1 Motivation

- We want to model the birth-death process of topic evolution.
- We want to model the power-law phenomena appeared in most of natural datasets, e.g., text datasets.

2 Normalized Random Measures

Poisson Processes: A Poisson process on S is a random subset $\{N(t), t \geq 0\}$ such that $N(t)$ is the number of points of $\{N(t), t \geq 0\}$, then $X(\cdot)$ is a Poisson random variable with mean $\mu(A)$, and $\{N(t), t \geq 0\}$ and $\{N(\cdot), \cdot \geq 0\}$ are independent if A_1, \ldots, A_n are disjoint.

Completely Random Measures (CRM): Let $S = \mathbb{R}^d \times \mathcal{F}$, a CRM is defined as a linear functional of the Poisson random measure $N(\cdot)$ (called ν) the Lebesgue measure of μ

$$\mu(B) = \int_B N(dx, d\gamma), \forall B \in \mathcal{B}(\mathbb{R}^d)$$

Normalized Random Measures (NRM): An NRM is obtained by normalizing the CRM μ as

$$\tilde{\mu}(B) = \frac{\mu(B)}{\mu(S)}$$

Normalized Generalized Gamma Process (NGG): An normalized generalized Gamma process (NGG) is an NRM with μ-measure $\sum_{i=1}^n \delta_{\gamma_i}$, where $0 < \gamma_i < 1, n > 0$.

3 The three Dependency Operations

Superposition of NRMs:

Given n independent NRMs μ_1, \ldots, μ_n on \mathbb{R}^d, the superposition (μ) is defined as

$$\mu_1 \oplus \mu_2 \oplus \cdots \oplus \mu_n = \sum_{i=1}^n \mu_i$$

Subsampling of NRMs:

Given a CRM $\mu = \sum_{i=1}^n \delta_{\gamma_i}$ on \mathbb{R}^d, and a Bernoulli parameter $\epsilon \in [0, 1]$, the subsampling of μ is defined as

$$S(\mu) = \sum_{i=1}^n \frac{\epsilon_i}{\sum_{j=1}^n \epsilon_j} \delta_{\gamma_i}$$

Point transition of NRMs:

Given a CRM $\mu = \sum_{i=1}^n \delta_{\gamma_i}$ on \mathbb{R}^d, the point transition of μ is to draw atoms ϵ_i from a transformed base measure to yield a new NRM as

$$T(\mu) = \sum_{i=1}^n \epsilon_i \delta_{\gamma_i}$$

4 Sampling

The statistics we are interested in are:

- $n_{i,j}$: the customer i in the jth restaurant.
- $d_{i,j}$: the dish that $n_{i,j}$ is eating.
- $k_{i,j}$: the number of customers in μ_θ eating dish k.
- $\theta_\mu = \sum_{i,j} k_{i,j}$.

At each time frame m, we do:

- Slice sample $x_{m,j}$ (ends up finite jumps).
- Subsample $x_{m,j}$ by inheriting from $x_{m,1:m}$ with Bernoulli trials.
- Construct $x_{m,j}$ by normalizing $x_{m,j}$.
- Sample $x_{m,j}$ using a generalized Blackwell-MacQueen sampling scheme for the hierarchical NRM.

5 Experiments

Evaluated on 9 datasets including news, blogs, academic and Twitter collections. See Figure 1, 2, 3 for demonstration and Table 1 for comparison.

![Figure 1: Left: Power-law phenomena in NGG: Right: topic evolution on JMLR. Shows a late developing topic on software, before during and after the start of MLOSS.org in 2008.](image1.png)

![Figure 2: Topic evolution on Twitter. Words in red have increased, and blue decreased.](image2.png)

![Figure 3: Training log-likelihoods influenced by the subsampling rate ϵ. From top-down, left to right are the results on ICML, JMLR, TPMII, Person, Twitter, Twitter, Twitter, and BDT datasets, respectively.](image3.png)