Efficient Design Space Exploration for Chip Multiprocessors

Benjamin Lee, David Brooks
Division of Engineering and Applied Sciences
Harvard University

ABSTRACT

Increases in architectural design space for CMP’s motivate efficient, scalable simulation and modeling frameworks.

- We summarize our recent experiences in CMP simulation.
 - pipeline analysis
 - thermal analysis

- Observations from prior work motivate future work.
 - statistical significance ranking
 - regression modeling

EXPERIENCE Pipeline Depth/ Width Analysis

“Effects of Pipeline Complexity on SMT/ CMP Power-Performance Efficiency” (WCEI’05)

- Methodology
 - Metrics: Performance, Power
 - Parameters: Pipeline dimensions, threads per core (SMT), cores per chip (CMP)
 - Framework: Integrated multi-core simulation based on tracking cache conflicts between threads of throughput computing applications

- Conclusions
 - Common optimal pipeline depth/ width for ST, SMT, CMP
 - SMT, CMP enable power-performance efficient increases in core size

CONTINUING & FUTURE WORK

- Plackett-Burman
 - Designing “optimum multifactorial experiments”
 - Obtain 2N configurations varying N-1 parameters
 1. Generate a design matrix where -1, +1 assigns a lower, upper bound value to a parameter. Matrices are derived in Plackett, Burman’s paper.
 2. Simulate 2N configurations from design matrix
 3. Determine effects of parameter k (Ec = R T x Pk)
 - Objective: Identify statistically significant parameters by rank ordering them by effect | Ec |

- Regression Modeling
 - Obtain exhaustive single-core simulations varying significant design parameters
 - Derive regression models to capture design trade-offs of single core
 - Employ models to explore larger CMP design space without costs of per-core simulations
 - Objective: Scalable, efficient multi-core simulation

PROBLEM CONTEXT

- Challenges
 - Increasing number of tunable architectural parameters
 - Core complexity, Number of cores, Heterogeneous cores, Interconnect.

- Goals
 - Leverage knowledge of uni-processor, single-core design space
 - Replace per-core part of CMP simulation with regression/analytical models.
 - Evaluate for relative accuracy, ability to capture design trade-offs

EXPERIENCE Thermal Analyses

“CMP Design Space Exploration Subject to Physical Constraints” (HPCA’06), in collaboration with the University of Virginia (Yingmin Li, Kevin Skadron) and IBM (Zhigang Hu)

- Methodology
 - Metrics: Performance, Power, Thermal Efficiency, Area
 - Parameters: Pipeline dimensions, cache size, voltage/ frequency, thermal packaging
 - Framework: Decoupled core and interconnect/ cache simulation.
 - Single-core simulations provide access traces to cache simulator that penalizes performance for conflicts

- Conclusions
 - Thermal constraints dominate other constraints
 - Optimal pipeline dimensions decrease to meet thermal constraints
 - Power density increases with depth; dissipation increases faster than area.

Pipe Depth/Width Analysis

- Figure 1: Pipeline Depth

- Figure 2: Pipeline Width

- Figure 3: Before & After Thermal Constraints

Statistical Significance Ranking, Regression Modeling

- Figure 4: PB Design Matrix