Optimal Allocation of Exclusivity Contracts

Changrong Deng, Saša Pekeč

Fuqua School of Business, Duke University

changrong.deng@duke.edu

http://people.duke.edu/~cd113/

2013 INFORMS Annual Conference, Minneapolis

October 7, 2013
Motivation

Exclusivity contracts are valuable.

- Sponsorships
 - e.g., sponsors in sports events and teams.
- Advertisement
 - e.g., internet ads.
Sponsored Search Ads

Search

About 982,000,000 results (0.46 seconds)

Web
Images
Maps
Videos
News
Shopping
More

Ads related to laptop

Laptop Deals at Dell | dell.com
www.dell.com/Laptops
★★★★★ 2,418 reviews for dell.com
Save Big on New Dell Laptops w/ Intel® Core™. Shop Now!

- Dell Mini Laptops
- Dell Laptop Accessories
- XPS 13- Most Compact 13" Ultrabook™
- Students: Get an XBOX w/ Your Dell

Laptop Deals | BestBuy.com
www.bestbuy.com/Laptops
Free Shipping On Laptops at Best Buy®. Order Online Today!

- Dell Laptops - Asus Laptops - Toshiba Laptops - HP Laptops

Ultra-Thin Laptop - Ultrabook™. Inspired by Intel | Acer.com
www.acer.com/Laptop
The Aspire S5. Thin yet powerful.
Sponsored Search Ads

4 personal results. 1,110,000,000 other results.

Ad related to desktop

Desktop Computers | BestBuy.com
www.bestbuy.com/Desktops
Free Shipping On Desktop Computers. Shop Best Buy® Official Site Today!

Hp - Refurbished Pavilion Slimline Desktop - $479.99
Acer - Revo Smart Pc Desktop - 2gb Memory - $363.58
Motivation

Exclusivity contracts are valuable.

- **Sponsorships**
 - e.g., sponsors in sports events and teams.

- **Advertisement**
 - e.g., internet ads.

- **Distribution agreements**
 - e.g., fast moving consumer goods, brand name products.

- **Franchising**
 - e.g., car dealerships.
Manufacturer and Its Retailers

Acura dealers in North Carolina
Acura dealers in North Carolina
Acura dealers in North Carolina
Manufacturer and Its Retailers

Lexus dealers in North Carolina
Motivation

Exclusivity contracts are valuable.

- **Sponsorships**
 - e.g., sponsors in sports events and teams.

- **Advertisement**
 - e.g., internet ads.

- **Distribution agreements**
 - e.g., fast moving consumer goods, brand name products.

- **Franchising**
 - e.g., car dealerships.
Overview of the Talk

Optimal allocation and pricing in the presence of exclusivity.

- Revenue-maximizing posted price procedures:
 - Inflated prices;
 - Improved revenues.

- Suboptimality of posted prices (simultaneous and dynamic).

- Theoretical barriers for:
 - Finding revenue-maximizing (optimal) procedures: mechanism design;
 - Practical implementation of optimal procedures: computational complexity.

- A hybrid auction-pricing procedure:
 - Easy to implement;
 - Revenue-dominates posted prices;
 - Optimal in a perfect competition setting.
Relation to the Literature

- **Supply chain contracts**
 - Cachon (2003), Chen (2007), etc.

- **Externalities in supply chain**
 - Bernstein and Federgruen (2004), Netessine and Zhang (2005), Adida and DeMiguel (2011), etc.

- **Allocation and pricing on networks with positive and negative externalities**
 - Positive externality: Haphpanah et al. (2013), Candogan et al. (2012);

- **Allocation and pricing with interdependent valuations (externalities)**
 - Jehiel, Moldovanu, and Stacchetti (1996), Jehiel and Moldovanu (2001), etc.

- **Multi-dimensional mechanism design**
 - Jehiel, Moldovanu, and Stacchetti (1999), Manelli and Vincent (2007), etc.
A monopolistic seller has unlimited supply of identical items (e.g., contracts) allocated among N unit-demand buyers.

Buyer i’s type: a vector $\mathbf{v}_i = (w_i, v_i)$

- w_i: buyer i’s (exclusivity) valuation for the item if none of her competitors gets an item.
- v_i: buyer i’s (non-exclusivity) valuation for the item if there is a competitor who also obtains the item.
- $w_i \geq v_i \geq 0$; $w_i - v_i$ is the exclusivity premium.

Information structure

- \mathbf{v}_i is private information; drawn independently (across buyers) from a joint CDF F_i with support $\Omega = [\underline{w}, \overline{w}] \times [\underline{v}, \overline{v}]$ (PDF f_i).
Example: Consider two buyers with independent valuations $v_i \sim U[0, 1]$.
Example: Consider two buyers with independent valuations $v_i \sim U[0, 1]$.

- If no exclusivity valuations
 - $P^0 = 0.5$, the probability that a buyer accepts is 0.5, and the expected revenue R^0 is $2 \times 0.25 = 0.5$.
Example: Consider two buyers with independent valuations $v_i \sim U [0, 1]$.

- $w_i = v_i + \varepsilon_i$, $\varepsilon_i \sim U [0, 1]$ and $v_i \perp \varepsilon_i$
 - $P^* = 0.75$, and the expected revenue R^* is 0.75.
Consider ex ante identical buyers, i.e., \((w_i, v_i)\) is independently and identically distributed across buyers.

(i) The optimal price with exclusivity is greater than that without exclusivity, \(P^* \geq P^0\).

(ii) The optimal expected revenue with exclusivity is greater than that without exclusivity, \(R^* \geq R^0\).

However, posted prices are NOT optimal among all allocation and pricing procedures.
Definition of Mechanism

- WLOG, consider direct mechanisms that allocate items based on buyers’ reports, i.e., \(\vec{v} = (\hat{v}_i, \hat{v}_{-i}) \in \Omega^n \).
- A direct (deterministic) mechanism specifies, for each \(\vec{v} \in \Omega^n \)
 - Allocation: \(p_i : \Omega^n \rightarrow \{0, 1\} \) determines whether buyer \(i \) gets the item.
 - Payments: \(m_i : \Omega^n \rightarrow \mathbb{R} \) is the payment from buyer \(i \) to the seller.
- If buyer \(i \) does not participate, she does not get any item.
- Buyer \(i \)'s ex post utility when she reports her type as \(\hat{v}_i \), while her true type is \(v_i \), and when other buyers report \(v_{-i} \), is

\[
U_i (\hat{v}_i, v_i, v_{-i}) = w_i p_i (\hat{v}_i, v_{-i}) \prod_{j \neq i} (1 - p_j (\hat{v}_i, v_{-i})) \\
+ v_i p_i (\hat{v}_i, v_{-i}) \left(1 - \prod_{j \neq i} (1 - p_j (\hat{v}_i, v_{-i})) \right) \\
- m_i (\hat{v}_i, v_{-i}).
\]
Revenue Maximization Problem

The seller’s Revenue Maximization Problem (General-RMP) is

\[
\max \left\{ p_i, m_i \right\}_{i=1}^n \sum_{i=1}^n \int m_i (v_i, v_{-i}) \, dF(v)
\]

subject to

(EPIC) \quad U_i (v_i, v_i, v_{-i}) \geq U_i (\hat{v}_i, v_i, v_{-i}) \quad \text{for all } i \text{ and all } v_i, \hat{v}_i, v_{-i},

(EPIR) \quad U_i (v_i, v_i, v_{-i}) \geq 0 \quad \text{for all } i \text{ and all } v_i, v_{-i},

(Feasibility) \quad \sum_{i=1}^n p_i (v) \leq n \text{ and } 0 \leq p_i (v) \leq 1 \quad \text{for all } i.

- For general two-dimensional \(v \), there exist no belief-free mechanisms (Manelli and Vincent, 2007).
Local Exclusivity Setting

The scope of exclusivity may be limited to a geographic area, to a market segment, or to a reference group of perceived peers/competitors.
Acura dealers in North Carolina
Local Exclusivity Setting

The scope of exclusivity may be limited to a geographic area, to a market segment, or to a reference group of perceived peers/competitors.

- Buyers’ competition network: a publicly known network \((N, E)\)
 - \(E\): the 0-1 adjacency matrix, \(e_{ij} = 1\) if and only if buyer \(i\) considers buyer \(j, j \neq i\), to be competitors.
 - \(S(i) \subseteq N \setminus \{i\}\) denote the set of buyer \(i\)’s competitors, i.e., \(S(i) = \{j \in N : e_{ij} = 1\}\).
Manufacturer and Its Retailers

Acura dealers in North Carolina
Manufacturer and Its Retailers

Acura dealers in North Carolina
Local Exclusivity Setting

The scope of exclusivity may be limited to a geographic area, to a market segment, or to a reference group of perceived peers/competitors.

- **Buyers’ competition network**: a publicly known network \((N, E)\)
 - \(E\): the 0-1 adjacency matrix, \(e_{ij} = 1\) if and only if buyer \(i\) considers buyer \(j, j \neq i\), to be competitors.
 - \(S(i) \subseteq N \setminus \{i\}\) denote the set of buyer \(i\)’s competitors, i.e., \(S(i) = \{j \in N : e_{ij} = 1\}\).

- **Local Linear Exclusivity (LLE)**
 - Buyer \(i\)’s exclusivity is
 \[w_i = v_i + \sum_{j \in S(i)} \alpha_{ij} v_j. \]
 - Non-negative matrix \(A = [\alpha_{ij}]\) is publicly known.

Bounded Local Linear Exclusivity (BLLE)

For every \(j\)
\[\sum_{f \in S(i) : j \in f} \alpha_{ij} \leq 1. \]
If buyer \(j\) does not get the item, its competitors cannot realize more than 100% of the value \(j\) would have realized if allocated the item.
Manufacturer and Its Retailers

Acura dealers in North Carolina
Local Exclusivity Setting

The scope of exclusivity may be limited to a geographic area, to a market segment, or to a reference group of perceived peers/competitors.

- **Buyers’ competition network:** a publicly known network \((N, E)\)
 - \(E\): the 0-1 adjacency matrix, \(e_{ij} = 1\) if and only if buyer \(i\) considers buyer \(j, j \neq i\), to be competitors.
 - \(S(i) \subseteq N \setminus \{i\}\) denote the set of buyer \(i\)’s competitors, i.e., \(S(i) = \{j \in N : e_{ij} = 1\}\).

- **Local Linear Exclusivity (LLE)**
 - Buyer \(i\)’s exclusivity is
 \[
 w_i = v_i + \sum_{j \in S(i)} \alpha_{ij} v_j.
 \]
 - Non-negative matrix \(A = [\alpha_{ij}]\) is publicly known.

- **Bounded Local Linear Exclusivity (BLLE)**
 - For every \(j\)
 \[
 \sum_{\{i : j \in S(i)\}} \alpha_{ij} \leq 1.
 \]
 - If buyer \(j\) does not get the item, its competitors cannot realize more than 100% of the value \(j\) would have realized if allocated the item.
Optimal Mechanism with Local Exclusivity

- Exclusivity premium, $\gamma_i \triangleq \sum_{j \in S(i)} \alpha_{ij} v_j$.
- Define virtual valuation, $\psi_i \triangleq v_i - \frac{1 - F_i^\gamma(v_i)}{f_i^\gamma(v_i)}$.

Proposition

For any set of realizations $\{v_i\}_{i \in N}$, the seller’s revenue maximization problem can be stated as a point wise maximization problem

$$\max \sum_{i=1}^{n} \left(\psi_i + \gamma_i \prod_{j \in S(i)} (1 - p_j(v)) \right) p_i(v)$$

subject to

(Feasibility) $\sum_{i=1}^{n} p_i(v) \leq n$ and $0 \leq p_i(v) \leq 1$ for all i,

(Monotonicity) $p_i(v_i, v_{-i})$ is increasing in v_i.
Optimal Mechanism with Local Exclusivity

<table>
<thead>
<tr>
<th></th>
<th>BLLE</th>
<th>LLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Information</td>
<td>Non-Exclusive only (straightforward)</td>
<td>Exclusive or Non-Exclusive (could be hard)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(max. ind. set)</td>
</tr>
<tr>
<td>Private Information</td>
<td>Exclusive or Non-Exclusive (could be hard)</td>
<td>Exclusive or Non-Exclusive (could be hard)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(max. ind. set)</td>
</tr>
</tbody>
</table>

- The maximum independent set problem is a special case of the optimal mechanism design problem (a canonical NP-hard problem).
 - A reasonable procedure implementing optimal allocation and pricing is unlikely to be found.
 - A full characterization of settings which guarantee existence of a reasonable implementation is unlikely to be established.
Overview of the Talk

Optimal allocation and pricing in the presence of exclusivity.

- Revenue-maximizing posted price procedures:
 - Inflated prices;
 - Improved revenues.

- Suboptimality of posted prices (simultaneous and dynamic).

- Theoretical barriers for:
 - Finding revenue-maximizing (optimal) procedures: mechanism design;
 - Practical implementation of optimal procedures: computational complexity.

- A hybrid auction-pricing procedure:
 - Easy to implement;
 - Revenue-dominates posted prices;
 - Optimal in a perfect competition setting.
Hybrid Auction-Pricing Procedure

Parameters

Phase I (auction): an ascending auction for exclusivity with reserve r and upper threshold R (Exclusivity Valuations Ascending Auction).

Phase II (pricing): posted price P.

Three parameters: $[r, R, P]$

- r: the reserve price in the ascending auction for exclusivity.
- R: the maximum price in the ascending auction for exclusivity.
- P: the posted price for Phase II.
The seller separates exclusive and non-exclusive allocations and attempts to sell exclusivity first.

- The seller sets the reserve price r.
- The seller runs the ascending auction for exclusivity.
- The auction ends
 1. by allocating exclusively at a price smaller than R,
 2. by the seller’s cancelling exclusivity auction when the auction price reaches R. In this case, the seller offers items to both buyers at the predetermined fixed price P.

Hybrid auction-pricing procedure revenue-dominates posted prices.
It is optimal in the perfect competition setting, i.e., \((N, E)\) is a complete graph.

Proposition

In a perfect competition setting with LLE, there exist parameters \(r, R,\) and \(P\) such that

i) If buyers bid/respond truthfully, the outcome of the hybrid auction-pricing procedure matches that of the seller’s optimal mechanism.

ii) Bidding truthfully in the hybrid auction-pricing procedure is a perfect Bayesian equilibrium.
Hybrid Auction-Pricing Procedure

Implications

- Sell exclusivity first.
- Use posted prices for non-exclusive allocation.
- Adjustments to non-exclusive sales procedures are insufficient.
- How close is the hybrid auction-pricing procedure to the optimal mechanism in general?
We study the optimal allocation and pricing of exclusivity contracts.

- Provide revenue-maximizing posted price procedures:
 - Inflated prices; improved revenues;
 - Suboptimality of posted prices (simultaneous and dynamic).

- Theoretical barriers for:
 - Finding optimal procedures: multi-dimensional mechanism design;
 - Practical implementation of optimal procedures: computational complexity.

- A hybrid auction-pricing procedure:
 - Easy to implement: sell exclusivity first;
 - Revenue-dominates posted prices: three parameters \([r, R, P]\);
 - Optimal in a perfect competition setting.

- Extensions:
 - Dynamic pricing in the presence of exclusivity;
 - Computationally examining how well simultaneous and dynamic pricing perform relative to the optimal mechanism;
 - Implementable revenue-maximizing procedures on positive externalities.
Example: Supply Chain Contracts (1/2)

- Stage 1
 - A monopolistic supplier is selling K wholesale-price contracts to N retailers.
 - If getting the contract, the retailer can purchase from the supplier and sell in the market; otherwise, gets zero.
 - Stochastic market demand D
 - $a_i^\forall D$: demand when retailer i gets the contract non-exclusively.
 - $a_i^w D$: demand when retailer i gets the contract exclusively.
 - $\mathbf{a} = (a_i^w, a_i^\forall)$ is private information, $0 \leq a_i^\forall \leq a_i^w \leq 1$, and $\sum_{i=1}^{N} a_i^\forall \leq 1$.

Changrong Deng (Duke)
Acura dealers in North Carolina
Acura dealers in North Carolina
Example: Supply Chain Contracts (1/2)

Stage 1

- A monopolistic supplier is selling K wholesale-price contracts to N retailers.
- If getting the contract, the retailer can purchase from the supplier and sell in the market; otherwise, gets zero.
- Stochastic market demand D
 - $a_i^v D$: demand when retailer i gets the contract non-exclusively.
 - $a_i^w D$: demand when retailer i gets the contract exclusively.
 - $a = (a_i^w, a_i^v)$ is private information, $0 \leq a_i^v \leq a_i^w \leq 1$, and $\sum_i a_i^v \leq 1$.

Stage 2

- The supplier’s per unit production cost c_s, and the supplier charges the retailer c_s per unit purchased.
- The retailer decides how much to purchase from the supplier.
- No goodwill penalty on either the supplier or retailers; No salvage value; No marginal cost per unit incurred on the retailer.
- Demand realized.
• Π_c: total profit of coordinated supply chain.
• Retailer i’s profit:
 • Non-exclusivity: $v_i = a_i^v \Pi_c$.
 • Exclusivity: $w_i = a_i^w \Pi_c$.
• Supplier’s profit: 0 (note that the supplier gets profits from selling the contract).
• $v_i = (w_i, v_i)$ is retailer i’s (private) type.
• Extended to the general framework with coordinated buyback contracts that give zero second-stage profit to the supplier.
General Framework: Supply Chain Contracts (1/3)

- Goodwill penalty for the supplier and retailers: g_s, g_r.
- Retailer’s marginal cost per unit: c_r.
- Salvage value: v.
- Expected total demand: $\mu = E_D[D]$; Demand distribution G; Proportion: $a_i = a_i^w$ or a_i^v or 0.
- Retailer i’s order quantity: q_i; Vector of order quantity: $q = (q_1, q_2, \cdots, q_N)$.
- Retailer i’s expected sales: $S_i(q_i) = E_D[\min \{q_i, a_iD\}]$.
- Retailer i’s lost sales: $L_i(q_i) = E_D[\max \{0, a_iD - q_i\}]$.
- Retailer i’s leftover inventory: $l_i(q_i) = E_D[\max \{0, q_i - a_iD\}]$.
Consider a standard buyback contract \((w, b)\).

Retailer \(i\)’s optimal profit:

\[
\pi_i^* (q_i^* (w, b)) = a_i (\Pi_r - g_r \mu),
\]

where

\[
\Pi_r (w, b) = (p + g_r - c_r - w) G^{-1} \left(\frac{p + g_r - c_r - w}{p - v + g_r - b} \right) \\
- (p - v + g_r - b) \int_0^{G^{-1} \left(\frac{p + g_r - c_r - w}{p - v + g_r - b} \right)} G (D) dD.
\]

The supplier’s profit under retailer’s optimal order quantity:

\[
\pi_s (q^* (w, b)) = \sum_{i=1}^{N} a_i (\Pi_s (w, b) - g_s \mu),
\]

where

\[
\Pi_s (w, b) = (w + g_s - c_s) G^{-1} \left(\frac{p + g_r - c_r - w}{p - v + g_r - b} \right) \\
- (b + g_s) \int_0^{G^{-1} \left(\frac{p + g_r - c_r - w}{p - v + g_r - b} \right)} G (D) dD.
\]
\[\Pi_c = \max_q \pi_r(q) + \sum_{i=1}^{N} \pi_i(q_i) + \sum_{i=1}^{N} a_i (g_r + g_s) \mu. \]

Buyback contract that achieve \(\Pi_c \) (for some \(\lambda \geq 0 \))

\[
p + g_r - c_r - w^c = \lambda (p + g_s + g_r - c_s - c_r)
\]

and

\[
p - v + g_r - b^c = \lambda (p - v + g_s + g_r).
\]

\[\Pi_r (w^c, b^c) = \lambda \Pi_c \text{ and } \Pi_s (w^*, b^*) = (1 - \lambda) \Pi_c. \]

Supplier and retailers’ profits:

\[
\pi_i^c(q^*(w^c, b^c)) = a_i (\lambda \Pi_c - g_r \mu);
\]

\[
\pi_s^c(q^*(w^c, b^c)) = \sum_{i=1}^{N} a_i ((1 - \lambda) \Pi_c - g_s \mu).
\]

In the complete information setting (\(a^w_i \) and \(a^y_i \) are publicly known)

- The supplier extracts all the surplus of retailers in the first stage.
- \((w^c, b^c)\) is also optimal for the supplier in the two-stage game.
How to Sell Contracts?

The seller should post a single inflated price.

Lemma

A single posted price mechanism is revenue-optimal among two-price menus.
Additive Exclusivity Valuation

- \(w_i = v_i + \theta_i^0 \), where \(\theta_i^0 \) is publicly known additive premium.
- Virtual valuation: \(\psi_i \triangleq v_i - \frac{1 - F_i^v(v_i)}{f_i^v(v_i)} \).
- The feasible set of allocation: \(\mathcal{P}_{add} = \{ p: \sum_{i=1}^{n} p_i(v) \leq K, \quad 0 \leq p_i(v) \leq 1, \text{ and } p_i(v) \text{ is increasing in } v_i \text{ for all } i \} \).

Proposition

The optimal mechanism, i.e., functions \((p^*(v), m^*(v)) \), satisfies

\[
p^*(v) = \arg \max_{p \in \mathcal{P}_{add}} \left\{ \sum_{i=1}^{n} \left(\psi_i + \theta_i^0 \prod_{j \in S(i)} (1 - p_j(v)) \right) p_i(v) \right\}
\]

and \(m_i^*(v) = v_i p_i^*(v) + \theta_i^0 p_i^*(v) \prod_{j \in S(i)} (1 - p_j^*(v)) - \int_{v_i}^{v} p_i^*(t, v_{-i}) \, dt \).
Multiplicative Exclusivity Valuation

- \(w_i = \theta_i^1 v_i \), where \(\theta_i^1 \) is publicly known multiplier.
- The feasible set of allocation: \(\mathcal{P}_{mul} = \{ p : \sum_{i=1}^n p_i(v) \leq K, 0 \leq p_i(v) \leq 1, \text{ and } p_i(v) \left(1 + (\theta_i^1 - 1) \prod_{j \in S(i)} (1 - p_j(v))\right) \text{ is increasing in } v_i \text{ for all } i \} \).

Proposition

The optimal mechanism, i.e., functions \((p^*(v), m^*(v)) \), satisfies

\[
p^*(v) = \arg \max_{p \in \mathcal{P}_{mul}} \left\{ \sum_{i=1}^n \psi_i \left(1 + (\theta_i^1 - 1) \prod_{j \in S(i)} (1 - p_j(v))\right) p_i(v) \right\}
\]

and

\[
m_i^*(v) = v_i p_i^*(v) \left(1 + (\theta_i^1 - 1) \prod_{j \in S(i)} (1 - p_j^*(v))\right)
\]

\[- \int_{v_i}^{V_i} p_i^*(t, v_i) \left(1 + (\theta_i^1 - 1) \prod_{j \in S(i)} (1 - p_j^*(t, v_i))\right) dt.\]
By standard technique, we write the ex post payment as

\[m_i(v_i, v_{-i}) = v_i p_i(v_i, v_{-i}) \]

\[+ \left(\sum_{j \in S(i)} \alpha_{ij} v_j \right) p_i(v_i, v_{-i}) \prod_{j \in S(i)} (1 - p_j(v_i, v_{-i})) \]

\[- \int_{v_i}^{v_i} p_i(t, v_{-i}) \, dt. \]
Parallelogram Valuations

(0,0) (1,1) (1,2)
Finite Types, Grid Index=4

Parallelogram Valuations

(0,0) (1,1) (1,2)
Parallelogram Valuations

(0,0) → (1,1) → (1,2)
Types are \((w_i, v_i)\) with \(w_i = v_i + \varepsilon_i\). Discretize the type space \(\Omega\):
\[
\Omega(M) = \{(i/(M - 1) + j/(M - 1), i/(M - 1)) : i, j = 0, 1, \ldots, M - 1\}.
\]

- \(M\): the number of possible outcomes of \(v_i\) or \(\varepsilon_i\).
- Discrete uniform distributions on both \(v_i\) and \(\varepsilon_i\).

| Grid Index | \(M\) | \(|\Omega|\) | Seller’s Expected Revenue |
|------------|-------|-------------|--------------------------|
| 2 | 4 | 1.188 |
| 3 | 9 | 1.056 |
| 4 | 16 | 0.995 |
| 5 | 25 | 0.961 |
| 6 | 36 | 0.938 |
| 7 | 49 | 0.924 |
| 8 | 64 | 0.915 |
| 9 | 81 | 0.907 |
| 10 | 100 | 0.901 |
Concluding Remarks

We study the optimal allocation and pricing of exclusivity contracts.

- Provide revenue-maximizing posted price procedures:
 - Inflated prices; improved revenues;
 - Suboptimality of posted prices (simultaneous and dynamic).

- Theoretical barriers for:
 - Finding optimal procedures: multi-dimensional mechanism design;
 - Practical implementation of optimal procedures: computational complexity.

- A hybrid auction-pricing procedure:
 - Easy to implement: sell exclusivity first;
 - Revenue-dominates posted prices: three parameters \([r, R, P]\);
 - Optimal in a perfect competition setting.

- Extensions:
 - Dynamic pricing in the presence of exclusivity;
 - Computationally examining how well simultaneous and dynamic pricing perform relative to the optimal mechanism;
 - Implementable revenue-maximizing procedures on positive externalities.