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The autowave processes with a characteristic wavelength and oscillation 
period may arise under some initial conditions in a uniform active medium. 
The wavelength and period depend on the chemical and physical parameters 
of the system and are independent of the initial and boundary conditions 
and of the system linear size. The processes occur in a homogeneous solution 
in the course of an oscillating chemical reaction. Similar processes may play 
an important role in the phenomena of short-term memory, cardiac 
arrhythmia, morphogenesis and prebiological evolution. 

Different types of structures are discussed, and experimental data and 
mathematical models are presented. 

1. Introduction 

This paper deals with distributed systems, in which every point of space is 
self-oscillating or potentially self-oscillating and there is diffusion type 
coupling between the points. The class of such systems consists of distributed 
concentration systems (chemical and ecological) and active non-linear 
RC-lines (in particular, biological membranes). In such systems stationary 
periodical wave processes may proceed and are accompanied by the appear- 
ance of spatial structures with characteristic dimensions, independent of 
boundary and initial conditions. 

By analogy with auto-oscillations (self-oscillations) in point systems, the 
phenomena may be termed autowave processes (AWPs) as proposed by 
Professor R. V. Khokhlov. The AWPs and similar processes are believed 
to play an important role in the phenomena of short-term memory, cardiac 
arrhythmia, morphogenesis and prebiological evolution (Hebb, 1949; Moe, 
Rheinboldt & Abildskov, 1964; Turing, 1952; Krinsky, 1968; Prigogine & 
Nicolis, 1967, 1971; Goodwin & Cohen, 1969). AWPs are closely related to 
so-called “dissipative structures”, which have been studied theoretically by 
Prigogine and his school mainly from a thermodynamic point of view 
(Prigogine 8z Nicolis, 1967, 1971). We have used the kinetic approach rather 
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than thermodynamics which would reveal the loss of stability only, while 
AWPs may also occur when a spatially uniform steady state is stable (accord- 
ing to Liapounov). 

We have experimentally discovered AWPs in a distributed chemical system 
in which an oscillating reaction of oxidation of rnalonic acid (or related 
compounds) by bromate occurred (Zaikin & Zhabotinsky, 1970; Zhabotinsky 
8z Zaikin, 19710). 

2. Experimental Results and Models 

(A) POINT SYSTEM-SYSTEM OF IDEAL MIXING 

(Zaikin & Zhabotinsky, 1970; Zhabotinsky, 1964; 
Vavilin, Zhabotinsky & Zaikin, 1971) 

The system with Fe (phen), (designated below as Fe) as a catalyst and 
bromomalonic acid (BMA) as a reductant was commonly used in studies of 
spatial effects. The system was designated as BFB (bromate-ferroin-bromo- 
malonic acid). 

In most cases relaxation self-oscillations took place in the system with 
oscillation period (T) which was clearly divided into two parts: T,, the phase 
of the Fe3+ concentration increase and T,, the phase of the Fe3+ concen- 
tration drop. Correspondingly (by a simplified scheme) the reaction had two 
stages. During stage 1 ferroin was oxidized in the following reaction: 

Fez+ HBr’A+ Fe3+. (1 
In stage 2 reduction took place: 

Fe3+ BMA : Fe’+. (2) 
Reaction (1) is an autocatalytic one in which the autocatalyst is not ferriin 

but an intermediate of bromate reduction. Products of bromate reduction, 
having been formed by reaction (l), brominated BMA. Bromide ion was 
formed as a result of decomposition of bromoderivatives which was induced 
by ferriin oxidation of BMA. The oxidation of BMA by ferriin also 
produced Br-. Bromide was a strong inhibitor of reaction (1). 

An oscillatory cycle may be qualitatively described in the following way. 
Suppose, that there is some Fe3+ concentration in the system. Then Br- 
being formed in the course of stage 2, interacts with active intermediates of 
reaction (1) and disappears from the system at a certain rate. If the bromide 
concentration is high enough, reaction (1) is retarded. When [Fe3+], 
diminished due to reaction (2), reaches a lower threshold, the Br- concen- 
tration drops abruptly. Reaction (1) starts at a high rate and Fe3+ concen- 
tration increases. When [Fe3+] reaches an upper threshold, the Br- con- 
centration increases sharply stopping reaction (1). The cycle is then repeated. 
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The mathematical model of the reaction is analogous to that of the 
reaction with Ce as a catalyst (Zhabotinsky, Zaikin, Korzoohin, Kreitzer, 
1971aJ). It represents the second-order system of differential equations: 

f =f(u,w), 
k = g(u, w). (3) 

If system (3) is a model of our oscillating reaction, u is the concentration 
of the autocatalyst of reaction (l), and w  = [Fe3+]. In this case isoclinic 
lines of system (3), f = 0, g = 0 are qualitatively shown in Fig. 1, where 
only the relative positions of the lines are shown. Position I corresponds to 
self-oscillations, in positions II and III the steady state is stable and the 
system behaves like a monostable generator (start-stop multivibrator). The 
transition from case I to II and then to III may be obtained by decreasing the 
acidity or bromate concentration or by increasing the BMA concentration. 

FIG. 1. Phase plane of system (3). I, II and III are the isoclines g = 0 corresponding to 
different regimes of the system. I, Self-oscillations (the limit cycle shown corresponds to 
relaxation self-oscillations); III, monostable; II, monostable in a point system (in a 
distributed system self-oscillation may occur). f < 0 to the right of the isocline f = 0, 
f’> 0 to the left of it; g > 0 above the isocline g = 0, g < 0 below it. 

(B) DISTRIBUTED SYSTEM 

Experimental investigations were made in quasi-one-dimensional and 
quasi-two-dimensional systems, i.e. in the channel with cross-section 
1 mm x 1 mm filled by reaction solution or in the layer of solution of about 
1 mm deep. 
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A distributed system was described by the system of equations: 

JW 

3t 
= g(u, w)+D,Aw. 

We considered the situations in which f’and g were not explicit functions 
of the co-ordinates (spatial uniform system) and time, except for the specially 
mentioned cases (D = constant). (In the case of the RC-line, the diffusion 
coefficient D must be replaced by l/RC.) 

(i) Single travelling wave 

The problem of propagation of single wave in a one-dimensional system is 
well studied. It includes propagation of flame, nerve impulse, etc. (Hodgkin, 
1964; Frank-Kamenetsky, 1967). The basic result is the existence of the 
solution which depends on one co-ordinate only in the running co-ordinate 
system (self-modelling solution). The velocity of propagation is constant. The 
main condition for the existence of such solution is the presence of threshold, 
as in situations II and III in Fig. 1. The connection of the concept of the 
excitation threshold (for instance, in physiology) with the properties of the 
system like equations (3) has been discussed (e.g. Fitz-Hugh, 1961). 

In the system BFB the propagation of a single wave was observed in 
state III (Fig. 1) under conditions: NaBrO, = 0.23 M, BMA = 0.16 M, 

Fe(phen), = 0.003 M, H,S04 = 0.26 M, T = 14°C. The wave velocity 
equalled approximately 0.01 cm/set. 

(ii) Leading centre 

Relaxation self-oscillations with period To occurred while stirring in the 
system BFB in case I (Fig. 1). In this instance leading centres (LCs) appeared 
in the distributed system where synphase oscillations with period T, (basic 
oscillations-BOs) took place. LCs were points in which oscillation period 
(TLC) were shorter than T, (Zaikin & Zhabotinsky, 1970). Concentration 
waves propagate from LCs with a constant velocity. The waves occupied all 
the space step-by-step and oscillations with period T,., occurred in every 
point of the space. 

The wave velocity was constant, independent of TLC and dependent on the 
reagent concentrations and temperature. The period of oscillations of every 
LC was constant in time. However, the periods of oscillations of different 
LCs varied more than twofold in one experiment. The cause of the variations 
was not known; it is possible that T,~, depends on the initial conditions. 
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Occasionally LCs rose at microheterogeneities and bubbles of COz. The LC, 
arising near the reactor edge, usually had TLC significantly shorter than the 
mean TLC. The wavelength (&) was determined by the expression 

izLc = vTLc. 

We have studied the causes of the LC initiation (Zhabotinsky & Zaikin, 
1971b). It has been shown that the mean number of leading centres per unit 
of the reactor area and the mean period of LC oscillations depend on the 
parameters of the system-concentrations of the oxidant and reducer and 
acidity. At the same time these values are practically independent of inci- 
dental contaminations and the material of which the reactor is made. 

The experiments were performed using reagents extra purified from hetero- 
geneous microcontaminations by repeated filtration. In other experiments 
chromatographic aluminium oxide powder was added into the system. In all 
cases the mean number of LCs and the mean TLC were similar. 

We have experimentally shown that local non-uniformity in the initial 
conditions may be a cause of LC initiation. If the autocatalyst in an over- 
threshold concentration is locally placed into an unexcited region, it is likely 
that, from this point, an oxidation wave will propagate (much like the flame 
propagation)-this is a trivial effect. An important fact is that at this point an 
LC can arise. The overthreshold concentration can also be caused by 
fluctuations. 

The experiment was carried out in the following manner: from the front 
of the external wave of one of the LCs a small volume of the solution was 
transferred into some point in a wave-free region at the moment when this 
region was in a reduced state. At this point an LC appeared. The described 
procedure did not affect the system parameters, for nothing was brought into 
the system from the outside. It was proved that the procedure itself produced 
no LC, because the transfer of a portion of the solution from one point of 
an unexcited (reduced) region into another point of the same region gave no 
visible effect. 

The LCs also appeared in a narrow region of the parameters, where the 
point system was stable (case II, Fig. 1). In this case BOs were absent in the 
system (Plate I). 

In cases I and II (Fig. 1) the LC existed after its appearance until it was 
annihilated by a neighbouring LC with a shorter TLC. There was a very 
narrow band separating regions II and III, where an LC existed during only 
3 to 5 cycles after its appearance. Thus, locally stable LCs existed in regions 
I and II, and unstable LCs existed near the boundary between II and III. 

The LC-problem may be divided into two parts from a theoretical point 
of view. 

T.B. 4 
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(1) Wave propagation from LC. In this case the LC by itself was considered 
only as a source of periodical influence. Within the scope of such a model it 
can be shown that the stationary regime has settled in the neighbourhood of 
an LC. The stationary regime zone gradually widened and gradually occupied 
all the reactor. The character of wave propagation within the stationary zone 
depends on a specific kind of the model. Interaction of waves propagating 
from different LCs was considered on the assumption of the constancy of 
the wave velocity (Zaikin & Zhabotinsky, 1970). 

(2) The problem of arising and self-sustaining of an LC. LCs were observed 
experimentally in one- and two-dimensional systems. Registration of LC in 
a three-dimensional system was difficult. In this paper theoretical considera- 
tion was primarily made for a one-dimensional case. 

It has been shown experimentally that: 

(a) an LC arose in a uniform system under particular initial conditions; 
(b) within a certain range of parameters, the disturbance exceeded some 

threshold value for an LC to arise; 
(c) TLC < To; 
(d) an LC existed both at the edge and in some inner point of the line. In 

the latter case the LC was a local centre of symmetry, where 

at4 aw o -=-= 
ax ax . (5) 

Where an LC was situated at the edge of the line, condition (5) also took 
place and was due to impermeability of the reactor wall. Consequently, an 
LC is analogous to an antinode in a standing wave. 

Difficulties of investigation of equations like equations (4) are well known. 
At present, we do not know any analytical procedure showing what kinds of 
f(u, w) and g(u, w) in system (4) are needed for an LC to arise. (Practically 
every kind of f(u, w) and g(u, w) can be realized in a chemical system. See 
Appendix.) 

There are two approaches to the problem. TheJirst approach is based on 
travelling waves which come from an LC. One can assume that the travelling 
waves create special conditions for self-oscillations at the point from which 
they come. 

It seems evident that the time behaviour of the concentrations in a 
point X0 from which waves are propagating differs from the behaviour in 
an ordinary point (in the zone of stationary waves or in that of synphase 
oscillations). 

The last assumption has been supported by the model example in which 
point system behaviour is described by an explicit function of time and not by 
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equations (3) (Zhabotinsky & Zaikin, 1971b): 
al4 
- = q[6(x-vt)-d(x-“t-v*,)]+D $. at 

Since LCs with TLC < T, (including T, = co) have been experimentally 
observed one may conclude that the necessary condition for LC existence is 
7’” < T, (T, is a period of self-oscillations in a stationary periodic wave 
travelling with constant velocity u). Consideration of travelling waves makes 
the analysis of models easier since it permits one to pass to the running co- 
ordinate system. Let us introduce a local time: 

z=t+c 
V 

(7) 

Then equations (4) are transformed into 

du 
-& = j-(u, w) + ;; $, 

dw 2 

- = g(u, w) + D$ $. 
dr 

Analysis of equations (8) is much easier than for equations (4). Suppose that 
for the existence of an LC in system (4) the oscillation period in system (8) 
must be shorter than in system (3). The approach was tested on a model with 
the following point system: 

il = (KC1-K2U+U~W)(1-KK2rc~-2KsUW)-KK3rc‘$U2(1-UW) =f(u,w), 

4 = K&$(1 - uw) = g(u, w), (9) 
where k, = 0.1, k2 = 1.1, k3 = OS, k, = 0.8. 

Preliminary analysis of the model showed that the LC phenomenon could 
be obtained with diffusion of only one component. A more complicated case 
when both diffusion coefficients are not zeros was not investigated. 

The corresponding distributed system is 
au 5 = f(u, w> +D ;;, 

The case was investigated with D = 1 x lo-‘. Passing to the running co- 
ordinate system, we obtained 

li = f(u, w) + J! ii, 
V2 

\iJ = g(u, w). (11) 
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FIG. 2. Leading centre obtained in computer experiment. Abscissa is the coordinate x. 
Ordinate is the concentration u in system (9). (a) Series of profiles demonstrates one of the 
cycles in steady regime. Numbers designate time in arbitrary units after making the disturb- 
ance in the centre of the line. (b) Part of the cycle when a starter point appears. 
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The values of ki in equations (9) were selected so that the oscillation period 
(T,) in equations (11) was shorter than the period (T,) in equations (9). With 
these values of k, equations (10) were solved with a computer by the 
difference scheme : 

2 = f(Uip WJ + (f$ (Ui- 1 -2ui + ui+ I), 

where A1 = 0.1, At = 0.05, i = 1.2. . .n, n = 29. 
It was found that TLC = 56.6, when To = 58.7. Figure 2 shows the con- 

centration proties in consecutive moments after making a local disturbance 
in the centre of line. The steady regime is shown (time and distance in arbitrary 
units). 

One can see that there are two specific points disposing symmetrically with 
respect to the centre of line. In the points (which can be termed starter points) 
there arise reverse waves to the centre. The reverse wave appears at the time 
(t,J between t = 956 and t = 957. At tsc in a starter point (X,,) equality takes 
place : 

au ah o 
-= 

z = ax2 . (13 

Subsequently the point divides into maximum and minimum of unsteady 
waves going to the centre and from it. Figure 3 shows trajectories of maxi- 
mum and minimum in U, t-space. Maximum trajectory turns into u(t) 1 X=0. 
Minimum trajectory is asymptotically approaching U,in 1 X= OO. 

” 

N- 

I I 
t t 
SI 

FIG. 3. Movement of extremal points in u,t-space. u Ilt, tst. the coordinates of starter 
points in the u, t-space; u(O,t). self-oscillations of u in the centre of symmetry (X = 0); 
N, minimal value of u in the stationary travelling wave. 
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The second approach is based on a discrete system and on limit transition 
to equations (4). A starting point to consider is the possibility of re-triggering 
two coupled monostable generators (originally the re-triggering has been 
termed “echo”) (Krinsky & Cholopov, 1967). 

(1) The crude model of monostable generator is an element which can be 
in one of three states: rest, excitement, refractoriness. Figure 4 shows the 
behaviour of the element (T, designates time of excitement, T, time of 
refractoriness). 

(a) (b) 
FIG. 4. Self-oscillations of two coupled monostable oscillators. (a) Pulse arising after the 

triggering of the generator: T,, excited phase; TR, refractory phase. (b) Self-oscillations 
under the retriggering of generators. A, phase shift between the generators. 

Let us consider the conditions necessary for re-triggering two such elements. 
Let the two coupled elements rest. Then, if one element is excited, the second 
also becomes excited after some delay, z. (r may be very small and will not 
be taken into consideration in what follows. The condition z # 0 is needed 
for the excitement to propagate with a finite velocity along the line consisting 
of such elements.) The refractory element cannot be excited. 

Let El be excited at t = 0, and E2 at t = A. (If one introduces the phase 
(cp), then at t = 0: (PEr = 0, qE2 = -A.) Figure 4 shows that for re-triggering 
it is necessary that 

TR < A < T,. 

(2) Let us consider a continuous line consisting of the elements described 
above. 

Let the initial conditions be 
t = 0, 

x > x0, u = u,, cp = 0, 

x < x0, 11 = UR, cp = -A, 
TR < A < T,. 
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Then the point x0 becomes a periodical source of waves, analogous to the 
starter point. 

(3) The natural way leads from models with finite number of states to the 
chain (or pair) of generators connected by diffusion: 

awi -- 
at = $I(% Wi>. (14) 

The re-triggering can be easily demonstrated in system (14) when every 
element has characteristics shown in Fig. 1 (case II). 

Krinsky et al. (1971) and Shcherbunov, Krinsky & Pertzov (1972) obtained 
self-oscillations in such a system of diffusion-coupled monostable generators. 
In the tist paper the necessary condition for re-triggering was discontinuity 
of the variable values in the neighbouring points: 

&+ l(l) = dt) +dt>, 

1 Y(t) 1 > c ’ 0. 

In the second paper the LC regime remained when 

h 4 0, %+lCt> + SCt)* 

These results showed that the existence of the LC regime in equations (14) 
was a necessary but not sufficient condition for the existence of an LC in 
equations (4). 

It is worth mentioning that asymmetrical LCs with one starter point arise 
naturally in models of one-dimensional systems. However, such regimes have 
not been observed experimentally. The reason may be that natural disturb- 
ances (tluctuations) are local and have symmetrical bell-shaped concentration 
distributions. All the artificial disturbances used hitherto were of the same 
type. 

(C) SPIRAL WAVE-REVERBERATOR 

Balachovsky (1965) considered two-dimensional space, the points of which 
are elements described above (Fig. 4). It has been shown that a spiral dynam- 
ical structure (reverberator) may arise in the space after breaking the wave 
front. Figure 5 shows the initiation of reverberator in such a model. 

We have experimentally obtained a reverberator by mechanically breaking 
the wave front in the BFB system (Zhabotinsky & Zaikin, 1971a). Plate II 
shows a series of patterns arising after the breaking. It can be seen how free 
ends of fronts are twisting into a spiral. Ultimately, a steady regime settles 
in the reactor. There appears a region inside of which there are reverberators. 
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FIG. 5. Model of reverberator arising after the break of the wave front. Numbers indicate 
time in arbitrary units. AC is the line perpendicular to the wave front. The thick line is an 
active zone, a refractory zone is shaded (BD is the length of a refractory zone). The rest 
part of space is resting. MN is the position of the wave front at t = 0. 

They form pairs in such a way that the external ends of the spirals are closed 
on each other. The region is a source of ring waves composed of the wave 
segments of all the reverberators. An external end of the spiral wave is either 
closed on another wave end to form a pair or goes setting against the reactor 
wall. 

Winfree (1972) has independently obtained reverberators by the same 
procedure. 

The breaking of the wave front resulting in the appearance of a rever- 
berator may be due to different causes. Artificial breakage of the wave front 
may be obtained by different methods. In particular, Krinsky (1968) showed 
that the front may tear itself during the passage of a wave through a non- 
uniform part of the space. We have experimentally obtained reverberators 
on the boundary of artificially-made steady non-uniformity (Zhabotinsky & 
Zaikin, 1971~). Non-uniformity was made by a local decreasing of acidity. 

(D) STATIONARY PERIODICAL STRUCTURE (SPS) 

Turing (1952) showed that a constant in time and periodical in space 
structure may arise in a one-dimensional system (4) under special conditions, 
in particular: 

D:, # D, # 0. (15) 

Such structures were later investigated by Prigogine and collaborators 
(Prigogine & Nicolis, 1967; Prigogine et at., 1969) and termed “dissipative 
structures”. SPSs may arise in system (4) in which corresponding equations (3) 
describe a monostable generator, self-generator or bistable device (Poljakova, 
1971). 

Regimes similar to SPSs have been experimentally obtained by Busse (1969), 
Beck & Varadi (1971) and Herschkowitz-Kaufman (1970). Strictly speaking, 
all the structures were only approximately steady because of the closed 



PLATE I. Leading centre. Photographs taken at 30 set intervals. Initial reactant con- 
centrations (mol/l): BMA = 0.16; NaBrOa = 0.23; E’e(phen), = 0903; H,SO, = 0.27; 
T = 20°C. 

[facing p. 56 



PLATE II. Reverberators arising after forced break of wave front. Intervals between 
photographs and initial reactant concentrations as in Plate I. 



PLATE III. Small-cell structure (SPS). A series of photographs taken at two-minute 
intervals demonstrates the transition of catalyst from reduced (a) to oxidized (i) state. This 
transition is accompanied by appearance and later disappearance of spatially organized 
non-uniformities. Initial reactant concentrations (mol/l): acetylacetone = 0.05; NaBrOj 
rz? 0.05; Fe(pher& = 0.0004; H,SO, = 0.5. 
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system. Precise periodicity was not observed, one of the causes being non- 
stationarity of the system. SPS has been observed in vertical tubes. In the 
experiments of Busse (1969) and Beck & Varadi (1971) there was a gradient 
of the catalyst concentration. Herschkowitz-Kaufman (1970) took measures 
to make the initial system uniform as much as possible. However, in all cases 
there was an air-liquid interface where the conditions differed from those in 
a bulk solution. Reaction (1) usually started at the interface (more precisely, 
at some points of the edge angle), earlier than in the rest of the system. As a 
result, waves started propagating from the interface to the whole volume 
(from top to bottom). Thus, a periodical pattern might be a consequence of 
wave propagation from an LC formed on a stationary non-uniformity. A 
series of photographs (Herschkowitz-Kaufman, 1970) showed a typical 
picture of wave propagation from the part with a decreased T. Clear indica- 
tions were also absent whether the observed periodical structure was 
motionless or not in the works of Busse (1969) and Beck & Varadi (1971). 

We observed SPS in systems BFP and BFA (with acetylacetone as a 
reductant) in one- and two-dimensional systems. Plate III shows a series of 
photographs demonstrating the whole evolution of SPS. In the middle of the 
process [Plate III(d),(e)] the structure is approximately motionless and 
periodical. In a one-dimensional case a simple standing approximately 
periodical structure may be observed in this time intervai. 

In our experiments the mean space period (&,) depended on the concentra- 
tions and not on the reactor dimensions. However, it should be pointed out 
that the system dimensions were usually much larger than As,,, the system 
was not steady and the periodicity was approximate. 

In the upper half of Plate III(e), 185 distances between the centres of the 
neighbouring reduced parts have been measured. Statistical processing gave 
the following result: 

I,, = 25+0-04 mm. 
The distribution differed slightly from a normal one and was unsymmetrical. 

This is probably the consequence of non-stationarity of the system. 
SPS did not usually arise over the entire space, but in some parts from which 

it spread over the whole reactor. Elements of the structure were observed 
earlier when space propagation of autocatalytic reaction (1) was studied by 
Vavilin (1971). Under particular conditions centres of oxidation arose at 
some distance ahead of the front of reaction. They then increased becoming 
one with the zone of oxidation. 

In the pure form, SPSs described above took place in the region of para- 
meters where BO and LC were absent. There was a narrow parametric zone 
where LCs and SPS coexisted. SPS appeared in the region of BO at the 
moments of transitions into an oxidized state. 



58 A. M. ZHABOTINSKY AND A. N. ZAIKIN 

3. Discussion 

Summarizing the results of the present and earlier papers, one can see that 
steady regimes exist in non-linear distributed systems with diffusion-type 
coupling, their characteristics being independent of the initial conditions. 
Dependance on the initial conditions is only the fact of existence of certain 
types of structures. The well known structures are: 

(i) single travelling wave (steady only in the running co-ordinate 
system); 

(ii) travelling waves in ring systems (Poljakova, 1971; Bullock & 
Horridge, 1965; Wiener & Rosenblueth, 1946); 

(iii) Turing’s structures. 

However, the shapes of waves travelling in a ring and of Turing’s structures 
are closely connected with the geometry of the system as a whole. If the 
processes are periodic in space the relations take place: 

(a) for waves travelling in a ring 

A=” 
11) 

(b) for Turing’s structures 
2L 

where Iz is wavelength, L is system length and n is a whole number. From 
here one can obtain the expression for oscillation period in ring system: 

where u is wave velocity. 
In the present paper steady AWPs are described with characteristic 1 and T 

depending on neither initial nor boundary conditions. These are the leading 
centre and reverberator. In these two cases steady oscillations occur in every 
point of space. The position of the central part of the influence zone of AWPs 
is fixed in space and depends on the initial conditions only. (Space localiza- 
tion of structures described by Prigogine & Nicolis (197 1) was determined by 
spatial gradient of the system parameter.) In principle, such AWPs may settle 
their own position in infinite uniform space. There is a steady distribution of 
oscillation phase in the central part of the AWP zone.AWPs resemble Liesegang 
rings and figures of crystal growth with the difference that they are formed by 
stationary distribution of oscillation phases rather than concentrations. 

It is necessary to introduce clarity in the statement about characteristic 2 
and T. In the experiment in case of reverberator, 2, and TR are constant with 
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high precision, because the values are defined by refractory time in case of 
triggering by amplitude equal to the own one. This amplitude is much larger 
than values of concentration fluctuations. 

The oscillation periods in our system form the following series 
Ta < TLC < TO. 

In the LC case dispersion of TLC (consequently A,,) is very large. This may 
be due to the fact that LCs often make their appearance at microheterogene- 
ities. This supposition is confirmed by the fact that the oscillation period of 
LCs arising in the edge angle is frequently much shorter than average TLC. 

In general, the role of fluctuations and microheterogeneities in the LC 
initiation is probably the same as in the process of formation of a new phase 
from the metastable one. Indeed, an LC arises when a threshold has been 
exceeded due to a fluctuation. On a microheterogeneity the threshold may be 
lowered. 

It should be emphasized once again that under certain conditions LCs 
and reverberators arise only as a result of fluctuations exceeding some thresh- 
old value, i.e. in the system in which the initial state is stable according to 
Liapounov. 

The relation of observed SPS to Turing’s structures is unclear as yet. In 
particular it should be elucidated whether the loss of stability of space- 
uniform state occurs by Turing’s mechanism or not and whether the space 
period is affected by boundary conditions. 
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APPENDIX 

Korzoohin’s Theorem (Korzoohin, 1967) 

It is known that a system of ordinary differential equations with arbitrary 
polynomials on the right-hand sides of (A2) may be a model of the dynamic 
behaviour of any complexity. Korzoohin has shown that a “chemical” 
system of equations can always be constructed with solutions asymptotically 
approximating to the solutions of a given system (A2). Thus any complex 
behaviour can be realized in principle in a homogeneous chemical system. 
Below is given a short formulation of the Korzoohin theorem. 

A chemical system can be represented by the following system of equations : 

ni = &t, + y;sz, n, (Al) 

where 

(1) all the ni > 0, 

C2) C Pi ni = const., 
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where 12i are concentrations, /IT, 7;’ are rate constants, and pi are molecular 
weights. 

Theorem: Let a system be given 
Xi = A,(X), 642) 

where A&) are arbitrary polynomials with whole non-negative indices. A 
chemical system (Al) can always be constructed with the parameter l/c 
being a multiplier in some rate constants so as 

dt) + ni(t) + O(&) 

if E + 0. 


