Welcome to STA663-2019’s documentation!¶
- Crash course in Jupyter and Python
- Text
- Scalars
- Numbers
- Series
- Introduction to
pandas
- Series and Data Frames
- Creating Data Frames
- Indexing Data Frames
- Structure of a Data Frame
- Selecting, Renaming and Removing Columns
- Selecting, Renaming and Removing Rows
- Transforming and Creating Columns
- Sorting Data Frames
- Summarizing
- Split-Apply-Combine
- Combining Data Frames
- Fixing common DataFrame issues
- Reshaping Data Frames
- Chaining commands
- Moving between R and Python in Jupyter
- Graphics and Visualization in Python
- Functional programming in Python (operator, functional, itertoools, toolz)
- Algorithms and Data Structures
- Vectors
- Matrices
- Sparse Matrices
- Working with Matrices
- Solving Linear Equations
- Linear least squares
- Applications of Linear Alebra: PCA
- Understanding the SVD
- Linear Algebra Examples
- Review of linear algebra
- Finding Roots of Equations
- Numerical Optimization
- Algorithms for Optimization and Root Finding for Multivariate Problems
- Using optimization routines from
scipy
andstatsmodels
- Line search in gradient and Newton directions
- Least squares optimization
- Gradient Descent Optimizations
- Constrained Optimization
- Dimension Reduction
- Nonlinear Dimension Reduction
- Clustering
- C++ Mechanics
- C Crash Course
- Introduction to C++
- Hello world
- Namespaces
- Types
- Type conversions
- Command line inputs
- Header, implementation and driver files
- Using
make
- A more flexible Makefile
- Input and output
- Arrays
- Loops
- Function arguments
- Arrays, pointers and dynamic memory
- Functions
- Generic programming with templates
- Anonymous functions
- Function pointers
- Standard template library (STL)
- STL algorithms
- Random numbers
- Statistics
- Numerics
- Introduction to C++
- Using
pybind11
- Resources
- Example 1 - Basic usage
- Example 2 - Adding doc and named/default arguments
- Example 5 - Using STL containers
- Using
cppimport
- Example 6: Vectorizing functions for use with
numpy
arrays - Example 7: Using
numpy
arrays as function arguments and return values - Example 8: More on working with
numpy
arrays (optional) - Example 9: Using the C++
eigen
library to calculate matrix inverse and determinant - Example 10: Using
pybind11
withopenmp
(optional)
- Cython
- Just-in-time compilation (JIT)
- Native code compilation
- Pythran and Transonic
- Probabilistic Programming Concepts
- Random Variables
- Monte Carlo Methods
- Monte Carlo integration
- Markov Chains
- Metropolis and Gibbs Sampling
- Hamiltonian Monte Carlo (HMC)
- Deterministic methods
- Probabilistic Programming Module
- Using PyMC3
- Linear regression
- Using the GLM module
- Robust linear regression
- Logistic regression
- Logistic model not using
glm
- Hierarchical model
- Mixture models
- Gaussian process models
- PyStan
- TensorFlow and Edward
- Using TensorFlow
- Tensorflow