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Principles of Design of Experiments

Four commonly considered principles in the design of experiment1

Representativeness: Are the experimental units used in the
experiment sufficient to represent the conclusion to be made?

Randomization: Help to avoid unknown bias.

Replication: Increase the precision of the data.

Error control or blocking: Help to reduce known bias (e.g. batch
effect).

Experiment needs to be comparative.

1Fisher R.A., 1935 The Design of Experiment.
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Section 1

Variability in RNA-Seq data
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Steps of a RNA-Seq experiment2

1. RNA is isolated from cells, fragmented at random positions, and
copied into complementary DNA (cDNA)

2. Fragments meeting a certain specified size (e.g. 200 − 300 bp) are
retained for PCR

3. Sequencing

4. Sequence alignment to generate sequence reads at each position

5. Data: Counts of sequence reads or digital gene expression (DGE)

6. Types of reads: junction reads, exonic reads, polyA reads

2Auer et al. Genetics 2010.
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Sources of variability

Types of variability applying to any experiments

Technical variability

Biological variability

I Variability between experimental units (samples)
I Variability between factors of interest (treatment groups)
I Biological variability is not affected by technical variability.

These sources of variability need to be considered in the experimental
design.
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Technical variability

Types of technical variability:

between sequencing platforms

between library construction

between flow cells (different
runs)

between lanes

Flow cells: A glass slide with 1, 2, or
8 separate lanes (Illumina RNA-Seq)
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Designs of evaluating technical variability

Example I3

Objective: Assess the technical reproducibility of Illumina RNA-Seq
I Comparison between platforms
I Evaluate technical variability of RNA-Seq

Outline of the experiment
I Two sequencing platforms: Illumina RNA-Seq (8 lanes) and Affymetrix

microarray
I Two samples: a liver and a kidney samples
I Two cDNA concentration (3pM and 1.5pM)
I One lane for a control sample.
I Each sample were sequenced 7 times total in two flow-cell runs.

3Marioni et al. 2008.
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Design of evaluating technical variability

Example I: Marioni et al.4:

Outline of the experiment
I Two sequencing platforms: Illumina RNA-Seq (8 lanes) and Affymetrix

microarray
I Two samples: a liver and a kidney samples
I One lane for a control sample.
I Each sample were sequenced 7 times total in two flow-cell runs.

What can they compare with this design?

I Platform differences: Two methods for gene expression
I Technical variability: Same sample sequenced in different lanes, two

separate runs
I Effect of cDNA concentration: two concentrations (3 and 1.5pM)
I Differential expression between liver and kidney tissues: Two

tissue samples

4Marioni et al. 2008.
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Plots for assessing lane effect

A: Same sample,same concentration; B Sample sample, different concentration; C&D:Goodness-of-fit for Poisson distribution –
kidney samples
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Comparison between platforms Comparing counts from Illumina
sequencing with normalized intensities from the array, for kidney (left) and
liver (right).

Spearman correlation = 0.73 for liver, 0.75 for kidney
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Conclusion and issues in the design

Summary of Marioni et al. 2008
I Illumina RNA-Seq is replicable and has advantage over microarray
I Lane effect is small. (??)
I Larger difference between runs (Batch effect)
I larger difference between cDNA concentration
I Suggested that it is OK to run one sample per lane

Issues in the Design: No replicates, one sample only
I Is it sufficient to use one sample per tissue type to conclude low lane

effect?
I Can we partition biological variation (e.g. liver vs. kidney) from

technical variation?
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Example II: McIntyre et al.5 RNA-seq: technical variability and sampling

Objective:
I Does technical variability exist?
I Is the impact of technical variability the same for all levels of coverage?

Experiments:
1. Three independent samples (D. melanogaster female), two technical

replicates per sample, run on two lanes of a Solex/Illumina flow cell.

2. Three independent samples (D. simulans male), two technical
replicates per sample, run on two lanes of a flow cell.

3. One sample (D. melanogaster cell lines), 5 replicates, run on 5 lanes of
a flow cell.

All are 36 base-paired end. The relationship of lanes for cell lines
(same or independent flow cells) is unknown.

5McIntyre et al. BMC Genomics 2011.
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D. melanogaster and D. simulans are single library run on multiple lanes.
D. melanogaster c167 cell lines are not exactly the same library run.
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Variation of sequence reads

Partial data from Table 1 (McIntyre et al. 2011)

Data variation seen between technical replicates and between
biological replicates.
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Visualization of the data

Coefficient of variation (CV) vs. average depth per nucleotide
(APN); APN: within each lane, average number of reads per exon

Lower coverage has higher variation
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Visualization of the data

MA plot: Minus vs. average, Bland and Altman plot

Green line: One standard deviation region
Low expression level has higher disagreement
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Summary of McIntyre et al. 2011

Technical variation exits:
I Mappable reads per lane various among the technical replicates
I Inconsistent detection of exons between technical replicates: The

number of exons detected increases with the number of mappable
reads.

I Agreement between technical replicates varies: kappa ranges from
0.63-0.81

I Higher variability for those with low coverage (< 5 reads per
nucleotide) or low expression level

I Random sampling of total RNA reads (e.g. 0.0013% of 30 millions
reads) may contribute to the variability.

Biological variation is larger than technical variation.

Suggestion: Inclusion of technical replicates is as important as
biological replicates. Multiplexing design can eliminate the lane effect
for a small experiment.
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Section 2

Designs for RNA-Seq
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Unreplicated data

Three levels of sampling in RNA-Seq:
I Subject sampling
I RNA sampling
I Fragments sampling

Unreplicated data:
I Mostly from observational studies
I No biological replicates
I One sample per treatment group

Problem: This design can investigate only the differences derived
from RNA and fragment-level sampling, but not from subject
sampling.
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More on sampling in RNA-Seq

Subject sampling: Subjects (e.g. organisms or individuals) are
ideally drawn from a large population to which the results can be
generalized.

RNA sampling: occurs during the experimental procedure when
RNA is isolated from the cell(s).

Fragment sampling: Only certain fragmented RNAs are retained for
amplification. The sequencing reads do not represent 100% of the
fragements loaded into a flow cell resulted in fragment sampling.
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More on RNA and fragment sampling

Library concentration 10nM with 400µL→ 4pM→ 4
1012 × 6.02× 1023 = 2.408× 1012 total molecules→

30,000,000

2.408×1012 = 0.0013% of molecules to be analyzed.
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Unreplicated data

Outline of experiment:

mRNA isolated from subjects
within different treatment group
(T1, · · · ,T7).

a ΦX genomic sample is loaded
to lane 5 as a control

ΦX can be used to recalibrate
the quality score of sequencing
reads from other lane.

Problems:

Lack of knowledge about
biological variation

Unable to estimate within
treatment variation leading to
no basis for inference of between
treatment effect.

Results are specific to the
subjects in the study and can’t
be generalized.
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Replicated data: Multiple flow-cell design

Exp Design: One sample per treatment group, two additional
biological replicates. Tij for i th treatment group and j th replicate.
i = 1, · · · , 7 and j = 1 − 3.

Factor of consideration: treatment effect (τik)

(Dependent variable)ijk = αk + τik + εijk

Problem: Cannot separate treatment effect from technical effect
since biological replicates are run in different flow-cells.
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Balanced block designs

Objective: To control two sources of technical variation: batch effect
and lane effect.

Multiplexing: All samples are pooled to be run within the same lane.

I Take the advantage of bar coding of RNA fragments.
I To keep the same sequence depth, divide the amplification product to

run in multiple lanes
I If # of lanes= # of samples, it produces the same sequence depth as

running one sample per lane.
I Each lane has the same set of samples – eliminate the lane effect
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Balanced Block Design - I

Example:

Three biological replicates per treatment (j = 1, · · · , 3)

treatment group (A and B) (i = 1, · · · , 2)

RNA are bar-coded and pooled

Divide the pool to six equal subset to run on 6 lanes (six technical
replicates, t = 1, · · · , 6)

Single flow cell run
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Balanced Block design - I
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Analysis model for BBD I

Dependent variable: DGE measures, defined by the distribution you
assumed for the sequence reads. For example,

I Auer et al. assumed yijk ∼ Possion(µijk ).
I DESeq2 uses Negative Binomial model.

In Auer et al, yijk =
∑

t yijkt , where i for treatment, j for sample, k
for gene, and t for the 6 technical replicates

Factors considered in the GLM: treatment effect (τik).

(Dependent variable)ijk = αk + τik

No lane effect was included in this model as they considered lane
effects were balanced across treatment groups.

No batch effect in this case since it is only one flow-cell run.
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Balanced block design II-without multiplexing

A design that can run one sample per lane but also has good
randomization of samples within each flow-cell.

Three biological replicates within seven treatment groups. Tij , where
i = 1, · · · , 7 for treatment groups and j = 1, · · · , 3 for samples.

Two block effects: flow cells and lanes.
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Analysis for design II

Dependent variable: Same as before, but it is coded to indicate
treatment (i), flow-cell (f ), lane (l), and gene (k).

Factors to consider: treatment effect (τik ), flow-cell effect (νfk),
and lane effect (ωlk ).

(Dependent variable)ijflk = αk + τik + νfk + ωlk + εijflk

εijflk is the error term.
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Summary for Balanced block design

The feature of unique bar-code for RNA fragments in RNA-Seq
makes blocking design possible.

Can control batch and lane effects

Multiplex design illustrated here requires the number of unique
bar-codes equal or greater than the samples in each lane.
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Balanced incomplete block design (BIBD)

Assume:

number of treatment (I )

number of biological replicates per treatment (J)

number of unique barcodes (s) that can be included in one lane

number of lanes available for sequencing (L)

If the number of unique bar codes (s) in one lane is less than the number
of treatments (s < I ), balanced block design is impossible.
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BIBD

For a given number of treatment groups (I ), sample per treatment
group (J), unique barcodes (s), and number of available lanes (L),
the total number of technical replicates (T ) in BBID is T = sL

IJ .

Example of BIBD:
I Assume 3 treatment group (i = 3), one subject per treatment group

(j = 1), two unique barcodes (s = 2), and three available lanes (L = 3).
I The total number of technical replicates is T = 2×3

3×1 = 2.

Tijk is for treatment i , subject j , and technical
replicates t.

For Illumina, a total of 12 unique barcodes can
be used in one lane. Therefore, 96 samples can
be multiplexed in one flow-cell run.
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Performance comparison between designs by simulation
studies

Tijk : i for treatment, j for sample, k for technical replicates.
A: unreplicated data; B: no biological replicates, two technical replicates
(BBD without biological replicates); C: no technical replicates (unblocked
design); D:BBD with biological and technical replicates.

Yi-Ju Li, Ph.D. (Department of Biostatistics & Bioinformatics Duke University Medical Center)Experimental Design – Part II July 22, 2015 35 / 45



C&D always perform better than A&B. When simulation included lane
and/or batch effects, D (balanced block design) performed better than
C (unblocked design).
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Section 3

Factor of Population structure

Yi-Ju Li, Ph.D. (Department of Biostatistics & Bioinformatics Duke University Medical Center)Experimental Design – Part II July 22, 2015 37 / 45



Background of disease genetics association

Concept of allelic association:
I Alleles A and B at two loci are associated if the event that a gamete

carries A is not independent of the event that the gamete carries allele
B.

AB ab AB ab ab AB AB ab ab ab

I Alleles A and B are not associated if they occur in the gametes
randomly.

AB Ab AB aB ab aB Ab ab AB aB

I Allelic association is population specific.
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Background of disease genetic association

Disease/allele association
I Look for the association between markers and disease phenotype.
I Allele A occurs more frequent in affected than unaffected subjects.

I Assume the marker is in allelic association with the causal allele.
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Population admixture can cause allelic association

Two (or more) mixing populations can lead to associations created
due to the differences in allele frequencies in the mixing populations

I Population A: A allele is VERY common; Disease allele (D) occurs
randomly with A or a alleles.

I Population B: a allele is VERY common; Disease allele (D)
does not exist.

I Admixture population: Assume equal mixed of populations A and B
(allele A with frequency of 0.5), we will observed an association
between A and D.

Population structure will lead to false positive results for genetic
association studies.

How about gene expression studies? Does population structure have
an effect on gene expression?
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How to adjust population structure?

Family-based design

Genomic control: Estimate degree of population stratification by
typing 20-60 unlinked markers on same cases and controls used for
studying candidate gene association (Devlin and Roeder 1999)

Structure: Alternative method based on explicit modeling of
population structure (Pritchard and Rosenberg (1999))

Eigenstrat: Use principal components (PCs) analysis to explicitly
model ancestry differences between cases and controls. (Price et al.
2006)

The idea of using principal components to adjust for population structure
can also be applied to gene expression data.
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Plots from EigenSoft

Make a decision: (1) incorporate PC(s) in the model; (2) exclude outliers.
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Visualization: Q-Q plots

Quantile-Quantile Plots compare observed distribution of test statistics to
that expected under the null hypothesis of no association (McCarthy et al.
2008).

No association, observed = expected

Probably mostly population substructure, deviations across distribution

Possible true associations, but also population substructure

True association, deviations at the highest end of the distribution

Useful R code: http://www.broadinstitute.org/diabetes/scandinavs/figures.html
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Example for gene expression vs. ethnicity groups

Hicks et al.6 reported gene expression levels significantly differ
between ethnic groups.

I Study Design: Compare gene expression between four ethnic
populations (Whites, Blacks, Hispanics, and Asians) using samples
from B-Precursor acute lymphoblastic leukemia (B-ALL) patients.

I Affymetrix microarray
I Significant differential expression genes were found between ethnic

populations.

For gene expression studies in human, one should also pay attention
on the effect of ethnicity (or population structure).

Use QQ plot to examine whether the population structure could be a
factor.

6Hicks et al. Cancer Informatics 2013.
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Summary

The classical principals of experimental design still apply to RNA-Seq

Technical variation exists and should be taken into account.
I Lane effect, batch effect

RNA-Seq data consist of variation from subject sampling, RNA
sampling, RNA fragment sampling

Multiplexing in NGS allow us to implement randomization and
blocking.

Take advantages of visualization tools (e.g. scatter plots, MA plots,
QQ plots) to learn your data.

When you deal with human data for genetic study, make sure
examining the effect of population structure.
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