
Appendix A: Asymptotic Properties of the GMM Esti-
mators and Diagnostic Tests

7.1 Proof of Theorem 1

The additional regularity conditions required for consistency are stated in Hansen�s Theorem

2.1. It follows from assumption 3 that a�T
a:s:! a�0 = D0

0W
�
0 . De�ne h

�
0(b

�) = a�0[E(R
e)�D0b

�].

Given that D0 has full column rank and W �
0 is positive de�nite, the function h

�
0(b

�) has

a unique zero, b�z = (D0
0W

�
0D0)

�1D0
0W

�
0E(R

e). Since the model is true E(Re) = D0b
�
0.

Substituting this into the expression for b�z we have b
�
z = b�0. From Hansen�s (1982) Theorem

2.1, b̂� a:s:! b�0.

Similarly, it follows from assumption 3 that a�T
a:s:! a�0 with

a�0 =

�
d00W

�
0 0

0 Ik

�
:

De�ne

h�0(b
�; �) = a�0

�
E(Re)� d0b

�

E(ft)� �

�
:

Given that d0 has full column rank and W �
0 is positive de�nite, the function h

�
0(b

�; �) has

a unique zero, b�z = (d00W
�
0 d0)

�1 d00W
�
0E(R

e), �z = E(ft) = �0. Since the model is true

E(Re) = d0b
�
0. Substituting this into the expression for b

�
z we have b

�
z = b�0. From Hansen�s

(1982) Theorem 2.1, b̂� a:s:! b�0.

The matrices ��0 and �
�
0 have full column rank due to the properties of D0 and d0. It

follows from Hansen�s Theorem 3.1 that b̂� and �̂
�
have the asymptotic distributions stated

in the theorem.

The model-predicted expected returns are DT b̂
� and dT b̂�, respectively, for the two nor-

malizations. Given that results above these both converge almost surely to E(Ret ) and,

therefore, we get the result that R2�
a:s:! 1 and R2�

a:s:! 1.

From the results above it follows that ��T
a:s:! ��0, �

�
T
a:s:! ��0, S

�
T
a:s:! S�0 and S

�
T
a:s:! S�0 . Also

A�T
a:s:! A�0 = In � ��0(a

�
0�
�
0)
�1a�0 and A

�
T
a:s:! A�0 = In+k � ��0(a

�
0�
�
0)
�1a�0. The results concerning

the asymptotic distributions of J� and J� follow from Hansen�s Lemma 4.1.�

7.2 Proof of Theorem 2

Since D0 has rank less than k, the function h�0(b
�) = a�0[E(R

e)�D0b
�], de�ned in the proof of

Theorem 1, does not have a unique zero. Instead any b� such that (D0
0W

�
0D0) b

� = D0
0W

�
0D0b

�
0
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is a zero of h�0(b
�). This means that b�0 + x is a zero for any x in the nullspace of D0

0W
�
0D0�

denotedN (D0
0W

�
0D0)� which is a non-empty set when rank(D0) < k. So b� is asymptotically

unidenti�ed.

As in the proof of Theorem 1, the last k rows of the function h�0(b
�; �) have a unique zero,

�z = E(ft) = �0. However, because d0 has rank less than k, the �rst n rows of the function

h�0(b
�; �), which are d00W

�
0 [E(R

e)� d0b
�], do not have a unique zero. Instead any b� such that

(d00W
�
0 d0) b

� = d00W
�
0 d0b

�
0 is a zero. This means that b

�
0+ x is a zero for any x 2 N (d00W �

0 d0),

which is a non-empty set when rank(d0) < k. So b� is asymptotically unidenti�ed.

The predicted expected returns from the a-normalization are DT b̂
�. Although b̂� is not

uniquely identi�ed asymptotically, it lies almost surely in the set B�
0 = fbjb � b�0 = x; x 2

N (D0
0W

�
0D0)g. Since W �

0 is positive de�nite, any x 2 N (D0
0W

�
0D0) is in N (D0). Therefore

DT b̂
� a:s:! D0b

�
0 = E(Ret ). Therefore R

2
�
a:s:! 1. A similar result holds for R2�.�

7.3 Proof of Theorem 3

As in the proof to Theorem 1, a�T
a:s:! a�0 = D0

0W
�
0 . Because D0 has full column rank and W �

0

is positive de�nite, the function h�0(b
�) has a unique zero, b�s = (D0

0W
�
0D0)

�1D0
0W

�
0E(R

e).

From Hansen�s (1982) Theorem 2.1, b̂� a:s:! b�s. Of course, since the model is false, b
�
s does not

have an interpretation as a �true�parameter value.

To get the expression for b�s in the statement of the theorem proceed as follows. Let x

be the unique element of N (d0) whose elements sum to 1 (all other elements of N (d0) are
proportional to x because d0 has rank k � 1). Let X = ( X1 x ) where X1 is a k � (k � 1)
matrix whose columns span the rowspace of d0, denoted R(d0) = N (d0)?. The columns of
X span Rk, by construction. De�ne ~b�s = X�1b�s and let ~b

�
s1 denote the �rst k � 1 elements

of ~b�s and ~b
�
sk denote the kth element of ~b

�
s. It follows that

E(Re)�D0b
�
s = E(Re)�D0XX

�1b�s

= E(Re)�D0X~b
�
s

= E(Re)�D0X1
~b�s1 �D0x~b

�
sk

= E(Re)�D0X1
~b�s1 � [d0 + E(Re)E(f 0)]x~b�sk:

Since x 2 N (d0), d0x = 0, so we can write

E(Re)�D0b
�
s = E(Re)

h
1� E(f 0)x~b�sk

i
�D0X1

~b�s1:
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This means we can set E(Re) �D0b
�
s = 0 by choosing ~b

�
s1 = 0 and ~b

�
sk = 1=[E(f)

0x]. Since

b�s = X~b�s it follows that b
�
s = x=[x0E(ft)]. By assumption x0E(ft) cannot be zero, otherwise

rank[E(Retf
0
t)] < k and we also know that at least one element of x is non-zero, so this means

at least one element of b�s is non-zero. Since E(R
e) = D0b

�
s we also have R

2
�
a:s:! 1.

As in the proof of Theorem 1, the last k rows of the function h�0(b
�; �) have a unique

zero, �z = E(ft) = �0. However, because d0 has rank less than k, the �rst n rows of

the function h�0(b
�; �), which are d00W

�
0 [E(R

e)� d0b
�], do not have a unique zero. Instead

any b� such that (d00W
�
0 d0) b

� = d00W
�
0E(R

e) is a zero. Let b�z be a zero. This means that

b�z + x is a zero for any x in the nullspace of d00W
�
0 d0, which is a non-empty set because

rank(d0) < k. So b� is asymptotically unidenti�ed. Although there are arbitrarily many

solutions to d00W
�
0 [E(R

e)� d0b
�] = 0, in general, there is no solution to E(Re)� d0b� = 0.�

7.4 Proof of Theorem 4

The matrix ��0 = D0 has full column rank. It follows from Hansen�s Theorem 3.1 that b̂� has

the asymptotic distribution stated in the theorem.

From the results above it follows that ��T
a:s:! ��0 and A�T

a:s:! A�0 = In � ��0(a
�
0�
�
0)
�1a�0,

however, the matrix S�T will not generally be a consistent estimator for S
�
s because it imposes

the restriction that E(u�tu
�0
t�j) = 0 for j 6= 0. This restriction only holds when the model is

true. Instead S�T
a:s:! V �

s = E[u�t (b
�
s)u

�
t (b

�
s)
0].

This means that V̂ �
g

a:s:! V �
g = A�0V

�
s A

�0
0 . We also know

p
Tg�T (b̂

�)
d! N(0; V �

g0) where

V �
g0 = A�0S

�
sA

�0
0 . Diagonalize V

�
g as V

�
g = Pg�gP

0
g where the columns of Pg are the orthonormal

eigenvectors of V �
g and �g is a diagonal matrix with the eigenvalues of V

�
g on the diagonal.

Diagonalize V �
g0 as V

�
g0 = P0�0P

0
0. Let ~�g = �

+
g and ~�0 = �

+
0 . These are diagonal matrices

with zeros where �g and �0 have zeros, and whose non-zero elements are the inverses of the

non-zero elements of �g and �0.

From these results it follows that J� d! Z 0
Z, with Z =
p
T ~�

1=2
0 P 00g

�
T (b̂

�) and


 = �
1=2
0 P 00Pg

~�gP
0
gP0�

1=2
0 :

The vector Z converges in distribution to a vector of independent normal random variables,

the �rst n� k of which have unit variance and the last k of which have zero variance. The

matrix 
 can be diagonalized as 
 = P
�
P
0

. When V

�
s = S�s the �rst n � k eigenvalues

on the diagonal of �
 are ones while the rest are zeros. In this case J
d! �2n�k. In general,

however, V �
s 6= S�s and these eigenvalues will not be 1, so that J

� d!
Pn�k

i=1 �
iz
2
i where �
1,
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�
2, : : : , �
n�k are the nonzero eigenvalues of 
 and z1, z2, : : : , zn�k are mutually inde-

pendent standard normal random variables. Given the form of 
,
Qn�k
i=1 �
i =

Qn�k
i=1 �0i=�gi,

however, in general, �
i 6= �0i=�gi.�

7.5 Proof of Theorem 5

Let Ret = �R + ut with E(utu0t) = �R, and ft = � + �t with E(�2t ) = �2f . The asymptotic

distribution of b̂� depends on the asymptotic distribution of dT = 1
T

PT
t=1R

e
t

�
ft � �f

�
. Scaling

dT by a factor of T
1
2 we have

T
1
2dT = T�

1
2

TX
t=1

ut�t �
TX
t=1

�tT
� 1
2

TX
t=1

ut: (37)

The �rst expression on the right hand side of (37) converges in distribution toX � N(0; �2f�u).

The second expression converges in probability to 0. So T
1
2dT

d! X. Also, �Re
p! �R.

At the �rst stage of GMM the weighting matrix is W �
T = In so we have T�

1
2 b̂� =

T
1
2d0T

�Re=(T
1
2d0TT

1
2dT ). It follows that T�

1
2 b̂�

d! Z = (X 0�R)=(X
0X). The t-statistic for

b̂� is t = b̂�=
p
V �
b where V

�
b is the �rst element on the diagonal of

V �
� = (a

�
T �

�
T )
�1a�TS

�
Ta

�0
T (�

�0
T a

�
T )
�1=T; (38)

where a�T and �
�
T are de�ned in section 3.2 and S

�
T is a conventional estimate of the long-run

covariance of the GMM errors in the �rst stage, which are

û1t = Ret [1� (ft � �f)b̂�]

û2t = ft � �f:

Considerable algebra shows that at the �rst stage of GMM T�1V �
b

d! �2fZ
2(X 0�RX)=(X

0X)2.

Hence t d! Z=
q
�2fZ

2(X 0�RX)=(X 0X)2 or (X 0�R)=[�
2
fZ

2(X 0�RX)]
1
2 . We also have

R2� = 1�
( �Re � dT b̂

�)0( �Re � dT b̂
�)�

�Re � ��0 �Re=n
�0 � �Re � ��0 �Re=n

� = 1� �Re0Md
�Re

�Re0M�
�Re

where Md = I � dT (d
0
TdT )

�1d0T and M� = In � ��0=n. So the R2 is

R2�
d! 1� �0RM�R

�0RM��R

where M = In �X(X 0X)�1X 0.
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At the second stage of GMM the weighting matrix is W �
T = (PTS

�
TP

0
T )
�1 where PT =

( In �Re(b̂�)0 ). Considerable algebra shows that TW �
T

d! W = ��1R =(�2fZ
2). We have

T�
1
2 b̂� = T

1
2d0T (TWT ) �R

e=(T
1
2d0T (TWT )T

1
2dT ). It follows that T�

1
2 b̂�

d! ~Z = (X 0W�R)=(X
0WX) =

(X 0��1R �R)=(X
0��1R X). The t-statistic for b̂� is t = b̂�=

p
V �
b where V

�
b is again the �rst ele-

ment on the diagonal of V �
� , and V

�
� is given by (38). In this case, however, the matrix a

�
T de-

pends on the weighting matrix and takes a form such that T�1V �
b

d! �2fZ
2(X 0W�RWX)=(X 0WX)2

or �2fZ
2=(X 0��1R X). Hence t d! ~Z=[�2fZ

2=(X 0��1R X)]
1
2 or (X 0��1R �R)=[�

2
fZ

2(X 0��1R X)]
1
2 .

We also have

R2� = 1�
�Re0 ~M 0

d
~Md
�Re

�Re0M�
�Re

where ~Md = I � dT (d
0
TWTdT )

�1d0TWT . So the R2 is

R2�
d! 1� �0R

~M 0 ~M�R
�0RM��R

where ~M = In �X(X 0WX)�1X 0W = In �X(X 0��1R X)�1X 0��1R . The test statistic for the

over-identifying restrictions is J = T ( �Re � dT b̂)
0WT ( �R

e � dT b̂) = T �Re0 ~M 0
dWT

~Md
�Re. Hence

J
d! �0R

~M 0W ~M�R = �0R
~M 0��1u ~M�R=(�

2
fZ

2).�

7.6 Proof of Theorem 6

As in the proof to Theorem 3, b̂� a:s:! b�s = (D
0
0W

�
0D0)

�1D0
0W

�
0E(R

e). When the risk factor

is panel spurious D0 = c�+ E(Re)E(f). Hence b�s = (1� !�0)=E(f) where

!�0 =
D0
0W

�
0 �

D0
0W

�
0D0

c:

The predicted expected returns are DT b̂
� a:s:! D0b

�
s and

D0b
�
s = [E(R

e)E(f) + c�]
1� !�0
E(f)

=

�
E(Re) +

c

E(f)
�

�
(1� !�0)

Notice that lim�
c!0 !

�
0 = 0 so that limc!0 b

�
s = 1=E(f) and limc!0D0b

�
s = E(Re).

Similarly, b̂� a:s:! b�s = (d00W
�
0 d0)

�1 d00W
�
0E(R

e). When the risk factor is panel spurious

d0 = c� hence b�s = !�0=c where

!�0 =
�0W �

0E(R
e)

�0W �
0 �

:

The predicted expected returns are dT b̂�
a:s:! d0b

�
s = �!�0.�
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7.7 Inference about the Price of Risk

In what follows it is useful to de�ne a vector &f which contains the unique elements of �f .

There are K = k(k + 1)=2 unique elements of �f , so &f is the K � 1 vector:

&f = (

k elementsz }| {
�f;11 �f;12 � � � �f;1k

k�1 elementsz }| {
�f;22 �f;23 � � � �f;2k

���
�f;33 � � � �f;kk )

0: (39)

Below it will be useful to have a pair of mappings i(�) and j(�) which map the row index,

�, of an element of &f to the corresponding row and columns indices of �f . These functions

can be represented using vectors:

� = (

k elementsz }| {
1 2 � � � k

k�1 elementsz }| {
k + 1 k + 2 � � � 2k � 1

���
2k � � � K )0

i(�) = (

k elementsz }| {
1 1 � � � 1

k�1 elementsz }| {
2 2 � � � 2

���
3 � � � k )0

j(�) = (

k elementsz }| {
1 2 � � � k

k�1 elementsz }| {
2 3 � � � k

���
3 � � � k )0

7.7.1 The a-Normalization

To estimate ��f = �fb
�=(1� �0b�) add the moment restrictions (16) and (17). I use a GMM

estimator for b�, � and &f that sets ~a�T ~g
�
T = 0 where

~a�T =

�
a�T 0
0 Ik+K

�
, ~g�T =

�
g�T
ĝ�T

�
(40)

and

ĝ�T (�; &f ) =

0BBBBBBBBBBBBBB@

�f � ��
�f1 � �1

�2
+ sf;11 � �f;11�

�f1 � �1
� �
�f2 � �2

�
+ sf;12 � �f;12

...�
�f1 � �1

� �
�fk � �k

�
+ sf;1k � �f;1k�

�f2 � �2
�2
+ sf;22 � �f;22�

�f2 � �2
� �
�f3 � �3

�
+ sf;23 � �f;23

...�
�fk � �k

�2
+ sf;kk � �f;kk

1CCCCCCCCCCCCCCA
:

where sf;ij is the ij element of Sf = T�1
PT

t=1(ft� �f)(ft� �f)0. The GMM estimators are b̂�,

as before, along with �̂ = �f and �̂f;ij = Sf;ij.

For notational convenience let ~�
�
= ( b�0 �0 & 0f )

0 and de�ne

~u�t (
~�
�
) =

�
u�t (b

�)
û�t (�; &f )

�
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where

û�t (�; &f ) =

0BBBBBBBBBBBBBB@

ft � �

(f1t � �1)
2 � �f;11

(f1t � �1) (f2t � �2)� �f;12
...

(f1t � �1) (fkt � �k)� �f;1k
(f2t � �2)

2 � �f;22
(f2t � �2) (f3t � �3)� �f;23

...
(fkt � �k)

2 � �f;kk

1CCCCCCCCCCCCCCA
:

and let where �f;ij is the ij element of �f .

Let

~a�0 =

�
a�0 0
0 Ik+K

�
~�
�
0 = E

"
@~u�t (

~�
�
0)

@~�
�
0

#
=

�
��0 0
0 �Ik+K

�
and

~S�0 = E

"
+1X
j=�1

~u�t (
~�
�
0)~u

�
t�j(

~�
�
0)
0

#
:

Letting ~�
�
T = ( b̂

�0 �̂0 &̂ 0f )
0,
p
T (~�

�
T � ~�

�
0)

d! N(0; V �
~�
) with V �

~�
= (~a�0

~�
�
0)
�1~a�0

~S�0~a
�0
0 (
~�
�0
0 ~a

�
0)
�1.

Now ��f = �fb
�=(1� �0b�). Hence

q�(~�
�
) =

d��f (
~�
�
)

d~�
� =

�
�f + �f�

0 �fb
�0 	�

�
=(1� �0b�)

where 	�i(�);� = b�j(�), 	
�
j(�);� = b�i(�), � = 1, : : : , K and all other entries in 	� are zero. By

the delta method it follows that
p
T (�̂

�
f � �f0)

d! N(0; q�0V
�
~�
q�00 ) where q

�
0 = q�(~�

�
0).

7.7.2 The �-Normalization

To estimate ��f = �fb
� add the moment restrictions (17). I use a GMM estimator for b�, �

and &f that sets ~a�T ~g
�
T = 0 where

~a�T =

�
a�T 0
0 IK

�
, ~g�T =

�
g�T
ĝ�T

�
and ĝ�T (�; &f ) is the last K rows of ĝ�T (�; &f ). The GMM estimators are b̂�, �̂ = �f , as before,

along with and �̂f;ij = Sf;ij.
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For notational convenience let ~�
�
= ( ��0 & 0f )

0 and de�ne

~u�t (
~�
�
) =

�
u�t (�

�)
û�t (�; &f )

�
where û�t (�; &f ) is the last K rows of û�t (�; &f ).

Let

~a�0 =

�
a�0 0
0 IK

�
~�
�
0 = E

"
@~u�t (

~�
�
0)

@~�
�
0

#
=

�
��0 0
0 �IK

�
and

~S�0 = E

"
+1X
j=�1

~u�t (
~�
�
0)~u

�
t�j(

~�
�
0)
0

#
:

Letting ~�
�
T = ( �̂

�0
&̂ 0f )

0,
p
T (~�

�
T � ~�

�
0)

d! N(0; V �
~�
) with V �

~�
= (~a�0

~�
�
0)
�1~a�0

~S�0~a
�0
0 (
~�
�0
0 ~a

�
0)
�1.

Now ��f = �f b̂
�. Hence

q�(~�
�
) =

d�̂
�
f (
~�
�
)

d~�
� =

�
�f 0k�k 	�

�
where 	�i(�);� = b�j(�), 	

�
j(�);� = b�i(�), � = 1, : : : , K and all other entries in 	� are zero. By

the delta method it follows that
p
T (�̂

�
f � �f0)

d! N(0; q�0V
�
~�
q�00 ) where q

�
0 = q�(~�

�
0).

7.8 Estimating Long-Run Covariance Matrices

7.8.1 The a-Normalization

As stated in section 4, I de�ne S�T =
1
T

PT
t=1 û

�
t û
�0
t when estimating the standard errors of

b̂� and testing the over-identifying restrictions of the model. This is a consistent estimate of

S�0 when the model is true because E[u
�
t (b

�
0)u

�
t�j(b

�
0)
0] = 0 for j 6= 0.

When conducting inference about the price of risk we need an estimate of ~S�0 . Since

û�t (�0; &f0) is not necessarily orthogonal to lagged information the simple covariance matrix
1
T

PT
t=1 ~u

�
t (
~�
�
T )~u

�
t (
~�
�
T )
0 will, in general, be an inconsistent estimator of ~S�0 . For this reason

I use den Haan and Levin�s (2000) VARHAC procedure for estimating ~S�0 . In doing so I

impose the restriction that lagged variables do not appear in the equations for u�t but allow

for lags in the equations for û�t .
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7.8.2 The �-Normalization

As stated in section 3, to compute S�T I use the same VARHAC procedure described above.

In doing so I impose the restriction that lagged variables do not appear in the equations

for u�1t (the errors corresponding to the asset pricing conditions) but allow for lags in the

equations for u��2t (the errors corresponding to ft��). When conducting inference about the
price of risk I continue to use the VARHAC procedure to estimate ~S�0 . In doing so I allow

for lags in the equations for û�t .

7.9 Proof of Theorem 7

When the model if false, the estimated asymptotic variance-covariance matrix of ~�
�
T is V̂

�
~�
=

(~a�T
~�
�
T )
�1~a�T

~S�T ~a
�0
T (
~�
�0
T ~a

�
T )
�1 where ��T = �DT , ~a�T is given by (40) and ~S

�
T is the VARHAC

estimator described above. Consequently

V̂ �
~�

a:s:! V �
~�s
=

�
(D0

0W
�
0D0)

�1D0
0W

�
0 0

0 Ik+K

�
~V �
s

�
W �
0D0(D

0
0W

�
0D0)

�1 0
0 Ik+K

�
:

Here ~V �
s = plim

~S�T and does not necessarily correspond to ~S
�
s = E

hP+1
j=�1 ~u

�
t (
~�
�
s)~u

�
t�j(

~�
�
s)
0
i
,

where ~�
�
s = plim

~�
�
T because lag restrictions are imposed in computing ~S

�
T that are not true

when the model is false. Importantly, however, V �
~�s
is �nite.

The squared t statistics for �̂
�
f are

t2 =
T diag(�̂

�
f �̂

�0
f )(1� �̂0b̂�)2

diag

��
�̂f + �̂

�
f �̂

0 �̂
�
f b̂
�0 	̂�

�
V̂ �
~�

�
�̂f + �̂

�
f �̂

0 �̂
�
f b̂
�0 	̂�

�0�
=

T diag(�̂f b̂
�b̂�0�̂f )(1� �̂0b̂�)2

diag(XV̂ �
~�
X 0)

:

where X =
�
(1� �̂0b̂�)�̂f + �̂f b̂

��̂0 �̂f b̂
�b̂�0 (1� �̂0b̂�)	̂�

�
and the division is element-by-

element. Notice that �̂f b̂�
a:s:! �f0b

�
s while X

a:s:! �f0b
�
s

�
�0 b�0s 0

�
. Hence t2 has the same

asymptotic distribution as

~t2 = T
(1� �̂0b̂�)2�

diag
h�

�0 b�0s 0
�
V �
~�s

�
�0 b�0s 0

�0i ;
where � is a k � 1 vector of ones. If the lag restrictions imposed in computing ~S�T are valid
then each element in t2 converges in distribution to a �2 with 1 degree of freedom. From

this we can see that a researcher will conclude that �̂
�
f is signi�cantly di¤erent from 0 in
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roughly � percent of repeated samples if he uses an � percent critical value in this test. But

if the lag restrictions are not valid, the rate at which the researcher will reject � = 0 could

be higher or lower than � percent.�

8 Appendix B: Data Construction

8.1 Fama-French Portfolios

Each Fama and French (1993) portfolio represents the intersection of one of 5 groups of stocks

sorted according to their market capitalization with one of 5 groups of stocks sorted according

to their book equity to market capitalization ratio. The returns are equally weighted. I ob-

tained raw monthly returns from Kenneth French�s website http://mba.tuck.dartmouth.edu/

pages/ faculty/ ken.french/ data_library.html. To obtain quarterly returns I compounded

monthly returns within each quarter. To obtain quarterly excess returns I subtract the

quarterly risk free rate de�ned as the compounded monthly risk free rate from Fama/French

Research Data Factor �le. Real excess returns are de�ned by dividing the nominal excess

return by one plus the in�ation rate, which I de�ned below.

To compute real consumption of nondurables and services I proceeded as follows. Let CNt
be the consumption of nondurables and CSt be the consumption of services in nominal dollars,

and let cNt and c
S
t be the corresponding series in constant chained dollars, as published by the

Bureau of Economic Analysis. To obtain nominal consumption of nondurables and services I

simply set Ct = CNt +C
S
t . However, because real chained series are not summable, I proceed

as follows to create real consumption of nondurables and services, which I denote ct. First

de�ne st = (CNt =Ct + CNt�1=Ct�1), g
N
t = cNt =c

N
t�1 � 1 and gSt = cSt =c

S
t�1 � 1. Then de�ne

the growth rate of ct as gt = stg
N
t + (1 � st)g

S
t . Notice that a real levels series can then be

generated by forward and backward induction relative to a base period. I convert the real

levels series into per capita terms by dividing by the quarterly population series published in

the National Income and Product Accounts by the BEA.9 I construct an in�ation series using

a similar method. Letting �Nt and �
S
t be the in�ation rates for nondurables and services, I

let the combined in�ation rate be �t = st�
N
t + (1� st)�

S
t .

I assume that households derive utility in quarter t + 1 from the stock of durables at

the end of quarter t. To compute the real quarterly stock of durable goods I proceeded

9I pass the NIPA population series through the Census X11 seasonal adjustment procedure because the
NIPA series displays noticeable seasonal �uctuations.
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as follows. The Bureau of Economic Analysis publishes end-of-year real stocks of durables

goods. Let kt denote the real stock of durables at the end of some year, and let kt+4 be the

same stock a year (four quarters) later. We observe quarterly real purchases of consumer

durables, which I denote cDt . I assume that within each year the model

kt+1 = cDt+1 + (1� �)kt (41)

holds, with � allowed to vary by year. I solve for the value of � such that the beginning and

end-of-year stocks are rationalized by purchases series. This is the � such that

kt+4 = cDt+4 + (1� �)cDt+3 + (1� �)2cDt+2 + (1� �)3cDt+1 + (1� �)4kt: (42)

Once I identify the value of � that applies within a year using (42), I use (41) to calculates

the within year stocks. I convert the real stocks to per capita terms by dividing by the same

population series used for the consumption series.

The remaining series are taken from the Fama/French Research Data Factor �le. I de�ned

the monthly market return as the sum of the market premium series (RM-Rf ) and the risk

free rate series (Rf ). I convert this to a quarterly return by compounding the monthly series

geometrically within each quarter. Denoting the resulting series, RMt , I convert it to a real

return as follows: rMt = (RMt � �t)=(1 + �t).

To create real quarterly versions of the Fama-French factors (RM-Rf, SMB and HML) I

proceed as follows. To get quarterly excess returns I compound the monthly series geomet-

rically within each quarter. I convert them to real excess returns by dividing the resulting

series by 1 + �t.

8.2 Lustig-Verdelhan Foreign Exchange Portfolios

I take all of the data directly from LV�s database provided at http://www.econ.ucla.edu/

hlustig/. The construction of the eight portfolio returns is described fully in LV. The risk

factors are also de�ned exactly as in their paper. I have additional results� which are qual-

itatively similar to the ones presented here� based on the same portfolio returns, but using

alternative measures of the risk factors derived from the same sources as for the quarterly

data. For the annual series consumption of nondurables and services is constructed using the

annual NIPA data, using the same approach as for the quarterly data. The annual stocks

of durables are available directly from the NIPA accounts. The annual Fama/French risk
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factors and the risk free rate are also available directly from the Fama/French Research Data

Factor �le.

9 Appendix C: Small-Sample P-Values for Covariance
and Beta Tests

To obtain small sample p-values relevant to the LV data, I ran 5000Monte Carlo simulations,

each with a sample size of T = 50. The simulated Ret process was distributed as an iid

N(�R;�R), where �R and �R were set equal to their sample equivalents in the LV data.

Since the null being tested is whether the covariance of the factor is zero with all the returns,

I simulated a risk factor ft which, in the case of consumption growth, was set to an AR(2)

process with the same mean, variance and autoregressive coe¢ cients as US consumption

growth in the LV data, and was made independent of Ret . Similar simulations were run

to generate factors that mimicked the univariate representations of durables growth [also

speci�ed as an AR(2)], and the market return (speci�ed as iid). In each sample I computed

the Wald statistics for the hypotheses that cov(Reit; ft) = 0 for all i, cov(R
e
it; ft) = c for all

i, �i = 0 for all i, and �i = � for all i and thereby constructed empirical distributions for

the test statistics across the 5000 simulations. I used this distribution to back out the small

sample p-values presented in Tables 5 and 6.

10 Appendix D: Robustness

10.0.1 Covariance Matrix Estimation

In estimating the models I used the VARHAC procedure of den Haan and Levin (2000) to

compute the standard errors and to compute the long-run covariance matrices that are used

in constructing the second stage GMM estimates. This procedure is mainly important when

the moments of the risk factors are estimated because the error terms for these moment

conditions display some degree of serial correlation, especially for the consumption variables.

To determine whether the VARHAC procedure plays a signi�cant role in driving the results,

I redid the analysis using a simple HAC procedure that allows for no lags.

For the most part, the results� presented in Tables 1a, 2a, 3a and 4a� are very similar

to the benchmark results. For both sets of data, if anything, using HAC standard errors

enhances the contrast between the results for the two normalizations because there are more
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rejections of the over-identifying restrictions for the �-normalization. For the LV data using

HAC procedure tends to reduce the standard errors of the estimates of �̂f , while, at the

same time, worsening the �t of the model.

10.0.2 Di¤erent Weighting Matrices

As described earlier, when estimating the model using the �-normalization, I set the �rst

stage weighting matrix for the asset pricing conditions to W �
T = In. In the second stage, I

let W �
T = (PTS

�
TP

0
T )
�1 where PT = ( In �Re(b̂�)0 ) and S�T is a consistent estimator of the

long-run covariance matrix of the GMM errors. The second entry in PT is the derivative of

the pricing errors, �Re �
�
DT � �Re�0

�
b�, with respect to �. This derivative also appears in

the de�nition of ��T , given by equation (22), which is used in computing standard errors and

the test of the over-identifying restrictions. Under the null that the model is true, of course,

plim �Re = plim dT b̂
�b̂�0. This observation leads to two alternative schemes for estimating the

�-normalization.

In the �rst scheme �Re(b̂�)0 is replaced by dT b̂�b̂�0 in the de�nition of both PT and �
�
T but

the procedures for estimating the model are otherwise unchanged.

In the second scheme, suggested by Cochrane (2005), �Re(b̂�)0 is replaced by dT b̂�b̂�0 in

the de�nition of ��T . However, Cochrane de�nes the second stage weighting matrix as W
�
T =�

~PS�T
~P 0
��1

where ~P = ( In 0n�k ).

I re-estimated the model using both of these schemes. For the most part the results are

very similar to the base case. Results for the �rst scheme are presented in Tables 2b and

4b. Results for the second scheme are presented in Tables 2c and 4c. The sharp contrast

between the �t of the two normalizations is preserved. For the LV data both procedures

notably reduce the standard errors of �̂f , while worsening the �t of the model. For the FF25

data the �rst scheme appears to systematically increase the magnitude of the estimated

b� coe¢ cients, rendering some of them statistically signi�cant for the consumption-based

models. However, the �t of the model remains very poor in each of these cases.

10.0.3 Models with a Common Pricing Error

Parker and Julliard (2005) use the �-normalization but modify the moment conditions by

adding a common pricing error, 
, to each of the asset pricing conditions. They use the
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moment conditions

E (ft) = � E
�
Ret [1� (ft � �)0 b�]� 


	
= 0; (43)

in place of (9). In theory, of course, 
 = 0 if the original model, (1), is true. Parker and

Julliard include the additional parameter to �separately evaluate the ability of the model

to explain the equity premium and the cross section of expected stock returns.�As they

suggest, 
̂ �measures the extent to which the model underpredicts the excess returns of all

... portfolios by the same amount.�

Parker and Julliard�s modi�cation of the �-normalization is akin to the use of a constant

in the cross-sectional regression of the two-pass procedure. In fact, the two procedures are

numerically equivalent when W �
T = In [see Burnside (2007a)].

I re-estimated the model using the moment conditions (43), while leaving the rest of the

benchmark procedure unchanged. There are some noticeable di¤erences in the results, which

are presented in Tables 2d and 4d. First, for both sets of data, not surprisingly, the �t of the

models generally improves. This is guaranteed to happen in the �rst stage of GMM because

the benchmark estimates are equivalent to a cross-sectional regression of �Re on dT without a

constant, while the alternative approach is equivalent to adding a constant to the regression.

Nonetheless, the �t of the models, with one exception, remains worse than the �t implied

by estimates of the a-normalization (compare Table 2d to Table 1, and Table 4d to Table

3). The one exception is the single factor model with durables growth as the factor for the

FF25 data.

For the LV data, another distinction between the benchmark results in Table 2 and the

alternative results in Table 2d is that in the latter case the standard errors for b̂� and �̂f

are larger, at least for the consumption based models. Also, none of the consumption-based

models can be rejected on the basis of the test of the over-identifying restrictions. This is

not, however, a virtue of the models. It re�ects the fact that the relative precision in the

estimates in Table 2 stems from the model having to match the average excess return across

portfolios. Once a common pricing error is introduced in the model, the model parameters

are e¤ectively unidenti�ed.

In contrast, for the FF25 data, the standard errors of b̂� and �̂f are generally smaller

for the alternative results (Table 4d) than for the benchmark case (Table 4), but only for

consumption based models. Nonetheless, none of the consumption factors are statistically

signi�cant� in terms of either b̂� or �̂f� in any of the models. For the single factor model
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with the market premium, and for the multi-factor model with the Fama-French factors,

there are sign reversals for the coe¢ cients on the market premium and the SMB factor.

But the �t of the models remains roughly the same. Finally, a common feature to all the

models is that the constant pricing error, 
̂, is large and statistically signi�cant in every case.

The estimates range in magnitude from 1:85 percent to 3:83 percent and these are quarterly

rates. This suggests that there are either severe small sample problems in estimation, with

the maintained hypothesis being that the models are true, or it indicates that the models

are misspeci�ed. A third possibility, that the returns to treasury bills mismeasure the risk

free rate, is less plausible, because of the magnitude of the coe¢ cients.

10.0.4 Using All Information to Estimate �

Each of the variants of the �-normalization that I have described above sets the GMM

estimator up in such a way that �̂ = �f . Consider the benchmark case where the GMM

estimator sets a�Tg
�
T = 0 where g

�
T = ( g

�0
1T g�02T )

0, g�1T = �Re �
�
DT � �Re�0

�
b�, g�2T = �f � �

and a�T is given by (19). A more traditional approach to GMM might, instead, de�ne

a�T =

�
(DT � �R�0) � �Reb�0

0 Ik

�
W �
T (44)

where W �
T would now be an (n + k) � (n + k) weighting matrix. With the a�T given by

(44), the equation a�Tg
�
T = 0 is the �rst order condition corresponding to minb�;� g�0TW

�
Tg

�
T .

It is clear that in this setup, � is free to help match not only E(ft � �) = 0 but also the

asset pricing equations. Under the null, this is asymptotically more e¢ cient than the other

approaches because it uses information about � that lies in the asset pricing restrictions.

Yogo (2006) uses this approach. In the �rst stage of GMM he sets

W �
T =

�
�In 0
0 S�1f

�
and � = det(SRe)�1=n. Here SRe = 1

T

PT
t=1(R

e
t � �Re)(Ret � �Re)0. As �! 0, �̂! �f , whereas,

as �!1, �̂ is determined solely by the asset pricing conditions. To give some sense of the
magnitudes involved, for the single-factor consumption model and FF25 returns, S�1f = 38447

and � = 1097. In the second stage of GMM, the inverse of a consistent estimate of S�0 is

used as the weighting matrix.

Not surprisingly, using this method makes the models perform better overall because the

estimated means of the factors move substantially to �t the asset pricing conditions. Table
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2e presents results that should be compared to Table 2 for the LV data. For the single-factor

consumption model, the estimate of �̂ moves almost two standard errors away from �f . The

statistical signi�cance of b̂� and �̂f sharpens slightly at the second stage of GMM and the

�t of the model improves, but it is still rejected at below the 5 percent level. For durables

growth a similar pattern is seen, and the model is no longer rejected at the 5 percent level.

For the market premium, �̂ moves more than two standard deviations from the mean, but in

opposite directions in the two stages of GMM. But the model is still rejected. For the multi-

factor models there are signi�cant changes in the estimates of b�, �f and �; but generally

speaking it remains true that consumption-based models with statistically signi�cant values

of b� and �f �t the data poorly, and that point estimates are very sensitive to the choice of

weighting matrix.

Table 4e presents results for the FF25 data. The �t of most of the models improves

dramatically, compared to the benchmark results in Table 4. Notice, however, that this

involves enormous changes in the means of at least one factor in each model. For the basic

consumption growth model, �̂moves down by about 5 standard errors. For the basic durables

model �̂ moves up by between 3 and 5 standard errors in the two stages of GMM. In one

case, the market premium�s mean shifts down by almost 7 standard errors. Not surprisingly,

in some cases, these shifts in �̂ go along with big changes in b̂ and �̂f . Perhaps the most

signi�cant improvement in model performance is for Yogo�s multi-factor model. In Table

4, the only signi�cant parameter for this model is the factor risk premium, �f , associated

with the market return, Rm. In Table 4e, however, the b coe¢ cient for durables growth is

signi�cant, and the factor risk premium for durables is also signi�cant at the second stage

of GMM. These results are qualitatively similar to Yogo�s although the R2 measure of �t is

considerably lower here.

Do these results point to a systematic di¤erence between the benchmark procedure and

Yogo�s approach, or does something else explain Yogo�s positive assessment of the model?

Yogo uses a shorter sample period (1951:Q1�2001Q4) and also uses Campbell�s (2003) timing

for consumption growth in which the returns to the equity portfolios in the nth quarter

are priced using consumption growth between quarter n and n + 1. I �nd, however, that

shortening the sample period and switching to Campbell timing has no appreciable e¤ect

on the model�s �t nor on the statistical signi�cance of b̂� and �̂f . This is true for both

the benchmark estimation procedure and Yogo�s estimation procedure. Yogo also uses HAC
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rather than VARHAC covariance matrices. While this a¤ects point estimates, it does not

have an appreciable e¤ect on the model�s �t nor on the statistical signi�cance of b̂� and �̂f . I

do �nd that second stage GMM estimates are highly sensitive to the choice of � when using

Yogo�s approach. This sensitivity diminishes if further GMM iterations are performed and

HAC standard errors are calculated.

10.0.5 Further Iterations on the Weighting Matrix

As a �nal check on robustness, I consider iterating on the weighting matrix until approximate

convergence in the estimates of b� and b� is obtained. Results for both normalizations and

the LV data are shown in Table 1f/2f. For the a-normalization the results are quite similar to

the results for two-stage GMM (see Table 1). For the �-normalization some of the parameter

values change substantially, but they are all well within one standard error of the estimates

for two-stage GMM (see Table 2). The contrast between the �t of the two normalizations is

robust.

Results for both normalizations and the FF25 data are shown in Table 3f/4f. For the

a-normalization the results are quite similar to the results for two-stage GMM (see Table 3).

For the �-normalization some of the parameter values change substantially, but they are all

well within one standard error of the estimates for two-stage GMM (see Table 4). The most

noticeable change in the results is that for the �-normalization every model is rejected at

small signi�cance levels after iterating over the weighting matrix, whereas this was not the

case for two-stage GMM. The striking contrast between the �t of the two normalizations is

robust.
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TABLE 1a: GMM Estimates of Linear Factor Models
Lustig-Verdelhan Dataset, a-Normalization, HAC Standard Errors

First Stage Second Stage
b� �f R2 b� �f R2 J

Consumption growth 48.6 4.20 0.87 48.8 4.28 0.87 5.1
(10.4) (3.80) (4.3) (1.33) (0.645)

Durables growth 20.2 2.65 0.84 24.3 5.51 0.81 4.8
(3.7) (1.47) (1.7) (2.32) (0.683)

Rm-Rf 5.5 29.13 0.46 6.5 39.05 0.45 10.2
(2.3) (18.05) (1.7) (17.62) (0.175)

Consumption Factors
Consumption growth 40.1 3.64 0.87 -5.5 1.86 0.81 2.7

(56.0) (1.76) (27.9) (1.80) (0.847)
Durables growth 3.7 3.64 26.2 4.81

(28.0) (1.74) (13.5) (2.26)

Yogo Factors
Consumption growth 9.6 2.76 0.95 2.3 3.43 0.89 1.9

(30.7) (1.71) (21.9) (2.47) (0.860)
Durables growth 14.2 2.91 22.0 5.96

(17.1) (2.34) (11.0) (3.86)
Rm 2.4 33.44 1.1 12.09

(1.7) (23.40) (0.9) (21.59)

Fama-French Factors
Rm-Rf 6.0 31.28 0.56 7.6 92.83 0.27 5.3

(3.4) (28.89) (2.5) (93.89) (0.384)
SMB -5.3 -12.70 -4.5 -17.52

(5.7) (21.69) (4.2) (37.41)
HML 4.1 12.25 6.5 45.71

(3.9) (19.33) (2.8) (53.20)

Note: Annual data, 1953�2002. The table reports �rst and second stage GMM estimates of b�, from the SDF
mt = 1 � f 0tb�, obtained using the moment restriction E(Retmt) = 0, where Ret is an 8 � 1 vector of excess
returns of equally-weighted portfolios of short-term foreign-currency denominated money market securities
sorted by their interest di¤erential with the US, and ft is a scalar or vector of risk factors. The factors are
real per household consumption (nondurables & services) growth, real per household durable consumption
growth, and the following variables from the Fama-French dataset: the real value weighted US stock market
excess return over the risk free rate (Rm-Rf ), the gross return to the same portfolio (Rm), and the SMB
and HML portfolio excess returns [see Lustig and Verdelhan (2007)]. Estimates of the factor risk premium
�̂f = Sf b̂

�=(1 � �f 0b̂�) are also reported (in percent), where �f and Sf are the sample mean and covariance
matrix of ft. GMM-HAC standard errors are reported in parentheses for b̂� and �̂f . The table reports the
R2 measure of �t between the sample mean of Ret and the predicted mean returns, given by DT b̂

�, where
DT = 1

T

PT
t=1R

e
tf
0
t . Tests of the overidentifying restrictions are also reported. The test statistic, J , is

asymptotically distributed as a �28�k, where k is the number of risk factors. The p-value is in parentheses.
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TABLE 2a: GMM Estimates of Linear Factor Models
Lustig-Verdelhan Dataset, �-Normalization, HAC Standard Errors

First Stage Second Stage
� b� �f R2 b� �f R2 J

Consumption growth 0.016 45.1 0.95 0.10 76.9 1.62 0.05 17.4
(0.002) (71.7) (1.42) (29.8) (0.73) (0.015)

Durables growth 0.034 20.8 0.87 0.16 59.0 2.46 -0.40 17.4
(0.003) (28.1) (1.1) (21.3) (0.8) (0.015)

Rm-Rf 0.070 1.8 5.97 0.02 1.4 4.51 0.02 23.3
(0.026) (3.5) (11.37) (2.3) (7.47) (0.002)

Consumption Factors
Consumption growth 0.016 -8.7 0.26 0.16 6.6 1.17 -0.34 17.7

(0.002) (55.6) (0.77) (39.3) (0.69) (0.007)
Durables growth 0.034 23.6 0.82 54.5 2.40

(0.003) (38.0) (1.01) (27.5) (0.80)

Yogo Factors
Consumption growth 0.016 -22.0 0.59 0.34 28.1 2.42 -1.11 13.4

(0.002) (62.4) (1.03) (45.9) (1.01) (0.020)
Durables growth 0.034 45.5 1.10 87.4 3.86

(0.003) (49.8) (1.58) (32.0) (1.14)
Rm 0.070 5.2 11.74 4.4 8.22

(0.025) (2.7) (7.71) (2.5) (7.80)

Fama-French Factors
Rm-Rf 0.070 1.5 7.07 0.08 -0.5 0.71 0.04 18.8

(0.026) (4.1) (10.87) (3.4) (9.10) (0.002)
SMB 0.024 1.7 4.08 2.4 4.03

(0.019) (4.5) (6.82) (3.8) (5.82)
HML 0.057 -2.8 -5.91 -2.7 -4.96

(0.020) (4.9) (8.03) (3.9) (6.69)

Note: Annual data, 1953�2002. The table reports �rst and second stage GMM estimates of � and b�, from
the SDF mt = 1� (ft��)0b�, obtained using the moment restrictions E(Retmt) = 0, E(ft��) = 0. Since �̂
is the same for both GMM stages, the estimate is reported once. The variables Ret and ft are de�ned in the
note to Table 1. Estimates of the factor risk premium �̂f = Sf b̂

� are also reported (in percent), where Sf
is the sample covariance matrix of ft. GMM-HAC standard errors are reported in parentheses for �̂, b̂� and
�̂f . The table reports the R2 measure of �t between the sample mean of Ret and the predicted mean returns,
given by dT b̂�, where dT = 1

T

PT
t=1R

e
t (f

0
t � �̂)0. Tests of the overidentifying restrictions are also reported.

The test statistic, J , is asymptotically distributed as a �28�k, where k is the number of risk factors. The
p-value is in parentheses.
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TABLE 2b: GMM Estimates of Linear Factor Models
Lustig-Verdelhan Dataset, �-Normalization, Hybrid Weighting Matrix

First Stage Second Stage
� b� �f R2 b� �f R2 J

Consumption growth 0.016 45.1 0.95 0.10 89.4 1.88 0.00 15.1
(0.003) (74.7) (1.48) (30.0) (0.81) (0.035)

Durables growth 0.034 20.8 0.87 0.16 68.1 2.85 -0.71 15.5
(0.007) (29.2) (1.15) (21.3) (0.77) (0.030)

Rm-Rf 0.070 1.8 5.97 0.02 2.4 7.69 0.02 20.2
(0.025) (3.6) (11.83) (2.4) (7.70) (0.005)

Consumption Factors
Consumption growth 0.016 -8.7 0.26 0.16 1.6 1.27 -0.61 16.1

(0.003) (56.9) (0.80) (40.5) (0.73) (0.013)
Durables growth 0.034 23.6 0.82 64.9 2.74

(0.007) (39.0) (1.05) (27.6) (0.78)

Yogo Factors
Consumption growth 0.016 -22.0 0.59 0.34 33.0 2.51 -0.84 9.5

(0.003) (63.6) (1.18) (45.3) (1.08) (0.089)
Durables growth 0.034 45.5 1.10 84.2 3.71

(0.007) (51.0) (1.78) (33.1) (1.24)
Rm 0.070 5.2 11.74 5.8 12.85

(0.025) (3.0) (9.42) (2.8) (8.61)

Fama-French Factors
Rm-Rf 0.070 1.5 7.07 0.08 -0.2 2.32 0.06 15.6

(0.025) (4.3) (11.36) (3.5) (9.65) (0.008)
SMB 0.024 1.7 4.08 2.8 5.02

(0.020) (4.6) (7.06) (3.9) (6.04)
HML 0.057 -2.8 -5.91 -3.6 -6.97

(0.020) (5.1) (8.78) (4.0) (7.36)

Note: Annual data, 1953�2002. The table reports �rst and second stage GMM estimates of � and b�, from
the SDF mt = 1 � (ft � �)0b�, obtained using the moment restrictions E(Retmt) = 0, E(ft � �) = 0. The
weighting matrix at the second stage of GMM uses the hybrid approach described in the main text. Since
�̂ is the same for both GMM stages, the estimate is reported once. The variables Ret and ft are de�ned in
the note to Table 1. Estimates of the factor risk premium �̂f = Sf b̂

� are also reported (in percent), where
Sf is the sample covariance matrix of ft. GMM-VARHAC standard errors are reported in parentheses for
�̂, b̂� and �̂f . The table reports the R2 measure of �t between the sample mean of Ret and the predicted
mean returns, given by dT b̂�, where dT = 1

T

PT
t=1R

e
t (f

0
t � �̂)0. Tests of the overidentifying restrictions are

also reported. The test statistic, J , is asymptotically distributed as a �28�k, where k is the number of risk
factors. The p-value is in parentheses.
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TABLE 2c: GMM Estimates of Linear Factor Models
Lustig-Verdelhan Dataset, �-Normalization, Cochrane�s Weighting Matrix

First Stage Second Stage
� b� �f R2 b� �f R2 J

Consumption growth 0.016 45.1 0.95 0.10 89.4 1.88 0.00 15.1
(0.003) (74.7) (1.48) (30.0) (0.81) (0.035)

Durables growth 0.034 20.8 0.87 0.16 68.1 2.85 -0.71 15.5
(0.007) (29.2) (1.15) (21.3) (0.77) (0.030)

Rm-Rf 0.070 1.8 5.97 0.02 2.4 7.69 0.02 20.2
(0.025) (3.6) (11.83) (2.4) (7.70) (0.005)

Consumption Factors
Consumption growth 0.016 -8.7 0.26 0.16 1.6 1.27 -0.61 16.1

(0.003) (56.9) (0.80) (40.5) (0.73) (0.013)
Durables growth 0.034 23.6 0.82 64.9 2.74

(0.007) (39.0) (1.05) (27.6) (0.78)

Yogo Factors
Consumption growth 0.016 -22.0 0.59 0.34 33.0 2.51 -0.84 9.5

(0.003) (63.6) (1.18) (45.3) (1.08) (0.089)
Durables growth 0.034 45.5 1.10 84.2 3.71

(0.007) (51.0) (1.78) (33.1) (1.24)
Rm 0.070 5.2 11.74 5.8 12.85

(0.025) (3.0) (9.42) (2.8) (8.61)

Fama-French Factors
Rm-Rf 0.070 1.5 7.07 0.08 -0.2 2.32 0.06 15.6

(0.025) (4.3) (11.36) (3.5) (9.65) (0.008)
SMB 0.024 1.7 4.08 2.8 5.02

(0.020) (4.6) (7.06) (3.9) (6.04)
HML 0.057 -2.8 -5.91 -3.6 -6.97

(0.020) (5.1) (8.78) (4.0) (7.36)

Note: Annual data, 1953�2002. The table reports �rst and second stage GMM estimates of � and b�, from
the SDF mt = 1 � (ft � �)0b�, obtained using the moment restrictions E(Retmt) = 0, E(ft � �) = 0. The
weighting matrix at the second stage of GMM uses Cochrane�s approach, described in the main text. Since
�̂ is the same for both GMM stages, the estimate is reported once. The variables Ret and ft are de�ned in
the note to Table 1. Estimates of the factor risk premium �̂f = Sf b̂

� are also reported (in percent), where
Sf is the sample covariance matrix of ft. GMM-VARHAC standard errors are reported in parentheses for
�̂, b̂� and �̂f . The table reports the R2 measure of �t between the sample mean of Ret and the predicted
mean returns, given by dT b̂�, where dT = 1

T

PT
t=1R

e
t (f

0
t � �̂)0. Tests of the overidentifying restrictions are

also reported. The test statistic, J , is asymptotically distributed as a �28�k, where k is the number of risk
factors. The p-value is in parentheses.
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TABLE 2d: GMM Estimates of Linear Factor Models
Lustig-Verdelhan Dataset, �-Normalization, Model has a Common Pricing Error Parameter

First Stage Second Stage
� b� �f R2 b� �f R2 J

Consumption growth
Pricing Error (
) -0.69 0.18 -3.28 -1.79 5.1

(1.81) (1.20) (0.536)
Consumption growth 0.016 92.0 1.94 137.3 2.89

(0.003) (60.1) (1.24) (46.3) (1.04)

Durables growth
Pricing Error (
) -3.06 0.74 -1.89 0.54 1.4

(2.73) (1.89) (0.965)
Durables growth 0.034 111.4 4.65 59.8 2.50

(0.007) (88.8) (3.17) (72.5) (2.75)

Market premium
Pricing Error (
) 0.25 0.04 -1.36 -0.95 19.6

(1.07) (0.92) (0.003)
Rm-Rf 0.070 2.4 7.92 1.5 4.83

(0.025) (2.9) (9.50) (2.5) (8.05)

Consumption Factors
Pricing Error (
) -3.06 0.74 -2.83 0.45 1.0

(2.74) (2.40) (0.965)
Consumption growth 0.016 -9.5 1.97 42.5 2.16

(0.003) (88.0) (2.06) (65.5) (2.02)
Durables growth 0.034 114.4 4.60 66.5 3.59

(0.007) (93.8) (3.26) (73.0) (3.13)

Yogo Factors
Pricing Error (
) -2.94 0.87 -1.91 0.41 1.2

(2.92) (2.29) (0.886)
Consumption growth 0.016 -21.0 2.19 6.9 1.22

(0.003) (88.6) (2.09) (76.4) (2.00)
Durables growth 0.034 129.9 4.70 52.6 2.18

(0.007) (109.5) (3.63) (77.5) (3.12)
Rm 0.070 4.5 3.33 2.0 2.55

(0.025) (5.1) (13.30) (4.0) (11.18)

Fama-French Factors
Pricing Error (
) -0.28 0.09 -1.05 -0.30 15.7

(1.00) (0.95) (0.004)
Rm-Rf 0.070 1.1 5.72 -0.9 -0.59

(0.025) (4.3) (11.24) (3.4) (9.32)
SMB 0.024 1.5 3.50 2.1 3.40

(0.020) (4.6) (6.58) (3.9) (6.00)
HML 0.057 -3.6 -7.26 -2.8 -5.14

(0.020) (4.5) (7.85) (4.0) (7.14)

The note to Table 2d is on the following page.
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Note to Table 2d : Annual data, 1953�2002. The table reports �rst and second stage GMM estimates of � and
b�, from the SDF mt = 1� (ft��)0b�, obtained using the moment restrictions E(Retmt) = 
, E(ft��) = 0.
Since �̂ is the same for both GMM stages, the estimate is reported once. The variables Ret and ft are de�ned
in the note to Table 1. Estimates of the factor risk premium �̂f = Sf b̂

� are also reported (in percent), where
Sf is the sample covariance matrix of ft. GMM-VARa HAC standard errors are reported in parentheses for
�̂, b̂� and �̂f . The table reports the R2 measure of �t between the sample mean of Ret and the predicted
mean returns, given by dT b̂�, where dT = 1

T

PT
t=1R

e
t (f

0
t � �̂)0. Tests of the overidentifying restrictions are

also reported. The test statistic, J , is asymptotically distributed as a �28�k, where k is the number of risk
factors. The p-value is in parentheses.
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TABLE 2e: GMM Estimates of Linear Factor Models
Lustig-Verdelhan Dataset, �-Normalization, Using all Information to Estimate �

First Stage Second Stage
� b� �f R2 � b� �f R2 J

Consumption growth 0.011 72.8 1.66 0.49 0.011 103.8 2.36 0.38 14.7
(0.003) (60.4) (1.61) (0.002) (27.3) (1.10) (0.039)

Durables growth 0.029 26.0 1.34 0.31 0.024 49.8 2.56 0.18 10.0
(0.007) (25.1) (1.35) (0.006) (18.7) (1.17) (0.190)

Rm-Rf 0.010 5.4 20.03 0.40 0.136 -4.1 -15.13 0.23 19.3
(0.036) (2.9) (12.20) (0.019) (2.6) (8.54) (0.007)

Consumption Factors
Consumption growth 0.011 106.4 1.95 0.55 0.014 168.4 2.21 0.18 12.1

(0.003) (79.2) (1.17) (0.003) (52.3) (1.33) (0.059)
Durables growth 0.030 -18.1 1.08 0.040 -77.6 -0.51

(0.007) (68.0) (2.24) (0.006) (47.4) (1.93)

Yogo Factors
Consumption growth 0.013 22.3 1.27 0.63 0.013 23.0 1.97 -0.19 5.9

(0.003) (67.1) (1.35) (0.003) (47.2) (1.24) (0.312)
Durables growth 0.031 28.9 1.35 0.027 66.1 3.28

(0.007) (57.6) (2.21) (0.005) (36.8) (1.80)
Rm 0.036 5.6 15.82 0.080 3.5 6.35

(0.031) (2.7) (15.22) (0.024) (2.6) (11.56)

Fama-French Factors
Rm-Rf 0.059 -0.8 4.64 0.61 0.082 -4.6 -5.71 0.40 11.9

(0.025) (4.8) (15.72) (0.023) (3.4) (12.53) (0.037)
SMB -0.008 8.4 15.76 -0.006 11.1 18.96

(0.028) (4.2) (9.96) (0.022) (3.0) (9.73)
HML 0.089 -7.6 -14.68 0.066 -9.4 -17.01

(0.022) (3.9) (8.50) (0.018) (3.3) (9.23)

Note: Annual data, 1953�2002. The table reports �rst and second stage GMM estimates of � and b�, from
the SDF mt = 1 � (ft � �)0b�, obtained using the moment restrictions E(Retmt) = 0, E(ft � �) = 0. The
weighting matrices at the two stages of GMM are based on Yogo (2006) and are described in the main text.
The variables Ret and ft are de�ned in the note to Table 1. Estimates of the factor risk premium �̂f = Sf b̂

�

are also reported (in percent), where Sf is the sample covariance matrix of ft. GMM-VARHAC standard
errors are reported in parentheses for �̂, b̂� and �̂f . The table reports the R2 measure of �t between the
sample mean of Ret and the predicted mean returns, given by dT b̂

�, where dT = 1
T

PT
t=1R

e
t (f

0
t � �̂)0. Tests

of the overidentifying restrictions are also reported. The test statistic, J , is asymptotically distributed as a
�28�k, where k is the number of risk factors. The p-value is in parentheses.
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TABLE 1f/2f: GMM Estimates of Linear Factor Models
Lustig-Verdelhan Dataset, a and �-Normalizations, Weighting Matrices Iterated to Convergence

a-Normalization �-Normalization
b� ��f R2 J b� ��f R2 J

Consumption growth 48.8 4.29 0.87 5.1 91.5 1.93 -0.01 11.9
(4.3) (1.64) (0.647) (42.7) (0.80) (0.105)

Durables growth 24.4 5.70 0.81 4.3 36.1 1.51 0.07 11.3
(1.9) (4.50) (0.747) (26.5) (0.95) (0.127)

Rm-Rf 6.7 41.49 0.44 8.7 0.9 3.10 0.02 21.5
(1.9) (20.5) (0.275) (2.3) (7.48) (0.003)

Consumption Factors
Consumption growth 0.6 2.61 0.81 4.3 -20.5 0.37 0.08 10.5

(10.5) (2.09) (0.633) (39.7) (0.71) (0.104)
Durables growth 24.1 5.64 42.1 1.37

(5.4) (4.37) (30.5) (0.98)

Yogo Factors
Consumption growth -4.0 2.49 0.85 4.9 -44.4 0.17 0.17 7.8

(12.6) (2.31) (0.425) (49.8) (0.79) (0.170)
Durables growth 25.2 5.50 54.7 1.32

(5.9) (4.73) (35.3) (1.09)
Rm 0.7 0.2 1.7 -0.51

(0.7) (12.84) (2.0) (5.70)

Fama-French Factors
Rm-Rf 7.3 80.19 0.28 3.9 -1.7 -3.20 0.00 15.3

(3.2) (85.7) (0.557) (3.3) (8.76) (0.009)
SMB -3.9 -11.84 2.4 3.32

(4.5) (33.66) (3.5) (5.18)
HML 6.1 37.69 -3.0 -5.19

(2.8) (40.05) (3.5) (6.27)

Note: Annual data, 1953�2002. The reports GMM stimates of b�, from the SDFmt = 1�f 0tb�, obtained using
the moment restriction E(Retmt) = 0 and GMM estimates of � and b�, from the SDF mt = 1� (ft � �)0b�,
obtained using the moment restrictions E(Retmt) = 0, E(ft � �) = 0. Both sets of estimates are based on
iterating the weighting matrix to convergence. The variables Ret and ft are de�ned in the note to Table
1. Estimates of the factor risk premium �̂f = Sf b̂

� are also reported (in percent), where Sf is the sample
covariance matrix of ft. GMM-VARHAC standard errors are reported in parentheses for b�, �̂, b̂�, �̂

�
f

and �̂
�
f . The table reports the R

2 measure of �t between the sample mean of Ret and the predicted mean

returns. For the a-normalization the predicted mean returns are DT b̂�, where DT = 1
T

PT
t=1R

e
tf
0
t . For the

�-normalization they are dT b̂�, where dT = 1
T

PT
t=1R

e
t (f

0
t � �̂)0. Tests of the overidentifying restrictions are

also reported. The test statistic, J , is asymptotically distributed as a �28�k, where k is the number of risk
factors. The p-value is in parentheses.

92



TABLE 3a: GMM Estimates of Linear Factor Models
Fama-French 25 Dataset, a-Normalization, HAC Standard Errors

First Stage Second Stage
b� ��f R2 b� ��f R2 J

Consumption growth 126.3 0.94 0.81 142.8 1.38 0.51 30.2
(23.6) (0.50) (10.1) (0.33) (0.179)

Durables growth 111.1 -2.48 0.89 93.3 11.03 0.43 15.5
(18.3) (2.5) (7.2) (25.1) (0.906)

Rm-Rf 3.3 2.31 -0.55 4.7 3.40 -3.55 65.5
(0.9) (0.57) (0.8) (0.59) (0.000)

Consumption Factors
Consumption growth 54.0 2.83 0.98 49.3 1.93 0.96 17.2

(33.8) (3.69) (13.8) (1.15) (0.800)
Durables growth 64.4 4.24 64.8 3.15

(20.4) (6.64) (8.3) (1.92)

Yogo Factors
Consumption growth 41.0 2.10 0.98 38.5 1.47 0.97 17.3

(32.5) (3.16) (16.6) (0.99) (0.748)
Durables growth 69.9 4.21 68.7 3.02

(18.1) (6.29) (8.8) (1.78)
Rm 0.19 2.33 0.36 2.96

(0.53) (1.45) (0.44) (1.40)

Fama-French Factors
Rm-Rf 3.9 1.92 0.75 5.0 2.53 -0.20 47.8

(0.9) (0.54) (0.8) (0.56) (0.001)
SMB -0.1 0.52 -0.5 0.58

(1.2) (0.36) (1.1) (0.37)
HML 5.9 1.35 7.2 1.69

(1.1) (0.37) (0.9) (0.40)

Note: Quarterly data, 1949�2005. The table reports �rst and second stage GMM estimates of b�, from the
SDF mt = 1 � f 0tb�, obtained using the moment restriction E(Retmt) = 0, where Ret is a 25 � 1 vector of
excess returns of the Fama-French 25 portfolios of US stocks sorted on size and the book-to-market value
ratio, and ft is a scalar or vector of risk factors. The factors are real per capita consumption (nondurables
& services) growth, real per capita durable consumption growth, and the following variables from the Fama-
French dataset: the real value weighted US stock market excess return over the risk free rate (Rm-Rf ), the
gross return to the same portfolio (Rm), and the SMB and HML portfolio excess returns (see Appendix B).
Estimates of the factor risk premium �̂f = Sf b̂

�=(1 � �f 0b̂�) are also reported (in percent), where �f and Sf
are the sample mean and covariance matrix of ft. GMM-HAC standard errors are reported in parentheses
for b̂� and �̂f . The table reports the R2 measure of �t between the sample mean of Ret and the predicted
mean returns, given by DT b̂�, where DT = 1

T

PT
t=1R

e
tf
0
t . Tests of the overidentifying restrictions are also

reported. The test statistic, J , is asymptotically distributed as a �28�k, where k is the number of risk factors.
The p-value is in parentheses.
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TABLE 4a: GMM Estimates of Linear Factor Models
Fama-French 25 Dataset, �-Normalization, HAC Standard Errors

First Stage Second Stage
� b� �f R2 b� �f R2 J

Consumption growth 0.0051 335.4 0.89 -0.44 173.1 0.46 -4.30 39.1
(0.0003) (168.0) (0.47) (69.8) (0.17) (0.026)

Durables growth 0.0104 -554.0 -1.92 -2.46 -64.4 -0.22 -13.77 10.0
(0.0004) (466.2) (1.7) (123.6) (0.4) (0.994)

Rm-Rf 0.0197 3.5 2.30 -0.77 3.1 2.02 -1.00 69.8
(0.0053) (1.0) (0.57) (1.0) (0.54) (0.000)

Consumption Factors
Consumption growth 0.0051 370.3 0.99 -0.42 185.5 0.49 -4.19 33.7

(0.0003) (161.8) (0.45) (80.0) (0.20) (0.069)
Durables growth 0.0104 64.9 0.31 18.8 0.11

(0.0004) (163.5) (0.55) (74.5) (0.25)

Yogo Factors
Consumption growth 0.0051 271.6 0.76 -0.33 66.0 0.22 -2.28 31.2

(0.0003) (168.8) (0.42) (82.0) (0.21) (0.092)
Durables growth 0.0104 136.4 0.53 88.4 0.31

(0.0004) (131.2) (0.44) (62.4) (0.22)
Rm 0.0224 1.5 2.18 4.5 3.05

(0.0053) (2.4) (0.63) (1.7) (0.70)

Fama-French Factors
Rm-Rf 0.0197 4.5 1.92 0.66 4.4 1.77 0.55 52.7

(0.0053) (1.2) (0.54) (1.1) (0.54) (0.000)
SMB 0.0063 -0.1 0.53 -0.5 0.40

(0.0035) (1.4) (0.36) (1.3) (0.35)
HML 0.0119 6.8 1.32 7.0 1.40

(0.0036) (1.4) (0.37) (1.3) (0.36)

Note: Quarterly data, 1949�2005. The table reports �rst and second stage GMM estimates of � and b�, from
the SDF mt = 1� (ft��)0b�, obtained using the moment restrictions E(Retmt) = 0, E(ft��) = 0. Since �̂
is the same for both GMM stages, the estimate is reported once. The variables Ret and ft are de�ned in the
note to Table 3. Estimates of the factor risk premium �̂f = Sf b̂

� are also reported (in percent), where Sf
is the sample covariance matrix of ft. GMM-HAC standard errors are reported in parentheses for �̂, b̂� and
�̂f . The table reports the R2 measure of �t between the sample mean of Ret and the predicted mean returns,
given by dT b̂�, where dT = 1

T

PT
t=1R

e
t (f

0
t � �̂)0. Tests of the overidentifying restrictions are also reported.

The test statistic, J , is asymptotically distributed as a �28�k, where k is the number of risk factors. The
p-value is in parentheses.
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TABLE 4b: GMM Estimates of Linear Factor Models
Fama-French 25 Dataset, �-Normalization, Hybrid Weighting Matrix

First Stage Second Stage
� b� �f R2 b� �f R2 J

Consumption growth 0.0051 335.4 0.89 -0.44 282.4 0.75 -0.85 27.4
(0.0005) (164.5) (0.46) (77.0) (0.19) (0.284)

Durables growth 0.0104 -554.0 -1.92 -2.46 -310.3 -1.08 -5.26 7.3
(0.0012) (534.1) (1.9) (332.2) (1.2) (1.000)

Rm-Rf 0.0197 3.5 2.30 -0.77 4.3 2.80 -1.54 68.3
(0.0054) (1.1) (0.57) (1.0) (0.53) (0.000)

Consumption Factors
Consumption growth 0.0051 370.3 0.99 -0.42 314.2 0.84 -0.75 22.9

(0.0005) (166.6) (0.46) (93.2) (0.23) (0.468)
Durables growth 0.0104 64.9 0.31 48.5 0.24

(0.0012) (165.2) (0.56) (74.6) (0.25)

Yogo Factors
Consumption growth 0.0051 271.6 0.76 -0.33 176.8 0.52 -2.91 23.8

(0.0005) (177.6) (0.45) (97.6) (0.24) (0.356)
Durables growth 0.0104 136.4 0.53 119.8 0.44

(0.0012) (136.2) (0.48) (66.8) (0.27)
Rm 0.0224 1.5 2.18 3.8 3.15

(0.0054) (2.4) (0.73) (1.8) (0.70)

Fama-French Factors
Rm-Rf 0.0197 4.5 1.92 0.66 5.3 2.16 0.46 52.1

(0.0054) (1.2) (0.63) (1.1) (0.65) (0.000)
SMB 0.0063 -0.1 0.53 -0.8 0.44

(0.0036) (1.4) (0.36) (1.3) (0.35)
HML 0.0119 6.8 1.32 8.0 1.56

(0.0036) (1.4) (0.49) (1.3) (0.57)

Note: Quarterly data, 1949�2005. The table reports �rst and second stage GMM estimates of � and b�, from
the SDF mt = 1 � (ft � �)0b�, obtained using the moment restrictions E(Retmt) = 0, E(ft � �) = 0. The
weighting matrix at the second stage of GMM uses the hybrid approach described in the main text. Since
�̂ is the same for both GMM stages, the estimate is reported once. The variables Ret and ft are de�ned in
the note to Table 3. Estimates of the factor risk premium �̂f = Sf b̂

� are also reported (in percent), where
Sf is the sample covariance matrix of ft. GMM-VARHAC standard errors are reported in parentheses for
�̂, b̂� and �̂f . The table reports the R2 measure of �t between the sample mean of Ret and the predicted
mean returns, given by dT b̂�, where dT = 1

T

PT
t=1R

e
t (f

0
t � �̂)0. Tests of the overidentifying restrictions are

also reported. The test statistic, J , is asymptotically distributed as a �28�k, where k is the number of risk
factors. The p-value is in parentheses.
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TABLE 4c: GMM Estimates of Linear Factor Models
Fama-French 25 Dataset, �-Normalization, Cochrane�s Weighting Matrix

First Stage Second Stage
� b� �f R2 b� �f R2 J

Consumption growth 0.0051 335.4 0.89 -0.44 150.8 0.40 -5.43 26.6
(0.0005) (164.5) (0.46) (84.8) (0.20) (0.324)

Durables growth 0.0104 -554.0 -1.92 -2.46 -67.9 -0.24 -13.60 6.8
(0.0012) (534.1) (1.9) (400.4) (1.4) (1.000)

Rm-Rf 0.0197 3.5 2.30 -0.77 4.2 2.73 -1.35 68.4
(0.0054) (1.1) (0.57) (1.0) (0.53) (0.000)

Consumption Factors
Consumption growth 0.0051 370.3 0.99 -0.42 156.0 0.41 -5.44 22.5

(0.0005) (166.6) (0.46) (102.8) (0.25) (0.489)
Durables growth 0.0104 64.9 0.31 10.0 0.07

(0.0012) (165.2) (0.56) (75.8) (0.26)

Yogo Factors
Consumption growth 0.0051 271.6 0.76 -0.33 85.9 0.26 -0.55 24.0

(0.0005) (177.6) (0.45) (101.3) (0.26) (0.348)
Durables growth 0.0104 136.4 0.53 72.6 0.26

(0.0012) (136.2) (0.48) (68.2) (0.26)
Rm 0.0224 1.5 2.18 3.2 2.37

(0.0054) (2.4) (0.73) (1.8) (0.78)

Fama-French Factors
Rm-Rf 0.0197 4.5 1.92 0.66 5.2 2.11 0.51 50.9

(0.0054) (1.2) (0.63) (1.1) (0.65) (0.000)
SMB 0.0063 -0.1 0.53 -0.6 0.46

(0.0036) (1.4) (0.36) (1.3) (0.35)
HML 0.0119 6.8 1.32 7.9 1.54

(0.0036) (1.4) (0.49) (1.3) (0.56)

Note: Quarterly data, 1949�2005. The table reports �rst and second stage GMM estimates of � and b�, from
the SDF mt = 1 � (ft � �)0b�, obtained using the moment restrictions E(Retmt) = 0, E(ft � �) = 0. The
weighting matrix at the second stage of GMM uses Cochrane�s approach, described in the main text. Since
�̂ is the same for both GMM stages, the estimate is reported once. The variables Ret and ft are de�ned in
the note to Table 3. Estimates of the factor risk premium �̂f = Sf b̂

� are also reported (in percent), where
Sf is the sample covariance matrix of ft. GMM-VARHAC standard errors are reported in parentheses for
�̂, b̂� and �̂f . The table reports the R2 measure of �t between the sample mean of Ret and the predicted
mean returns, given by dT b̂�, where dT = 1

T

PT
t=1R

e
t (f

0
t � �̂)0. Tests of the overidentifying restrictions are

also reported. The test statistic, J , is asymptotically distributed as a �28�k, where k is the number of risk
factors. The p-value is in parentheses.
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TABLE 4d: GMM Estimates of Linear Factor Models
Fama-French 25 Dataset, �-Normalization, Model has a Common Pricing Error Parameter

First Stage Second Stage
� b� �f R2 b� �f R2 J

Consumption growth
Pricing Error (?) 1.85 0.10 2.50 -0.05 52.6

(0.63) (0.45) (0.000)
Consumption growth 0.0051 104.1 0.28 47.9 0.13

(0.0005) (91.3) (0.24) (41.7) (0.11)

Durables growth
Pricing Error (?) 2.68 0.00 2.57 -0.07 55.0

(0.49) (0.41) (0.000)
Durables growth 0.0104 13.2 0.05 25.7 0.09

(0.0012) (92.1) (0.32) (32.1) (0.12)

Market premium
Pricing Error (?) 3.52 0.05 3.28 -0.58 55.7

(0.90) (0.62) (0.000)
Rm-Rf 0.0197 -1.2 -0.81 -1.6 -1.05

(0.0054) (1.6) (1.04) (1.2) (0.82)

Consumption Factors
Pricing Error (?) 1.93 0.16 1.91 -1.35 24.6

(0.85) (0.61) (0.316)
Consumption growth 0.0051 153.9 0.43 17.7 0.06

(0.0005) (106.8) (0.28) (60.0) (0.16)
Durables growth 0.0104 111.6 0.42 40.7 0.15

(0.0012) (110.5) (0.39) (43.9) (0.16)

Yogo Factors
Pricing Error (?) 3.78 0.45 3.08 -3.36 28.8

(1.14) (0.88) (0.119)
Consumption growth 0.0051 253.3 0.63 49.5 0.12

(0.0005) (153.1) (0.41) (70.0) (0.17)
Durables growth 0.0104 -65.3 -0.15 7.9 0.05

(0.0012) (96.7) (0.27) (57.1) (0.20)
Rm 0.0224 -4.6 -1.24 -2.8 -1.53

(0.0054) (2.4) (1.30) (2.1) (1.17)

Fama-French Factors
Pricing Error (?) 3.83 0.77 3.36 0.71 44.5

(1.05) (0.77) (0.002)
Rm-Rf 0.0197 -3.2 -1.82 -2.3 -1.36

(0.0054) (2.2) (1.16) (1.7) (0.95)
SMB 0.0063 4.2 0.49 4.3 0.65

(0.0036) (1.7) (0.37) (1.6) (0.37)
HML 0.0119 3.2 1.25 4.1 1.38

(0.0036) (1.7) (0.43) (1.5) (0.47)

The note to Table 4d is on the following page.
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Note to Table 4d : Quarterly data, 1949�2005. The table reports �rst and second stage GMM estimates
of � and b�, from the SDF mt = 1 � (ft � �)0b�, obtained using the moment restrictions E(Retmt) = 
,
E(ft � �) = 0. Since �̂ is the same for both GMM stages, the estimate is reported once. The variables Ret
and ft are de�ned in the note to Table 3. Estimates of the factor risk premium �̂f = Sf b̂

� are also reported
(in percent), where Sf is the sample covariance matrix of ft. GMM-VARHAC standard errors are reported
in parentheses for �̂, b̂� and �̂f . The table reports the R2 measure of �t between the sample mean of Ret
and the predicted mean returns, given by dT b̂�, where dT = 1

T

PT
t=1R

e
t (f

0
t� �̂)0. Tests of the overidentifying

restrictions are also reported. The test statistic, J , is asymptotically distributed as a �28�k, where k is the
number of risk factors. The p-value is in parentheses.
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TABLE 4e: GMM Estimates of Linear Factor Models
Fama-French 25 Dataset, �-Normalization, Using all Information to Estimate �

First Stage Second Stage
� b� �f R2 � b� �f R2 J

Consumption growth 0.0027 189.2 0.63 0.57 0.0025 240.0 0.80 -1.10 67.0
(0.0008) (60.7) (0.21) (0.0005) (29.5) (0.15) (0.000)

Durables growth 0.0136 -207.8 -1.22 0.60 0.0153 -155.5 -0.91 0.78 26.0
(0.0017) (92.2) (0.7) (0.0013) (33.4) (0.3) (0.354)

Rm-Rf -0.0133 3.2 2.11 -0.42 0.0099 3.4 2.21 -0.66 81.5
(0.0089) (0.9) (0.71) (0.0067) (0.9) (0.70) (0.000)

Consumption Factors
Consumption growth 0.0034 204.7 0.56 0.74 0.0054 65.4 0.19 -1.20 26.7

(0.0007) (90.3) (0.26) (0.0005) (58.5) (0.18) (0.271)
Durables growth 0.0085 174.1 0.91 0.0064 196.8 1.01

(0.0012) (109.0) (0.77) (0.0009) (37.4) (0.52)

Yogo Factors
Consumption growth 0.0037 170.1 0.48 0.74 0.0054 11.9 0.07 0.70 21.8

(0.0007) (109.9) (0.31) (0.0005) (64.2) (0.19) (0.471)
Durables growth 0.0083 202.6 0.99 0.0067 202.0 0.97

(0.0011) (98.3) (0.60) (0.0009) (39.6) (0.36)
Rm 0.0203 0.5 0.70 0.0226 2.2 0.82

(0.0053) (1.8) (1.62) (0.0050) (1.4) (1.27)

Fama-French Factors
Rm-Rf 0.0135 4.3 1.82 0.69 0.0177 4.5 1.83 0.64 58.0

(0.0054) (1.1) (0.89) (0.0052) (1.0) (0.88) (0.000)
SMB 0.0046 -0.1 0.50 0.0054 -0.5 0.42

(0.0036) (1.4) (0.44) (0.0035) (1.3) (0.41)
HML 0.0076 6.5 1.26 0.0098 6.7 1.32

(0.0042) (1.3) (0.72) (0.0041) (1.2) (0.70)

Note: Quarterly data, 1949�2005. The table reports �rst and second stage GMM estimates of � and b�, from
the SDF mt = 1 � (ft � �)0b�, obtained using the moment restrictions E(Retmt) = 0, E(ft � �) = 0. The
weighting matrices at the two stages of GMM are based on Yogo (2006) and are described in the main text.
The variables Ret and ft are de�ned in the note to Table 3. Estimates of the factor risk premium �̂f = Sf b̂

�

are also reported (in percent), where Sf is the sample covariance matrix of ft. GMM-VARHAC standard
errors are reported in parentheses for �̂, b̂� and �̂f . The table reports the R2 measure of �t between the
sample mean of Ret and the predicted mean returns, given by dT b̂

�, where dT = 1
T

PT
t=1R

e
t (f

0
t � �̂)0. Tests

of the overidentifying restrictions are also reported. The test statistic, J , is asymptotically distributed as a
�28�k, where k is the number of risk factors. The p-value is in parentheses.
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TABLE 3f/4f: GMM Estimates of Linear Factor Models
Fama-French 25 Dataset, a and �-Normalizations, Weighting Matrices Iterated to Convergence

a-Normalization ?-Normalization
b� ��f R2 J b� ��f R2 J

Consumption growth 145.7 1.49 0.39 28.1 90.1 0.24 -9.3 73.5
(10.9) (0.40) (0.256) (39.1) (0.10) (0.000)

Durables growth 90.5 5.35 0.27 23.0 37.2 0.13 -18.9 66.8
(5.6) (10.35) (0.521) (31.7) (0.12) (0.000)

Rm-Rf 5.8 4.24 -9.5 63.7 3.0 1.98 -1.09 70.1
(0.8) (0.6) (0.000) (0.9) (0.54) (0.000)

Consumption Factors
Consumption growth 48.7 1.83 0.95 18.1 78.5 0.22 -12.1 58.5

(13.6) (1.84) (0.751) (42.7) (0.11) (0.000)
Durables growth 64.8 3.02 48.2 0.19

(8.2) (2.98) (34.1) (0.13)

Yogo Factors
Consumption growth 38.8 1.39 0.97 18.2 20.4 0.08 -1.56 48.5

(16.4) (1.39) (0.691) (44.3) (0.11) (0.001)
Durables growth 68.0 2.82 58.7 0.20

(8.6) (2.22) (31.5) (0.12)
Rm 0.4 2.9 2.9 1.78

(0.4) (3.05) (1.1) (0.56)

Fama-French Factors
Rm-Rf 5.5 2.81 -0.96 46.5 4.5 1.74 0.42 53.4

(0.8) (0.7) (0.002) (1.1) (0.63) (0.000)
SMB -1.1 0.50 -0.9 0.30

(1.1) (0.35) (1.4) (0.35)
HML 7.6 1.80 7.0 1.40

(1.0) (0.62) (1.3) (0.51)

Note: Quarterly data, 1949�2005. The reports GMM stimates of b�, from the SDF mt = 1� f 0tb�, obtained
using the moment restriction E(Retmt) = 0 and GMM estimates of � and b�, from the SDF mt = 1� (ft �
�)0b�, obtained using the moment restrictions E(Retmt) = 0, E(ft � �) = 0. Both sets of estimates are
based on iterating the weighting matrix to convergence. The variables Ret and ft are de�ned in the note to
Table 3. Estimates of the factor risk premium �̂f = Sf b̂

� are also reported (in percent), where Sf is the
sample covariance matrix of ft. GMM-VARHAC standard errors are reported in parentheses for b�, �̂, b̂�,
�̂
�
f and �̂

�
f . The table reports the R

2 measure of �t between the sample mean of Ret and the predicted mean

returns. For the a-normalization the predicted mean returns are DT b̂�, where DT = 1
T

PT
t=1R

e
tf
0
t . For the

�-normalization they are dT b̂�, where dT = 1
T

PT
t=1R

e
t (f

0
t � �̂)0. Tests of the overidentifying restrictions are

also reported. The test statistic, J , is asymptotically distributed as a �28�k, where k is the number of risk
factors. The p-value is in parentheses.
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