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Section 1

Introduction
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RNA-Seq: A tool for measuring abundance of RNA from
cells

gene AGTCAA AGTTCC ATGTCA CCGTCC GTCCGC GTGAAA
20 GeneID:12930133 23 36 32 28 34 31
21 GeneID:12930134 4 2 0 0 6 0
22 GeneID:12930135 19 19 24 13 57 22
23 GeneID:12930136 18 39 47 36 35 26
24 GeneID:12930137 175 238 227 88 103 97
25 GeneID:12930138 27 49 46 47 24 37
26 GeneID:12930139 44 63 43 20 50 24
27 GeneID:12930140 17 23 18 8 23 13
28 GeneID:12930141 2 3 0 0 0 2
29 GeneID:12930142 4 3 1 10 8 9
30 GeneID:12930143 746 928 754 723 831 776

Data from dry run.
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PCR/Microarray versus RNA-seq: Common objectives and
challenges

I Hypothesis testing: Is the RNA level related to a phenotype,
or changed in response to treatment or over time

I Effect size estimation: How to quantify the effect size and
then how to estimate it from data

I Classification: Predict an outcome on the basis of baseline
RNA levels from multiple genes

I Class Discovery: Discover subsets on the basis of baseline
levels or changes in the levels of multiple genes

I Multiplicity: several candidate genes or genome-wide analysis
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PCR/Microarray versus RNA-seq: Main Difference

I PCR/Microarray
I Quantify the ”expression” of a gene

I RNA-seq
I The observed data are digital counts

I Two general approaches for analysis of RNA-seq
I Two-stage method: Convert counts to ”Expression” (e.g.,

RPKM, FPKM, TPM) and then plug these into a standard
test (e.g., t-test)

I One-stage method: Relate the counts directly to the
phenotype (through statistical methods for modeling counts)
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Emphasis, Focus, Approach and Topics

I Concepts rather than on mechanics (e.g., which software or
method to use to fit a regression model)

I How statistical concepts are misunderstood or misinterpreted

I How and why things could go wrong

I Use simulation as a tool to illustrate these issues
I Topics:

I Statistical Inference (testing and estimation)
I Supervised learning (classification and regression)
I Unsupervised learning (class discovery)
I Multiple testing
I Distributions and regression models for counts

I Week 1: Focus on general issues

I Week 2 and later: Focus on RNA-Seq specific issues
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On Statistics, Conclusions and Solutions

”No isolated experiment, however significant in itself, can suffice
for the experimental demonstration of any natural phenomenon;
for the ’one chance in a million’ will undoubtedly occur, with no
less and no more than its appropriate frequency, however surprised
we may be that it should occur to us.”

Ronald Aylmer Fisher (The Design of Experiments (1935), 16)

”Doing statistics is like doing crosswords except that one cannot
know for sure whether one has found the solution.”

John Wilder Tukey (Annals of Statistics, 2002:30(6))
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Section 2

Elements of Statistical Inference
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Statistical Hypothesis Testing (Recap of Yesterday)

I Formulate a scientific hypothesis

I Formulate the corresponding statistical hypothesis

I This will consist of a null hypothesis (H0) and an alternative
hypothesis (H1)

I Specify an experimental design
I Specify the testing procedure to be used:

I an appropriate test statistic
I decision rule based on the test statistic (typically under a set

of assumptions)

I Execute Experiment (collect data)
I Based on the amount of evidence using the decision rule

I either conclude there is evidence to reject the null hypothesis
H0 in favor of H1

I or fail to reject H0 (inconclusive)

IMPORTANT: Failing to reject H0 does not afford us to conclude
that H1 is true
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Null versus Alternative

I The null hypothesis posits the status quo

I It is the conservative hypothesis

I In the US legal system, the defendant is assumed to be
innocent

I The null hypothesis: Defendant is innocent

I Study: Investigate if gene XYZ is differentially expressed with
respect to treatment

I In other words, does the distributions of the feature of the
gene you are interested in change when the experimental unit
is exposed to treatment?

I H0 gene XYZ is not differentially expressed with respect to
treatment

I H1 gene XYZ is differentially expressed with respect to
treatment
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More on Null versus Alternative

I Suppose that your are studying the effect of a drug in a
clinical study

I Safety Study:
I H0: Drug is toxic
I H1: Drug is safe

I Efficacy study:
I H0: Drug is not efficacious
I H1: Drug is efficacious
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Notation: True versus False Null Hypothesis

I The truth may be stated either by the null or alternative
hypothesis

I If the truth is stated by the statement of the null hypothesis,
we will say that

I The null hypothesis is true
I or call it a true null hypothesis

I If the truth is stated by the statement of the alternative
hypothesis, we will say that

I The null hypothesis is false
I or call it a false null hypothesis

I We will use these terms for notational convenience
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Type I and II errors

I Type I Error: Erroneously decide in favor of the alternative
hypothesis (reject a true null hypothesis)

I Type II Error: Erroneously decide in favor of the null
hypothesis (fail to reject a false null hypothesis)

I The so called ”alpha” level is the probability of a type I error

I The ”power” of a test, is the complement of the probability of
the type II error

I IMPORTANT: There is a trade-off between these two error
rates
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Type I and II error trade-off

I In our court system, a defendant is assumed innocent until
proven guilty

I Type I error: Convict an innocent defendant
I Type II error: Free a guilty defendant

I If the prosecution gets too much leeway, the the likelihood of
convicting an innocent defendant increases

I Conversely, if the prosecution is reigned in by the judge, the
likelihood of letting a guilty defendant walk free increases

I Similar analogy in the case of a smoke detector
I Dialing up the sensitivity, increases the likelihood of annoying

beeps when using your toaster
I Dialing down the sensitivity, increases the likelihood of missing

a true fire
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Notation: Decision

I false-positive (FP): Reject a true null hypothesis (Type I error)

I true-positive (TP): Reject a false null hypothesis

I false-negative (FN): Fail to reject a false null hypothesis
(Type II error)

I true-negative (TN): Fail to reject a false null hypothesis

I We will use these terms for notational convenience
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Three Decision Rules

I Following the collection of data, consider using one of the
three decision rules

I Decision Rule 1: Reject H0

I Decision Rule 2: Do not reject H0

I Decision Rule 3: Flip a coin: Reject H0 if tails and do not
reject H0 if heads

I What are the type I and II error rates for these decision rules?

I Which one would you choose?



Introduction Inference Model Classification Class Discovery Multiple Testing Counts GLM RNA-Seq GLM Interaction

Decision Rule 1

I Decision: Reject H0

I If H0 is true, then it will be rejected

I A false-positive decision will be made if H0 is true

I α = 1

I If H0 is false, then it will be rejected

I A true-positive decision will be made if H0 is false

I β = 0
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Decision Rule 2

I Decision: Do not reject H0

I If H0 is true, then it will not be rejected

I A false-positive decision will not be made

I α = 0

I If H0 is false, then it will not be rejected

I A false-negative decision is will be made

I β = 1
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Decision Rule 3

I Decision: Flip a coin: Reject H0 if tails and do not reject H0 if
heads

I If H0 is true, then the probability of rejecting it is one-half

I α = 1
2

I If H0 is false, then probability of not rejecting it is one-half

I β = 1
2
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A Bad Rule is a Valid (but bad) Decision Rule
I Decision Rule 1: Reject H0

I α = 1 and β = 0
I Decision Rule 2: Do not reject H0

I α = 0 and β = 1
I Decision Rule 3: Flip a coin: Reject H0 if tails and do not

reject H0 if heads
I α = 1

2 and β = 1
2

I Note that these decision rules effectively ignore the data

I While they are poor decision rules, they are technically valid
decision rules

I A poor statistical approach will effectively reduce to one of
the three

I Note that while α + β = 1 in all these cases, that is generally
not the case

I The type I error is generally not the complement of the type II
error
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A Simple Example: Formulation

I You suspect that a coin (H on side and T on the other) is not
fair (biased)

I Let π denote the probability that the coin lands a head on any
given toss

I A coin is ”fair” if π = 1
2

I or is ”biased” otherwise (i.e., π 6= 1
2 )

I It is more likely to land a tail if π < 1
2

I or more likely to land a head if π > 1
2
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A Simple Example: Statistics and Plain English

I The statistical hypotheses could be succinctly stated as:
I Test H0 : π = 1

2 against H1 : π 6= 1
2

I In English:

I We give benefit of the doubt to the fact that the coin is fair
and then will, under this assumption, ascertain if there is
enough evidence, on the basis of the data, to conclude that
the coin is biased
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A Simple Example: Decision Rule

I Following the formulation of the hypotheses, we have to
decide on an experimental design and a decision rule

I These, along with the specification of the hypotheses, should
be done before collecting data. Why?

I Our experimental design: flip the coin n = 12 times

I Why n = 12 and not say n = 13 (more on this later)

I A reasonable decision rule for this type of design is to use the
so called Binomial Test

I We will skip the technical details on the test
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A Simple Example: Collect Data

I We conduct the experiment and observe
## [1] "T" "T" "T" "T" "T" "H" "T" "H" "T" "T" "T" "T"

I There are (per design) 12 flips of the coin

I We observe 2 heads and 10 tails

I What would you conclude?

I Would you reject if the number of heads were 3?

I how about 4?

I or 5?
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A Simple Example: Binomial Test in Action

I We conduct the binomial test
test=binom.test(x=sum(x=='T'),n=length(x),p=1/2)

test

##

## Exact binomial test

##

## data: sum(x == "T") and length(x)

## number of successes = 10, number of trials = 12, p-value = 0.03857

## alternative hypothesis: true probability of success is not equal to 0.5

## 95 percent confidence interval:

## 0.5158623 0.9791375

## sample estimates:

## probability of success

## 0.8333333

I What should we conclude?

I At the α = 0.05 level, there is sufficient evidence to reject the
hypothesis that the coin is fair (P-value=0.039)

I Note that there is not sufficient evidence to reject the null if
you wish to control the type I error rate at α = 0.01
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The Two-Sample Problem: Formulation

I Question: Does treatment alter the distribution of the RNA
abundance of a given gene?

I µ0 denotes the average abundance level of the untreated
group

I In other words: If we take a large random sample of untreated
experimental units from the untreated group, the ”average”
RNA abundance for the sample will be about µ0

I µ1 denotes the average RNA abundance of the treated group
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The Two-Sample Problem: Treatment Effect

I There is a treatment effect if the means, µ0 and µ1, differ:
I Null Hypothesis: There is no treatment effect (µ0 = µ1)
I Alternative Hypothesis: There is a treatment effect (µ0 6= µ1)

I Why is the null hypothesis not µ0 6= µ1?

I and the alternative hypothesis not (µ0 = µ1)?
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The Two-sample Problem: Assumptions

I The decision rule is typically chosen on the basis of some
putative assumptions

I Distributional assumptions:
I RNA abundance for the untreated group follows a normal

distribution with mean µ0 and variance σ2

I RNA abundance for the treated group follows a normal
distribution with mean µ1 and variance σ2

I Assumptions:
I the distributions are normal (questionable assumption for

digital counts)
I the variability of the RNA abundance is not affected by

treatment (same σ2)
I Another implicit key assumption: The experimental units are

independent

I The (two-sample) t-test is a commonly method for testing
this hypothesis under the given set of assumptions
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Quick Note: Conservative versus Anti-conservative;
Robustness

I The properties of the decision rule will depend on these
underlying assumptions

I They may be greatly sensitive to these assumptions
I The type I error of a decision procedure we hope to achieve is

called the nominal level
I Example: If we claim that the nominal level of our decision is

0.05, then we are asserting that the probability of committing
a false-positive is at most 0.05.

I If the actual type I error rate exceeds the nominal level the
test is said to be anti-conservative

I If the actual type I error rate is less than the nominal level the
test is said to be conservative

I A decision rule that is not sensitive to the underlying
assumptions, with respect to type I error control, is said to be
robust
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Designing the Experiment

I The sample size to achieve the desired power at a given type I
error rate depends on the effect size

I Given everything else fixed, a larger effect size requires a
smaller size to achieve a power at a given type I error rate

I The effect size for the two-sample t-test is defined as

∆ =
|µ0 − µ1|

σ

I The numerator |µ0 − µ1| is the difference (in absolute value)
of the means

I The size of this difference (how large it is) is in relation to
(scaled by ) the standard deviation
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Sample Size Formula

I The sample size formula the two-sample t-test is

n = 2
(Z1−α + Z1−β)2

∆2

I Here Z1−α denote the right α tail of a normal distribution

I Let’s forget most of the technical details

I Just observe that the sample size decreases as the effect size
become larger. Why?

I Many other sample size formulas look very similar
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Our Example: The Unknown Truth

I The true values of the unknown parameters:
I µ0 = 0
I µ1 = 2
I σ = 5

I The effect size is

∆ =
|0− 2|

5
= 0.4
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Forgot about the Design

I What is the power if we use 3 units per group
##

## Two-sample t test power calculation

##

## n = 3

## delta = 2

## sd = 5

## sig.level = 0.05

## power = 0.05784303

## alternative = two.sided

##

## NOTE: n is number in *each* group
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Forgot about the Design

I What is the power if we use 6 units per group
##

## Two-sample t test power calculation

##

## n = 6

## delta = 2

## sd = 5

## sig.level = 0.05

## power = 0.09156966

## alternative = two.sided

##

## NOTE: n is number in *each* group
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Forgot about the Design

I What is the power if we use 12 units per group
##

## Two-sample t test power calculation

##

## n = 12

## delta = 2

## sd = 5

## sig.level = 0.05

## power = 0.1532882

## alternative = two.sided

##

## NOTE: n is number in *each* group
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Now Use Experimental Design

I The required sample size, per group, to detect an effect size of

∆ =
|0− 2|

5
= 0.4

with a power of 0.8, at the 0.05 level is
##

## Two-sample t test power calculation

##

## n = 99.08057

## delta = 2

## sd = 5

## sig.level = 0.05

## power = 0.8

## alternative = two.sided

##

## NOTE: n is number in *each* group
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How to check the type I Error and Power

I Simulation provide a powerful framework for understanding
the properties of the decision rule

I In the case of the two-sample t-test this works as follows

1. Draw a random sample of size n from a normal distribution
with mean µ0 and standard deviation σ

2. Draw a random sample of size n from a normal distribution
with mean µ1 and standard deviation σ

3. Apply the two-sample test to the two data samples and record
the P-value

I Now repeat the last three steps a large number of times

I The distribution of these simulated P-values should be similar
to the true distribution of the P-value
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Simulation Example
I Set parameters

set.seed(4141)

n=6;mu0=0;mu1=2;sigma=5

I Simulate data
x0=rnorm(n,mu0,sigma)

x1=rnorm(n,mu1,sigma)

x0

## [1] -2.1071177 -0.2402046 2.6668539 -4.4884699 2.6865668 5.1362518

x1

## [1] 6.0170556 -4.3949286 -1.4848887 -3.5189476 -8.7897573 -0.4961073

I Carry out t-test
t.test(x0,x1)

##

## Welch Two Sample t-test

##

## data: x0 and x1

## t = 1.0984, df = 9.1035, p-value = 0.3002

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -2.872410 8.312895

## sample estimates:

## mean of x mean of y

## 0.608980 -2.111262
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Simulation: Important Notes

I Data are generated under the truth

I Parameters and distributions are set by you

I A simulated experiment is to mimic a hypothetical, but real,
experiment

I The truth is not known in the context of a real experiment

I IMPORTANT: The decision rule step has to remain blinded to
this truth

I Computing Exercise: Evaluate the type I error and power for
the two-sample example using simulation and formula
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Stat 101 Example: One-sided or Two-sided Test?

I Suppose that company XYZ Dairies sells milk in glass bottles

I The company claims that the net content of each bottle is 1
gallon

I Mr. Smith, owner of the ABC Supermarket, suspects he, and
ultimately his customers, are being swindled by XYZ

I Let µ denote the mean net content (in gallons) of the
population of XYZ Dairies milk bottles

I The company claims µ = 1

I Mr. Smith hypothesizes that µ < 1
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Stat 101 Example (null vs alternative)

I Mr. Smith has to give benefit of the doubt to company XYZ’s
claim (i.e., µ = 1)

I The purpose of the experiment is to ascertain if there is
sufficient evidence to the contrary (i.e., show µ 6= 1)

I The null hypothesis is formulated as H0 : µ = 0

I The alternative is formulated as H1 : µ 6= 0

I Mr. Smith has no interest in gathering evidence for showing
that XYZ overfills its bottles (i.e., µ > 1

I In this case, a one-sided hypothesis would be appropriate
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Stat 101 Example (continued)

I Hypothesis: Test H : µ = 1 versus H̄ : µ < 1

I He collects a random sample of twenty milk bottles.

I Let X1, . . . ,X20 denote the observed net contents for these 20
bottles

I He decides to assume that these are normally distributed with
mean µ and variance σ2
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Stat 101 Example (continued)

I The one-sample t-test is a commonly used test for this setting
(normality assumption):

T =
√
n
X̄n − µ

sn
, (1)

where X̄n and sn are the sample mean and standard deviations

I Under H where µ = 1 the sampling distribution of T follows a
t distribution with n − 1 = 19 degrees of freedom
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Statistical versus Clinical/Biological Significance

I Hypothesis testing is carried out to investigate statistical and
not biological significance

I It is the responsibility of the investigator to pose a biologically
relevant hypothesis.

I It is also the responsibility of the investigator to ensure that a
statistically significant finding is biologically plausible/realistic

I Statistical significance does not necessarily imply biological
significance or vice versa
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Biologically but not Statistically Significant

set.seed(1122333)

x0=rnorm(3,1,1)

x1=rnorm(3,2,1)

x0

## [1] -0.25824011 0.02820527 2.20878939

x1

## [1] 1.5462733 0.6578732 3.1782064

t.test(x0,x1)

##

## Welch Two Sample t-test

##

## data: x0 and x1

## t = -1.0572, df = 3.9884, p-value = 0.3502

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -4.117361 1.848295

## sample estimates:

## mean of x mean of y

## 0.6595849 1.7941176
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Statistically but not Biologically Significant

x0=c(3.0001,3.0002,3.0003,3.0004,3.0005)

x1=c(3.0006,3.0007,3.0008,3.0009,3.0010)

x0

## [1] 3.0001 3.0002 3.0003 3.0004 3.0005

x1

## [1] 3.0006 3.0007 3.0008 3.0009 3.0010

t.test(x0,x1)

##

## Welch Two Sample t-test

##

## data: x0 and x1

## t = -5, df = 8, p-value = 0.001053

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.0007306004 -0.0002693996

## sample estimates:

## mean of x mean of y

## 3.0003 3.0008
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Distribution of P-values under H0

I Under the null hypothesis, the distribution of the P-values is
uniform

I If you repeat the experiment many times under the null
hypothesis (e.g., no differential expression), the distribution of
the P-values will look like this
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Quantile-Quantile Plot

I An important tool to assess type I error control is the
Quantile-Quantile Plot (aka QQ-Plot)

I The plot should look like this under H0
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Quantile-Quantile Plot: Deviation

I A deviation in the QQ-Plot indicates that there may be
evidence to reject H0

I Or that teh decision rule is not accounting for type I error:
INFLATION!!
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Estimation

I So far we have considered concepts and issues related to
hypothesis testing

I What is often of interested is estimate the unknown
parameters

I First determine how to quantify the effect size

I Consider the two sample problem
I Examples

I Mean level for the untreated group µ0

I Mean level for the treated group µ1

I Fold-change ρ = µ1

µ0

I Standardized difference ∆ = |µ1 − µ0|/σ
I Next figure out how to estimate the effect size
I Two types of estimates

I Point estimate
I Interval estimate
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Confidence Intervals

I Example: The sample mean (the average of the observations)
is a point estimate of the population (true) mean

I It is either equal to the true value of the parameter or is not

I As it is a single number it does not provide any direct measure
of accuracy

I An interval estimate incorporates some measure of accuracy

I Thus it is generally more appropriate to present an interval
estimate

I A common example of an interval estimate is the confidence
interval
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Estimation Example

I Assumption: The RNA abundance follows a normal
distribution with mean µ = 0 and standard deviation σ = 1

I Goal: The population mean µ is to be estimated on the basis
of sample of size n = 6

I Objectives:
I Produce point estimate of µ
I Produce a 95% confidence interval of µ

I We will produce these estimates on the basis of the sample
mean

I The sample mean is obtained by averaging the n observations
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Simulate Experiment 1
I Simulate the data

n

## [1] 6

mu

## [1] 0

sigma

## [1] 1

set.seed(12331)

x=rnorm(n,mu,sigma)

I Calculate the sample mean
mean(x)

## [1] -0.4014889

I Calculate confidence interval
# sample standard deviation

s=sd(x)

# Margin of error

error=qt(0.975,df=n-1)*s/sqrt(n)

# A 95% CI

c(mean(x)-error,mean(x)+error)

## [1] -1.4687200 0.6657421
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Repeat the Experiment

exp n mu sigma avg lcl ucl cover len
1 6 0 1 0.36 0.05 0.67 0 0.62
2 6 0 1 0.67 -0.23 1.57 1 1.80
3 6 0 1 -0.23 -0.89 0.42 1 1.31
4 6 0 1 -0.88 -2.09 0.34 1 2.42
5 6 0 1 -0.88 -1.62 -0.14 0 1.49
6 6 0 1 0.57 -0.64 1.78 1 2.42
7 6 0 1 -0.03 -1.60 1.54 1 3.15
8 6 0 1 -0.62 -1.18 -0.05 0 1.13
9 6 0 1 -0.05 -1.46 1.37 1 2.82

10 6 0 1 0.21 -0.92 1.34 1 2.25
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Confidence Interval: Common Misunderstanding
I A (not the) 95% CI for the mean based on the first

experiment was (0.05, 0.67)
I A (not the) 95% CI for the mean based on the second

experiment was (−0.23, 1.57)
I It is wrong to say that the probability that the first CI does

not contain the true value µ = 0 is 95%
I It is also wrong to say that the probability that the second CI

contains the true value µ = 0 is 95%
I We conduct one and only was experiment
I Based on the first experiment, we can say that we are 95%

confident that it contains the true value
I That is of course not the case
I If we repeated the experiment a large number of times, 95%

of the CIs would cover the true value
I We are 95% confident that the first experiment is among

these (which it is not)
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Repeat the Experiment

I Now repeat experiment with a sample size of n = 12.
exp n mu sigma avg lcl ucl cover len

1 12 0 1 0.07 -0.50 0.65 1 1.16
2 12 0 1 -0.07 -0.66 0.51 1 1.16
3 12 0 1 0.68 0.11 1.25 0 1.14
4 12 0 1 -0.32 -1.12 0.49 1 1.60
5 12 0 1 -0.14 -0.82 0.55 1 1.37
6 12 0 1 -0.26 -0.81 0.30 1 1.11
7 12 0 1 -0.13 -0.47 0.21 1 0.68
8 12 0 1 -0.20 -0.76 0.35 1 1.10
9 12 0 1 0.19 -0.32 0.70 1 1.02

10 12 0 1 -0.46 -1.13 0.21 1 1.34

I Compare the widths of the CIs
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Quick Note: Estimate versus Estimator

I We use the terms estimate and estimators interchangeably

I There is a subtle but important distinction

I Suppose that you decide to estimate the population mean
using the sample mean (once you get the data)

I The sample mean is the estimator

I Its outcome is random before you collect the data

I Once you collect the data and plug them into the estimator
you get an (not the) estimate
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Section 3

Model Building Illustration
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Intra- and Inter-subject Variability

I In most experiments, including RNA-Seq, the variability may
not be exclusively due to measurement error

I Another source could be due to repeated measurements

I or sampling from strains or cell lines

I or due to batch effects

I We will motivate these ideas using a classical toy example

I We will illustrate the caveats of properly accounting for these
two sources of variability through two simulation studies
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Rails Data

I Observation adjusted travel time for ultrasonic head-waves in
the rail (nanoseconds).

I Data set: 6 rails; the travel time is sampled three times per
rail

I Eighteen measurements

I Six Experimental Units

I Implicit assumption: The six rails are randomly selected from
a large pool of rails

I What is of interest is neither the batch or any of these 6 rails
(specifically)

I What is of interest is the population (the huge pool)
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Rail Data
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Rail Data: Model Formulation

I µ denotes the true travel time

I µ is an unknown fixed quantity

I Yi denotes the observed travel time (for observation
i = 1, . . . , 18)

I In absence of noise, true value µ is observed

I In other words, Yi = µ for i = 1, . . . , 18
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Important Fact about Normal Distribution

I Consider a normal distribution with mean 0 and standard
deviation σ

I If the data are shifted by a constant µ, then

1. resulting distribution remains normal
2. The mean of the new distribution is µ+ 0 = µ
3. Its standard deviation remains unchanged

I The last two (but not first) property are true for any
distribution
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Shift Normal Distribution
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Rail Data: Simple Model

I What is observed is a distorted version of µ

Yi = µ+ εi

I Notes:
I Yi is observable
I εi is not observable
I µ is an unknown parameter

I The variability observed here is exclusively attributed to the
measurement error εi
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Linear Model

summary(lm(travel~1,data=Rail))

##

## Call:

## lm(formula = travel ~ 1, data = Rail)

##

## Residuals:

## Min 1Q Median 3Q Max

## -40.50 -16.25 0.00 18.50 33.50

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 66.500 5.573 11.93 1.1e-09 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 23.65 on 17 degrees of freedom
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Rail Data: Account for Two Source of Variability

I What is observed is a distorted version of µ

I It is distorted by a ra

I Yij : Index the rail by i = 1, . . . , 6 and the replicate by
j = 1, 2, 3

I Y23: The obeservation for the third replicate for rail 2

I Model
Yij = µ+ bi + εij

I Notes:
I Yij is observable
I bi is not observable
I εij is not observable
I µ is an unknown parameter
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Linear Mixed Effects Model

lme(travel~1,random=~1|Rail,data=Rail)

## Linear mixed-effects model fit by REML

## Data: Rail

## Log-restricted-likelihood: -61.0885

## Fixed: travel ~ 1

## (Intercept)

## 66.5

##

## Random effects:

## Formula: ~1 | Rail

## (Intercept) Residual

## StdDev: 24.80547 4.020779

##

## Number of Observations: 18

## Number of Groups: 6
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Is the Mixed Model Adequate?

I Assumptions:
I bi is normally distributed N[0, σ2

b]
I σ2

b does not depend on i (homoscedastic)
I εij is normally distributed N[0, σ2

e ]
I σ2

e does not depend on i or j (homoscedastic)
I Error model is additive (could be multiplicative)
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Example 1: Setup
I What are the ramifications for ignoring the clustering?
I We will sample 6 experimental units each with three replicates
I µ = 0, σe = 0.25, σb = 0.5

id

y

−0.5

0.0

0.5

1.0

1.5

1 2 3 4 5 6

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●



Introduction Inference Model Classification Class Discovery Multiple Testing Counts GLM RNA-Seq GLM Interaction

Example 1: Simulation

I Simulation outline

1. Simulate a data set
2. Test H0 : µ = 0 ignoring the random effect (save P-value)
3. Test H0 : µ = 0 accounting for the random effect (save

P-value)

I Repeat the three steps 999 additional times

I Given that the true µ = 0 (by design), we would expect 50 of
these P-values to be less than 0.05

I Why?
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Example 1: Results

set.seed(210)

res=replicate(B3,sim.ranef(3,6,0.25,0.5,verbose=FALSE))

mean(res[1,]<0.05)

## [1] 0.247

mean(res[2,]<0.05)

## [1] 0.072

I The empirical type I error rate when not accounting for the
random effect is 0.25.

I This inflated by a factor of 4.9.

I The empirical error rate when accounting for the random
effect is slightly inflated

I This is due to the small sample size (n = 6)

I More on this later.
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Example 1: Results
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Example 1: Results
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Example 1: Results

I Now, we repeat the simulation with a larger sample size

res=replicate(B3,sim.ranef(3,50,0.25,0.5,verbose=FALSE))

mean(res[1,]<0.05)

## [1] 0.215

mean(res[2,]<0.05)

## [1] 0.052

I The empirical type I error when not accounting for the
random effect remains inflated by a factor of 4.3.

I The empirical type I error when accounting for the random
effect is now right about the nominal level of 0.05
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Example 2: Setup

I Now consider the two-sample problem we have previously
considered with a twist

I Question: Does treatment alter the distribution of the RNA
level of a given gene?

I Assumptions:
I the RNA level for the untreated group follows a normal

distribution with mean µ0 and variance σ2

I The RNA level for the treated group follows a normal
distribution with mean µ1 and variance σ2

I Sample n units from each treatments in replicates of 3

I Apply the two-sample t-test which does not account for the
clustering
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Example 2: Simulation

set.seed(2314)

# Simulate with no clustering effect (sb=0)

pval0=replicate(B3,sim.twosample.clustered(3,10,0.25,0))

# Simulate with no clustering effect (sb>0)

pval1=replicate(B3,sim.twosample.clustered(3,10,0.25,0.5))

mean(pval0<0.05)

## [1] 0.049

mean(pval1<0.05)

## [1] 0.252

I The empirical type I error when there is no clustering effect is
0.049

I The empirical type I error when there is a clustering effect is
0.25

I This off by a factor of 5!
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Section 4

Elements of Supervised Learning
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Classification Problem
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Clear-cut case
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Clear-cut case?
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Clear-cut case??
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Less Clear-cut case
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Less Clear-cut case
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Less Clear-cut case
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Regression Problem
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Linear Regression (lin)

●

●
●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

x

y



Spline Regression (spl)
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Connect the dots (ctd)
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Supervised Learning (Classification)

I Goal: Predict a binary outcome (Y ) on the basis of baseline
information (X )

I Y assumes the value 0 or 1 (e.g., control vs case, or AML vs
ALL)

I X could be single variable or be a vector of multiple variables

I Example: Can you predict Y on the basis of two genes say X1

and X2

I Note that a goal is to build a machine that will take on two
values X1 and X2 and return a 0 or a 1

I You can denote this machine as a function g(x1, x2)
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Classifier

I We will denote the predictor or classifier by g(x)

I x = (x1, x2) is the vector of gene expressions for genes 1 and 2

I Based on x , the classifier g makes a prediction for the
outcome

I Note that g(x) = 0 or g(x) = 1

I The prediction is correct if Y = 1 and g(x1, x2) = 1, or Y = 0
and g(x1, x2) = 0

I The prediction is wrong if Y = 0 and g(x1, x2) = 1, or Y = 1
and g(x1, x2) = 0
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Prediction Assessment

g(x1, x2) = 0 g(x1, x2) = 1
Y = 0 True-Negative False-Negative
Y = 1 False-Negative True-Positive
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Steps to Construct a Classifier

I Collect a random data set of size n to build (train) a classifer

I This is called the training data

I On the basis of these data, construct the classifier gn
I It is subscripted by n to emphasize that it is trained on the

basis of the training data

I Note that the final performance of gn is not be judged on the
basis of the training data

I It is to be judged on the basis of its performance on future
data

I Called testing data
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Steps in Notation

I Collect the training data (X1,Y1), . . . , (Xn,Yn)

I Construct a classifier gn on the basis of the training data

I Apply gn to a new data set X ∗
1 , . . . ,X

∗
k to get

I k predictions: Ŷ ∗
1 , . . . , Ŷ

∗
k

I Compare the predictions to the observed outcomes Y ∗
1 , . . . ,Y

∗
k

I Note that at the testing stage, you are blinded to the Y ∗
k
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k-Nearest Neighborhood
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3-Nearest Neighborhood

x1

x2

0

0

0

0

0

0
0

0

0

0
0

0

0

0

0

0

00

0

0

1

1

1

1

11

1
1

1

1

1

1

1
1

1

1

1

1

1

1

x



Introduction Inference Model Classification Class Discovery Multiple Testing Counts GLM RNA-Seq GLM Interaction

5-Nearest Neighborhood
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Parsimony

I The model should be parsimonious (less is more)

I Including too many noisy/unimportant features often
degrades the performance of the classifier.

I Including highly dependent induces problems (e.g.,
multi-collinearity from simple linear regression).

I Additional complication: It is not practically/computationally
feasible to include tens of thousands of features in the model.
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Overfitting

I Two many parameters compared to the number of data points
in the training set

I A complicated model will fit the training set well

I It will however perform poorly for an independent set.
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Linear Regression (lin)
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Spline Regression (spl)
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Connect the dots (ctd)
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RSS: 4.1 (lin) vs 1.9 (spl) vs 0 (ctd)
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RSS: 11 (lin) vs 12.4 (spl) vs 14 (ctd)
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Two Challenges in Building a Classifier

1. Feature Selection:
I It is neither feasible nor provident to build a classifier based on

all available variables
I A subset of the variables has to be selected to build the model
I This is also called feature extraction

2. Tuning Parameter Selection:
I Statistical methods may have one or more parameters that

have to be set
I For example when using k-NN, one has to decide what k

should be (e.g., 1, 3 or 5 or how about 8)?
I Choosing the defaults set by the software is inappropriate
I The feature selection method could also have tuning

parameters that have to be set (e.g., the number of features to
be selected)

I The performance of the method could be highly sensitive to
the choice of these parameters
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Feature Selection

I Reasonable Feature Selection is critical if not the most
important component of model building.

I You cannot expect to build a good model if you select poor
features.

I This is also called Feature Extraction

I We will talk about a few approaches that have been used in
the literature.
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Feature Selection (ranked based on test-statistic)

I Compute the two-sample t-test for all m features (based on
the training set)

I Identify the top say 10 or 15 features (e.g, ranked based on
the absolute value of the test statistic).

I Build a model on these ”top” features (based on the training
set)

I Alternatively, you could select all features for which the
P-value is less than a certain threshold (say 0.001).

I You can also use the Wilcoxon rank sum statistic to protect
against choosing features with outliers.
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Feature Selection (Ordination Methods)

I A standard approach for reducing the dimension in the
microarray setting is the method of Principal Components
(PCs)

I The PCs are combinations of the original variables (gene
expressions) that have maximum variability

I The are also constructed as to be uncorrelated with another

I This attempts to address the issue of high dimension and
multi-collinearity simultaneously.

I One can use the principal components (say the first two or
three) as the features

I Alternatively, one can first reduce the dimension by using the
two-sample test-statistic approach and then get the PCs
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Tuning

I You cannot expect to be able to build a model using default
values provided by the software package.

I If you use k-NN you need to decide which k (e.g., 3 or 5 or 7)
you want to use

I If you use the simple feature selection method you need to
determine how many ”top” features you want to use

I If you are doing PC dimension reduction, you need to
determine how many PCs you want to use.

I In some books and articles, ”tuning” only refers to the choice
of the model parameter (e.g., k in k-NN)

I Must take a broader perspective as the choices in the FS part
also affect the results.
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Validation

I Split the data into a training and a mutually exclusive testing
set

I Build the model (including feature selection, tuning) on the
training set

I Evaluate the performance of the model on the testing set

I IMPORTANT: The model is built based on the training set.
The testing set should not contribute any information.

I Violating this principle will invariably result in bias
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Error Substitution Validation

I Error Substitution Validation: The testing set is empty.

I Test the model you just built on the training set

I This approach cannot be recommended under any
circumstance.

I Analogy: Assess the fit of the linear model by plotting the
fitted (from the data) to the observed data.

I A bona-fide testing set is required.

I Will demonstrate how this can lead to noise discovery
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Hold-out Method

I Split the data into two parts

I Keep the testing set locked up

I Better yet, ask an ”honest” broker to keep it from you until
you are ready to test the model

I This approach is reasonable if you have a large number of
cases

I It may be problematic if the outcomes are sparse
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k-fold Cross-Validation

I Many microarray experiments are from smaller (e.g., pilot)
studies

I It is not impossible to get reasonably size training and testing
sets this cases

I A reasonable approach to get around this is k-fold
cross-validation (CV)

I Randomly split cases into k (nearly) equally sized subsets
(folds).

I At each step take of these k portions as the testing set and
construct the training set based on the other k − 1 portions

I Special case is Leave-One-Out CV (LOOCV) where k = n

I For really small data sets, LOOCV is often the best (most
practical) choice.
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Naive Cross-Validation

I Naive Validation: Do the feature selection once based on all n
cases

I In each CV step use the same set of features.

I This will invariably make the results look better than they
really are

I It should be avoided unless one feels very certain about the
features (say biologically relevant gathered a priori
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Proper Cross-Validation

I Choose the first fold and set it aside the other k − 1 folds

I Carry out Feature Selection on the other k − 1 folds

I Train the model based the top features on the k − 1 folds

I Test the model on the first fold left out

I Repeat the above for the second fold (set aside the second
fold, leave in the first and the next k − 2 folds).
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Important Illustration (Fig 8.5) from Simon et al.
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Simulate Data for k-NN Prediction

I Simulate expression from 1000 genes for 40 patients. Let the first 20 be
responders and the remaining 20 be non-responders

set.seed(123)

n=20

m=1000

EXPRS=matrix(rnorm(2*n*m),2*n,m)

rownames(EXPRS)=paste("pt",1:(2*n),sep="")

colnames(EXPRS)=paste("g",1:m,sep="")

grp=rep(0:1,c(n,n))

I Pick the top 10 features based on the two-sample t-test

library(genefilter)

stats=abs(rowttests(t(EXPRS), factor(grp))$statistic)

ii=order(-stats)

I Filter out all genes except the top 10

TOPEXPRS=EXPRS[, ii[1:10]]
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Error Resubstitution and Naive CV

I Error resubstitution (Training and Testing set are the same)

mod0=knn(train=TOPEXPRS,test=TOPEXPRS,cl=grp,k=3)

table(mod0,grp)

## grp

## mod0 0 1

## 0 17 0

## 1 3 20

I Cross-validated predictions (the features selection is not part of the CV
process)

mod1=knn.cv(TOPEXPRS,grp,k=3)

table(mod1,grp)

## grp

## mod1 0 1

## 0 16 0

## 1 4 20

I Note that in both examples, TOPEXPR not EXPR is used.
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R Function to Implement Proper CV based on k-NN
top.features=function(EXP,resp,test,fsnum)

{
top.features.i=function(i,EXP,resp,test,fsnum)

{
stats=abs(mt.teststat(EXP[,-i],resp[-i],test=test))

ii=order(-stats)[1:fsnum]

rownames(EXP)[ii]

}
sapply(1:ncol(EXP),top.features.i,EXP=EXP,resp=resp,test=test,fsnum=fsnum)

}

# This function evaluates the knn

knn.loocv=function(EXP,resp,test,k,fsnum,tabulate=FALSE,permute=FALSE)

{
if(permute)

resp=sample(resp)

topfeat=top.features(EXP,resp,test,fsnum)

pids=rownames(EXP)

EXP=t(EXP)

colnames(EXP)=as.character(pids)

knn.loocv.i=function(i,EXP,resp,k,topfeat)

{
ii=topfeat[,i]

mod=knn(train=EXP[-i,ii],test=EXP[i,ii],cl=resp[-i],k=k)[1]

}
out=sapply(1:nrow(EXP),knn.loocv.i,EXP=EXP,resp=resp,k=k,topfeat=topfeat)

if(tabulate)

out=ftable(pred=out,obs=resp)

return(out)

}
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Proper Cross-Validation

I Finally, we conduct proper cross-validation using the previous R function

I At each iteration, the top 10 features are selected based on the data from
the n − 1 samples in the training set

knn.loocv(t(EXPRS),as.integer(grp),"t.equalvar",3,10,TRUE)

## obs 0 1

## pred

## 0 7 7

## 1 13 13

I Note that EXPRS not TOPEXPR is used.

I The classification rate is 50% (as expected)
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Naive LOOCV: Quantitative trait

I Repeat the last experiment with a noisy quantitative outcome

I First simulate a data matrix of dimension n = 50 (patients)
and m (genes)

I Next draw the outcome for n = 50 patients from a standard
normal distribution independent of the data matrix

I There is no relationship between the expressions and the
outcome (by design)

I We consider m = 45 and m = 50000

I We conduct Naive LOOCV using the top 10 features
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Naive LOOCV: Quantitative trait
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Figure taken from Owzar et al; Clin Transl Sci 2011.
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Training, Validation and Testing Approach

I Before you test the model, you must freeze it

I You may want to split the Training set further into a Training
and Validation set

I Use the Validation set to ”tune” the model.
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Final Remarks

I It is OK to try different methods (other classifiers, feature
selection or tuning methods)

I Keep track of what you have done and report it (brief
description in the paper and details in supplementary material)

I Be careful if you have too few responders

I You could have a model that will classify most patients as a
non-responder.

I In this case a 00 (Y = 0 and g(X ) = 0) may not be bona-fide
true-negative

I The gold-standard for model validation, is to follow up the
cross-validatiion by permutation resampling

I The R function provided can be used for this purpose
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Section 5

Elements of Unsupervised Learning
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Scope

I Often we would like to discover clusters or outliers based on
the gene expression profiles

I These are unsupervised methods in the sense that the
algorithm knows nothing about the outcome

I It is only aware of the gene profiles (X ) and not the outcome
Y
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Fisher’s Iris Data
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A Self-fulfilling Prophecy

I Statistical method for unsupervised learning guarantee one
thing

I They will return a clustering of your data

I What they do not guarantee and are invariably unable to
verify, is the biological relevance or reproducibility of the
clustering

I In light of this Self-fulfilling Prophecy, these methods should
be used with utmost care
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Golub et al Leukemia Data

I 47 patients with acute lymphoblastic leukemia (ALL)

I 25 patients with acute myeloid leukemia (AML)

I Platform: Affymetrix Hgu6800

I 7129 probe sets

I Golub et al. (1999). Molecular classification of cancer: class
discovery and class prediction by gene expression monitoring,
Science, Vol. 286:531-537.
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Chiaretti et al ALL Data

I 128 patients with acute lymphoblastic leukemia (ALL)

I Platform: Affymetrix hgu95av2

I 12625 probe sets

I Chiaretti et al. Gene expression profile of adult T-cell acute
lymphocytic leukemia identifies distinct subsets of patients
with different response to therapy and survival. Blood, 1 April
2004, Vol. 103, No. 7.
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Methods to be Discussed

I There are many methods for unsupervised class discovery.
I We will consider three types of methods:

I Ordination Methods (e.g., Multi-Dimensional Scaling (MDS)
and Principal Components (PC))

I Hierarchical Clustering
I k-means Clustering

I Note that there are many variations of these methods

I Most mathematical details will be left out

I We focus on discovering classes among patients (not genes)
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Distance between Two Points

I Many class discover methods aim to quantify the similarity (or
dissimilarity) among patients

I For each patient, the vector of gene expression can be thought
of a ”point” in a m-dimensional space

I For many class discovery methods, one has to be able to
quantify the ”distance” between two points (the expression
profiles between two individuals)

I A common distance measure is the Euclidean distance
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Relative Distance (From CST 2011 Paper)
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Dissimilarity matrix

I Use a distance to quantify similarity (or dissimilarity) among
patients

I A matrix containing all pairwise distances
I Take the first three patients in the Golub data set (based on

7129 probe sets
dist(t(exprs(Golub_Merge[,1:3])))

## 39 40

## 40 101530.75

## 42 94405.04 89502.29

I The distance between patient 39 and 40 is 1.0153075× 105

I Let us calculate this by hand
x=exprs(Golub_Merge)[,"39"]

y=exprs(Golub_Merge)[,"40"]

sqrt(sum((x-y)^2))

## [1] 101530.8
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Dimension reduction

I Genome-wide profiling platforms are high-dimensional (m is
large)

I Visualization beyond m = 3 not possible (for mortals)

I Representing the data by a lower dimensional format without
losing too much information is desired.
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Multi-Dimensional Scaling (MDS)

I Compute the dissimilarity matrix based on a distance measure

I Project the points into a lower dimensional space (say 2D or
3D) while preserving the similarity matrix

I PCA is a related (and in a sense equivalent method to MDS)

I Project the points into a lower dimensional space where the
new variables are linear combinations of the original variables

I The new variables are chosen so as to have maximum variance
and to be uncorrelated.
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MDS for Golub Data
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PCA for Golub Data
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Preserving The Distances

I Extract and standardize expression matrix for Golub data set

scexpdat=scale(t(exprs(Golub_Merge)))

dim(scexpdat)

## [1] 72 7129

I Check means for the first 4 genes

apply(scexpdat[,1:4],2,mean)

## AFFX-BioB-5_at AFFX-BioB-M_at AFFX-BioB-3_at AFFX-BioC-5_at

## -7.841417e-17 -4.460287e-18 1.491832e-17 -5.051177e-17

I Check standard deviations for the first 4 genes

apply(scexpdat[,1:4],2,sd)

## AFFX-BioB-5_at AFFX-BioB-M_at AFFX-BioB-3_at AFFX-BioC-5_at

## 1 1 1 1
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Preserving The Distances

I Check distance among the first three patients

dist(scexpdat[1:3,])

## 39 40

## 40 125.3402

## 42 118.1911 125.0390

I Calculate MDS d = 2

MDS=cmdscale(dist(scexpdat),2)

dist(MDS[1:3,])

## 39 40

## 40 4.644939

## 42 29.665656 34.287630

I Calculate MDS d = 3

MDS=cmdscale(dist(scexpdat),3)

dist(MDS[1:3,])

## 39 40

## 40 9.293559

## 42 45.719192 54.869668
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Preserving The Distances

I Check distance among the first three patients

dist(scexpdat[1:3,])

## 39 40

## 40 125.3402

## 42 118.1911 125.0390

I Calculate MDS d = 20

MDS=cmdscale(dist(scexpdat),3)

dist(MDS[1:3,])

## 39 40

## 40 9.293559

## 42 45.719192 54.869668

I Calculate MDS d = 45

MDS=cmdscale(dist(scexpdat),45)

dist(MDS[1:3,])

## 39 40

## 40 124.9860

## 42 113.3668 121.7808
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Distance between two clusters

I Let c1, c2, . . . , cn denote the n patients

I We now know how to calculate a distance say between c1 and
c5

I Define a cluster to be a set of ”points”
I {c1} is a cluster with one member: c1

I {c1, c3} is a cluster of two members: c1 and c3

I {c1, c2, c3} is a cluster of three members of c1, c2 and c3
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Notion of a Linkage

I The distance measure quantified the distance between two
points

I In clustering, you need to think about the criterion to link
(merge) the clusters

I maximum distance (aka complete linkage)

I average distance (aka average linkage)

I minimum distance (aka single linkage)
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Agglomerative Hierarchical Clustering

I Agglomerate: To form clusters

I Let each of the n points be its own cluster (n clusters each
with one single member)

I Find the pair of clusters that is most similar

I Now you have n − 1 clusters (1 cluster with two members and
n − 2 clusters each with a single member)

I Compute the similarities between the n− 2 ”old” clusters with
the new cluster

I Repeat the last two steps until all members have been merged
into a single cluster.
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Clustering Cities by Distances

ATL BOS ORD DCA
ATL 0 934 585 542
BOS 934 0 853 392
ORD 585 853 0 598
DCA 542 392 598 0
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Clustering Cities by Distances (Single Linkage)

ATL BOS ORD DCA
ATL 0 934 585 542
BOS 934 0 853 392
ORD 585 853 0 598
DCA 542 392 598 0

DCA-BOS ATL ORD
DCA-BOS 0 542 598
ATL 542 0 585
ORD 598 585 0
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Clustering Cities by Distances (Single Linkage)

DCA-BOS ATL ORD
DCA-BOS 0 542 598
ATL 542 0 585
ORD 598 585 0

DCA-BOS-ATL ORD
DCA-BOS-ATL 0 585
ORD 585 0
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Four Airports (Single linkage)
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Clustering Cities by Distances (complete linkage)

ATL BOS ORD DCA
ATL 0 934 585 542
BOS 934 0 853 392
ORD 585 853 0 598
DCA 542 392 598 0

DCA-BOS ATL ORD
DCA-BOS 0 934 853
ATL 934 0 585
ORD 853 585 0

DCA-BOS ATL-ORD
DCA-BOS 0 934
ATL-ORD 934 0
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Four Airports (complete linkage)
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Four Airports (side by side)
ATL BOS ORD DCA

ATL 0 934 585 542
BOS 934 0 853 392
ORD 585 853 0 598
DCA 542 392 598 0

DCA-BOS ATL ORD
DCA-BOS 0 934 853
ATL 934 0 585
ORD 853 585 0

DCA-BOS ATL-ORD
DCA-BOS 0 934
ATL-ORD 934 0

Table: Complete Linkage

ATL BOS ORD DCA
ATL 0 934 585 542
BOS 934 0 853 392
ORD 585 853 0 598
DCA 542 392 598 0

DCA-BOS ATL ORD
DCA-BOS 0 542 598
ATL 542 0 585
ORD 598 585 0

DCA-BOS-ATL ORD
DCA-BOS-ATL 0 585
ORD 585 0

Table: Single Linkage
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All Airports (comparison)
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k-means Clustering

I Specify a number of potential clusters (k)

I Split of the data (either randomly or based on some previous
results) into k partitions

I Compute the mean (aka centroid) for each partition

I For the first point (sample) determine the nearest centroid

I The closeness is typically quantified using the Euclidean
distance

I Assign that point to that center

I Repeat for points 2 through n

I Assess the fit using the intra-cluster variance

I Repeat as needed.
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k-means Illustration
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k-means Illustration
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k-means Illustration
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k-means

I This is an example of non-hierarchical clustering

I Need to specify the number of clusters up front

I Need to specify (deterministically or randomly) the centers of
the clusters up front

I Results are sensitive to the choice of k and initial partitions

I There is a relationship between k-means and PCA.
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Batch Effect Discovery

I The MDS method is very useful for detecting batch effects

I Batch effects tend to be stronger that biological effects

I They also affect most probe sets (the biological effect may
only be captured by a few)

I This can be an effective weapon in your QC arsenal (this is
how I start any new analysis)
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From CCR 2008 Paper
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ALL/AML Data
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Semi-supervised Learning

I Heatmap illustration:
I Select a panel of probe-sets based on the two-sample t-test
I Carry out hierarchical clustering with respect to the patients

(the columns)
I Carry out hierarchical clustering with respect to the probe sets

in the panel (the rows)
I Present the results using a heatmap

I Some consider this an unsupervised analysis as the
hierarchical clustering algorithm is unaware of the classes

I This is not an accurate assessment: It is semi-supervised in
the sense that we are picking genes based on the phenotype

I A procedure is unsupervised if the class info is only used for
annotation
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R Code to simulate Heatmap

simulate.noise.heatmap=function(n,m,alpha)

{
# Simulate Expression Matrix

EXPRS=matrix(rnorm(2*n*m),m,2*n)

grp=factor(rep(0:1,c(n,n)))

rownames(EXPRS)=paste("Gene",1:m,sep="")

colnames(EXPRS)=paste("patient id",1:(2*n),sep="")

# Get the two sample t-statistics

pvals=rowttests(EXPRS, grp)$p.value

topgenes=which(pvals<alpha)

EXPRS=EXPRS[topgenes,]

annodat=data.frame(Condition=ifelse(grp==0,"N","Y"),row.names=colnames(EXPRS))

pheatmap(EXPRS,

border_color =NA,

show_rownames = FALSE,

show_colnames=FALSE,

annotation_col=annodat,

color=colorRampPalette(c("red3", "black", "green3"))(50),

annotation_colors=list(Condition=c(Y="blue",N="yellow")))

return(length(topgenes))

}
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Heatmap Example: m = 20, 000, n = 20, α = 0.005
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Heatmap Example: m = 40, 000, n = 20, α = 0.0025
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Heatmap Example: m = 20, 000, n = 3, α = 0.005

Condition
Condition

Y
N

−2

−1

0

1

2

3



Introduction Inference Model Classification Class Discovery Multiple Testing Counts GLM RNA-Seq GLM Interaction

R Code to simulate PC

simulate.noise.PC=function(n,m,alpha)

{
# Simulate Expression Matrix

EXPRS=matrix(rnorm(2*n*m),m,2*n)

grp=factor(rep(0:1,c(n,n)))

# Get the two sample t-statistics

pvals=rowttests(EXPRS, grp)$p.value

topgenes=which(pvals<alpha)

EXPRS=EXPRS[topgenes,]

annodat=data.frame(Condition=ifelse(grp==0,"N","Y"),row.names=colnames(EXPRS))

PC=cmdscale(dist(t(EXPRS)))

plot(PC,xlab="PC1",ylab="PC2",col=ifelse(grp==0,"yellow","blue"),pch=19)

return(length(topgenes))

}
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Heatmap Example: K = 20000, n = 20, α = 0.005
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Heatmap Example: K = 40000, n = 20, α = 0.0025
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Heatmap Example: K = 20000, n = 3, α = 0.005
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Reminder: A Self-fulfilling Prophecy

I Statistical method for unsupervised learning guarantee one
thing

I They will return a clustering of your data

I What they do not guarantee and are invariably unable to
verify, is the biological relevance or reproducibility of the
clustering

I In light of this Self-fulfilling Prophecy, these methods should
be used with utmost care
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Section 6

Elements of Multiple Testing



Introduction Inference Model Classification Class Discovery Multiple Testing Counts GLM RNA-Seq GLM Interaction

Multiple Testing: Motivation

I Flip a single coin from a large batch of newly minted coins 10
times

## [1] "T" "T" "T" "T" "T" "T" "T" "H" "T" "T"

I Is this a biased coin?

##

## Exact binomial test

##

## data: sum(x == "T") and length(x)

## number of successes = 9, number of trials = 10, p-value = 0.02148

## alternative hypothesis: true probability of success is not equal to 0.5

## 95 percent confidence interval:

## 0.5549839 0.9974714

## sample estimates:

## probability of success

## 0.9
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Multiple Testing: Motivation
I Flip two coins each 10 times

## [1] "T" "T" "T" "T" "T" "T" "T" "H" "T" "T"

## [1] "T" "H" "T" "H" "H" "H" "T" "T" "H" "H"

I Are any of the two coins biased?

binom.test(sum(x1=='T'), n=length(x), p = 0.5)

##

## Exact binomial test

##

## data: sum(x1 == "T") and length(x)

## number of successes = 9, number of trials = 10, p-value = 0.02148

## alternative hypothesis: true probability of success is not equal to 0.5

## 95 percent confidence interval:

## 0.5549839 0.9974714

## sample estimates:

## probability of success

## 0.9

binom.test(sum(x2=='T'), n=length(x), p = 0.5)

##

## Exact binomial test

##

## data: sum(x2 == "T") and length(x)

## number of successes = 4, number of trials = 10, p-value = 0.7539

## alternative hypothesis: true probability of success is not equal to 0.5

## 95 percent confidence interval:

## 0.1215523 0.7376219

## sample estimates:

## probability of success

## 0.4
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Multiple Testing

I We have previously considered testing for significance of a
single gene

I The analysis of high-dimensional data, including array and
sequencing data, is concerned with testing the significance of
multiple loci/genes

I Microarray : 20,000-50,000 probe sets
I GWAS: 500,000-5,000,000 typed SNPs
I RNA-Seq: 22,000 genes (humans), ? genes (ecoli)

I Let m denote the number of genes (or SNPs) to be tested

I Rather than testing a single hypothesis, we are concerned with
testing multiple hypotheses

I The decision rule must now account for testing m hypotheses
simultaneously (multiple testing)
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Hypothesis Notation

I Gene j (among the m genes) is either associated with the
outcome or not

I The truth is unknown to us

I The null hypothesis for gene j is denoted by Hj (gene j is

I Hj : gene j is not associated with the outcome of interest

I The alternative hypothesis is denoted by H̄j

I H̄j : gene j is associated with the outcome of interest

I Suppose that we only test a single gene, say gene j , among
the m genes

I Let pj (lower case p) denote the corresponding P-value

I pj is called the marginal or unadjusted P-value

I
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Unadjusted vs Adjusted P-values

I Suppose that we only test a single gene, say gene j , among
the m genes

I Let pj (lower case p) denote P-value corresponding to Hj

I pj is called the marginal or unadjusted P-value

I If m hypotheses are tested, inference on Hj on the basis of pj
is inappropriate

I The P-value for Hj has to account for testing the other m − 1
hypotheses

I We will denote the adjusted P-value by Pj (upper case P)
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Additional Notation

I Suppose that gene j is not associated with the outcome of
interest (Hj is true)

I Then
I Decision rule rejects → False-Positive (FP)
I Decision rule fails to reject → True-Negative (TN)

I Suppose that gene j is associated with the outcome of interest
(Hj is false)

I Decision rule rejects → True-Positive (TP)
I Decision rule fails to reject → False-Negative (FN)
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Summarizing a Multiple Testing Procedure

I The results from any multiple testing procedure can be
summarized as the following table

Accept Reject Total
Truth Null A0 R0 m0

Alt. A1 R1 m1

A R m

I Notation:
I m: Number of tests, m0,m1 number of null/true genes
I R: Number of genes rejected according to the decision rule
I A: Number of genes accepted according to the decision rule
I R0/R1 number of TN/FP
I A0/A1 number of FN/TP
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Example

I Results from an analysis based on m = 10 genes:
## gene truth pvalue

## 1 gene1 0 0.29070

## 2 gene2 1 0.61630

## 3 gene3 1 0.00320

## 4 gene4 0 0.01641

## 5 gene5 0 0.25150

## 6 gene6 0 0.58450

## 7 gene7 0 0.22890

## 8 gene8 1 0.12630

## 9 gene9 0 0.26080

## 10 gene10 0 0.04980

I Investigator decides to use following decision rule: Any gene
with a corresponding unadjusted P-value of less than 0.05 will
be rejected.

I Note:
I m0 = 7 and m1 = 3
I R = 3 will be rejected based on the decision rule
I Consequently A = m − R = 7 will be accepted
I R0 = 2,R1 = 1,A0 = 5 and A1 = 2
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Example: Fill in the 2x2 table

Accept Reject Total
Truth Null A0 = 5 R0 = 2 m0 = 7

Alt. A1 = 2 R1 = 1 m1 = 3
A = 7 R = 3 m = 10
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The Truth

I What know or observe is this
## gene pvalue

## 1 gene1 0.29070

## 2 gene2 0.61630

## 3 gene3 0.00320

## 4 gene4 0.01641

## 5 gene5 0.25150

## 6 gene6 0.58450

## 7 gene7 0.22890

## 8 gene8 0.12630

## 9 gene9 0.26080

## 10 gene10 0.04980

I and not (truth colum is not known to us):
dat

## gene truth pvalue

## 1 gene1 0 0.29070

## 2 gene2 1 0.61630

## 3 gene3 1 0.00320

## 4 gene4 0 0.01641

## 5 gene5 0 0.25150

## 6 gene6 0 0.58450

## 7 gene7 0 0.22890

## 8 gene8 1 0.12630

## 9 gene9 0 0.26080

## 10 gene10 0 0.04980
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Example: Fill in the 2x2 table (based on what we observe)

I We can only fill in the bottom row of the table

Accept Reject Total
Truth Null A0 R0 m0

Alt. A1 R1 m1

A = 7 R = 3 m = 10

I The remaining quantities are fixed unknown quantities or
unobservable random variables.



Introduction Inference Model Classification Class Discovery Multiple Testing Counts GLM RNA-Seq GLM Interaction

Framework of multiple testing

Accept Reject Total
Truth Null A0 R0 m0

Alt. A1 R1 m1

A R m

I m is a known constant

I m0 and m1 are unknown constants

I R and A are determined on the basis of applying the decision
rule to the data

I They are observable random quantities

I The true states of the genes of the genes are unknown

I A0,A1,R0 and R1 are unobservable random quantities
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Framework versus Method

I To account for multiple testing one has to first decide on a
framework and then on a method

I Framework: The quantity that we aim to control

I Method: statistical procedure used to for estimating or
controlling the error rate for a set of hypothesis tests.

I Example: Investment
I What is the objective: capital preservation or growth
I Approach: Index funds, individual stocks, CDs, money under

mattress

I : When thinking of multiple testing, first decide what the
framework is and then decide on an appropriate strategy
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Family-wise Error Rate (FWER)

I What is the probability to commit at least one false-rejection
(among m) given that all genes are null

I What is the the probability of the event R ≥ 1 if m = m0

I FWER = P(R ≥ 1|m = m0)

I Note that when m = 1 (single gene), this definition is
identical to the tyep I error we have previously considered
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Bonferroni

I A simple method for controlling FWER is called the
Bonferroni method

I To control the type I error of the experiement at the α level,
test each gene at the α

m level

I The Bonferroni adjusted P-value is defined as

Pj = m × pj

I Technical note: Pj is defined above could be larger than 1 so
a more technically rigorous definition is

Pj = min{m × pj , 1}

I In other words, if m × pj is larger than 1, then truncate Pj at
1.
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False Discovery Rate (FDR)

I In the FWER framwork, the objective is to control
FWER = P(R ≥ 1|m = m0)

I This is the probability of at least one false-discovery when
none of the genes are true.

I Consider the quantity R0
R

I This is the proportion of of false discoveries among the genes
rejected

I This is an unobservable random quantity (As R0 is not
observable)

I In the FDR framework is based on controlling the expected
value of this ratio

I The FDR is defined as E [R0
R ]

I Note that when m0 = m (none of the genes are true),
FWER=FDR
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Methods for the FDR Framework

I An early method proposed to control FDR, is a method due to
Benjamini and Hochberg (BH; JRSBB 1985)

I One of the assumptions for the BH method is that of
independence among the genes

I That assumption may be questionable (due to co-regulation
among genes)

I A more recent approach is due to Storey

I The adjusted P-values calculated based on Storey’s method
are called Q-values
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Genome-wide Significance

I In GWAS papers, α = 5× 10−8 is typically considered the
threshold for genome-wide significance

I It is based on a Bonferroni correction: If you consider testing
m = 1, 000, 000 SNPs at the FWER level of 0.05, then each
SNP should be tested at the

α =
0.05

1, 000, 000
= 5× 10−8,

level

I Suppose that the unadjusted P=value for a SNP is 5× 10−7

I Is this ”reaching” genome-wide significance?

I The term ”suggestive” is also used
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”Reaching” Genome-wide Significance

I Suppose that the m = 1, 000, 000 SNPs are independent

I The adjusted P-value is

P = 5× 10−7 ×m = 5× 10−7 × 106 = 0.5,

I This is off by an order of magnitude (0.5 = 0.05× 10)

I It is not ”reaching”
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Summary of Multiple Testing

I Multiple testing must be accounted for when testing for
associations in the context of high-dimensional data

I FWER and FDR are the two common frameworks for
quantifying error

I Error rate estimates can be used to compute ’adjusted’
p-values

I Resampling-based methods can increase power in controlling
error when sample sizes are sufficient for their use.

I When large-scale patterns of differential expression are
observed, it is important to consider if such effects are
biologically reasonable, and if technical factors can be
attributed to the variation.
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Section 7

Distributions for Counts
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Two Approaches for Analysis of RNA-Seq

I Two-stage method: Convert counts to ”Expression” and then
use statistical methods for microarrays (e.g., t-test) and then

I One-stage method: Relate the counts directly to the
phenotype

I This is done through using statistical methods for modeling
counts

I We generally promote the latter approach for data analysis
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DESeq for RNA-Seq

I The goal is to provide sufficient background to understand the
DESeq method

I We are not suggesting that DESeq is the best approach for
analysis of RNA-Seq data

I We are considering it in this course as one, of many other
methods, that adhere to the one-stage approach principle

I Added bonus: Nicely written R extension package (important
feature for teaching)

I DESeq has many limitations (e.g., it cannot directly deal with
quantitative and censored outcomes)

I Also some of the theoretical details (e.g., the effect of using
plugin estimates for nuisance parameters) have seemingly not
been fully fleshed out
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Three Distributions for Count Data

I RNA-Seq data are counts (not continuous measurements)

I To properly model RNA-Seq data, we need to consider
distributions to model counts

I We will consider three important distributions for counts:
I Binomial
I Poisson
I Negative Binomial

I There are many other distributions for counts (e.g., geometric
distribution) that will not be discussed
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Distribution for Counts: Support

I When considering a distribution of a count variable, we first
have to determine its support

I The support of the distribution consists of the values that
could occur with positive probability

I For example, if we toss a coin once and we count the number
of heads, the support is {0, 1}

I If we flip it twice, the support is {0, 1, 2}
I Why is 3 not in the support? How about -1?

I These values are not possible (they have zero probability)
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Distribution for Counts: Probability Mass Function

I Example: we toss a fair coin once and we count the number
of heads (call it K )

P(K = 0) =
1

2
and P(K = 1) =

1

2

and
P(K = k) = 0

if k is not 0 or 1

I The probability mass function (PMF) determines the
probability that K assumes value k in the support

I Sometimes we use the terms ”distribution” and ”PMF”
interchangeably
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Distribution for Counts: Probability Mass Function

I Example: we toss a fair coin twice and we count the number
of heads (call it K )

P(K = 0) =
1

4
and P(K = 1) =

1

2
and P(K = 2) =

1

4

I Why?

I Note that if once adds up P(K = k) over all k in the support
the sum should be one∑

k

P(K = k) = 1
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Exercise: Support and PMF

I we toss a biased coin twice and we count the number of heads
(call it K )

I the probability that any toss lands a head is π = 1
3

I What is the support of the distribution

I What is the PMF

I Repeat the last steps if π is any arbitrary number (between 0
and 1 of course)
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Exercise: Support and PMF

I the support is as in the previous example {0, 1, 2}
I Why is it unchanged

P(K = 0) =
4

9
and P(K = 1) =

4

9
and P(K = 2) =

1

9

I More generally

P(K = 0) = (1−π)2 and P(K = 1) = 2π(1−π) and P(K = 2) = π2



Introduction Inference Model Classification Class Discovery Multiple Testing Counts GLM RNA-Seq GLM Interaction

Flipping the coin

I Throughout this discussing we will consider flipping a coin

I The coin lands a head with probability π (could be biased) or
tail with probability 1− π

I For convenience, we will recode H as 1 and T as 0

I We will flip it n times.
I Notation:

I n is to denote the number of trials
I On any trial (or flip), if we land an H we will call it an event

(or success)
I or if we land a T we will call it a failure

I RNA-seq connection: You can think of a read mapping to a
gene to be an event
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Three Variants of the Coin Tossing Experiment

1. Fix the number of trials (n) upfront and then toss the coin n
times

I The number of events (among n trials) is random

2. Toss the coin a large number of times and assume that each
one of these many trials has a small probability of being an
event

I Here n is large and π is small (close to 0)

3. Fix the number of desired events upfront, then toss the coin
repeatedly to achieve that number

I Here the number of trials n is random
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Example: Fixed n

I We flip the coin n = 6 times

I Observed sequence: TTHTTH

I We recode this as 001001
I This corresponds to

I n = 6 trials
I 2 events (or successes)
I or equivalently 4 failures
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Number of possible Outcomes

I Example 1: Suppose that n = 2
I 4 possible outcomes: {00, 10, 01, 11}
I 4 = 2× 2 = 22

I Example 2: Suppose that n = 3
I Eight possible outcomes:
{000, 100, 101, 001, 110, 011, 101, 111}

I 8 = 2× 2× = 23

I The number of possible outcomes based on n trials is 2n
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Permutations of the integers 1 through n

I n = 1 : {1}
I n = 2 : {12, 21}
I n = 3 : {123, 132, 213, 231, 312, 321}
I The number of permutations of the integers 1, 2, 3, . . . , n is n!

I We say n factorial
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Factorial Function

I Integers are ”whole” numbers . . . ,−2,−1, 0, 1, 2, . . .

I Consider a non-negative integer k (0, 1, 2, . . .)

I 0! = 1

I 1! = 1

I 2! = 2× 1 = 2

I 3! = 3× 2× 1 = 6

I 4! = 4× 3× 2 = 24

I · · ·
I k! = k × (k − 1)× (k − 2)× . . . 3× 2× 1
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Number of Permutations

I Example 1: Suppose that n = 3 and k = 1
I We had 1 event among three trials
I The three possible permutations are {001, 010, 100}

I Example 2: Suppose that n = 4 and k = 2
I We had 2 events among four trials
I The three possible permutations are
{1100, 1010, 1001, 0011, 0101, 0110}

I What is the number of permutations for k events amomg n
trials
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Number of Permutations
I The number of possible permutations on the basis of k events

among n trials (
n

k

)
=

n!

k!(n − k)!

I Example 1: Suppose that n = 3 and k = 1(
3

1

)
=

3!

1!(2− 1)!
=

3× 2× 1

1× 2× 1
= 3

choose(3,1)

## [1] 3

I Example 2: Suppose that n = 4 and k = 2(
4

2

)
=

4!

2!(4− 2)!
=

4× 3× 2× 1

2× 1× 2× 1
=

24

4
= 6

choose(4,2)

## [1] 6
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Bernoulli Distribution

I Suppose that we toss the coin just once

I In other words n = 1

I We say that the number of events follows a Bernoulli
distribution with parameter π

I The distribution is

P[K = k] = πk(1− π)1−k , k = 0, 1

set.seed(12324)

# Simulate 10 Bernoulli random variables with

# parameter pi=0.5

rbinom(10,1,0.5)

## [1] 1 1 1 1 1 0 0 0 0 0

# Simulate 5 Bernoulli random variables with

# parameter pi=0.23

rbinom(5,1,0.23)

## [1] 0 0 0 0 0
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Binomial Distribution
I For the Bernoulli distribution n = 1
I More generally (when n ≥ 1) the number of events K is said

to follow a Binomial distribution with parameters n and π
I The distribution is

P[K = k] =

(
n

k

)
πk(1− π)n−k ,

k = 0, 1, 2, . . . , n
I Note that when n = 1 the Binomial reduces to a Bernoulli

distribution

set.seed(12324)

# Simulate 10 Binomial random variables with

# parameter n=2 and pi=0.5

rbinom(10,2,0.5)

## [1] 1 2 2 1 2 0 0 1 1 1

# Simulate 5 Binomial random variables with

# parameter n=2 and pi=0.23

rbinom(5,2,0.23)

## [1] 0 1 0 0 0
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Negative Binomial Distribution

I How many times do you have to flip a coin to get r > 0 events

I Model the number of random trials needed to get r events

I This distribution is called the negative binomial distribution

I The probability distribution is

P[K = k] =

(
k + r − 1

r − 1

)
πr (1− π)k ,

where k = r , r + 1, r + 2, . . .

set.seed(13224)

# Simulate the number of trials needed to get k=5 events

rnbinom(10,5,0.1)

## [1] 63 60 56 30 64 62 36 36 44 37
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Poisson Distribution

I The number of rare events (π is small) among this large
number of trials follows a Poisson distribution

I The probability distribution is

P[K = k] =
e−λλk

k!
,

where k = 0, 1, 2, . . .

set.seed(13224)

# Simulate 10 Poisson variates with m

rpois(10,0.1)

## [1] 0 1 0 0 0 0 1 0 0 0
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Relationship between Binomial and Poisson Distribution
I Consider tossing the coin a large number of times

n=1000000

p=1/n

I Note that we have n = 106 trials with a low success
probability of p = 10−6

I The expected number of events among these 106 trials is
n × p = 1. Why?

I Now simulate 99999 numbers from this binomial distribution
set.seed(9988)

x=rbinom(B9,n,p)

length(x)

## [1] 99999

I What is the expected number of events (i.e., the expected
number of events (among n trials) across B = 99999
simulations)?

mean(x)

## [1] 1.00055
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Relationship between Binomial and Poisson Distribution

I Now compare the empirical distributions to the Poisson
distributions
round(dpois(0:7,lambda=1),3)

## [1] 0.368 0.368 0.184 0.061 0.015 0.003 0.001 0.000

round(table(x)/B9,3)

## x

## 0 1 2 3 4 5 6 7

## 0.367 0.369 0.183 0.061 0.016 0.003 0.000 0.000
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Mean and Variance of Negative Binomial

I A negative binomial distribution can be parameterized in
terms of

I r and p
I or µ and σ2

I or µ and a dispersion parameter α (more on this later)

I The relationship between these two parametrizations is given
by

µ = r
1− p

p
and σ2 = r

1− p

p2
,

and

p =
µ

σ2
and r =

µ2

σ2 − µ
I If you provide r and p, you can calculate µ and σ2

I Or, if you provide µ and σ2, you can recover r and p.
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Negative Binomial PMF in terms of µ and α

I The NB PMF parametrized in terms of p and r (the number
of events) is

P[K = k] =

(
k + r − 1

r − 1

)
πr (1− π)k ,

where k = r , r + 1, r + 2, . . .

I The NB PMF parametrized in terms of the mean µ and the
dispersion parameter α is

P[K = k] =
Γ[k + α−1]

Γ[α−1]Γ[k + 1]

(
1

1 + µα

)α−1(
µ

α−1 + µ

)k

,

where k = 0, 1, . . .

I The variance is µ(1 + αµ)

I As α shrinks to 0 (no-dispersion), the distribution becomes
Poisson
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Means and Variances

Distribution Support Mean Variance

Bernoulli(π) 0,1 π π(1− π)

Binomial(n, π) 0, 1, . . . , n nπ nπ(1− π)

Poisson(λ) 0, 1, 2, . . . , λ λ

NB(p, r) r , r + 1, r + 2, . . . , r 1−p
p r 1−p

p2
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Section 8

Logistic Regression
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Linear Regression Example: Gene Expression

I Consider the simple linear regression model

Y = β0 + β1x + ε,

where
I x = 0 (untreated)
I or x = 1 (treated)

I Y is the observed ”expression” of the gene

I ε is the measurement noise term

I We assume that it follows a normal distribution with mean 0
and variance σ2
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Reminder: Important Fact about Normal Distribution

I Consider a normal distribution with mean 0 and standard
deviation σ

I If the data are shifted by a constant µ, then

1. resulting distribution remains normal
2. The mean of the new distribution is µ+ 0 = µ
3. Its standard deviation remains unchanged

I The last two (but not first) property are true for any
distribution

I Recall Y = β0 + β1x + ε

I Y follows a normal distribution with mean µ = β0 + β1x and
variance σ2

I IMPORTANT: µ depends on x (unless of course β1 = 1)
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Linear Regression Example: Interpretation

I Model
Y = β0 + β1x + ε,

I The goal of (mean) regression is to estimate the expected
value of Y given treatment status

I Conditional on x = 0 (i.e., not receiving treatment), the
expected value of Y is

β0 + β1 × 0 = β0

I Conditional on z = 1 (i.e., receiving treatment), the expected
value of Y is

β0 + β1 × 1 = β0 + β1
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Linear Regression Example: Interpretation

I Model
Y = β0 + β1x + ε,

I β0 (the intercept) is the expected value of Y if no treatment
is administered (average baseline value)

I β1 is the treatment effect
I If treatment is administered, the expected value of expression

is
I increased by β1 units if β1 > 0
I decreased by β1 units if β1 < 0
I unchanged if β1 = 0
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Regression for Binary Outcomes

I Suppose that Y is a binary outcome

I It assumes values 0 or 1

I Consider the previous model

Y = β0 + β1x + ε,

I Is it appropriate? Why or why not?
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Logistic Regression

I Relate the probability of the outcome of the event Y = 1 to
treatment

I More specifically, relate the log-odds to the treatment

I The log-odds will be modeled as a linear function of x

β0 + β1x + ε

I This is an example of a generalized linear model

I The expected outcome of Y is not modeled directly as a
linear function

I A transformation of the expected outcome of Y is modeled as
a linear function
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Expected value of a binary event

I Suppose that Y assumes 1 with probability π or 0 with
probability 1− π

I P(Y = 1) = π and P(Y = 0) = 1− π
I IMPORTANT: P(Y = 1) = E (Y )

I The expected value of Y is the probability that it assumes the
value 1

I Why?
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Odds vs Probability

I Suppose that π = P(Y = 1)

I The odds of the event Y = 1 (to occur) is defined as

Odds[Y = 1] =
Probability that Y = 1 occurs

Probability that Y = 1 does not occur
=

π

1− π
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Odds Ratio Versus Relative Risk

I π0 = P[Y = 1|X = 0]: Probability that the event occurs if
sample is not treated

I π1 = P[Y = 1|X = 1]: Probability that the event occurs if
X = 1sample is treated

I The odds-ratio is

OR =
π1

1−π1
π0

1−π0

I The relative risk is
RR =

π1

π0
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The Logistic Model

I The log-odds of the event Y = 1

log
P(Y = 1|X = x)

1− P(Y = 1|X = x)
= β0 + β1x

I or equivalently

log
E (Y |X = x)

1− E (Y |X = x)
= β0 + β1x

I Recall that in the simple linear regression case, we assumed
that

E [Y |X = x ] = β0 + β1x
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Link Function

I For a probability π, define the ”logit” transformation as

log
π

1− π

I This is the log-odds of an event with probability π

I Note that in the logistic model, the probability of the event is
linear in the parameter through this logit transformation

log
π

1− π
= β0 + β1x

I In the GLM literature, this is called the link function
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Overdispersion

I Recall that if K follows a binomial distribution with
parameters n and π, then

I mean µ = nπ
I variance σ2 = nπ(1− π)

I Clustering in the data results in the actual variance to be
different than the nominal variance (nπ(1− π))

I Overdispersion: Actual variance is larger than nominal variance
I Underdispersion: Actual variance is smaller than nominal

variance

I The choice of a GLM and evaluation of its performance
should start and end with considering/addressing the
overdispersion issue

I The use of Poisson and Negative Binomial models are two
common choices for GLM for overdispersed data
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Generalized Linear Models (GLM)

Define µx = E (Y |X = x) as the expected value of the outcome
given treatment status (x = 0 or x = 1)

Distribution Support Link Mean

Binomial 0, 1, . . . , n β0 + β1x = log µx
1−µx

µx = exp(β0+β1x)
1+exp(β0+β1x)

Poisson 0, 1, 2, . . . β0 + β1x = log(µx) µx = exp(β0 + β1x)

Negative Binomial r , r + 1, . . . β0 + β1x = log(µx) µx = exp(β0 + β1x)
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Section 9

Negative Binomial GLM for RNA-Seq
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General Note

I Recall the simple linear regression model for expression

Y = β0 + β1x + ε,

where
I x = 0 (untreated)
I or x = 1 (treated)

I Y is the observed ”expression” of the gene

I ε is the measurement noise term

I The parameter of interest is β1 (the treatment effect)

I There are two other unknown parameters, β0 and σ2 the
estimation procedure has to deal with in a principled manner

I β0 and σ2 are nuisance parameters

I They are not of primary (or any) interest. But you have to
deal with them!
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General Hypothesis

I Is the RNA abundance level for any of the m genes affected
by treatment

I Let Hj denote the null hypothesis for gene j

I Hj : The RNA abundance level for gene j is not affected by
treatment

I H̄j : The RNA abundance level for gene j is affected by
treatment

I The global null hypothesis: H1 and H2 and .... and Hm are all
true

I The global alternative: H̄1 or H̄2 or .... or H̄m is true

I In other words, under the alternative at least one of the
marginal null hypotheses is false
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Observed Data

I Some notation
I n denotes the number of samples
I m denotes the number of genes
I Kij denotes the observed number of reads mapped to gene i

for sample j
I xj = 0 or 1 denotes the treatment status for sample j

I What is observed for sample j is the vector

K1j , . . . ,Kmj , xj

I In other words m counts (one per gene) and the experimental
factor

I Note that the Kij form a table of counts of dimension n ×m
(n samples and m genes)
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DESeq: Notation for Negative Binomial Distribution

I The count K is assumed to follow a negative binomial
distribution with parameters p ∈ (0, 1) and r > 1

I The distribution is PMF is

P(K = k) =

(
k + r − 1

r − 1

)
pr (1− p)k ,

for k = r , r + 1, . . .

I Rather than considering the model as NB[p, r ] we will
consider it as NB[µ, α], where

P[K = k] =
Γ[k + α−1]

Γ[α−1]Γ[k + 1]

(
1

1 + µα

)α−1(
µ

α−1 + µ

)k

,

where k = 0, 1, . . .
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DESeq: Notation

I Kij denotes the observed number of reads mapped to gene i
for sample j

I Kij follows a negative binomial distribution with
I Mean µij (indexed by gene i and sample j)
I Dispersion parameter αi (indexed by the gene i)

I The mean is assumed to be µij = sjqij where
I log qij = βi0 + βi1xj
I sj is a gene j specific normalization constant
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DESeq: Reformulate Hypotheses

I Hypotheses of interest
I The global null hypothesis: H1 and H2 and .... and Hm are all

true
I The global alternative: H̄1 or H̄2 or .... or H̄m is true

I Reformulation
I The global null hypothesis: β11 = 0 and β21 = 0 and .... and
βm1 = 0

I In other words, all of the βj1 are equal to zero
I The global alternative: β11 6= 0 or β21 = 0 or .... or βm1 = 0
I In other words, at least one of the βj1 is not equal to zero
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DESeq: Assumption on Distribution

Kij follows a negative binomial distribution with mean µ and
dispersion parameter α
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DESeq: Assumption on Mean of Distribution

I Conditional on the treatment status of sample j (xj = 0 or 1),
the expected value of Kij is

µij = sj × qij

where
log qij = βi0 + βi1xj

I Note that two regression parameters are indexed by i

I Why? Because these are gene i specific parameters

I Why is xj not indexed by i?

I Final Assumption: sij = sj
I In other words: Within sample j , the normalization parameter

is constant across the genes

I How many assumptions so far?



Introduction Inference Model Classification Class Discovery Multiple Testing Counts GLM RNA-Seq GLM Interaction

DESeq: Main parameters and Nuisance Parameters

I The m main parameters of interest

β11, . . . , βm1

I The unknown nuisance parameters are
I The m gene specific intercepts

β10, . . . , βm0

I the n sample specific normalization constants

s1, . . . , sn

I The m gene specific nuisance parameters

α1, . . . , αm
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DESeq: Main parameters and Nuisance Parameters

I Assuming the model assumptions are correct, the estimation
of the regression parameters βi0, βi1 is fairly straightforward

I The DESeq authors propose to estimate the normalization
constant for sample j as

sj = median
Kij

KR
i

,

where

KR
i =

( m∏
j=1

Kij

) 1
m

I Here KR
i is the geometric mean of Ki1, . . . ,Kin (the n counts

for gene i)

I The median is taken over all m genes for which KR
i is positive
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DESeq: Dispersion parameter

I A key issue in using the NB model is proper handling of the
gene specific dispersion parameters

α1, . . . , αm

I The estimation of the dispersion parameter is a challenging
task

I DESeq2 assumes that αi is random following a normal
distribution

I The results are sensitive to the estimates

I One of the key differences between DESeq2 and DESeq is the
approach taken to estimate these nuisance parameters
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DESeq Software Overview

I The analysis of RNA-Seq data using the DESeq2 package will
be reviewed in detail in the upcoming weeks

I The estimation and inference for the model is done through
the DESeq function

I It performs the following steps in the order give

1. estimation of size factors s1, . . . , sn
2. estimation of dispersion parameters α1, . . . , alpham
3. Fit NB GLM model
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DESeq: Model Exercise

I Kij denotes the observed number of reads mapped to gene i
for sample j

I xj = 0 or 1 denotes the treatment status for sample j

I Say we want to account for another covariate zj (e.g.,
temperature)

I What is observed for sample j is the vector

K1j , . . . ,Kmj , xj , zj

I Questions
I State the hypotheses
I Propose a model (that incorporates the additional covariate)
I List any assumptions that you have made
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DESeq: Model Exercise

I The null hypothesis
H0 : β11 = 0 and β21 = 0 and . . . βm1 = 0

I Conditional on xj and zj , the observed number of reads
mapped to gene i for sample j , Kij , follows a negative
binomial distribution with

I Mean µij

I Dispersion parameter αi (gene specific)

I Conditional on the treatment status of sample j (xj = 0 or 1)
and the temperature zj , the expected value of Kij is

µij = sj × qij

where
log qij = βi0 + βi1xj + βi2zj

I The normalization parameters are assumed to be sample (not
gene) specific (sij = sj)
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DESeq: Model Nuisance Parameter

I The m main parameters of interest

β11, . . . , βm1

I The unknown nuisance parameters are
I The m gene specific intercepts

β10, . . . , βm0

I The m gene specific coefficients for the new covariate

β12, . . . , βm2

I the n sample specific normalization constants

s1, . . . , sn

I The m gene specific nuisance parameters

α1, . . . , αm
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edgeR: Another NB Model for RNA-Seq Counts

I Assume that the Kij follows a NB distribution with mean µij
and dispersion paramater αi

I The mean (conditional on treatment status x) is

µi j = Mjpxi

where
I Mj is the library size (total number of reads for sample j
I pxi is the relative abudance of the gene i given treatment

status x
I p0i is the relative abudance of the gene i given no treatment
I p1i is the relative abudance of the gene i given treatment

I Treatment changes the abudance of RNA in gene i if p0i 6= p1i

I This is same distributional assumption as in DESeq
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MLE Illustration

I In a GLM, the parameters βi0 and βi1 are estimated using the
method of Maximum likelihood (MLE)

I We illustrate the method using this coin tossing example:

I We toss a coin once and record the number of heads

I Suppose that you conduct two independent replicates of this
experiment

I K1 the number of events (among n = 1 trial) in experiment 1

I K2 the number of events (among n = 1 trial) in experiment 2

I The PMF of K1 is

P(K1 = k) = πk(1− πk)1−k

I The PMF of K1 is

P(K2 = k) = πk(1− πk)1−k

I Here k = 0 or 1
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Joint Distribution

I Repeat the experiment B times

I The joint PMF is

P(K1 = k1, . . . ,KB = kB) = πk1(1−π)1−k1×. . .×πkB (1−π)1−kB

I Note that the implicit assumption is that the experiments are
mutually independent

I Under this assumption, the joint PMF is the product of the
marginal PMFs

I Plugging in the observed counts into the joint PMF yields the
likelihood function
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Binomial Example: Observed data

set.seed(2131)

x=rbinom(5,1,0.5)

x

## [1] 1 0 0 0 1

I Observed data x1 = 1, x1 = 0, x3 = 0, x4 = 0 and x5 = 1

I What is the likelihood?
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Binomial Example: Likelihood

I Observed data x1 = 1, x1 = 0, x3 = 0, x4 = 0 and x5 = 1

I The likelihood

L[π] = πx1(1− π)x1 × πx2(1− π)x2 × πx3(1− π)x3 ×
πx4(1− π)x4 × πx5(1− π)x5 ×

= π1(1− π)1−1 × π0(1− π)1−0 × π0(1− π)1−0 ×
π0(1− π)1−0 × π1(1− π)1−1

= π2(1− π)3

I Given the observed data find the value of π that maximizes
this probability
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Binomial Example: Maximum Likelihood

The maximum value of the function L[π] = π2(1− π)3 occurs at
π = 0.4.
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Maximum Likelihood Calculation for NB

I For gene i , let k11, . . . , k1n the n observed counts

I For patient j plug the observed count kij into the PMF of the
NB distribution f [kij ;µij ;αi ]

I Write the likelihood function as a product of these n terms

L =
n∏

j=1

f [kij ;µij ;αi ] = f [kij ;β0i , β1i , sj , αi ]

I The function depends on β0i , β1i , sj and αi

I One approach: Come up with some estimates of sj and αi and
plug them into the likelihood

I Pretend that these are the true values

I Now the likelihood is only a function of β0i and β1i
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Section 10

Interaction versus Additive Effects
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Example 1: No Interaction
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Example 2: No Interaction
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Example 3: Interaction
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Model Interaction

I Y denotes the gene expression
I Let x denote the treatment indicator

I x = 0 if not treated or 1 if treated

I Let z denote the knock-out indicator
I z = 0 is WT or 1 otherwise

I The expected value of Y given treatment indicator x and
knock out indicator z is denoted by

µx ,z = E [Y |X = x ,Z = z ]

I The model will be
Y = µx ,z + ε

where ε is a the measurement error
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Example 1: Linear Model for No Interaction

Y = β0 + β1z + ε (β2 = 0)
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Example 2: No Interaction

Y = β0 + β1z + β2x + ε
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Example 3: Interaction

Y = β0 + β1z + β2x + β3xz + ε
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Interaction Examples

I Example 1: What are the signs for β0 and β1?

I Example 2: What are the signs for β0, β1 and β2?

I Example 2: What are the signs for β0, β1, β2 and β3?
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Incorporating Interactions into the NB Model

I Conditional on xj and zj , the observed number of reads
mapped to gene i for sample j , Kij , follows a negative
binomial distribution with

I Mean µij

I Dispersion parameter αi (gene specific)

I Conditional on the treatment status of sample j (xj = 0 or 1)
and the temperature zj , the expected value of Kij is

µij = sj × qij

where
log qij = βi0 + βi1xj + βi2zj + βi3xjzj

I The normalization parameters are assumed to be sample (not
gene) specific (sij = sj)
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Example 1: No Time Course Effect

There is no time-course effect

time

Y
no trt
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Example 2: Time Course Effect

There is a time course effect

time

Y
no trt
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Example 3: Time Course Effect

There is a time-course effect within each condition but not
time-course effect across conditions. Is this interesting?

time

Y
trt
no trt
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Example 4: Time Course Effect

There is a time-course effect within each condition and a vertical
shift with respect to treatment. Is this interesting?

time

Y
no trt
trt
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Example 5: Time Course Effect

There is a time-course effect within each condition and a phase
shift with respect to treatment. Is this interesting?

time

Y
no trt
trt
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Example 6: Treatment Time Course Effect

time

Y

no trt
trt
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Example 6: Treatment Time Course Effect

time

Y

no trt
trt
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