful Formulas

Here we derive expressions for
U b
a
e−(s−t)/ηds and

U b
a
se−(s−t)/ηds. First, we note that for any

function eψx ]
eψxdx = C + eψx/ψ (4.1)

and ]
xeψxdx = C + (x− 1/ψ) (eψx/ψ) (4.2)
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where in each case C is some arbitrary constant of integration. It is straightforward to verify

these solutions. Notice that the derivative of the right-hand-side of (4.1) with respect to x

is eψx, while the derivative of the right-hand-side of (4.2) with respect to x is xeψx.

Hence we can write ] b

a

e−(s−t)/ηds = et/η
] b

a

e−s/ηds

= et/η(−ηe−s/η)|ba
= −ηet/η(e−b/η − e−a/η) (4.3)

and ] b

a

se−(s−t)/ηds = et/η
] b

a

se−s/ηds

= et/η[(s+ η) (−ηe−s/η)]|ba
= −ηet/η[(b+ η) e−b/η − (a+ η) e−a/η]. (4.4)

4.2. Solving for t∗

In the section on solving for t∗ we need simplified expressions for the following integrals:

η−1
U∞
t∗ lnMse

−(s−t∗)/ηds and η−1
U∞
t∗ ln yse

−(s−t∗)/ηds. We have

1

η

] ∞

t∗
lnMse

−(s−t∗)/ηds =
1

η

] T

t∗
lnMse

−(s−t∗)/ηds+
1

η

] ∞

T

lnMse
−(s−t∗)/ηds.

Since Mt =Me
−χ for t∗ ≤ t < T and Mt =Me

γ+µ(t−T ) for t ≥ T this becomes

=
1

η

] T

t∗
ln(e−χM)e−(s−t

∗)/ηds+
1

η

] ∞

T

ln[eγ+µ(s−T )M ]e−(s−t
∗)/ηds

=
lnM − χ

η

] T

t∗
e−(s−t

∗)/ηds+
lnM + γ − µT

η

] ∞

T

e−(s−t
∗)/ηds+

µ

η

] ∞

T

se−(s−t
∗)/ηds

= (lnM − χ)
�
1− e−(T−t∗)/η�+ (lnM + γ − µT )e−(T−t∗)/η + µe−(T−t∗)/η(T + η)

In the last line we have used (4.3) and (4.4) derived above. Simplifying our expression

further, we have

1

η

] ∞

t∗
lnMse

−(s−t∗)/ηds = lnM − χ
�
1− e−(T−t∗)/η�+ (γ + µη)e−(T−t∗)/η.

We also have:

1

η

] ∞

t∗
ln yse

−(s−t∗)/ηds =
1

η

] t∗+∆

t∗
ln yse

−(s−t∗)/ηds+

1

η

] t∗+2∆

t∗+∆
ln yse

−(s−t∗)/ηds+
1

η

] ∞

t∗+2∆
ln ysds
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Using (1.3) this becomes

=
1

η

] t∗+∆

t∗
ln[ye−ρ(s−t

∗)]e−(s−t
∗)/ηds+

1

η

] t∗+2∆

t∗+∆
ln[yt∗+∆e

ρ[s−(t∗+∆)]]e−(s−t
∗)/ηds+

1

η

] ∞

t∗+2∆
ln ye−(s−t

∗)/ηds

=
ln y + ρt∗

η

] t∗+∆

t∗
e−(s−t

∗)/ηds− ρ

η

] t∗+∆

t∗
se−(s−t

∗)/ηds+

ln y − ρ(t∗ + 2∆)
η

] t∗+2∆

t∗+∆
e−(s−t

∗)/ηds+
ρ

η

] t∗+2∆

t∗+∆
se−(s−t

∗)/ηds+

ln y

η

] ∞

t∗+2∆
e−(s−t

∗)/ηds

=
ln y

η

] ∞

t∗
e−(s−t

∗)/ηds+
ρt∗

η

] t∗+∆

t∗
e−(s−t

∗)/ηds− ρ(t∗ + 2∆)
η

] t∗+2∆

t∗+∆
e−(s−t

∗)/ηds−

ρ

η

] t∗+∆

t∗
se−(s−t

∗)/ηds+
ρ

η

] t∗+2∆

t∗+∆
se−(s−t

∗)/ηds.

Once more, we can use (4.3) and (4.4) to show that this means

1

η

] ∞

t∗
ln yse

−(s−t∗)/ηds = ln y − ρt∗[e−∆/η − 1] + ρ(t∗ + 2∆)
�
[e−2∆/η − e−∆/η]�

−ρ

η

�−η[(t∗ +∆+ η)e−∆/η − (t∗ + η)]
�

+
ρ

η

�−η[(t∗ + 2∆+ η)e−2∆/η − (t∗ +∆+ η)e−∆/η]
�

= ln y − ρη
�
1− e−∆/η�2 .

4.3. The Government Budget Constraint

We consider two cases: t∗ = 0 and t∗ > 0.

4.3.1. When t∗ > 0

Notice that (1.4) can be rewritten as ḃt = rbt + xt where

xt =
rD

P Tt
+ gT + vt − τyt +

PNTt gNT + Zt
P Tt

− ṁT
t − πTt m

T
t .

Multiplying through by e−rt we have ḃte−rt = rbte−rt + xte−rt. Notice that this means] c

a

ḃte
−rtdt =

] c

a

rbte
−rtdt+

] c

a

xte
−rtdt. (4.5)
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The standard rules of integration by parts imply that] c

a

ḃte
−rtdt = e−rtbt|ca + r

] c

a

bte
−rtdt. (4.6)

Combining (4.5) and (4.6) we have

e−rtbt|ca =
] c

a

xte
−rtdt. (4.7)

If we let a = T and c =∞ we have

lim
t→∞

e−rtbt − e−rT bT =
] ∞

T

xte
−rtdt.

If we impose the no-Ponzi scheme condition, limt→∞ e−rtbt = 0we obtain

e−rT bT = −
] ∞

T

xte
−rtdt. (4.8)

Notice that bT is the level of debt immediately after the jump in the money supply at time

t. That is bT = limt↓T bt. There is a jump in real money balances at time T which we denote

∆mT
T . Hence if we define bT ≡ limt↑T btwe know that bT − bT = −∆mT

T or

bT = bT +∆mT
T . (4.9)

Once again we use (4.7), this time with a = t∗ and c = T to write

e−rT bT − e−rt∗bt∗ =
] T

t∗
xte

−rtdt.

Using (4.8) and (4.9) this implies

e−rt
∗
bt∗ = e−rT (bT +∆mT

T )−
] T

t∗
xte

−rtdt

= −
] ∞

t∗
xte

−rtdt+ e−rT∆mT
T . (4.10)

Notice that bt∗ is the level of debt immediately after the jump in the money supply at

time t∗. That is bt∗ = limt↓t∗ bt. There is a jump in real money balances at time t∗ which we

denote ∆mT
t∗. Hence if we define bt∗ ≡ limt↑t∗ btwe know that bt∗ − bt∗ = −∆mT

t∗ or

bt∗ = bt∗ +∆mT
t∗ . (4.11)

Finally we use (4.7) again, this time with a = 0 and c = t∗ to write

e−rt
∗
bt∗ − b0 =

] t∗

0

xte
−rtdt.

12



Using (4.10) and (4.11) this implies

b0 = e−rt
∗
(bt∗ +∆mT

t∗)−
] t∗

0

xte
−rtdt

= −
] ∞

0

xte
−rtdt+ e−rt

∗
∆mT

t∗ + e
−rT∆mT

T . (4.12)

We now rewrite (4.12) as

b0 = −
] ∞

0

xe−rtdt−
] ∞

0

(xt − x)e−rtdt+ e−rt∗∆mT
t∗ + e

−rT∆mT
T (4.13)

where x is the value that xt would take on under the sustainable fixed exchange rate regime.

I.e.

x = gT + v − τy +
gNT + Z + rD

S
.

Notice that (1.5) implies that rb0 = −x. Hence (4.13) can be rewritten as] ∞

0

(xt − x)e−rtdt = e−rt∗∆mT
t∗ + e

−rT∆mT
T (4.14)

Subsitituting in the definitions of xt and x, and noting that P Tt = St we get] ∞

0

�
vt − v − τ(yt − y) + P

NT
t gNT + Zt + rD

St
− g

NT + Z + rD

S

�
e−rtdt =

] ∞

0

(ṁT
t + πTt m

T
t )e

−rtdt+ e−rt
∗
∆mT

t∗ + e
−rT∆mT

T . (4.15)

We can rearrange this as] ∞

0

(vt − v)e−rtdt =

] ∞

0

(ṁT
t + πTt m

T
t )e

−rtdt+ e−rt
∗
∆mT

t∗ + e
−rT∆mT

T +] ∞

0

τ(yt − y)e−rtdt−
] ∞

0

�
PNTt gNT

St
− g

NT

S

�
e−rtdt−] ∞

0

�
Zt
St
− Z
S

�
e−rtdt−

] ∞

0

�
rD

St
− rD
S

�
e−rtdt (4.16)

The next step is to simplify (4.16). First, we note that
U∞
0
(vt − v)e−rtdt = φ. Then we

simplify terms on the right hand side.

First term.–It requires us to evaluate
U∞
0
(ṁT

t +πTt m
T
t )e

−rtdt. Recall that for 0 ≤ t < t∗
we have Mt =M and St = S, hence ṁT

t = πTt = 0. For t ≥ T1, (1.2) implies that mT
t = m

T
T1

and we know that πTt = µ. Hence we have] ∞

0

(ṁT
t + πTt m

T
t )e

−rtdt =
] T1

t∗
(ṁT

t + πTt m
T
t )e

−rtdt+
µmT

T1

r
e−rT1 .

13



At this point it is convenient to note that

ṁT
t + πTt m

T
t = Ṁt/St − (Mt/S

2
t )Ṡt + πTt m

T
t = Ṁt/St.

For t∗ ≤ t < T , Mt =Me
−χ so that Ṁt = 0. Also, for t ≥ T , Ṁt = µMt, so that] ∞

0

(ṁT
t + πTt m

T
t )e

−rtdt =
] T1

T

µmT
t e
−rtdt+

µmT
T1

r
e−rT1 .

For T ≤ t < T1 we know that Mt =MTe
µ(t−T ), so that] T1

T

µmT
t e
−rtdt = µMTe

−µT
] T1

T

1

St
e(µ−r)tdt

implying ] ∞

0

(ṁT
t + πTt m

T
t )e

−rtdt = µMTe
−µT

] T1

T

1

St
e(µ−r)tdt+

µmT
T1

r
e−rT1 .

Fourth term.–Here, note that] ∞

0

(yt − y)e−rtdt = y

] t∗+∆

t∗
(e−ρ(t−t

∗) − 1)e−rtdt+ y
] t∗+2∆

t∗+∆
(eρ(t−t

∗)−2ρ∆ − 1)e−rtdt

= yeρt
∗
] t∗+∆

t∗
e−(r+ρ)tdt+ ye−(ρt

∗+2ρ∆)
] t∗+2∆

t∗+∆
e−(r−ρ)tdt− y

] t∗+2∆

t∗
e−rtdt

Using (4.3) we have

yeρt
∗
] t∗+∆

t∗
e−(r+ρ)tdt = − ye

ρt∗

r + ρ

�
e−(r+ρ)(t

∗+∆) − e−(r+ρ)t∗�
= ye−rt

∗
�
1− e−(r+ρ)∆
r + ρ

�
,

ye−(ρt
∗+2ρ∆)

] t∗+2∆

t∗+∆
e−(r−ρ)tdt = −ye

−(ρt∗+2ρ∆)

r − ρ

�
e−(r−ρ)(t

∗+2∆) − e−(r−ρ)(t∗+∆)�
= ye−rt

∗
�
e−(r+ρ)∆ − e−2∆r

r − ρ

�
and

y

] t∗+2∆

t∗
e−rtdt = −y

r

�
e−r(t

∗+2∆) − e−rt∗�
= e−rt

∗
y

�
1− e−r2∆

r

�
.
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This means ] ∞

0

(yt − y)e−rtdt = −e−rt∗y∆y (4.17)

where

∆y =
1− e−r2∆

r
− 1− e

−(r+ρ)∆

r + ρ
− e

−(r+ρ)∆ − e−2∆r
r − ρ

.

Notice that ∆y does not depend on the parameters of monetary policy. It measures the

percentage of the present value (at time t∗) of output that is lost as a result of the post-attack

recession. Thus, the fourth term is given by
U∞
0

τ(yt − y)e−rtdt = −τe−rt∗y∆y.

Fifth term.–For the fifth part of (4.16) we have] ∞

0

�
PNTt gNT

St
− g

NT

S

�
e−rtdt = gNT

�] ∞

0

PNTt

St
e−rtdt− 1

rS

�
= gNT

�] t∗

0

1

S
e−rtdt+

] T1

t∗

1

St
e−rtdt+

] ∞

T1

PNTt

St
e−rtdt− 1

rS

�
.

For t ≥ T1, recall that PNTt grows at the same rate as Pt. This implies that PNTt /St = 1/ST1

for t ≥ T1. Hence we have] ∞

0

�
PNTt gNT

St
− g

NT

S

�
e−rtdt = gNT

�
− 1

rS
e−rt

∗
+

] T1

t∗

1

St
e−rtdt+

1

rST1
e−rT1

�
.

We evaluate the remainder of this expression numerically using the solutions for the path of

the exchange rate described above.

Sixth term.–The sixth part of (4.16) is] ∞

0

�
Zt
St
− Z
S

�
e−rtdt =

] ∞

0

Zt
St
e−rtdt− Z

Sr

=

] t∗

0

Z

S
e−rtdt+

] T2

t∗

Z

St
e−rtdt+

] ∞

T2

Zt
St
e−rtdt− Z

Sr

= − Z
rS
e−rt

∗
+ Z

] T2

t∗

1

St
e−rtdt+

Z

rST2
e−rT2.

In the last line we have used the fact that Zt grows at the same rate as Pt (and St) for t ≥ T2.
We evaluate the remainder of this expression numerically using the solutions for the path of

the exchange rate described above.
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Seventh term.–The seventh part of (4.16) is] ∞

0

�
rD

St
− rD
S

�
e−rtdt = rD

�] ∞

0

1

St
e−rtdt− 1

rS

�
= rD

�] t∗

0

1

S
e−rtdt+

] T1

t∗

1

St
e−rtdt+

] ∞

T1

1

St
e−rtdt− 1

rS

�
= rD

�
− 1

rS
e−rt

∗
+

] T1

t∗

1

St
e−rtdt+

1

ST1
eµT1

] ∞

T1

e−(µ+r)tdt
�

= rD

�
− 1

rS
e−rt

∗
+

] T1

t∗

1

St
e−rtdt+

1

(µ+ r)ST1
e−rT1

�
We evaluate the remainder of this expression numerically using the solutions for the path of

the exchange rate described above.

4.3.2. When t∗ = 0

The analysis in the previous subsection applies up through equation (4.9). Then we use

(4.7), this time with a = 0 and c = T to write

e−rT bT − b0̄ =
] T

0

xte
−rtdt,

where b0̄ = limt↓0 bt. Notice that b0̄ is the level of debt immediately after the shock and jump

in the money supply at time 0. Using (4.8) and (4.9) this implies

b0̄ = e−rT (bT +∆mT
T )−

] T

0

xte
−rtdt

= −
] ∞

0

xte
−rtdt+ e−rT∆mT

T . (4.18)

There is a jump in real money balances at time 0 which we denote ∆mT
0 . This means that

b0 = b0̄ +∆mT
0 . (4.19)

So finally we have

b0 = −
] ∞

0

xte
−rtdt+∆mT

0 + e
−rT∆mT

T . (4.20)

Since rb0 = −x we can rewrite this as] ∞

0

(xt − x)e−rtdt = e−rt∗∆mT
0 + e

−rT∆mT
T . (4.21)
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This means that when t∗ = 0, we can once again use equation (4.16). As before wemust

then simplify (4.16). First, we note that
U∞
0
(vt − v)e−rtdt = φ. Then we simplify terms on

the right hand side.

For the first term on the right hand side we may again write] ∞

0

(ṁT
t + πTt m

T
t )e

−rtdt =
] T1

0

(ṁT
t + πTt m

T
t )e

−rtdt+
µmT

T1

r
e−rT1 .

Once more, we note that ṁT
t + πTt m

T
t = Ṁt/St. For 0 < t < T , Mt = Me

−χ, the level of

money balances right after the speculative attack, so that Ṁt = 0. As above, we end up

with ] ∞

0

(ṁT
t + πTt m

T
t )e

−rtdt = µMTe
−µT

] T1

T

1

St
e(µ−r)tdt+

µmT
T1

r
e−rT1 .

For the fourth, fifth, sixth and seventh terms we get identical expressions as before, while

noting that t∗ = 0.

4.4. Summary of Formulas that Must be Computed Numerically

In the first part of the formula we need (1)
U T1
T
S−1t e

(µ−r)tdt and (2) ST1 since m
T
T1
=

MT
T1
/ST1 = Meγ+µ(T1−T )/ST1. In the second part of the formula we need ∆mT

t∗ which is

(Me−χ−M)/S for the case where t∗ > 0 but is (Me−χ/S0̄−M/S), where S0̄ = limt↓0 St, for
the case where t∗ = 0. Hence we need (3) S0̄ in that case. In the third part for the formula

we need ∆mT
T which is (Me

γ −Me−χ)/ST which means we need an expression for (4) ST .
In the fifth part of the formula we need the expression for (5)

U T1
t∗ S

−1
t e

−rtdt. In the sixth

part of the formula we need (6)
U T2
t∗ S

−1
t e

−rtdt and (7) ST2 . To evaluate these expressions we

must solve for the path of prices.

4.5. Determining Prices

4.5.1. Determining the CPI

Since, by assumption, PNTt = 1 for t ≤ T1 and T1 ≥ T ≥ t∗, we have Pt = (S+δ)ω for t < t∗.

Since the exchange rate must follow a continuous path (when t∗ > 0) we also have St∗ = S

and Pt∗ = (S + δ)ω. Of course, if t∗ = 0, we need to solve for the price level as below.

As we saw above, once the currency is floated, and for all t ≥ t∗, the price level is

determined by (2.1), which we rewrite here:

lnPt = ηr − ln θ + 1
η

] ∞

t

e−(s−t)/η ln(Ms/ys)ds.
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We consider three cases each of which has subcases.

Case 1.– t ≥ t∗ + 2∆. In this case this (2.1) can be written as

lnPt = ηr − ln θ + 1
η

] ∞

t

e−(s−t)/η ln(Ms/y)ds

= ηr − ln θ + 1
η

] ∞

t

e−(s−t)/η lnMsds− ln y
η

] ∞

t

e−(s−t)/ηds

= ηr − ln θ + 1
η

] ∞

t

e−(s−t)/η lnMsds− ln y.

a.) t ≥ T . With this additional assumption we have Ms =MTe
µ(s−T ) for s ≥ t. Hence,

lnPt = ηr − ln θ − ln y + lnMT − µT
η

] ∞

t

e−(s−t)/ηds+
µ

η

] ∞

t

se−(s−t)/ηds

= ηr − ln θ − ln y + lnM + γ + µη + µ(t− T )
= lnP + γ + µη + µ(t− T )

b.) t∗ + 2∆ ≤ t < T . With this additional assumption we have Ms =Me
−χ. Hence,

lnPt = ηr − ln θ − ln y + lnM − χ

η

] T

t

e−(s−t)/ηds+

lnMT − µT
η

] ∞

T

e−(s−t)/ηds+
µ

η

] ∞

T

se−(s−t)/ηds

= ηr − ln θ − ln y + (lnM − χ)[1− e(t−T )/η] + (lnM + γ + µη)e(t−T )/η

= lnP − χ+ (γ + χ+ µη)e(t−T )/η.

Case 2.– t∗ +∆ ≤ t < t∗ + 2∆. In this case this (2.1) can be written as

lnPt = ηr − ln θ + 1
η

] ∞

t

e−(s−t)/η lnMsds−
1

η

] t∗+2∆

t

e−(s−t)/η ln ysds− 1
η

] ∞

t∗+2∆
e−(s−t)/η ln yds

= ηr − ln θ + 1
η

] ∞

t

e−(s−t)/η lnMsds−
1

η

] t∗+2∆

t

e−(s−t)/η ln
�
yeρ[s−(t

∗+2∆)]� ds− 1
η

] ∞

t∗+2∆
e−(s−t)/η ln yds

where we have substituted in the definition of ys for t∗+∆ ≤ s ≤ t∗+2∆. Our last equation
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can be rewritten as

lnPt = ηr − ln θ + 1
η

] ∞

t

e−(s−t)/η lnMsds− 1
η

] ∞

t

e−(s−t)/η ln yds−
ρ

η

] t∗+2∆

t

[s− (t∗ + 2∆)]e−(s−t)/ηds

= ηr − ln θ + 1
η

] ∞

t

e−(s−t)/η lnMsds− ln y +
ρ(t∗ + 2∆)

η

] t∗+2∆

t

e−(s−t)/ηds− ρ

η

] t∗+2∆

t

se−(s−t)/ηds.

Finally, using (4.3) and (4.4) we have

lnPt = ηr − ln θ + 1
η

] ∞

t

e−(s−t)/η lnMsds− ln y +
ρ(t∗ + 2∆)(1− e[t−(t∗+2∆)]/η) + ρ[(t∗ + 2∆+ η) e[t−(t

∗+2∆)]/η − (t+ η)]

or

lnPt = ηr − ln θ + 1
η

] ∞

t

e−(s−t)/η lnMsds− ln y +
ρη{e[t−(t∗+2∆)]/η − 1}− ρ[t− (t∗ + 2∆)].

Since the first four parts of this formula are the same as in Case 1, we immediately get the

two subcases.

a.) t ≥ T . With this additional assumption we have

lnPt = lnP + γ + µη + µ(t− T ) +
ρη{e[t−(t∗+2∆)]/η − 1}− ρ[t− (t∗ + 2∆)].

b.) t∗ +∆ ≤ t < T . With this additional assumption we have

lnPt = lnP − χ+ (γ + χ+ µη)e(t−T )/η +

ρη{e[t−(t∗+2∆)]/η − 1}− ρ[t− (t∗ + 2∆)].
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Case 3.– t∗ ≤ t < t∗ +∆. In this case this (2.1) can be written as

lnPt = ηr − ln θ + 1
η

] ∞

t

e−(s−t)/η lnMsds− 1
η

] t∗+∆

t

e−(s−t)/η ln ysds

1

η

] t∗+2∆

t∗+∆
e−(s−t)/η ln ysds− 1

η

] ∞

t∗+2∆
e−(s−t)/η ln yds

= ηr − ln θ + 1
η

] ∞

t

e−(s−t)/η lnMsds− 1
η

] t∗+∆

t

e−(s−t)/η ln
�
ye−ρ(s−t

∗)� ds
1

η

] t∗+2∆

t∗+∆
e−(s−t)/η ln

�
yeρ[s−(t

∗+2∆)]� ds− 1
η

] ∞

t∗+2∆
e−(s−t)/η ln yds

where we have substituted in the definitions of ys for t∗ ≤ s < t∗+∆ and t∗+∆ ≤ s ≤ t∗+2∆.
Our last equation can be rewritten as

lnPt = ηr − ln θ + 1
η

] ∞

t

e−(s−t)/η lnMsds− 1
η

] ∞

t

e−(s−t)/η ln yds+

ρ

η

] t∗+∆

t

(s− t∗)e−(s−t)/ηds− ρ

η

] t∗+2∆

t∗+∆
[s− (t∗ + 2∆)]e−(s−t)/ηds

= ηr − ln θ + 1
η

] ∞

t

e−(s−t)/η lnMsds− ln y +
ρ(t∗ + 2∆)

η

] t∗+2∆

t∗+∆
e−(s−t)/ηds− ρt∗

η

] t∗+∆

t

e−(s−t)/ηds+

ρ

η

] t∗+∆

t

se−(s−t)/ηds− ρ

η

] t∗+2∆

t∗+∆
se−(s−t)/ηds

Finally, using (4.3) and (4.4) we have

lnPt = ηr − ln θ + 1
η

] ∞

t

e−(s−t)/η lnMsds− ln y +
ρ(t∗ + 2∆)

�
e[t−(t

∗+∆)]/η − e[t−(t∗+2∆)]/η�+ ρt∗(e[t−(t
∗+∆)]/η − 1) +

ρ
�
(t+ η)− (t∗ +∆+ η) e[t−(t

∗+∆)]/η�+
ρ
�
(t∗ + 2∆+ η) e[t−(t

∗+2∆)]/η − (t∗ +∆+ η) e[t−(t
∗+∆)]/η� .

or

lnPt = ηr − ln θ + 1
η

] ∞

t

e−(s−t)/η lnMsds− ln y +
ρη
�
1− 2e[t−(t∗+∆)]/η + e[t−(t∗+2∆)]/η�+ ρ(t− t∗).

Since the first four parts of this formula are the same as in Case 1, we immediately get the

two subcases.
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a.) t ≥ T . With this additional assumption we have

lnPt = lnP + γ + µη + µ(t− T ) +
ρη
�
1− 2e[t−(t∗+∆)]/η + e[t−(t∗+2∆)]/η�+ ρ(t− t∗)

b.) t∗ ≤ t < T . With this additional assumption we have

lnPt = lnP − χ+ (γ + χ+ µη)e(t−T )/η +

ρη
�
1− 2e[t−(t∗+∆)]/η + e[t−(t∗+2∆)]/η�+ ρ(t− t∗).

4.5.2. The Price of Nontradables

For t ≤ T1, PNTt = 1. For t > T1, we have PNTt growing at the same rate as Pt. Hence, for

t > T1, PNTt /Pt = P
NT
T1
/PT1 = 1/PT1, implying that P

NT
t = Pt/PT1.

4.5.3. The Exchange Rate

The exchange rate always satisfies Pt = (St + δPNTt )ω(PNTt )1−ω, implying that

St =
q
P
1/ω
t (PNTt )1−1/ω

r
− δPNTt .

4.6. Initial Lower and Upper Bounds for µ

Our algorithm uses a simple bracketing method for finding the solution for µ given T and

γ. The initial lower bound, µ, is 0. The initial upper bound is set equal to a value of µ that

would likely provide more seignorage than necessary to finance the increased deficit. If we

ignored the effects of the recession, price stickiness in tradables, nominal transfers and debt,

and the jumps in the money supply that take place at times t∗ and T , and assumed that

MT =M rather than Meγ, (2.9) would be

φ = µmT
T

] ∞

T

e−rtdt = µmT
T

1

r
e−rT .

If we also assumed mT
T =M/S we would have an equation that could be solved for µ:

µ̃ = φ
S

M
rerT .

Since this is not necessarily an upper bound for the equilibrium value of µ we set our initial

guess equal to 100 times this value, i.e. we set µ̄ = 10µ̃. We set our initial guess equal to µ̃.
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