Figure 1: Increase in EU-related referenda in member states and accession countries over time. No EU-related referenda prior to 1972. Entries with country name spelled out indicate referenda related to EU membership; entries with country name abbreviated and in italics indicate other EU-related referenda (86/87 DK (Denmark) & IE (Ireland): Single European Act; 1989 IT (Italy): mandate for political union; 1992/93 DK, IE, FR (France): Maastricht treaty; 2000 DK: EMU; 2001 IE: Nice treaty). France in 1972 was about enlargement for 1972 accession candidates; UK referendum in 1975 about membership ex post.
Figure 2: A general model of public perceptions of EU membership. "+" and "-" next to arrows indicate hypothesized positive or negative effect; (+) and (–) indicate weak effect (see text). For issues that involve a trade-off of costs and benefits, the net effect is context-dependent and therefore not specified above. Dotted shapes indicate range of variables derived from each of the general theories of European integration.
Figure 3: The specified model for the Austrian case, including particular issues and sectors identified through the analysis of the public debate preceding the referendum. "+" and "−" next to arrows indicate hypothesized positive or negative effect; (+) and (−) indicate weak effect (see text). Dotted arrows indicate aggregate-level effects on which no variation is observable at the district or individual level.
Figure 4: Scatterplot of the observed information, X_i and T_i, for each district i. For low.skill, X_i refers to the percentage of voters with the low-skill attribute; T_i refers to the percentage of Yes-votes in the district.
Figure 5: EI tomography plot for the low-skill variable. Each line represents the set of all possible combinations of β_i^A and $\beta_i^{\sim A}$ for a given district i. The graph contains 121 line, one for each district. The thick oval lines represent the 50% and 95% confidence intervals around the point estimate for the population parameters β^A and $\beta^{\sim A}$ (due to the tightness of the estimates for this variable and the thickness of the lines, the two oval lines appear to overlap). Due to historical institutionalist feature of the EI computer program’s graphics functions, β^A (on the x-axis) is here called "betaB" and $\beta^{\sim A}$ (on the y-axis) is called "betaW."