Copper as a Robust and Transparent Electro catalyst for Water Oxidation**

Jialei Du, Zuofeng Chen,* Shengrong Ye, Benjamin J. Wiley, and Thomas J. Meyer

Abstract: Copper metal is in theory a viable oxidative electrocatalyst based on surface oxidation to CuIII and/or CuIV, but its use in water oxidation has been impeded by anodic corrosion. The in situ formation of an efficient interfacial oxygen-evolving Cu catalyst from CuII in concentrated carbonate solutions is presented. The catalyst necessitates use of dissolved CuII and accesses the higher oxidation states prior to decomposition to form an active surface film, which is limited by solution conditions. This observation and restriction led to the exploration of ways to use surface-protected Cu metal as a robust electrocatalyst for water oxidation. Formation of a compact film of CuO on Cu surface prevents anodic corrosion and results in sustained catalytic water oxidation. The Cu/CuO surface stabilization was also applied to Cu nanowire films, which are transparent and flexible electrocatalysts for water oxidation and are an attractive alternative to ITO-supported catalysts for photoelectrochemical applications.

A central thrust in energy research at present focuses on bioinspired artificial photosynthesis and the development of solar-driven chemical reactors that are capable of using sunlight to synthesize molecular fuels.[1–4] In these schemes, water oxidation (2H2O → O2 + 4e− + 4H+) is the essential other half-reaction. It provides reductive equivalents for conversion of CO2 into CO or other reduced forms of carbon, or H2O/H+ to hydrogen.[1–4] Research on water oxidation catalysis has focused on lowering overpotentials, reducing cost with earth abundant elements, and critically, improving long-term oxidative stability by circumventing thermodynamically unstable organic ligands. In nature, the fine-tuned molecular machinery of the oxygen-evolving complex (OEC) in green leaves oxidizes water using a Mn4O4Ca cluster.[5,6] Related artificial examples include pre-prepared Mn oxide clusters,[7] Co and Ni clusters that form spontaneously in solution,[8,9] Co3O4 (spinel) particles,[10] colloidal IrO2-nH2O,[11] and amorphous iridium oxide deposited from organometallic precursors.[12] Pt electrodes and some precious metal oxides have also been reported to function as electrocatalysts,[13,14] but they are neither abundant nor inexpensive.

In solar fuel production, copper metal has been the focus of most CO2 reduction studies,[15,16] but its direct use as an electrocatalyst for water oxidation has been largely impeded by severe anodic corrosion. The anodic reactions of copper metal are surprisingly complex, involving both soluble and insoluble products and multiple oxidation states with CuI, CuII, CuIII, and/or CuIV, which are all invoked depending on the applied potential. For the CuI and CuII couples, E(CuI/0) = 0.159 V and E(CuII/0) = 0.34 V. In general, the deterioration of copper is pronounced in solutions of low pH but becomes relatively sluggish at increasing pH owing to the formation of protective films on the metallic surface.[17,18]

Recently, we reported efficient and sustained electrocatalytic water oxidation based on simple CuII salts in concentrated carbonate (1M, pH 10.8) aqueous solutions.[19] High concentrations of carbonate anions are essential in providing proton acceptor bases and complex ion formation (for example, [CuII(η2-O2OC)2(OH2)2]+) to avoid precipitation of Cu(OH)2 (Ksp = 2.2 × 10−16) or CuCO3 (1.4 × 10−10).[20] Electron-donating carbonate ligands also lower potentials for accessing higher-oxidation-state CuIII and/or CuIV exo-ligand oxidized intermediates. Although water oxidation catalysis under these conditions is dominated by homogeneous complexes, preliminary results were obtained for interfacial catalysis of water oxidation by an electroactive surface precipitate.[19] Formation of the active layer and interfacial water oxidation catalysis are dependent on the concentration of CuII and carbonate. For example, during electrolysis in 1M Na2CO3, the surface precipitate appeared only at high CuII concentrations (≥ 0.8 mM), pointing to surface equilibrium formation between solution precursors and precipitated film. Decreasing the carbonate concentration to about 0.1M resulted in decreased CuII solubility. Increasing the concentration to about 2M resulted in termination of water oxidation owing to complete coordination by carbonate, which removes the co-ordination of aqua ligand(s) on CuII.[19]

Herein, we report the in situ formation of a robust, efficient interfacial oxygen-evolving Cu catalyst from CuII in solution, leading to surface-modified Cu metal electrodes for sustained water oxidation. Formation of a compact film of CuO with incorporated Cu(OH)2 on the underlying copper is found to prevent electro-corrosion, allowing for sustained catalytic water oxidation without surface degradation. In
contrast to CuII/precipitate catalysis reported in the earlier study, Cu/CuO catalysis is no longer limited by the solubility and diffusion of CuII in solution, or by the coordination environment needed for higher-oxidation-state film formation. The robust Cu/CuO surfaces for water oxidation have been extended to copper nanowire networks providing transparent, flexible electrocatalysts for possible applications in photoelectrochemical cells (PECs).

In a typical experiment with 3 mM CuII in 1 M Na2CO3 (pH 10.8), constant potential electrolysis at 1.30 V vs. NHE resulted in a visible surface precipitate on ITO electrodes. As noted above, at these carbonate and CuII concentrations, an interfacial oxygen-evolving Cu catalyst is deposited. The film thickness gradually increased over the course of the electrodeposition. A maximum activity under these conditions was achieved after 4–6 h of electrolysis.

Figure 1A,B shows that the surface-bound solid is active toward water oxidation in 1 M Na2CO3 (pH 10.8). In cyclic voltammograms (CVs), scanning the electrode beyond about 0.98 V results in a dramatic current enhancement with an overpotential of about 0.39 V at the current onset (\(E_{\text{p,o}}\)) for water oxidation. In the reverse scan, a current cross-over appears along with small re-reduction waves at \(E_{\text{p,c}}\approx 1.0–0.70\) V. These observations indicate that oxygen evolution is activated following catalyst oxidation to a higher oxidation state, which undergoes a structural change with re-reduction occurring at a more negative potential. The decrease in catalytic current during successive CV scans and constant potential electrolysis (Figure 1B, solid curve) is attributable to re-dissolution of film into the 1M Na2CO3 (pH 10.8) solutions. Sustained catalysis can be achieved by adding small amounts of CuII (e.g. 0.8 mM) in solution to compensate for the dissolution of the surface-bound solid (dotted line). In earlier reports, a self-repair mechanism was proposed for sustained electrocatalytic water oxidation by CuO/H2O clusters and/or films formed in situ from added CoII or NiII. Sustained catalysis can also be achieved by increasing the pH from 10.8 to 11.7 with NaOH (dashed line). The higher stability of the cluster film at higher pH is generally consistent with the pH-dependent performance of Co-based catalysts. Studies on cobalt-based water oxidation revealed heterogeneous catalysis at pH > 3.5, but the precipitated film does not form or is prone to dissove at lower pH.

Scanning electron microscopy (SEM) shows that the electrodeposited material consists of particles with diameters in the tens to hundreds of nanometers range that have coalesced into a thin film (Figure 1C). The X-ray powder diffraction pattern (XRD) of an electrodeposited catalyst shows broad amorphous features and no peaks indicative of crystalline phases other than the peaks associated with the ITO underlayer (Supporting Information, Figure S1).

In the absence of detectable crystallites, the composition of the surface precipitate at ITO electrodes was analyzed by X-ray photoelectron spectroscopy (XPS) combined with Raman spectroscopy. The disappearance of In 3d3/2 and 3d 5/2 signals for ITO after electrolysis (Supporting Information, Figure S2) is consistent with the fact that the ITO substrate is completely covered with the precipitated film. In Figure 1D, XPS of the Cu-based precipitate after electrolysis includes a set of peaks consisting of 2p3/2 and 2p1/2 peaks at 934.2 eV and 954.2 eV with additional intense satellite peaks characteristic of CuII. There is a clear similarity to CuO but with the energies shifted toward higher binding energies by 0.5–0.6 eV, which is most likely due to the presence of some Cu(OH)2 in the film. Cu(OH)2 has a 2p binding energy that is circa 0.8 eV higher than that of CuO. Consistent with XPS results, a broad Raman band is observed at about 561 nm (Supporting Information, Figure S3), which is located between the dominant Raman peaks of CuO (640 nm) and Cu(OH)2 (480 nm). Further characterization of the solid is underway, but the film that forms during water oxidation electrolysis in 1M Na2CO3 appears to be a surface-accumulated copper(II) deposit dominated by amorphous CuO incorporating a substantial amount of Cu(OH)2.

The observation of the in situ formed, interfacial oxygen-evolving, precipitated CuII water oxidation catalyst led us to explore ways to use surface-protected copper metal as a direct water oxidation electrocatalyst. Figure 2A (see also the Supporting Information, Figure S4) show successive CVs of a clean copper foil (0.6 cm2) in 1M Na2CO3 solution (pH ≈ 10.8). During the first scan cycle, an anodic wave appears which extends from about 0.2 to about 0.95 V. Surface processes at the copper electrode in this potential region are due to surface oxidation. During the second oxidative cycle, the oxidative wave disappeared with stable and reproducible CV scans obtained thereafter. This observation is consistent with oxidation during the first scan cycle forming
a protective, passivating layer. The results cited below were obtained following the first scan cycle.

Further scanning the electrode results in a dramatic current enhancement with $E_{\text{pp}} \approx 0.96$ V, an overpotential of about 0.37 V for water oxidation. In the reverse scan, a current cross-over appears along with small re-reduction waves at $E_{\text{pc}} \approx 1.0-0.7$ V. The overall behavior is similar to that for the in situ catalyst film shown in Figure 1A, but catalytic currents and peak currents for re-reduction are increased slightly during successive scans and the catalytic current density for water oxidation is 5–10 times higher. Additional CV data at different scan rates, in $\text{D}_2\text{O}/\text{H}_2\text{O}$ water, and in a $\text{CH}_3\text{CN}/\text{H}_2\text{O}$ mixture are shown in the Supporting Information, Figures S5–S7.

Figure 2B shows the results of a controlled potential electrolysis conducted at 1.20 V. The electrolysis current dropped slightly in magnitude initially. As the surface was being activated, the catalytic current increased gradually, reaching a maximum value of 7 mA cm$^{-2}$ after 2 h. Further extension of the electrolysis period resulted in a decrease in catalytic current until it stabilized at a level of about 4.3 mA cm$^{-2}$ after about 5 h. During the electrolysis, a dark coating developed on the copper foil surface. Although the active film is necessary for catalytic water oxidation, a gradually increasing film thickness may block rapid electron transfer to the underlying Cu substrate resulting in the decrease in catalytic current during the film development. The appearance of sustained catalytic currents after about 5 h provides evidence for stable catalytic films. Vigorous effervescence was observed at the electrode surface during the electrolysis. Product analysis by an oxygen probe (YSI ProODO) gave 420 μmol of O$_2$ over an electrolysis period of 15 hours with a Faradaic efficiency of 98% for O$_2$ production. The amount of charge passed (166 C, 1.72 mmol) during 15 h electrolysis period far exceeds what could be accounted for by the total loss of copper into solution and the formation of surface-bound copper layer (1.9 μmol copper in total).

The SEM images of the Cu foil electrode in Figure 2C,D (see also the Supporting Information, Figure S8) show that the Cu foil greatly increased in roughness after water oxidation. The surface was covered by a compact layer that prevents the anodic corrosion of the underlying copper during water oxidation. The compact layer consists of a nanoparticle/nanocluster film with particles having diameters in the tens of nanometers (top-down) and a thickness of about 200 nm (cross-sectional). There is evidence in the SEM images for grass-like structures with a diameter of about 30 nm and a length of about 300 nm growing from the nanoparticle layer. This morphology could contribute to a significantly enhanced effective surface area and the increases in catalytic current observed relative to the precipitated films on ITO.

XRD measurement on the developed dark film failed to detect any new peaks indicative of crystalline phases other than those for underlying bulk Cu (Supporting Information, Figure S9). XPS of an untreated Cu foil (Figure 2E) exhibits two peaks at 932.0 and 951.8 eV, characteristic of the 2p$_{3/2}$ and 2p$_{1/2}$ binding energies of Cu0 metal.[22] After water oxidation, the 2p peaks shift to 933.9 eV and 953.9 eV with additional rounded features appearing in the spectra. As for the precipitated film in Figure 1D, the profile of the XPS spectrum is generally similar to that for CuO[23] but with the 2p binding energies higher in energy by 0.3 eV, which is most likely due to the presence of some Cu(OH)$_2$ in the film.

Figure 2F shows current density (i) for water oxidation at a Cu foil as a function of overpotential (η) in 1 M Na$_2$CO$_3$ solution (pH \approx 10.8). The measurements were conducted on a copper foil that had been activated by pre-electrolysis in 1 M Na$_2$SO$_4$ (pH \approx 10.8) at 1.20 V for 2 h. Surface treatment resulted in maximum catalytic currents as shown in Figure 2B. The slope of a plot of log(i) vs. η was about 90 mV/decade for current densities ranging from 0.1 mA cm$^{-2}$ to 10 mA cm$^{-2}$. An appreciable catalytic current (\geq 0.1 mA cm$^{-2}$) is observed beginning at η = 380 mV. Current densities of 1 and 10 mA cm$^{-2}$ were obtained at η = 485 mV and 580 mV, respectively, with a target of 10 mA cm$^{-2}$ for ambient solar applications. This activity is superior to other copper-based electrocatalysts attributable to a nanostructural morphology.[24–27]

Relatively concentrated solutions of CO$_3^{2-}$ play a key role in preventing electro-corrosion of the copper foil during water oxidation. Adding 0.5 M Na$_2$SO$_4$ to 1 M Na$_2$CO$_3$ (pH 10.8) results in no observable changes in the CV.
However, in 0.5 M Na₂CO₃ with 0.5 M added Na₂SO₄, severe electro-corrosion occurs. As shown in Figure 3A, successive CVs in this solution feature a roughened surface with the appearance of surface oxidative waves. During these scans, the rapid dissolution of the copper foil resulted in a blue flocculate around the electrode. Figure S10 shows that the copper foil is severely etched after only 50 successive CV scans in the solution mixture of 0.5 M Na₂CO₃ and 0.5 M Na₂SO₄. Similar phenomena were also observed with other added inorganic salts, namely NaCl, NaN₃O₄, and NaClO₄. In contrast, the copper foil remained intact in 1 M Na₂CO₃ after 500 successive CV scans with the surface covered with a compact dark layer, which was the basis for sustained catalytic water oxidation. The effect of added inorganic salts in accelerating electro-corrosion of copper is complex and may be related to initial anion adsorption or coordination to the surface precipitate [Eq. (2)]. Therefore, a balance between enhanced solubility of added Cu(II) salts and impact on reactivity must be considered and balanced. By comparison, the catalytic film developed from the underlying copper metal and the catalysis are not limited by carbonate concentration. As shown in Figure 3B, the catalytic current is nearly unchanged over a carbonate concentration range of 0.5 M to 2.5 M.

\[
\text{[Ru}^{III}-\text{OH}_2\text{]}^{2+} \rightarrow \text{e}^- + \text{[Ru}^{II}-\text{OH}_2\text{]}^{3+}
\]

\[
\text{[Cu}^{III}-\text{OH}_2\text{]}^{2+} \rightarrow \text{e}^- + \text{[Cu}^{II}-\text{OH}_2\text{]}^{3+}
\]

An important consideration in the design of PECs is that the water-splitting catalysts do not obstruct the transmission of light to the dye or photovoltaic elements of the device. Currently, most designs of PECs rely on ITO as the transparent conductor coated by an active layer of catalyst: CoOₓ or NiOₓ for water oxidation. However, indium is not abundant, and ITO film is brittle and expensive. Copper nanowires (CuNWs) are an attractive alternative to ITO because they can be deposited from solution at rates several orders of magnitude faster than gas-phase ITO sputtering, offer nearly the same level of optoelectric performance, and copper is 100 times cheaper than indium. As shown here, Cu can be robust toward water oxidation in concentrated carbonate solutions, and we explored an additional application with the direct use of a Cu nanowire film, involving no pre-coated catalytic layer such as Ni or Co, as a transparent electrocatalyst for water oxidation, potentially as a replacement for ITO in PECs.

CuNWs (> 20 μm in length and about 70 ± 25 nm in diameter) were synthesized and coated onto glass by Meyer rod (see the Supporting Information). Figure 4A,C,E shows dark-field optical microscopy (DFOM), SEM, and transmission electron microscopy (TEM) images of CuNWs (A,C,E) and CuNWs after sustained water oxidation (B,D,F) in Figure 5B.
Figure 5A shows CVs of a CuNW film in 1 M Na2CO3 (pH ≈ 10.8). As for the Cu foil in Figure 2A, an anodic peak(s) on oxidative scanning that extends from about 0.2 to about 1.0 V during the first scan cycle but disappears in the second cycle. Repeated catalytic waves for water oxidation were observed with an Epa = 1.02 V vs. NHE. For comparison, only a small oxygen evolution wave was observed at ITO electrodes under identical conditions. The low activity of ITO necessitates the coating of an active layer of catalyst such as CoOx or NiOx, which imposes a trade-off between catalytic activity and light transmission.[2,32]

Figure 5B shows that electrolysis proceeds with a stable current density level of about 0.6 mA cm⁻² at 1.20 V. Over the 2.5 h electrolysis period, about 13.2 μmol of O₂ was generated with a cumbolic efficiency of about 94%. The CuNW networks were intact with a slight increase in surface roughness after sustained water oxidation (Figure 4B,D,F), and a distinct core–shell structure of the NW was observed owing to formation of an active catalytic layer of thickness 18 ± 5 nm. The film maintained excellent optical (77%) and electrical (48 Ω sq⁻¹) properties. Addition of a dilute solution of Cu⁴⁺ is essential for sustained, long-term electrolysis at the CuNW networks, consistent with a self-repair mechanism.[8,9] With no added Cu⁴⁺ ions in the solution, the CuNWs gradually dissolved by oxidation after prolonged electrolysis, resulting in decreasing catalytic current densities and decomposition of the networks.

The catalytic current density of the CuNW film could be further enhanced by increasing the density of nanowires on the substrate. As shown in Figure 5C, the current density increases linearly with the NW loading. A current density of about 1 mA cm⁻² was achieved by increasing the areal density of CuNWs to about 105 mg m⁻² (≈ 15 Ω sq⁻¹, 77.5% at 550 nm). The trend in Figure 5C suggests an even higher catalytic current density can be attained at the expense of film transmittance.

Films made from metal nanowires are generally much more flexible than films of ITO. To demonstrate this fact in this work, we prepared CuNW networks on polyethylene terephthalate (PET), a plastic substrate widely used for transparent, conductive films. As shown in the Supporting Information, Figure S11, the catalytic activity of CuNW film toward water oxidation is virtually the same on PET as it is on glass. CuNW films on PET were previously bent 1000 times, with little degradation in sheet resistance (30 to 40 Ω sq⁻¹).[30] To confirm that the flexibility is retained after water oxidation, a CuNW film after water oxidation was repeatedly bent from a 10 mm to a 2.5 mm radius of curvature. Figure 5D shows that the sheet resistance of the film increased slightly from 30 to 125 Ω sq⁻¹ after 1000 bends. This is in contrast to the ITO film on PET, for which the sheet resistance increased 400 times after just 250 bends. Considering the low cost and design flexibility of transparent plastics compared to glass, the extension to plastic substrates could enable new, versatile, and lower cost design architectures for solar fuel devices.

In conclusions, harnessing the potential of artificial photosynthesis at the required scale will require inexpensive, easily fabricated devices that are robust and inexpensive to manufacture and operate under ambient conditions. The results reported here highlight the potential of the use of earth-abundant, surface-protected copper as a robust water oxidation electrocatalyst in concentrated carbonate solution. Current densities of 1 and 10 mA cm⁻² were obtained at overpotentials of 485 mV and 580 mV, respectively. Because of the robustness of Cu in these solutions, Cu nanowire films were prepared and demonstrated to act as transparent electrocatalysts for water oxidation, making them an attractive alternative to ITO-supported catalysts for photoelectrochemical cells. Moreover, the relatively greater flexibility of nanowire films may expand the design space for the devices.

Considering that copper metal is also unique among solid electrode materials in its ability to reduce CO₂,[15,16] there may be additional implications of these results for alternate solar-fuel strategies, for example, with Cu metal electrodes or Cu nanowire networks in a two-compartment cell used for catalytic CO₂ splitting. CO₂→CO + ½ O₂, with the half-reactions H₂O→2e⁻→½O₂ + 2H⁺ at the anode and 3CO₂ + H₂O + 2e⁻→CO + 2HCO₃⁻ at the cathode and an ion-exchange membrane to maintain the charge and mass balance and separate the produced gases. The simplicity of the catalytic system described herein meets the requirements for deploying a solar fuels strategy on a large scale.

Received: September 5, 2014
Revised: November 4, 2014
Published online: January 7, 2015

Keywords: copper · electrocatalysis · heterogeneous catalysis · transparent electrodes · water oxidation