Subjective Performance and the Value of Blind Evaluation*

Curtis R. Taylor
Department of Economics
Duke University
Box 90097
Durham, NC 27708
E-mail: curtis.taylor@duke.edu

Huseyin Yildirim
Department of Economics
Duke University
Box 90097
Durham, NC 27708
E-mail: yildirh@econ.duke.edu

October 1, 2009

Abstract

The incentive and project selection effects of agent anonymity are investigated in a setting where an evaluator observes a subjective signal of project quality. Although the evaluator cannot commit ex ante to an acceptance criterion, she decides up front between informed review, where the agent’s ability is directly observable, or blind review, where it is not. An ideal acceptance criterion balances the goals of incentive provision and project selection. Relative to this, informed review results in an excessively steep equilibrium acceptance policy: the standard applied to low-ability agents is too stringent and the standard applied to high ability agents is too lenient. Blind review, in which all types face the same standard, often provides better incentives, but it ignores valuable information for selecting projects. In general, the evaluator prefers a policy of blind (resp. informed) review when the ability distribution puts more weight on high (resp. low) types, the agent’s payoff from acceptance is high (resp. low), or the quality signal is precise (resp. imprecise). Applications include the admissibility of character evidence in criminal trials, school admissions, professional certification, journal submissions, and grant proposals.

Keywords: standards, fairness, discrimination, review policy.

JEL: C73, D02, D81.

Before Paris, nobody drank our wine. Well, friends did. But their palates were ... less discriminating.

–Bill Pullman as Jim Barrett in Bottle Shock.

1 Introduction

The settings in which an evaluator must rely only on her subjective impressions to assess output or performance are ubiquitous. In cultural environments individuals are asked to evaluate

*The authors thank Andrea Prat, four anonymous referees, and numerous seminar participants for helpful comments. They also benefited from suggestions by Atila Abdulkadiroğlu, Peter Arcidiacono, Jeremy Burke, Yeon-Koo Che, Andrew Daughety, Preston McAfee, Marco Ottaviani, and Jennifer Reinganum. Sergiu Ungureanu provided valuable research assistance. The authors are responsible for any remaining errors.
wine, food, art, poetry, movies, and music. In retail settings experts and panel participants review a vast array of consumer products. In criminal trials and lawsuits juries are charged with weighing evidence, and in academia faculty evaluate exams, manuscripts, and grant proposals. Given that subjective evaluation is endemic to so many significant situations, it is important to understand what elements add or detract from its efficacy. A key question in this regard is whether or not the reviewer should be permitted to use supplemental information such as the applicant’s identity and prior record in the current evaluation, i.e., should the reviewer be “informed” or “blind”?

At first glance, the answer to this question may seem obvious: in situations where an individual’s current output or performance – and not his innate ability – is the object of evaluation, the review process should be blind whenever feasible in order to minimize bias. Note, however, that not all “bias” is undesirable. Because evaluation is often inherently noisy, an effective use of information may well dictate that individuals with stronger track records face lower standards.

In fact, the mode of review, blind or informed, varies both across and within evaluation settings. Wine tasting, for example, is virtually always performed blindly. Indeed, in 1976 a now famous blind tasting, known as the judgment of Paris, is credited with dispelling the widely held belief that fine French wines were superior to those produced in California. Similarly, in classical music, Goldin and Rouse (2000) note that most major U.S. symphony orchestras adopted some form of blind auditioning for hiring new members in the 1970s and 80s. Likewise, nearly all licensing and competency examinations such as bar exams and medical board exams are scored blindly.

There are numerous settings in which a mixture of blind and informed review procedures are employed. For instance, there is a long-standing controversy among legal scholars about when judges should allow juries to hear character evidence, what McCormick (1954, pp. 340–41) defines as “a generalized description of one’s disposition, or of one’s disposition in respect to a general trait such as honesty, temperance, or peacefulness.” Prior to the advent of Internet search engines, there was a similar debate in academia about whether journal submissions should be reviewed blindly. Blank (1991) reports that among 38 well-known journals in chemistry, biology, physics, mathematics, history, psychology, political science, sociology, and anthropology, 11 used blind review, as did 16 of 38 major economics journals. In a more

1 See Taber (2005) for a complete story. The Paris tasting is also the subject of the recent film Bottle Shock.

2 Bar exams in the U.S. contain an essay section which involves subjectivity in grading. Similarly, the United States Medical Licensing Exam (USMLE) contains a Clinical Skills section which uses standardized patients to test medical students and graduates on their ability to gather information from patients, perform physical examinations, and communicate their findings to patients and colleagues. This subjectively-graded portion of the USMLE is blind in the sense that the evaluators do not know the professional background (e.g., medical school or grades) of the examinee, although they obviously observe physical characteristics such as sex and race.
recent survey of 553 journals across 18 disciplines, Bachand and Sawallis (2003) find that 58% employed blind review.

There are also many settings in which informed review is the dominant mode of evaluation. For instance, colleges and universities do not admit students based simply on aptitude test scores (SAT, GRE, LSAT, etc.), but they also consider such items as the applicant’s prior grades, reference letters, and personal essays. Similarly, grant proposals typically contain not only a description of the project, but the academic track record of the primary investigator; i.e., his education, major publications, and previous grants.

The diversity in the mode and scope of evaluation procedures gives rise to several questions which our analysis helps to address. Specifically, in subsection 8.1 we contribute to the debate on character evidence, arguing that our findings support its use in cases of blue-collar street crime such as robbery or assault but not in cases of white-collar corporate crime such as embezzlement or price fixing. In subsection 8.2 we explain why – in the context of our model – it makes sense for colleges and universities to scrutinize an applicant’s entire academic pedigree and conversely for professional certification to be determined solely by performance on a blindly scored exam; e.g., why informed review is used for evaluating admission to medical school but blind review is used for licensing doctors. Finally, in subsection 8.3 we offer an explanation of the seemingly paradoxical claim that it is optimal to use blind review to evaluate scholarly manuscripts and informed review to assess grant proposals.

Most extant studies on the effects of blind versus informed review (summarized in the next section) have been experimental or empirical. While revealing important insights, many of these investigations have presented conflicting evidence, making it difficult – in the absence of a coherent theory – to draw general conclusions or make consistent policy recommendations. In this paper we study a simple game-theoretic model that focuses on three common features of many review processes: (1) the “applicant” can improve the quality of his “project” by expending effort; (2) evaluation is typically a noisy process in which the reviewer observes only an imperfect subjective signal of quality; and (3) knowing the identity of the applicant would provide the reviewer with additional information about his ability to produce a high quality project.\(^3\)

While the applicant in our model cares only about getting his project accepted, the evaluator is a Bayesian decision maker who weighs her payoffs from implementing the right or the wrong decision.\(^4\) The equilibrium of this model is examined under three regimes: commitment – which is an ideal benchmark setting where the quality signal is verifiable and the evaluator

\(^3\) Ottaviani and Wickelgren (2009) investigate an evaluation setting with quite different features; e.g., symmetric information and learning.

\(^4\) The model can be altered to allow the applicant to care about project quality so long as there is some residual incongruity between his payoff’s and the evaluator’s.
can credibly commit to an acceptance criterion, informed review - in which the evaluator observes the applicant's ability, and blind review - in which the applicant's ability is hidden. In all three cases the reviewer follows a simple equilibrium strategy: accept the project if and only if the quality signal is above a certain threshold, or standard.

Under informed review, the evaluator - not surprisingly - applies weak standards to high-ability applicants and tough standards to low-ability ones. In fact, these standards are too weak and too tough when compared with the ideal review process. In a sense, the benchmark process calls for a more “fair” standard across applicants, even though no direct preference for fairness is assumed.

The reason the ideal review policy is flatter than the one implemented under informed review is that it is designed not only to select good projects, but also to provide incentives to produce them. Both weak and tough standards generate poor incentives, albeit for opposing reasons. The marginal return to effort is low to an agent who is either very likely to have his project accepted or very likely to have it rejected. The optimally designed acceptance policy thus creates better incentives for agents at both ends of the type distribution by raising the standards facing high-ability agents and lowering those facing low-ability ones. This policy, however, is not time-consistent. Once the applicant has invested effort in the project and submitted it for evaluation, the reviewer would prefer to renege and apply a steeper (informationally-efficient) acceptance policy. Hence, if the quality signal observed by the evaluator is not verifiable (e.g., because it is impossible or impractical to quantify), then it will not be possible for her to credibly implement the relatively flat ideal acceptance criterion. It may, however, be possible for her to commit to remain ignorant about applicant types and apply a completely flat standard; that is, to perform blind review.

Under blind review, the evaluator sets a uniform standard as if she were assessing an applicant of average ability. This policy provides good incentives for applicants at both ends of the type distribution, but blind review is also clearly suboptimal when compared with the ideal policy. Specifically, blind review does not allow the evaluator to use any information about applicant ability to mitigate noise in the review process.

Hence, both informed and blind review procedures are suboptimal, but for different reasons. On one hand, ex post project selection is better under informed review, on the other hand, ex ante incentives are often better under blind review. Thus, the evaluator’s preference between review procedures will depend on the environment, especially on the distribution of ability in the applicant pool and the informational content of the quality signal. Specifically, when the distribution of applicants contains a large proportion of high-ability agents, then assessing project quality is relatively less important than providing incentives, and the evaluator, therefore, prefers blind review. Conversely, when the applicant pool contains a large
proportion of low-ability agents, then project selection is paramount and the evaluator prefers informed review. In a similar vein, when the signal on project quality is very precise, then observing the applicant’s ability provides little additional information and blind review is optimal. On the other hand, when the quality signal is very imprecise, then observing ability provides significant incremental information, and informed review is the preferred mode of evaluation.

The remainder of the paper is organized as follows. The relevant literature is reviewed in the next section. In Section 3 the basic model is presented. Sections 4, 5, and 6 contain the analysis of the commitment benchmark, informed review, and blind review settings respectively. In Section 7 the factors influencing the evaluators equilibrium choice of review policy are determined. Section 8 contains a discussion of the three applications mentioned above. In Section 9 the basic model is generalized in three dimensions: competition among evaluators (9.1), costly false rejections (9.2), and non-productive effort (9.3). Section 10 contains concluding remarks and a discussion of future work. The proofs of all propositions and lemmas are relegated to Appendix A and a parametric example is solved in Appendix B.

2 Related Literature

There is a large empirical and experimental literature on the impact of anonymity on the academic publication process, which is ably surveyed by Snodgrass (2006). In particular, papers by Blank (1991) in economics, Horrobin (1982) in modern languages, Link (1998) in medicine, Peters and Ceci (1982) in psychology, and Zuckerman and Merton (1971) in physics, found compelling evidence that informed review is likely to introduce status, gender, or geographical bias in evaluation of scholarly manuscripts. In fact, several of these studies were initiated in response to concerns raised by young and female scholars, and subsequently led some journals such as the American Economic Review [Ashenfelter (1992)] and the journals of the modern language association to change their evaluation policy to blind review.

In the 1970s and 80s, the concern about gender-biased hiring caused most major U.S. symphony orchestras to adopt some form of blind auditioning. Goldin and Rouse (2000) estimate that the switch to blind auditions can explain 25 percent of the increase in female orchestra musicians hired over the intervening years.

The theoretical literature on subjective performance evaluation is relatively small [e.g., Levin (2003) and MacLeod (2003)] and almost exclusively addresses contracting problems within an agency setting. This paper considers a complementary setting in which transfers between the parties are not allowed and the principal can decide to remain ignorant of the agent’s ability. The perverse incentive effect associated with better information at the core of
this paper is reminiscent of similar results found in career concern models, either in the form of reduced effort by the agent [e.g., Dewatripont et al. (1999), and Holmstrom (1999)], or in the form of concealing his private information [e.g., Morris (2001), and Prat (2005)]. Unlike in our static framework, the agent in these models cares about the principal’s belief about his ability. In the same spirit, several papers such as Cremer (1995), Riordan (1990), and Sappington (1986) have highlighted the potential benefits of committing to an imperfect monitoring technology in a contracting setting. In a different context, Fryer and Loury (2005) also observe that restrictions on what information can be used for selection may have serious consequences for incentives. The current paper also contributes to the literature on discretion versus rules (e.g., Milgrom and Roberts (1988)), which emphasizes that commitment to even an imperfect institution is sometimes better than no commitment at all.

In terms of the theoretical contribution, this paper belongs to the emerging literature on mechanism design without transfers, originating with the work by Holmstrom (1977 and 1984) on optimal delegation. To date this literature [e.g., Alonso and Matouschek (2008)] has focused exclusively on the case of hidden information and full commitment. This paper explores an environment of hidden action and considers full commitment (the benchmark), no commitment (informed review), and commitment to an imperfect institution (blind review).

A final strand of related research is the literature on statistical discrimination, which recognizes the potential tension between fairness and efficiency. Papers by Norman (2003) and Persico (2002) demonstrate that a more fair treatment of different groups need not interfere with a socially efficient allocation of resources. Depending on the elasticity of each group’s production function, to insist on a more equal treatment can also shift equilibrium production toward a more socially efficient level.

The paper most closely related to this one is Coate and Loury (1993), which builds on Arrow (1973). Coate and Loury study a model in which two identifiable groups that are ex ante identical invest in human capital. Employers receive noisy subjective signals regarding investment levels and decide who to hire. There are assumed to be multiple equilibria of the investment/evaluation game. Coate and Loury suppose that one group coordinates with employers on an equilibrium with a modest standard and higher investment, while the other group gets stuck in a Pareto inferior equilibrium with a high standard and low investment. In the setting investigated here, by contrast, agent ability is drawn from a continuum and represents real ex ante heterogeneity in productivity. Moreover, players are assumed to coordinate on the unique Pareto superior equilibrium. Coate and Loury argue that forcing employers to use the same standard across groups can correct inefficient coordination failure. The focus here is on a very different but complementary question - when is it in the best interest of an evaluator to commit herself not to use fundamentally valuable information in the review pro-
cess? Hence, the potential benefit of blind review in this context is not to break coordination failure, but to raise productivity at both ends of the ability spectrum by pooling incentives.

3 The Basic Model

There are two risk-neutral parties: an applicant (the agent) and an evaluator (the principal) who play a three-stage game. In the first stage, the principal commits to a review policy, which is either informed (she directly observes the agent’s type) or blind (she does not observe the agent’s type).

In the second stage, the agent, who knows the review policy and knows his own type \(\theta \), exerts effort \(p \in [0, 1] \) to prepare a project for review by the principal. The ultimate quality of the project is high \((q = h)\) with probability \(p \), or low \((q = l)\) with probability \(1 - p \).\(^5\) The agent’s effort cost is given by

\[
C(p; \theta) = \frac{p^2}{2\theta},
\]

where \(\theta \in [\overline{\theta}, \overline{\theta}] \subset \mathbb{R}^+ \).\(^6\) Hence, \(\theta \) is a measure of the agent’s productivity and may represent either his innate ability or his experience.

In the final stage of the game the agent submits the project to the principal for evaluation. The principal does not observe \(p \) or \(q \) directly, but receives a subjective (i.e., non-verifiable) signal of quality, \(\sigma \in [\underline{\sigma}, \overline{\sigma}] \). Based upon the outcome of this signal – and the agent’s type if the review policy is informed – the principal decides whether to accept or reject the project.

The principal prefers to accept high-quality projects and to reject low-quality ones. In particular, her exogenous payoff from accepting a high-quality project is \(v > 0 \) and from accepting a low-quality one is \(-c < 0 \). Her payoff from rejecting a low-quality project is taken to be zero, which is sensible since she otherwise could get “something for nothing” in a degenerate equilibrium where she always rejects and the agent never exerts effort. The principal’s cost from rejecting a high-quality project is also taken to be zero. This greatly simplifies the analysis and is reasonable in many settings. The more general case in which she also suffers a loss from a false rejection is, however, analyzed in subsection 9.2. It is notationally convenient to define the principal’s cost benefit ratio from accepting a project by

\[
r \equiv \frac{c}{v}.
\]

The agent prefers the project to be accepted, regardless of its underlying quality. Specifically, he receives an exogenous gross payoff of \(u > 0 \) if the principal accepts the project, and

\(^5\)The focus of this investigation is the tradeoff between provision of incentives and the efficient use of information. Although there are a number of ways of capturing this tradeoff, the model presented here is probably the simplest. A version of the model with continuous quality yields similar results; see Taylor and Yildirim (2006).

\(^6\)The functional form assumed for effort cost is analytically helpful but not critical for the qualitative nature of the results presented below.
zero if she rejects it. No monetary transfers between the parties are permitted.\footnote{It seems natural in the environments mentioned in the Introduction to prohibit direct transfers. Nevertheless, a brief remark on the possibility of transfers appears in Appendix B.}

The agent’s type, θ, is distributed according to the distribution function $G(\cdot)$, possessing density $g(\cdot)$ and finite mean μ. The signal, σ, is drawn from one of two distributions: $F_h(\cdot)$ (with density $f_h(\cdot)$) if project quality is high, or $F_l(\cdot)$ (with density $f_l(\cdot)$) if it is low. For analytical convenience, assume $f_q(\cdot)$ is bounded and twice differentiable. The likelihood ratio is defined by $L(\sigma) \equiv \frac{f_h(\sigma)}{f_l(\sigma)}$, and satisfies the following regularity conditions.

Assumption 1 (Signal Technology). The Likelihood ratio satisfies:

(i) $L'(\sigma) > 0$,

(ii) $L(\sigma) = 0$ and $L(\bar{\sigma}) = \infty$,

(iii) $\lim_{\sigma \to \sigma} L(\sigma)(1 - F_q(\sigma)) = \lambda_q$ exists for $q \in \{l, h\}$ and $\lambda_h > 0$.

Part (i) is the familiar monotone likelihood ratio property (MLRP) indicating that higher signals are associated with high project quality. Part (ii) says that the most extreme signals (which occur with probability zero) are perfectly informative. This ensures equilibrium existence. Part (iii) is a boundary condition used below to identify the set of agent types that exert zero effort in equilibrium. Note that MLRP implies $F_l(\sigma) \geq F_h(\sigma)$, and thus $\lambda_h \geq \lambda_l \geq 0$. The requirement $\lambda_h > 0$ is necessary because all types of agent would otherwise exert zero effort under informed review.

Example 1 (Signals). The following signal technology will be used repeatedly below in illustrative examples. The principal’s subjective signal is drawn from one of the two triangular densities on $[0,1]$: $f_h(\sigma) = 2\sigma$ or $f_l(\sigma) = 2(1 - \sigma)$. This implies $L(\sigma) = \frac{\sigma}{1-\sigma}$, $\lambda_h = 2$, and $\lambda_l = 0$ in agreement with Assumption 1.

All aspects of the environment are common knowledge, and the solution concept is a Pareto efficient Perfect Bayesian equilibrium (PBE). Hence, if multiple PBE exist and they are Pareto rankable, then the players are assumed to coordinate on the Pareto-superior one.

4 The Commitment Benchmark

The fundamental problem facing the principal is her inability to commit. Because her evaluation results in only a subjective non-verifiable assessment of quality, once she observes σ, the principal will accept the project if and only if doing so will yield her a positive expected payoff. While this is obviously optimal \textit{ex post} (after the agent has sunk effort), it is not generally
desirable from an *ex ante* perspective. To highlight this problem, the benchmark case of the principal’s optimal review policy under commitment is characterized in this section. It should be understood that implementation of this policy requires both the signal \(\sigma \) to be verifiable and the principal to have the power to commit to abide by any review policy she announces.\(^8\)

To begin the analysis, note that there is no scope for blind review in this context. With full power of commitment, the principal can choose to ignore information whenever doing so is advantageous. Hence, it may be assumed that the principal knows the agent’s type, \(\theta \), when executing the review policy. In general, a review policy is a function, \(\beta(\sigma, \theta) \), specifying the probability that the principal accepts a type \(\theta \) agent’s project when the realized signal is \(\sigma \). A review policy is called a *standard*, and denoted by \(s(\theta) \), if it is a step function of the form

\[
\beta(\sigma, \theta) = \begin{cases}
0, & \text{if } \sigma < s(\theta) \\
1, & \text{if } \sigma \geq s(\theta).
\end{cases}
\]

In other words, the project is accepted if and only if the signal \(\sigma \) achieves the standard \(s(\theta) \).

It can be shown MLRP implies that the principal always uses a standard when evaluating the project, and, hence, there is no loss in generality from restricting attention to this class of review policies.

Given a standard \(s \), a type \(\theta \) agent will choose \(p \) so as to maximize his expected payoff

\[
U(p, s; \theta) = u[p(1 - F_h(s)) + (1 - p)(1 - F_l(s))] - \frac{p^2}{2\theta},
\]

subject to the downward and upward feasibility restrictions, \(p \geq 0 \) and \(p \leq 1 \).

The first term in (1) is the agent’s expected benefit. It is his exogenous payoff if the project is accepted, \(u \), times the probability of acceptance (i.e., the probability that quality is high and the standard is met \(p(1 - F_h(s)) \)), plus the probability that quality is low and the standard is met \((1 - p)(1 - F_l(s)) \). The second term in (1) is just the effort cost \(C(p; \theta) \).

The first-order condition characterizing an interior maximum along with the upward feasibility restriction can be combined to give the agent’s reaction function:

\[
P(s, \theta) = \min\{\theta u(F_l(s) - F_h(s)), 1\}.
\]

If the feasibility restriction does not bind, then the agent’s reaction function is “hump-shaped.” To see this, note first that the most extreme standards would elicit no effort at all, \(P(\sigma, \theta) = P(\overline{\sigma}, \theta) = 0 \). Next, define \(s^* \equiv L^{-1}(1) \). Then

\[
P_s(s, \theta) = \theta u(1 - L(s)) f_l(s)
\]

\(^8\)Even if \(\sigma \) is verifiable, commitment may be problematic; especially when the review policy calls for the principal to reject a project she would rather accept. Nonetheless, in certain settings it is not completely unrealistic for the principal to commit to an *ex ante* standard. For instance, a PhD advisor may lay out in front of other committee members exactly what findings will constitute a viable thesis, or a supervisor may announce clear goals that must be achieved in order for subordinates to be promoted.
is positive for \(s < s^* \) (effort is increasing in the standard), and negative for \(s > s^* \) (effort is decreasing in the standard). This makes sense. Low standards elicit little effort because projects are rarely rejected and high standards elicit little effort because projects are rarely accepted. The marginal return to effort is zero at the extremes and highest when the agent faces intermediate standards. Specifically, setting a standard of \(s^* \) would induce the agent to exert maximal effort regardless of his type. Intuitively, \(\sigma = s^* \) is the neutral signal that results in a posterior belief equal to the prior. Setting this standard minimizes bias in the evaluation process which maximizes the agent’s incentive to exert effort. (See Figure 2 below.) If, however, \(\theta \) is sufficiently high, then the upward feasibility restriction will bind for some intermediate range of standards; i.e., the “hump” of the reaction function will become a “plateau” truncated at a height of \(P(s, \theta) = 1 \).

Of course, inducing the agent to exert effort is only part of the principal’s objective. In general, an optimal review policy must both provide incentives and select high-quality projects as often as possible. Specifically, the principal will commit herself to a standard that maximizes her expected payoff\(^9\)

\[
V(s, p) = vp(1 - F_h(s)) - c(1 - p)(1 - F_l(s)),
\]

subject to the agent’s reaction function (2).

The principal’s objective is straightforward. It is her exogenous benefit from accepting a good project, \(v \), times the probability the project is good and the standard is achieved, \(p(1 - F_h(s)) \), minus her exogenous cost from accepting a bad project, \(c \), times the probability the project is bad and the standard is achieved, \((1 - p)(1 - F_l(s)) \).

Substituting the agent’s reaction function directly into (3) results in the function

\[
V(s, P(s, \theta)) = vP(s, \theta)(1 - F_h(s)) - c(1 - P(s, \theta))(1 - F_l(s)).
\]

This function is continuous, and hence achieves a maximum on the compact interval \([\sigma, \sigma]\). The following assumption ensures sufficiency of the first-order condition.\(^{10}\)

Assumption 2 (Single-Peaked Preferences). The function \(V(s, P(s, \theta)) \) is strictly quasi-concave in \(s \) whenever \(P(s, \theta) < 1 \).

\(^9\)In general there are two situations to consider. The principal might announce the review policy either before or after observing the agent’s type. Because the expectation over \(\theta \) of \(V(s, P(s, \theta)) \) is separable in \(\theta \), the optimal review policy in either case, however, is found by maximizing this function with respect to \(s \) for each value of \(\theta \in [\underline{\theta}, \overline{\theta}] \).

\(^{10}\)It is easy to verify that if \(L(s) \leq 1 \), Assumption 2 is automatically satisfied; and if \(L(s) > 1 \), it is satisfied whenever

\[
\frac{(L(s) + \frac{r-1}{2})(1 - F_l(s)L'(s))}{(L(s) - 1)(L(s) + r)} + f_l(s) < 0.
\]

This inequality turns out not to be too stringent, owing to the assumptions that \(f_l(s) \) is bounded, and \(\lim_{s \to -\infty}L(s)(1 - F_l(s)) \) exists.
Ignoring the feasibility restrictions for the moment and differentiating (4) with respect to s yields the first-order condition

$$\frac{V_s(s, P(s, \theta))}{\text{Selection Effect}} + V_p(s, P(s, \theta))P_s(s, \theta) = 0. \quad (5)$$

Denote the solution to this equation by $s^C_0(\theta)$. This is the optimal standard the principal would announce for an agent whose type θ fell in the range $[\theta^-_C, \theta^+_C]$, where the feasibility restrictions do not bind.

Equation (5) highlights the tradeoff facing the principal: selection versus incentives. The first term in (5) represents the selection effect:

$$V_s(s, P(s, \theta)) = -[vP(s, \theta)L(s) - c(1 - P(s, \theta))]f_l(s).$$

As discussed in the next section, setting this term alone equal to zero results in the standard that accepts projects if and only if they have positive expected value to the principal, i.e., if and only if they are ex post optimal. The second term in (5) represents the incentive effect:

$$V_p(s, P(s, \theta))P_s(s, \theta) = [v(1 - F_h(s)) + c(1 - F_l(s))]\theta u(1 - L(s))f_l(s).$$

As discussed above, setting this term alone equal to zero results in the neutral standard, $s^* = L^{-1}(1)$, that maximizes the agent’s effort. In general, it is not possible to set both of these terms to zero simultaneously. In other words, there is tension between the efficient use of information and motivating the agent.

Define the endpoints of the interval $[\theta^-_C, \theta^+_C]$ by

$$\theta^-_C \equiv \frac{r}{u(2\lambda_h + (r-1)\lambda_l)}, \quad (6)$$

and

$$\theta^+_C \equiv \min\{\theta \mid P(s^C_0(\theta), \theta) = 1\}. \quad (7)$$

The following result characterizes the benchmark solution.

Proposition 1 (Equilibrium under Commitment).

Principal: Under commitment, the principal sets the standard

$$s^C(\theta) \equiv \begin{cases} \sigma, & \text{if } \theta < \theta^-_C \\ s^C_0(\theta), & \text{if } \theta \in [\theta^-_C, \theta^+_C] \\ \min\{s \mid P(s, \theta) = 1\}, & \text{if } \theta > \theta^+_C \end{cases}$$

Moreover, $s^C(\theta)$ is strictly decreasing for $\theta > \theta^-_C$, and $\lim_{\theta \to \infty} s^C(\theta) = \sigma.$
Agent: Under commitment, the agent chooses effort level

\[p_C(\theta) \equiv \begin{cases}
0, & \text{if } \theta < \theta_C^- \\
P(s_C^0(\theta), \theta), & \text{if } \theta \in [\theta_C^-, \theta_C^+] \\
1, & \text{if } \theta > \theta_C^+.
\end{cases} \]

Moreover, \(p_C(\theta) \) is continuous, and strictly increasing for \(\theta \in (\theta_C^-, \theta_C^+) \).

Several key insights emerge from Proposition 1. First, there is a negative relationship between an agent’s ability and the standard set for him. This is a consequence of the selection effect. Higher ability agents are more likely to produce good projects. Recognizing this, the principal accordingly lowers the standard confronting them. It is shown in the next section, however, that this response is attenuated in the commitment setting by the incentive effect. In order to elicit more effort from the agent, the principal commits herself to a standard, \(s_C(\theta) \), that is “too flat” to be ex post optimal. In other words, under \(s_C(\theta) \) there is a chance that the principal will be forced to reject the project of a high ability agent or accept the project of a low ability one when she would prefer to do otherwise. This possibility is most starkly illustrated for ability levels \(\theta \geq \theta_C^+ \). For these high-ability types, the upward feasibility restriction binds; i.e., these types exert full effort (\(p = 1 \)). Nevertheless, the standard facing such an agent, \(s_C(\theta) \), is greater than the minimum standard, \(\sigma \). Hence, even though the principal knows for sure that the project is good, she commits herself to reject it with positive probability. Only by doing so can she induce the agent to exert effort in the first place.

At the other end of the spectrum are the low ability agents with \(\theta \leq \theta_C^- \). These types of agents are effectively pre-screened in the sense that the principal commits never to accept their projects; i.e., \(s_C(\theta) = \sigma \). Consequently, these types exert no effort, so the downward feasibility restriction binds (\(p = 0 \)). It is true that by lowering the standard facing these types of agents the principal could induce positive effort, but the expected gain arising from the improved incentives would be outweighed by the possibility of accepting a bad project.

Finally, it is straightforward to verify that \(s^* \in (s_C(\theta_C^+), \sigma) \).\(^{11}\) Hence, there exists a unique critical type

\[\theta^* \equiv \frac{r}{(1 + r)u(F_l(s^*) - F_h(s^*))} \quad (8) \]

such that \(s_C(\theta^*) = s^* \). For this one type of agent there is no conflict between selection and incentives. In particular, the standard, \(s^* \), set for type \(\theta^* \) both induces maximal effort and leads to an ex post optimal acceptance criterion. For all other types, \(\theta \neq \theta^* \), however, the benchmark solution \(s_C(\theta) \) strikes a balance between selecting good projects ex post and providing incentives ex ante.

\(^{11}\)See the proof of Proposition 3.
Example 2 (Commitment). Suppose the signal technology of Example 1 and that \(v = c = u = 1 \). (An example with general parameter values is solved in Appendix B.) From (2), the agent’s reaction function is

\[
P(s, \theta) = \min\{2\theta s(1 - s), 1\}.
\]

For \(\theta < 2 \) this is hump-shaped and attains a maximum at \(s^* = \frac{1}{2} \). From (3), the principal’s payoff is

\[
V(s, p) = p(1 - s^2) - (1 - p)(1 - s)^2.
\]

Substituting \(P(s, \theta) \) into this and maximizing gives the commitment solution

\[
s^C(\theta) = \begin{cases}
1, & \text{if } \theta < \theta_-^C \\
\frac{1}{2} + \frac{1}{6 \theta}, & \text{if } \theta \in [\theta_-^C, \theta_+^C] \\
\left(\frac{1}{2}\right) \left(1 - \sqrt{1 - \frac{2}{\theta}}\right), & \text{if } \theta > \theta_+^C,
\end{cases}
\]

where \(\theta_-^C = \frac{1}{4} \) and \(\theta_+^C = 1 + \frac{3\sqrt{2}}{4} \). As Proposition 1 indicates, \(s^C(\theta) \) is decreasing for \(\theta > \theta_-^C \). Low types with \(\theta \leq \theta_-^C \) are prescreened and induced to exert no effort (\(P(1, \theta) = 0 \)), while high types with \(\theta \geq \theta_+^C \) are induced to exert full effort (\(P(s^C(\theta), \theta) = 1 \)). Note that for \(\theta = \theta_+^C \), the principal knows that the project is high-quality, but she sets a standard of \(s^C(\theta_+^C) \approx 0.4142 \). This means that she rejects the project with probability \(F_h(s^C(\theta_+^C)) \approx 0.1716 \). Finally, setting \(s^C(\theta) = s^* \) and solving reveals that the critical type exerting maximum effort is \(\theta^* = 1 \).

5 Informed Review

If the principal is unable to credibly commit to a standard, then she cannot act as a Stackelberg leader, maximizing her expected payoff subject to the agent’s reaction function. Instead, after the agent has sunk effort \(p \) in the project, the principal will decide what standard \(s \) to apply. Because the principal cannot observe \(p \) when she selects \(s \), the temporal ordering of moves is actually inconsequential. In other words, the effort and standard are determined in a Nash equilibrium of a simultaneous-move game.

If the principal has opted for informed review, then she observes the agent’s type when choosing the standard. Hence, she maximizes her expected payoff, \(V(s, p) \), given in (3), with respect to \(s \), holding fixed \(p \). The first-order condition is

\[
V_s(s, P(s, \theta)) = -[vpL(s) - c(1 - p)]f_1(s) = 0.
\]

Rearranging this yields the principal’s reaction function

\[
S(p) = L^{-1}\left(r\frac{1-p}{p}\right).
\]
Note that Assumption 1 implies: $S(0) = \sigma$, $S(1) = \sigma$, and $S'(p) = -\frac{r}{p^2 L(s)} < 0$. This makes sense: if the principal believes the project is certainly bad ($p = 0$), then no signal realization will convince her to accept it; i.e., she sets the maximum standard, σ. Similarly, if she believes the project is certainly good ($p = 1$), then no signal realization will deter her from accepting it; i.e., she sets the minimum standard, σ. In general, the higher the principal believes p to be, the lower she sets the standard for acceptance. (See Figure 2 below.)

Observe also that (10) implies that the principal always makes an *ex post* optimal acceptance decision. Specifically, the principal’s expected payoff from accepting the project when she observes signal σ is

$$
p f_h(\sigma) v - (1 - p) f_l(\sigma) c \over p f_h(\sigma) + (1 - p) f_l(\sigma).
$$

MLRP implies that this expression is monotone increasing in σ. Moreover, it is easy to verify that it is negative if $\sigma < S(p)$, zero if $\sigma = S(p)$, and positive if $\sigma > S(p)$.

Solving the agent and principal’s reaction functions (2) and (10) results in the equilibrium standard and effort under informed review, $(s^I(\theta), p^I(\theta))$. A degenerate Nash equilibrium in which the principal never accepts the project $(s^I(\theta) = \sigma)$ and the agent never exerts effort $(p^I(\theta) = 0)$ always exists. Indeed, for values of θ less than a cutoff θ^l_- (defined below), this is the unique equilibrium, in which case the agent is said to be *prescreened*. For higher values of θ, however, non-degenerate Nash equilibria exist. In this case, the following observation, which obtains directly from the Envelope Theorem, implies that the set of equilibria are Pareto rankable.

Lemma 1. (i) The principal’s indirect payoff, $V(S(p), p)$ is increasing in p.

(ii) The agent’s indirect payoff, $U(P(s, \theta), s; \theta)$, is decreasing in s.

Because the principal’s reaction function is downward-sloping, equilibria with lower standards (which the agent prefers) involve higher effort (which the principal prefers). Hence, when multiple equilibria exist, the one with the lowest standard and highest effort is Pareto superior, and the players are presumed to coordinate on it.12

Momentarily ignoring the feasibility restrictions and substituting for p in (9) from (2) gives

$$
V_s(s, P(s, \theta)) = -[v P(s, \theta) L(s) - c (1 - P(s, \theta))] f_l(s) = 0.
$$

Define $s^I_0(\theta)$ to be the smallest root to this equation. Then $s^I_0(\theta)$ is the equilibrium standard when the feasibility restrictions on p do not bind.

12The Pareto efficient equilibrium does not, however, maximize social surplus (i.e., the sum of the player’s expected payoffs). In general, the principal sets too high a standard and the agent exerts too little effort in equilibrium because they do not account for the externalities their choices impose on the other players.
Define the cutoff type by

$$\theta_l = \frac{r}{u(\lambda_h - \lambda_l)}. \quad (12)$$

The following result characterizes the equilibrium under informed review.

Proposition 2 (Equilibrium under Informed Review).

Principal: Under informed review, the principal sets the standard

$$s^I(\theta) \equiv \begin{cases} \bar{\sigma}, & \text{if } \theta < \theta^I_l, \\ s^I_0(\theta), & \text{if } \theta \geq \theta^I_l. \end{cases}$$

Moreover, $$s^I(\theta)$$ is strictly decreasing for $$\theta > \theta^I_l$$, and $$\lim_{\theta \to \infty} s^I(\theta) = \sigma$$.

Agent: Under informed review, the agent chooses effort level

$$p^I(\theta) \equiv \begin{cases} 0, & \text{if } \theta < \theta^I_l \\ p(s^I_0(\theta), \theta), & \text{if } \theta \geq \theta^I_l. \end{cases}$$

Moreover, $$p^I(\theta)$$ is strictly increasing for $$\theta > \theta^I_l$$, and $$\lim_{\theta \to \infty} p^I(\theta) = 1$$.

Proposition 2 is intuitive. As in the benchmark setting, higher ability agents exert more effort in equilibrium and therefore face lower standards. Two differences from the commitment case are, however, readily apparent. First, at the low end of the type space, the range over which prescreening occurs is larger under informed review than under commitment ($$\theta^I_l > \theta^C_l$$). In other words, more types are induced to exert positive effort under commitment. Second, at the high end of the type space, the agent never exerts full effort under informed review while all types greater than $$\theta^C_+$$ do under commitment. Hence, at both extremes of the ability spectrum, the agent exerts less effort under informed review than under commitment. In fact, this holds generally as is stated in the following key result. (See Figure 1 below.)

Proposition 3 (Commitment vs. Informed Review). The equilibrium profile of standards is “flatter” under commitment than under informed review and effort is higher. Specifically, suppose $$\theta > \theta^C_+$$ (else $$s^C(\theta) = s^I(\theta) = \bar{\sigma}$$), then

$$s^C(\theta) \equiv \begin{cases} < s^I(\theta), & \text{if } \theta < \theta^* \\ = s^I(\theta), & \text{if } \theta = \theta^* \\ > s^I(\theta), & \text{if } \theta > \theta^*, \end{cases}$$

and $$p^C(\theta) \geq p^I(\theta)$$, with strict inequality if $$\theta \neq \theta^*$$. Proposition 3 is easily understood. The commitment standard, $$s^C(\theta)$$, strikes a balance between the goals of project selection and incentive provision, while the informed-review standard, $$s^I(\theta)$$, puts weight only on project selection. For low types, $$\theta < \theta^*$$, the incentive effect is negative; i.e., lowering the standard facing low-ability agents induces more effort. Hence,
commitment involves more lenient standards than informed review. On the other hand, for high types, \(\theta > \theta^* \), the incentive effect is positive; i.e., raising the standard facing high-ability agents induces more effort. Hence, commitment involves more stringent standards than informed review. For the one critical type, \(\theta = \theta^* \), there is no conflict between selection and incentives, and the standards are, therefore, identical under either regime, \(s^C(\theta^*) = s^I(\theta^*) = s^* \).

Example 3 (Informed Review). Suppose the signal technology of Example 1 and that \(v = c = u = 1 \). From (10), the principal’s reaction function is

\[
S(p) = 1 - p.
\]

This gives the ex post optimal acceptance criterion. Solving it and the agent’s reaction function,

\[
P(s, \theta) = \min \{2\theta s(1 - s), 1\},
\]

yields the equilibrium standard under informed review,

\[
s^I(\theta) = \begin{cases}
1, & \text{if } \theta < \theta^I - \frac{1}{2} \\
\frac{1}{2\theta}, & \text{if } \theta \geq \theta^I - \frac{1}{2},
\end{cases}
\]

where \(\theta^I = \frac{1}{2} \). Comparison with Example 2 reveals that the region of prescreening is larger under informed review than under commitment, \(\frac{1}{2} > \frac{1}{4} \). Notice also that no finite type ever exerts full effort under informed review. For \(\theta > \theta^I \), the equilibrium profile under informed review, \(s^I(\theta) \), is steeper than the one under commitment, \(s^C(\theta) \), and imposes higher standards for \(\theta < 1 \) and lower standards for \(\theta > 1 \). It is straightforward to check that effort is uniformly lower under informed review.

6 **Blind Review**

If the principal observes only a subjective signal of project quality, then she will not be able to commit to the relatively flat profile of standards \(s^C(\theta) \). Nevertheless, in this case, it may be possible for her to commit to remain ignorant of the agent's type when performing an evaluation. That is, she may be able to implement a policy of blind review and impose the same completely flat standard \(s^B \) on all agent types. While blind review forces the principal to disregard information that is valuable for project selection, it can be an effective method for providing incentives. For instance, a blind review procedure with \(s^B = s^* \) would raise the effort of all types relative to a policy of informed review. Of course, even under blind review the principal can only implement a standard, \(s^B \), that is ex post optimal given the information she possesses. The question is whether it is ever advantageous for her to commit to possessing less information.
In order to explore the relative merits of blind review, it is analytically convenient to rule out cases in which the upward feasibility restriction on effort binds. Hence, the following additional assumption is imposed below.13

Assumption 3 (Bounded Effort). The highest ability agent never exerts full effort,
\[\bar{\theta}u(F_l(s^*) - F_h(s^*)) < 1. \]

Because the principal does not observe θ, the equilibrium standard is a best response to the agent’s expected effort:
\[s^B = L^{-1} \left(r \frac{1 - E[p^B(\theta)]}{E[p^B(\theta)]} \right). \] (13)

Similarly, in equilibrium the agent’s effort is a best response to the standard,
\[p^B(\theta) = \partial u(F_l(s^B) - F_h(s^B)). \] (14)

Invoking Assumption 3 when taking the expectation of (14) over θ gives
\[E[p^B(\theta)] = \mu u(F_l(s^B) - F_h(s^B)). \] (15)

These three equations define the equilibrium standard and effort under blind review. In particular, comparing the solution to (13), (14) and (15) to the solution to (2) and (10) yields the following characterization.

Proposition 4 (Equilibrium under Blind Review).

Principal: Under blind review, the principal sets the standard equal to the one she would have set for the mean type of agent under informed review, $s^B = s^I(\mu)$.

Agent: Under blind review, the agent chooses effort level $p^B(\theta) = P(s^I(\mu), \theta)$.

While this result follows from the fact that the agent’s reaction function $P(s, \theta)$ is linear in θ, it has intuitive appeal. In particular, it seems reasonable that, when ignorant of the agent’s type, the principal sets the standard as if she faced the average type, μ in the population (see Figure 1). The following result provides a comparison between the standards and induced effort under informed and blind review.

Proposition 5 (Comparing Outcomes).

(i) Agents with less than average ability face a lower standard under blind review than under informed review, and agents with greater than average ability face a higher standard:
\[s^B \begin{cases} < s^I(\theta), & \text{if } \theta < \mu \text{ and } \mu > \theta^I, \\ > s^I(\theta), & \text{if } \theta > \mu. \end{cases} \]

13A stronger assumption, which is easier to check, is simply $\bar{\theta}u \leq 1$.

17
(ii) Expected effort is higher under blind review than under informed review if the mean type is sufficiently close to the critical type. Specifically, $E[p^B(\theta)] - E[p^I(\theta)]$ increases as μ approaches θ^*, and $E[p^B(\theta)] - E[p^I(\theta)] > 0$ if $\mu = \theta^*$.

Part (i) of Proposition 5 is a direct consequence of Propositions 2 and 4. Because the profile of standards under informed review is decreasing and because blind review is equivalent to an informed review over the mean type, the standard imposed under blind review is higher for types above the mean and lower for types below the mean than would be imposed under informed review. Combining this with the fact that agents always like lower standards (part (ii) of Lemma 1) reveals that an agent whose ability is above the mean prefers informed review, while one whose ability is below the mean prefers blind review.

Part (ii) of Proposition 5 is also easily grasped. In the event $\mu = \theta^*$, the standard under blind review is the one that maximizes the effort of all types, $s^B = s^*$. Clearly, no other review policy will elicit higher average effort than blind review in this case. Suppose, however, that μ is slightly greater than θ^* (the discussion is analogous for $\mu < \theta^*$). Then $s^B = s^I(\mu)$ will be less than s^*. For types $\theta > \mu$, blind review still imposes a higher standard than informed review, so these types would continue to exert more effort under blind review. Types in the interval $[\theta^*, \mu)$, however, would exert more effort under informed review because it calls for a higher standard, $s^I(\theta) \in (s^B, s^*)$. Of course, s^B is also too low for a neighborhood of types less than θ^*. However, there is a type $\theta' < \theta^*$ for whom the excessively low standard $s^B < s^*$ would elicit the same effort as the excessively high one $s^I(\theta') > s^*$. For all types $\theta < \theta'$, blind review would induce strictly higher effort. In other words, if $\mu \neq \theta^*$, then there is a band of types around θ^* who would exert more effort under informed review while the extreme types outside this band would exert more effort under blind review. If μ is distant from θ^*, then the band of types who work harder under informed review is large, and it is clearly the superior evaluation procedure.

It is worth remarking on the reason blind review provides better incentives than informed review when μ is close to θ^*. Under informed review, high-ability agents rest on their laurels, knowing that the principal will give them the benefit of the doubt. Low-ability agents also exert little effort under informed review, but for the opposite reason – they know that the principal will discriminate against them. Blind review pools high and low ability agents together and improves incentives at both ends of the type spectrum.

Example 4 (Blind Review). Suppose the signal technology of Example 1 and that $v = c = u = 1$. Suppose also that there are only two possible types, $\theta \in \{\frac{1}{2}, \frac{3}{2}\}$, that are equally likely. Hence, the expected value of θ is $\mu = 1$, which (as noted in Example 2) is also the critical type θ^*. The
table below displays the equilibrium standards, efforts and error probabilities under informed and blind review.

<table>
<thead>
<tr>
<th></th>
<th>INFORMED</th>
<th>BLIND</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARD: $\theta = \frac{1}{2}$</td>
<td>1</td>
<td>$\frac{1}{7}$</td>
</tr>
<tr>
<td>STANDARD: $\theta = \frac{2}{3}$</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{7}$</td>
</tr>
<tr>
<td>EFFORT: $\theta = \frac{1}{2}$</td>
<td>0</td>
<td>$\frac{1}{7}$</td>
</tr>
<tr>
<td>EFFORT: $\theta = \frac{2}{3}$</td>
<td>$\frac{2}{7}$</td>
<td>$\frac{1}{7}$</td>
</tr>
<tr>
<td>$\Pr{\text{ACCEPT}</td>
<td>q = 0}$</td>
<td>$\frac{1}{9}$</td>
</tr>
<tr>
<td>$\Pr{\text{REJECT}</td>
<td>q = 1}$</td>
<td>$\frac{1}{9}$</td>
</tr>
</tbody>
</table>

Because $\mu = \theta^*$, the flat standard under blind review induces higher effort from both types of agent. Indeed, as noted in Example 3, $\theta^I = \frac{1}{2}$, so the low-ability agent exerts no effort under informed review. Although blind review provides better incentives, this comes at a cost. The probability of making a mistake (either accepting a bad project or rejecting a good one) is substantially higher under blind review.

7 The Equilibrium Review Policy

7.1 The Ability Distribution

When choosing the review policy at the beginning of the game, the principal’s objective is not only to induce effort but also to make a correct acceptance decision. Define the principal’s equilibrium payoff under informed review by $V^I(\theta) \equiv V(s^I(\theta), p^I(\theta))$. By proposition 4 the principal’s expected equilibrium payoff under blind review is

$$E[V^B(\theta)] = vE[p^B(\theta)](1 - F_h(s^B)) - c(1 - E[p^B(\theta)])(1 - F_l(s^B))$$

$$= vp^I(\mu)(1 - F_h(s^I(\mu)) - c(1 - p^I(\mu))(1 - F_l(s^I(\mu)))$$

$$= V^I(\mu).$$

Hence, when choosing between review policies, the principal compares her expected payoff under informed review, $E[V^I(\theta)]$, with her expected payoff under blind review, $V^I(\mu)$. Evidently, if $V^I(\cdot)$ is convex or concave everywhere, then Jensen’s inequality will suffice to rank the two payoffs irrespective of the type distribution. In general, however, $V^I(\cdot)$ is S-shaped, possessing both a convex and a concave region, as the following lemma records.

Lemma 2. If θ^I is sufficiently low, then there exist two points, $\theta_L \leq \theta_H$, such that $V^I(\theta)$ is strictly convex for $\theta < \theta_L$ and strictly concave for $\theta > \theta_H$.

The intuition behind Lemma 2 is that for very high types, effort is close to its maximum, and so is the principal’s payoff. Thus, there are diminishing marginal returns to ability. For very
low types, on the other hand, a rise in ability not only raises effort but significantly improves the probability of making a correct acceptance decision.

In light of Lemma 2, it is clear that the principal’s choice between the two review procedures depends crucially on the distribution of types. If, for instance, all types receiving positive probability density under $g(\cdot)$ are above θ_H (where $V^I(\cdot)$ is concave), then Jensen’s inequality implies that blind review dominates informed review. On the other hand, if $g(\cdot)$ puts weight only on types less than θ_L (where $V^I(\cdot)$ is convex), then the principal prefers informed review. In general, which review procedure is optimal depends on whether high types or low types are more prevalent in the population, as is stated in the following result.

Proposition 6 (Extreme Types and the Agent’s Payoff). Suppose that the support of the ability distribution includes a (low) region where $V^I(\cdot)$ is convex and a (high) region where it is concave; i.e., $\bar{\theta} < \theta_L \leq \theta_H < \overline{\theta}$. Then,

(i) there exist ϵ^B and $\epsilon^I > 0$ such that the principal prefers blind review if $G(\theta_H) < \epsilon^B$, and informed review if $G(\theta_L) > 1 - \epsilon^I$; and

(ii) there exist $0 < u_L \leq u_H < \infty$ such that the principal prefers blind review if $u > u_H$, and informed review if $u < u_L$.

Part (i) of Proposition 6 indicates that incentives are more important than project selection when evaluating high-ability agents. It is relatively cheap for these agents to exert effort, and blind review motivates them to do so. Project selection, however, becomes the dominant concern when evaluating low-ability agents, and informed review is, therefore, preferable in this case.

The second part of Proposition 6 states that, fixing the ability distribution, the principal is also more likely to prefer blind review, as the agent’s payoff from acceptance, u, increases. Note from (2) that an increase in u is equivalent to an increase in θ. Hence, agents with high rewards from acceptance will behave like those with high ability, in which case blind review is the principal’s preferred mode of evaluation.

It is common to encounter evaluation procedures that are hybrid processes containing elements of both blind and informed review. Suppose, for example, that prior to evaluation by the principal, all agents with ability less than some level $\hat{\theta}$ were removed from the applicant pool by a credible third party, (e.g., a certifying agency). In this case, the principal’s expected payoff under informed review would be $(1 - G(\hat{\theta}))E[V^I(\theta) | \theta \geq \hat{\theta}]$, and her expected payoff under blind review would be $(1 - G(\hat{\theta}))V^I(E[\theta | \theta \geq \hat{\theta}])$. Because $V^I(\theta)$ is strictly concave for $\theta > \theta_H$, Jensen’s inequality yields the following insight.

Corollary 1 (Certification). If $\theta_H < \hat{\theta} < \overline{\theta}$, then the principle prefers blind review.
A question that naturally arises in light of Proposition 6 is whether blind review is the preferable evaluation process only when the ability distribution places sufficient weight on high values of θ. Mathematically this comes down to asking whether $V^I(\theta)$ is concave only at high ability levels. The following result establishes that this is not so.

Lemma 3. The principal’s equilibrium payoff function $V^I(\theta)$ is strictly concave at θ^*.

Observe from (8) that θ^* does not depend on the ability distribution. In particular, it is increasing in the principal’s cost to benefit ratio r and decreasing in the agent’s payoff from acceptance u and in the difference $F_I(s^*) - F_H(s^*)$. Hence, $V^I(\theta)$ may possess a concave region at virtually any point in the type space. It follows, therefore, that it is not necessary for the ability distribution to include a large fraction of high types in order for blind review to be optimal. This is formalized as follows.

Proposition 7 (Non-Extreme Types). There exists $\epsilon > 0$ and $\Delta > 0$ such that if $|\mu - \theta^*| < \epsilon$ and $|\theta - \theta^*| < \Delta$ for all $\theta \in [\underline{\theta}, \overline{\theta}]$, then the principal prefers blind review.

This result makes sense. From Proposition 5 part (ii), expected effort is higher under blind review than under informed review when the critical type is close to the mean. Moreover, when the support of the ability distribution is concentrated around θ^*, then observing the realization of θ is of only scant value to the principal.

Example 5 (Optimal Review). Suppose the signal technology of Example 1 and that $v = c = u = 1$. From Example 3 it is straightforward to compute

$$V^I(\theta) = \left(1 - \frac{1}{2\theta}\right)^2.$$

This is S-shaped, with an inflection point at $\theta_H = \theta_L = \frac{3}{4}$. In accordance with Proposition 6, blind review is optimal for any ability distribution with $\theta \geq \frac{3}{4}$, and informed review is optimal for any distribution with $\theta \leq \frac{3}{4}$. In accordance with Proposition 7, blind review is also optimal for any distribution sufficiently concentrated around the critical type $\theta^* = 1$. If, as in Example 4, there are only two types, $\theta \in \left\{\frac{1}{2}, \frac{3}{2}\right\}$, that are equally likely, then the principal’s expected equilibrium payoffs under informed and blind review are respectively $E[V^I(\theta)] = \frac{2}{9}$ and $V^I(\mu) = \frac{1}{4}$.

7.2 The Informativeness of the Signal

An important element in determining the optimal review process is the informativeness of the signal observed by the evaluator. Intuitively, a signal technology is more informative if it is more likely to generate a high signal when project quality is high, and a low signal when project quality is low. The informativeness of the signal varies across applications depending
on such factors as the expertise of the evaluator and the stage at which the project is submitted for review. In what follows, we formally define a notion of informativeness along the lines suggested by Milgrom (1981), and then investigate its effect on the choice of the review policy.

Let \(\alpha \in \mathbb{R}_+ \) be a parameter measuring the informativeness of the signal, and write the probability distribution and corresponding density functions respectively as \(F_q(\sigma; \alpha) \) and \(f_q(\sigma; \alpha) \), for \(q = h, l \).

Definition 1 (Informativeness). Signal technology \(\{f_h(\sigma; \alpha_1), f_l(\sigma; \alpha_1)\} \) is said to be more informative than \(\{f_h(\sigma; \alpha_0), f_l(\sigma; \alpha_0)\} \) if \(\frac{f_h(\sigma; \alpha_1)}{f_h(\sigma; \alpha_0)} \) increases and \(\frac{f_l(\sigma; \alpha_1)}{f_l(\sigma; \alpha_0)} \) decreases in \(\sigma \) whenever \(\alpha_1 > \alpha_0 \).

That is, in addition to Assumption 1, we also impose MLRP on both \(f_h(\sigma; \alpha) \) and \(f_l(\sigma; \alpha) \). Next, normalize \(\alpha \) so that as \(\alpha \to 0 \), the signal technology becomes completely uninformative, namely \(F_l(\sigma; \alpha) - F_h(\sigma; \alpha) \to 0 \) for all \(\sigma \); and as \(\alpha \to \infty \), it becomes completely informative, namely \(F_l(\sigma; \alpha) \to 1 \) for \(\sigma = \sigma^* \), and \(F_h(\sigma; \alpha) \to 0 \) for \(\sigma \neq \sigma^* \). In particular, when the signal technology is completely informative, the principal observes only the highest signal, \(\sigma^* \), if project quality is high, and only the lowest signal, \(\sigma \), if it is low. Finally, in order to compare different signal technologies, it is necessary to impose an assumption on the likelihood ratio, \(L(\sigma; \alpha) \equiv \frac{f_h(\sigma; \alpha)}{f_l(\sigma; \alpha)} \).

Assumption 4 (The Neutral Signal). \(L(s^*; \alpha) = 1 \), for all \(\alpha \in (0, \infty) \).

In other words, \(s^* \) continues to be the unique neutral signal, independent of \(\alpha \). This assumption implies that, as \(\alpha \) increases, \(L(\sigma; \alpha) \) exhibits a counter-clockwise rotation around \(\sigma = s^* \) such that, as \(\alpha \to \infty \), \(L(\sigma; \alpha) \to 0 \) if \(\sigma < s^* \) and \(L(\sigma; \alpha) \to \infty \) if \(\sigma > s^* \). (see Lemma A1 in Appendix A). A simple parametric extension of the signal technology presented in Example 1 satisfies Definition 1 and Assumption 4. Namely, it is straightforward to check that the family of signal technologies with \(f_l(\sigma; \alpha) = (1 + \alpha)(1 - \sigma)^\alpha \) and \(f_h(\sigma; \alpha) = (1 + \alpha)\sigma^\alpha \), for \(\sigma \in [0, 1] \) and \(\alpha \geq 0 \), works. The first result of this subsection reveals that a more informative signal elicits greater effort from the agent.

Lemma 4. Suppose \(p^I(\theta; \alpha) > 0 \).

(i) \(p^I(\theta; \alpha) \) strictly increases in \(\alpha \).

(ii) As \(\alpha \to 0 \), \(p^I(\theta; \alpha) \to 0 \) and \(s^I(\theta; \alpha) \to \bar{\sigma} \) for all \(\theta \).

(iii) As \(\alpha \to \infty \), \(p^I(\theta, \alpha) \to \min(\theta u, 1) \) and

\[
s^I(\theta; \alpha) = \begin{cases}
 s^*, & \text{if } \theta u < 1 \\
 \bar{\sigma}, & \text{if } \theta u \geq 1.
\end{cases}
\]
Lemma 4 is rather intuitive. A more informative signal provides a tighter measure of the agent’s performance and improves his incentives. In the extreme cases, the agent exerts no effort when the signal is completely uninformative, and exerts the maximum effort when it is completely informative. An implication of this observation is that the principal is actually indifferent between blind and informed review, in either of the extreme limiting cases ($\alpha = 0$ or $\alpha = \infty$). For signal technologies near but not equal to the extremes, however, the principal has a strict preference for either blind or informed review, as is stated in the following key result.

Proposition 8 (Informativeness). Suppose $\theta_u < 1$. Then,

(i) When the signal technology is either completely uninformative or completely informative, the principal is indifferent between blind and informed review. In particular, $\lim_{\alpha \to 0} E[V^I(\theta; \alpha)] = \lim_{\alpha \to 0} E[V^B(\theta; \alpha)] = 0$, and $\lim_{\alpha \to \infty} E[V^I(\theta; \alpha)] = \lim_{\alpha \to \infty} E[V^B(\theta; \alpha)] = \mu \nu u$.

(ii) For a sufficiently uninformative signal technology, the evaluator prefers informed review. That is, for a small $\alpha > 0$, $E[V^I(\theta; \alpha)] > E[V^B(\theta; \alpha)]$.

(iii) For a sufficiently informative signal technology, the evaluator prefers blind review. That is, for a large $\alpha < \infty$, $E[V^I(\theta; \alpha)] < E[V^B(\theta; \alpha)]$.

When the signal is not very informative, the principal is more concerned about making a selection error than about providing incentives, leading her to favor informed review. That is, when the signal is imprecise, the principal prefers to use the information contained in the agent’s type to improve her acceptance decision. Hence, the two sources of information, signal and type, are complements.

On the other hand, when the principal receives a highly informative signal of project quality, she is less worried about making a selection error than providing incentives, leading her to favor blind review. That is, when the signal is very precise, the principal prefers to eschew the information contained in the agent’s type in order to provide better incentives. Hence, the two sources of information are substitutes.

8 Applications

The analysis presented in the preceding section can be applied to address questions regarding the equilibrium review policy in a variety of real-world settings. This is illustrated below with three examples.
8.1 Character Evidence in Trials

There is a long-standing debate among legal scholars about whether character evidence – i.e., the past conduct (good or bad) of the defendant – should be admissible at trial. Those who oppose the use of character evidence argue (1) that an individual’s other behavior is too weak a predictor of his current act (basing their opinion on the “Situationalist” school of social psychology, which emphasizes the importance of circumstance on behavior); (2) the Jury may be prone to “cognitive error”, giving too much weight to dispositional evidence; (3) Jury nullification – the belief that the jurors would convict someone solely based on his bad character or his prior wrongdoings; (4) Judicial efficiency – misuse of court’s resources on the details of someone’s past, (5) Best evidence – banning character evidence would force parties to seek the best evidence for the current case.

Legal scholars who support the use of character evidence argue that current research in social psychology suggests that the defendant’s cross-situational attributes, as evidenced by past acts, may be a good predictor of the current act, because several influential studies maintain the stability of criminal behavior associated with certain immutable personality features, such as lack of self-control or low-empathy. Moreover, supporters of character evidence say that it may be of use in tailoring incentives to individual characteristics. If people are not all alike, the argument goes, then some must be more forcefully deterred than others. Character evidence would be of use in determining defendants’ criminal propensity, so that punishments could be appropriately adjusted.

The intellectual schism in the legal community over the admissibility of character evidence appears to extend even to the U.S. Federal Rules of Evidence.14 For instance, opposing its use, Rule 404(b) states, “Evidence of other crimes, wrongs, or acts is not admissible to prove the character of a person in order to show action in conformity therewith.” Conversely, supporting its use, Rule 406 states, “Evidence of the habit of a person or of the routine practice of an organization, whether corroborated or not and regardless of the presence of eyewitnesses, is relevant to prove that the conduct of the person or organization on a particular occasion was in conformity with the habit or routine practice.” In general, courts allow character evidence if its probative value exceeds its prejudicial effect.15

In the context of the model presented above, one can think of the principal as a jurist and the agent as a defendant in a trial. Initially (before the trial), the defendant exerts some effort p to avoid criminal behavior. The cost of this effort depends on the defendant’s characteristics such as his education, age, and employment status, as summarized by θ. Project acceptance

14See http://www.law.cornell.edu/rules/fre/rules.htm.
15For an excellent discussion of the alternative views on character evidence, see Sanchirico (2001). Also see Lippke (2008), and, for the British perspective, Redmayne (2002).
corresponds to acquittal and rejection to conviction. If character evidence is admissible, then the jurist performs an informed review, and if it is banned, then she performs a blind review.

The close correlation between an individual’s socioeconomic characteristics and the type of crime he is most likely to commit is well documented. Specifically, blue-collar or street crimes, such as robbery and assault, tend to be committed by individuals who are relatively young, uneducated, and poor (low values of \(\theta \)), while white-collar or corporate crimes, such as embezzlement or price fixing, tend to be committed by individuals who are relatively old, educated, and wealthy (high values of \(\theta \)). In this light, Proposition 6 suggests that character evidence should be permitted in cases of street crime and eschewed in cases of white-collar crime. Interestingly, this analysis indicates that the over-riding concern in cases of blue-collar crime is making a correct decision about whether to acquit or convict, while the predominant concern in cases of white-collar crime is deterrence.

8.2 School Admission and Professional Certification

As noted in the introduction, nearly all colleges, universities, and professional schools perform informed review when making admittance decisions. Hence, in addition to aptitude test scores, admissions officers review transcripts, letters of reference, essays, and even personal interviews. Conversely, the vast majority of professional certification or licensing decisions are blind, relying only on an applicant’s performance on an exam or battery of tests.

Law schools, for example, could choose to use nothing more than an applicant’s LSAT score to make an admission decision, but they typically consider a raft of other personal data. On the other hand, when deciding whether to admit an applicant, state bars could use such pertinent information as to where he obtained his law degree, his grades, or his class rank. In virtually all cases, however, admission to the bar is decided solely by performance on an exam which is administered blindly.

The analysis of the preceding section can help explain why schools and vocational programs use informed review for admission, while licensing boards use blind review for certification. First, in the vast majority of cases, individuals seeking to obtain a professional license or certification must earn a degree from an accredited school or program in order to take the licensing exam. In other words, bar exams, medical board exams, and the like are actually hybrid evaluation procedures in which schools and training programs certify that an agent is qualified to test for a license. Recall from Corollary 1 that if the minimum certified ability

16 On the age-distribution of crime, see Steffensmeier et al. (1989). On the link between economic inequality and violent crime see Blau and Blau (1982), and on the correlation between education and crime see Ehrlich (1975), and Lochner and Moretti (2004).

17 Two exceptions are Wisconsin and New Hampshire that have programs in which elite graduates are admitted to the bar without an exam.

18 Among the 50 states, only California does not require an individual to graduate from an accredited law
level, $\hat{\theta}$, is sufficiently high, then blind review is optimal. In this light, it makes sense for licensing decisions to rely only on a blindly administered exam. The schools and training programs themselves receive applications for admission from a much broader spectrum of individuals. In particular, they receive applications not only from the upper tail of the ability distribution, but from the lower tail as well. Indeed, given the exacting admission standards applied by most U.S. law programs, the relevant lower tail of the distribution is much larger than the upper tail. Given this, Proposition 6 indicates that informed review, in which an applicant's entire record is scrutinized, is optimal. The table below shows data for the 10 most selective law schools in the US in 2009. None of these programs admitted more than 17.5% of their applicants.\(^{19}\)

<table>
<thead>
<tr>
<th>SCHOOL</th>
<th>ADMIT</th>
<th>MIN LSAT</th>
<th>St.</th>
<th>Pass Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yale</td>
<td>7.3%</td>
<td>170</td>
<td>NY</td>
<td>91.2%</td>
</tr>
<tr>
<td>Stanford</td>
<td>9.0%</td>
<td>167</td>
<td>CA</td>
<td>88.7%</td>
</tr>
<tr>
<td>Harvard</td>
<td>11.8%</td>
<td>170</td>
<td>NY</td>
<td>97.1%</td>
</tr>
<tr>
<td>Berkeley</td>
<td>12.0%</td>
<td>163</td>
<td>CA</td>
<td>84.9%</td>
</tr>
<tr>
<td>Connecticut</td>
<td>14.1%</td>
<td>160</td>
<td>CT</td>
<td>86.7%</td>
</tr>
<tr>
<td>Maryland</td>
<td>15.5%</td>
<td>160</td>
<td>MD</td>
<td>87.5%</td>
</tr>
<tr>
<td>Columbia</td>
<td>15.9%</td>
<td>169</td>
<td>NY</td>
<td>95.6%</td>
</tr>
<tr>
<td>Chicago</td>
<td>16.2%</td>
<td>169</td>
<td>IL</td>
<td>97.7%</td>
</tr>
<tr>
<td>Penn</td>
<td>16.3%</td>
<td>166</td>
<td>NY</td>
<td>94.4%</td>
</tr>
<tr>
<td>UCLA</td>
<td>17.5%</td>
<td>163</td>
<td>CA</td>
<td>85.7%</td>
</tr>
</tbody>
</table>

8.3 Journal Submissions and Grant Proposals

As a final application of the theory, note that Bachand and Sawallis (2003) find that 58% of 553 journals across 18 academic disciplines use blind review of manuscripts; i.e., the referee is not informed of the author's identity.\(^{20}\) Grant proposals, however, appear to always be evaluated non-blindly. Indeed, in many if not most cases (e.g., NSF, NIH, Russell Sage Foundation, Alfred P. Sloan Foundation) principal investigators are required to submit a *Curriculum Vitae* to be reviewed as part of their proposal.

Why are journal submissions often evaluated blindly, while grant proposals seem always to be subjected to informed review? A major difference between a journal submission and a grant proposal is the stage at which the research is evaluated. Grant proposals, by their school prior to taking its bar exam.

\(^{19}\)The data in the table comes from [http://www.ilrg.com/rankings/law/index.php/1/asc/](http://www.ilrg.com/rankings/law/index.php/1/asc/ Accept]. Even the 50th most selective program (Duke, as it turns out) had an acceptance rate of only 26.7%.

\(^{20}\)In disciplines such as economics, where working papers are customarily uploaded to the web prior to publication, commitment to blind review is not possible because the referee can ascertain the author's identity in a matter of seconds by searching for a few key words. Perhaps this is why over 80% of the top-50 economics journals no longer even attempt to practice blind review. Many disciplines, however, do not post manuscripts on the Internet, making blind review still a feasible option.
nature, are speculative and preliminary. They contain few, if any, concrete findings. Rather, they are hypothetical in scope and generally provide only a conceptual plan, or road map, for how the proposed research is to be performed. Journal submissions, by contrast, are intended to disseminate actual research findings. They are supposed to contain substantial analysis and explicit results.

It stands to reason, therefore, that the signal an evaluator receives about the ultimate quality of the research is much less informative when reviewing a grant proposal than when reviewing a journal submission. Proposition 8 accords neatly with this interpretation. Grant proposals, which are submitted at a very early stage of the project, should be subjected to informed review, while manuscripts, which are submitted at a more mature stage, should be reviewed blindly. In other words, the primary concern in grant review should be the selection of good projects, while the dominant concern in manuscript review should be the provision of incentives for authors to write high-quality papers.

9 Generalizations and Extensions

In this section, the basic model is extended in three dimensions to highlight the robustness of the results obtained above and glean some important additional insights.

9.1 Competing Evaluators and Adverse Selection

In practice there are often multiple evaluators (e.g., schools, companies, and academic journals) that compete for high-quality applications. In this subsection, the basic model is extended to show how competition among evaluators impacts the equilibrium mode of review.

Suppose there are two ex ante symmetric evaluators, \(i = 1, 2 \), who simultaneously and publicly announce their review policies, \(\tau_i \in \{I, B\} \). Upon observing \(\tau_1 \) and \(\tau_2 \), each agent then exerts effort and applies to one evaluator. To parameterize the degree of competition, one of three possible situations is assumed to obtain. With probability \(1 - \phi \) an agent is unattached (i.e., he is free to apply to either evaluator); with probability \(\frac{\phi}{2} \) he is attached to evaluator 1; and with probability \(\frac{\phi}{2} \) he is attached to evaluator 2. Attachments are independent across agents and over types. For simplicity, also assume that re-applications are not feasible, and, in case of indifference, an unattached agent selects between the evaluators with equal probability.

Let \(\pi^{\tau_1, \tau_2}_i \) be evaluator \(i \)'s expected payoff in the subgame with review policies \(\tau_1 \) and \(\tau_2 \). Note that, if \(\tau_1 = \tau_2 = I \), then ex ante each agent is equally likely to apply to either evaluator, resulting in equal payoffs, \(\pi^{I,I}_i = \frac{1}{2}E[V^I(\theta)] \). If, on the other hand, \(\tau_1 = \tau_2 = B \), then a straightforward argument shows that, in equilibrium, both evaluators adopt the same
standard tailored to the population mean, μ, yielding equal payoffs, $\pi^B_B = \frac{1}{2}V^I(\mu)$. The equilibrium characterization with different review policies is the least obvious.

Suppose, without loss of generality, $\tau_1 = B$ and $\tau_2 = I$. Moreover, suppose, in equilibrium, the mean type that applies to evaluator 1 is m_1. This implies that an unattached type θ prefers evaluator 1 whenever $\theta < m_1$. Hence, the conditional mean ability for evaluator 1 is

$$M_1(m_1; \phi) = \frac{(1 - \phi^2) \int_{m_1}^\theta \theta dG(\theta) + \phi^2 \int_0^{m_1} \theta dG(\theta)}{(1 - \phi^2)G(m_1) + \phi^2(1 - G(m_1))}.$$

In equilibrium, the conditional mean, $m_1 = \mu_1(\phi)$, must solve

$$M_1(m_1; \phi) - m_1 = 0. \quad (16)$$

Lemma 5. There exists a unique solution, $\mu_1(\phi)$ to (16). The function $\mu_1(\phi)$ is strictly increasing and has boundary values $\mu_1(0) = \theta$ and $\mu_1(1) = \mu$.

Lemma 5 is quite intuitive. It says that as each agent becomes less likely to be attached, fewer high types apply to evaluator 1 for blind review. This causes it to raise its standard and further discourages applications by high unattached types in the remaining pool. In particular, in the absence of attached types ($\phi = 0$), complete unraveling occurs and all agents apply to evaluator 2 for informed review.

In light of Lemma 5, equilibrium payoffs for evaluators 1 and 2 in the subgame with $\tau_1 = B$ and $\tau_2 = I$ are given, respectively, by

$$\pi^B_{B,I} = \left[\left(1 - \frac{\phi}{2}\right)G(\mu_1(\phi)) + \frac{\phi}{2}(1 - G(\mu_1(\phi)))\right]V^I(\mu_1(\phi))$$

and

$$\pi^B_{I,I} = \frac{\phi}{2} \int_{\mu_1(\phi)}^\theta V^I(\theta) dG(\theta) + \left(1 - \frac{\phi}{2}\right) \int_{\mu_1(\phi)}^\theta V^I(\theta) dG(\theta).$$

The following lemma characterizes these payoffs.

Lemma 6. In the unique equilibrium with $\tau_1 = B$ and $\tau_2 = I$, the evaluator’s payoffs have the following properties:

(i) $\pi^B_{B,I}(\phi)$ is strictly increasing, and $\pi^B_{B,I}(0) = 0$ and $\pi^B_{B,I}(1) = \frac{1}{2}V^I(\mu)$.

(ii) $\pi^B_{I,I}(\phi)$ is strictly decreasing, and $\pi^B_{I,I}(0) = E[V^I(\theta)]$ and $\pi^B_{I,I}(1) = \frac{1}{2}E[V^I(\theta)]$.

In other words, the evaluator who uses blind review is better off when there are more attached types, because they have a direct positive effect on her payoff as well as a positive indirect effect through attracting high unattached types, who, by Lemma 5, anticipate a lower
standard. By the same token, the evaluator who uses informed review is worse off when there are more attached types.

Having characterized the evaluators’ payoffs in each subgame, the equilibrium review policies can now be determined.

Proposition 9 (Equilibrium with Competing Evaluators). Suppose \(\frac{1}{2} V^I(\mu) < E[V^I(\theta)] < V^I(\mu) \). Then, there exist two cutpoints, \(0 < \phi^* \leq \phi^{**} < 1 \), such that for \(\phi < \phi^* \), the unique equilibrium has \(\tau_1 = \tau_2 = 1 \), whereas for \(\phi > \phi^{**} \), the unique equilibrium has \(\tau_1 = \tau_2 = B \). For \(\phi \in [\phi^*, \phi^{**}] \), both symmetric and asymmetric review policies may occur in equilibrium.

The message of Proposition 9 is that competition among evaluators to attract high quality applications is likely to lead them to adopt informed review, even when each would individually prefer blind review.

9.2 Two Types of Error

Up to now, it has been assumed that the evaluator suffers a loss only from a false acceptance. In some settings, however, she may also suffer a loss from a false rejection. For instance, misjudging a potentially good musician is probably as costly for the performance of a symphony orchestra as hiring a potentially bad one. In Taylor and Yildirim (2006) it is shown that accounting for both types of error does not qualitatively change the main results derived from the basic model, especially those pertaining to the comparison of informed and blind review. Thus, in this subsection only, the novel insights associated with this generalization are highlighted.

Suppose, in addition to the loss \(-c < 0\) from a false acceptance, the principal also incurs a loss \(-\overline{c} < 0\) from a false rejection. While this does not alter the agent’s payoff in (1), the expected loss from rejecting a good project needs to be subtracted from the principal’s payoff in (3):

\[
\overline{V}(s, p) = v p (1 - F_h(s)) - c (1 - p) (1 - F_l(s)) - \overline{c} p F_h(s).
\]

Maximizing (17) with respect to \(s \), the principal’s reaction function is

\[
\overline{s}(p) = L^{-1} \left(\frac{1 - p}{\overline{r}} \right),
\]

where \(\overline{r} = \frac{c}{v + \overline{c}} \). Because \(L' > 0 \), (18) implies that the principal is more likely to accept a project as her loss from a false rejection increases. Applying the Envelope Theorem, the principal’s indirect payoff satisfies

\[
\frac{d}{dp} \overline{V}(\overline{s}(p), p) = v (1 - F_h(\overline{s}(p))) + c (1 - F_l(\overline{s}(p))) - \overline{c} F_h(\overline{s}(p)),
\]
which is clearly positive if \(\tilde{S}(p) \) is close to \(\sigma \), and negative if \(\tilde{S}(p) \) is close to \(\overline{\sigma} \). Hence, in contrast to part (i) of Lemma 1, the principal’s indirect payoff does not monotonically increase in \(p \). In fact, since \(\tilde{S}(0) = \overline{\sigma} \) and \(\tilde{S}'(p) < 0 \), her indirect payoff strictly decreases in \(p \) whenever \(p \) is small, because such a project is very likely to be rejected, and thus exposes the principal to risk of false rejection.\(^{21} \) In fact, a sufficiently small \(p \) may result in a negative payoff for the evaluator, \(V(\tilde{S}(p), p) < 0 \), which never occurs in the base model. The evaluator would, of course, avoid a negative payoff if she could commit to prescreening those agents who are unlikely to exert a high enough effort. Intuitively, in the absence of commitment by the principal, some low-ability agents will take advantage of her fear of false rejections by submitting projects with very low values of \(p \).

The discussion thus far suggests two novel insights that are confirmed in Proposition 10: first, the evaluator may receive a negative equilibrium payoff from some intermediate type agents, and second, there may be too little equilibrium prescreening compared with the commitment benchmark.

Proposition 10 (Two Types of Error). Suppose both types of error are costly to the evaluator, i.e., \(c, \overline{c} > 0 \). Then, in equilibrium,

(i) under informed review there exist two types, \(\overline{\theta}_- < \overline{\theta}_r \), such that

\[
V(\theta) = \begin{cases}
0 & \text{if } \theta \leq \overline{\theta}_- \text{ or } \theta = \overline{\theta}_r \\
< 0 & \text{if } \overline{\theta}_- < \theta < \overline{\theta}_r \\
> 0 & \text{if } \theta > \overline{\theta}_r,
\end{cases}
\]

(ii) if \(\overline{c} \) is sufficiently large, then, compared with commitment, there is less prescreening under informed review, namely, \(\overline{\theta}_- < \overline{\theta}_c \).

Hence, when the evaluator is sufficiently concerned about a false rejection, there may be too little prescreening under informed review as opposed to too much prescreening as observed in the base model. The reason is as suggested above: when the evaluator fears rejecting a good project, she cannot credibly discourage some intermediate type agents from submitting projects in equilibrium, even though they are unlikely to produce high quality.

9.3 Non-Productive Effort

In some settings, applicants can engage in both productive activities, which enhance their current performance, and influence activities, which may enhance the signal received by the

\(^{21} \)The nonmonotonicity of the evaluator’s indirect payoff implies that equilibria under informed review are not always Pareto rankable. For consistency, we continue to assume that the players coordinate on the equilibrium with the highest effort and lowest standard.
evaluator but do not enhance the actual quality of the project. For instance, an individual submitting a manuscript for publication may spend significant time and energy on formatting and layout, rather than on improving content. To capture this possibility, extend the base model by supposing that an agent can exert two kinds of effort: a productive effort, p, and an unproductive effort, e. In particular, even when the true quality of the project is low, which happens with probability $1 - p$, the evaluator still receives the signal from F_h with probability e. Hence, the principal’s expected payoff is given by

$$V(s, p, e) = p(1 - F_h(s))v - e(1 - p)(1 - F_h(s))c - (1 - e)(1 - p)(1 - F_l(s))c.$$

Differentiating with respect to s yields

$$V_s(s, p, e) = (1 - p) r - (1 - e) r e.$$

Note that if $-p + (1 - p) e r \geq 0$, then $S(p, e) = \sigma$. Suppose $-p + (1 - p) e r < 0$. Then, the evaluator’s reaction function is

$$L(S(p, e)) = \frac{(1 - p) r - (1 - p) e r}{p - (1 - p) e r}.$$

Clearly, for $e = 0$ this yields the base model reaction function.

As for the agent, assume that ability affects only the cost of exerting productive effort. That is, all types of agent are equally capable of influence activity. In particular, a type θ agent’s cost of exerting p and e is $\frac{1}{2} \left(\frac{p}{\sqrt{\theta}} + \frac{e}{\sqrt{t}} \right)^2$, where $t > 0$ is a constant. Hence his expected utility is

$$U(p, e; s, \theta) = u[(1 - (1 - p)(1 - e))(1 - F_h(s)) + (1 - p)(1 - e)(1 - F_l(s))] - \frac{1}{2} \left(\frac{p}{\sqrt{\theta}} + \frac{e}{\sqrt{t}} \right)^2.$$

This also yields the base model when $e = 0$.

Lemma 7. For any $s \in [\sigma, \overline{\sigma}]$, the best response of a type θ agent is as follows: for $\theta \leq t$, $p = 0$ and $e = \min\{tu(F_l(s) - F_h(s)), 1\}$, and for $\theta \geq t$, $e = 0$ and $p = \min\{\theta u(F_l(s) - F_h(s)), 1\}$.

The agent’s payoff function is submodular in the two kinds of effort ($U_{pe} < 0$), so the marginal return to productive effort is highest when non-productive effort is zero and vice versa. If $\theta < t$, then non-productive effort costs the agent less than productive effort, and if $\theta > t$, then the reverse is true.

Clearly, under informed review the principal will prescreen all types $\theta < t$; i.e., $s = \overline{\sigma}$ and $p = e = 0$. For $\theta \geq t$, the equilibrium is as characterized in Proposition 2, namely $s = s^I(\theta)$ and $p = p^I(\theta)$. The equilibrium under blind review is more difficult to characterize,

\[22\text{Technically, what matters is that influence ability not be perfectly correlated with productive ability.}\]
principally because the equilibrium standard s^B is a function of t. In general, blind review should perform relatively poorly compared with informed review when non-productive effort is possible. Under informed review, low-ability agents who specialize in non-productive effort can be excised from the applicant pool, while under blind review they cannot. The following result reveals that when there are a significant fraction of agents who prefer to exert non-productive effort, then blind review is infeasible.

Proposition 11 (Rent Seeking). Suppose $\theta u \leq 1$. There exists $t < \theta$ such that if $t \geq t$, then blind review results in the degenerate equilibrium: $s^B = \bar{\sigma}$ and $p^B = e^B = 0$. Hence, if $t \in [t, \theta)$, then informed review is optimal.

Proposition 11 is quite intuitive. It says that if the fraction of “spoilers” in the population is high enough ($G(t) \geq G(t)$), then the principal prefers to reject all projects under blind review. (As the proof of the proposition makes clear, t is decreasing in r, so that the fraction of spoilers can be small if the cost to benefit ratio is high.) However, so long as some fraction of agents prefer to exert productive effort ($G(t) < 1$), the principal receives a positive payoff under informed review because she only evaluates submissions from agents with $\theta \geq t$. Hence, the ability of agents to exert non-productive effort mitigates against the adoption of blind review.

10 Conclusion

The issue at the heart of this paper concerns the tradeoff between the effective use of information and the provision of incentives, in a setting where commitment to a review standard is infeasible. It was shown in this context that when the evaluator observes the innate ability of the applicant, the equilibrium review policy is unduly biased – the standards facing high ability applicants are too weak and those facing low-ability applicants are too tough. While this policy uses information optimally _ex post_, it provides poor incentives _ex ante_. In particular, if the evaluator could commit to a review procedure, then she would implement a flatter (less biased) one. Commitment to such a policy is, however, often impractical or impossible because of the subjective nature of performance measures: the taste of a fine wine, the skill of a classical musician, the quality of an essay. Although it is not possible to commit to a highly tailored acceptance procedure in such environments, it is often possible to commit to remain ignorant of the identity (and hence the ability) of the applicant; that is, to perform blind review.

The uniform standard implemented under blind review often provides good incentives for agents at both ends of the ability distribution, but it sacrifices information at the project selection stage. Hence, whether the evaluator prefers blind or informed review depends critically on whether incentives or project selection is more important to her. Blind review was shown to
be the preferred mode of evaluation if the applicant pool contains a large proportion of high ability agents, the applicant’s stakes from acceptance are relatively high, the subjective signal of project quality is fairly precise, wrong decisions are relatively less costly, or there is limited competition among evaluators.

Three applications were presented. In the context of criminal trials, the theory presented here suggests that character evidence should be admissible in cases of street crime but not white-collar crime. The model was also shown to reconcile the paradoxical use of informed evaluation for school admission and the use of blind review for professional certification. Finally, it was argued that research projects in early stages of development (e.g., grant proposals) should be subjected to informed review, while projects in later stages (e.g., manuscripts) should be evaluated blindly.

There are a number of intriguing issues that remain to be addressed in future work. For instance, it would be interesting to investigate the effects of more general non-monetary incentive devices. In academia, for example, there is a gradation of rewards associated with acceptance of a manuscript (lead article, long or short paper, best paper prize, and so on) that can be used to induce individuals to exert more effort. Similarly, it would also be interesting to study the role of peer effects in a setting where an applicant’s benefit from acceptance, u, is determined endogenously. Specifically, the status or prestige enjoyed by an agent whose project is accepted might well depend on the average quality of other projects accepted by the evaluator. Another intriguing avenue for future research would be to consider the possibility of psychological bias on the part of the evaluator and the role of blind review in mitigating prejudice. Finally, it would be instructive to study a dynamic version of the model in which the current ability of an agent depends on his history of prior projects. In particular, it would be useful to explore the interaction between the review policies of evaluators and the career trajectories of agents in such a setting. While these and other topics for further research appear fruitful, it seems likely that the fundamental message of this paper will remain intact. Fairness is not the only reason to level the playing field – often it is also the best thing the evaluator can do.
Appendix A

This appendix contains the proofs of all lemmas and propositions presented in the text, as well as the statement and proofs of two technical lemmas.

PROOF OF PROPOSITION 1. Note first that if a type \(\theta \) agent is subject to \(s \) sufficiently close to \(\sigma \), then \(P(s, \theta) < 1 \), and hence \(V(s, P(s, \theta)) \) is strictly quasi-concave in \(s \) by Assumption 2. This means \(s^C(\theta) = \sigma \) if and only if \(\lim_{s \to \sigma} \frac{d}{ds} V(s, P(s, \theta)) > 0 \). Differentiating (4) and noting \(\lim_{s \to \sigma} P(s, \theta) = 0 \) and \(\lim_{s \to \sigma} [L(s)P(s, \theta)] = u \theta (\lambda_h - \lambda_f) \) by Assumption 1, it follows \(s^C(\theta) = \sigma \) and thus \(p^C(\theta) = 0 \) if and only if \(\theta < \frac{r}{u(2\lambda_h + (r-1)\lambda_f)} = \sigma^C \). Second, suppose \(P(s, \theta) \) is sufficiently large, then by Assumption 2, \(s^C(\theta) = s^C_0(\theta) \) is the unique solution to \(\frac{d}{ds} V(s^C_0(\theta), P(s^C_0(\theta), \theta)) = 0 \), or equivalently to (5). If \(P(s^C_0(\theta), \theta) > 1 \), then \(s^C(\theta) = s^C_0(\theta) \); otherwise, \(s^C(\theta) = \min\{s|P(s, \theta) = 1\} \), because for \(P(s, \theta) = 1 \), (4) reduces to \(V(s, P(s, \theta)) = v(1 - F_h(s)) \), which is strictly decreasing in \(s \). By construction, \(s^C(\theta) \) is continuous for \(\theta = \sigma^C \). Since \(\lim_{s \to \sigma} V(s, \theta) = 0 \) for any \(p \in [0,1] \), \(s^C(\theta) \) is also continuous at \(\theta = \sigma \). This implies that \(p^C(\theta) = P(s^C(\theta), \theta) \) is continuous for all \(\theta \).

To prove that \(s^C(\theta) \) is strictly decreasing for \(\theta > \sigma^C \), observe that for \(\theta \in (\sigma^C, \sigma^C) \),

\[
\frac{d}{d\theta} s^C(\theta) = \text{sign } V_p(\cdot)P_{\theta}(\cdot) + V_{sp}(\cdot)P_{\theta}(\cdot) = V_p(\cdot)P_{\theta}(\cdot) = \frac{V_{sp}(\cdot)P_{\theta}(\cdot) - V_{sp}(\cdot)P_{\theta}(\cdot)}{\theta} = \frac{1}{\theta} [V_{sp}(\cdot)P(\cdot) - V_{sp}(\cdot)]
\]

From (3), \(V_s(s, \theta) = -pf_h(s)v + (1 - p)f_i(s)c \) and \(V_{sp}(\cdot)P_{\theta}(\cdot) = \frac{1}{\theta} [V_{sp}(\cdot)P(\cdot) - V_{sp}(\cdot)] \), which imply \(V_{sp}(\cdot)P(\cdot) - V_{sp}(\cdot) = -f_i(s)c < 0 \). Hence, \(\frac{d}{d\theta} s^C(\theta) < 0 \) for \(\theta \in (\sigma^C, \sigma^C) \). For \(\theta = \theta^C \), we have \(P(s^C(\theta), \theta) = 1 \), and thus \(\frac{d}{d\theta} s^C(\theta) = \frac{P_p(\cdot)P_{\theta}(\cdot)}{P_{\theta}(\cdot)} < 0 \), where \(P_{\theta}(\cdot) > 0 \) because \(s^C(\theta) < s^* = L^{-1}(1) \). For \(\theta = \sigma^C \), \(s^C(\theta) \) is not differentiable, but it is clearly strictly decreasing. As a result, \(s^C(\theta) \) is strictly decreasing for all \(\theta > \sigma^C \). Given that \(s^C(\theta) \) is strictly decreasing and \(V(s, P(s, \theta)) \) is strictly quasi-concave by Assumption 2 for \(\theta \in (\sigma^C, \sigma^C) \), it easily follows that \(p^C(\theta) \) is strictly increasing for \(s \in (\sigma^C, \sigma^C) \).

Finally, suppose, contrary to the above, \(\lim_{\theta \to \sigma} s^C(\theta) = \sigma^C > \sigma \). Then, there would be a sufficiently large \(\hat{\theta} < \infty \) such that \(p^C(\hat{\theta}) = 1 \) and \(s^C(\hat{\theta}) > \sigma \). But in this case, the principal could strictly improve her payoff, \(v(1 - F_h(s)) \), by setting a standard, \((s^C(\hat{\theta}) + \sigma)/2 \). Hence, \(\lim_{\theta \to \sigma} s^C(\theta) = \sigma \).

PROOF OF LEMMA 1. Since, by definition, \(V_s(S(p), p) = U_p(P(s, \theta), s; \theta) = 0 \), (1) and (3) imply that \(\frac{d}{ds} U(P(s, \theta), s; \theta) = \frac{d}{ds} U(P(s, \theta), s; \theta) < 0 \) and \(\frac{d}{ds} V(S(p), p) = \frac{d}{dp} V(S(p), p) > 0 \).

PROOF OF PROPOSITION 2. To prove the existence of the cutoff type \(\sigma^L \), observe that \(V(s, p) \) is strictly quasi-concave in \(s \) because \(L'(s) > 0 \). This means \(s^L(\theta) = \sigma \) if and only if \(\lim_{s \to \sigma} V_s(s, \theta) > 0 \). Since \(\lim_{s \to \sigma} P(s, \theta) = 0 \) and \(\lim_{s \to \sigma} L(s)P(s, \theta) = u \theta (\lambda_h - \lambda_f) \) by Assumption 1, we have \(s^L(\theta) = \sigma \) and thus \(p^L(\theta) = 0 \) if and only if \(\theta < \frac{r}{u(\lambda_h - \lambda_f)} = \sigma^L \).

Next, note that \(p^L(\theta) < 1 \) for all \(\theta < \infty \); otherwise, if \(p^L(\theta) = 1 \) for some \(\hat{\theta} < \infty \), then

34
\[s^l(\hat{\theta}) = S(1) = \sigma, \] to which the agent would reply by \(p^l(\hat{\theta}) = 0 \), contradicting \(p^l(\hat{\theta}) = 1 \). Note also that \(p^l(\theta) < 1 \) implies that \(s^l(\theta) > \sigma \) for all \(\theta < \infty \).

Now, we prove that \(s^l(\theta) \) is strictly decreasing for \(\theta > \theta^l \). Recall from the text that \(s^l(\theta) = s^{l}_0(\theta) \), which is the smallest root to (11), or equivalently to \(\hat{S}^{-1}(s, r) - P(s, \theta) = 0 \), where \(\hat{S}^{-1}(s, r) \equiv S^{-1}(L^{-1}(r \frac{1-L}{p})) \). Differentiating the last equation with respect to \(\theta \), we find

\[
\frac{\partial}{\partial \theta} P^l(\theta) = \frac{P^l(s^l(\theta), \theta)}{\hat{S}^{-1}(s^l(\theta), r) - P^l(s^l(\theta), \theta)}.
\]

Clearly, \(P^l(s^l(\theta), \theta) = u[F^l(s^l(\theta)) - F^h(s^l(\theta))] > 0 \) because \(p^l(\theta) = P(s^l(\theta), \theta) < 1 \). To show that \(\hat{S}^{-1}(s^l(\theta), r) - P^l(s^l(\theta), \theta) < 0 \), note that \(\hat{S}^{-1}(s^l(\theta), r) < 0 \) by our equilibrium selection, and thus \(\hat{S}^{-1}(s^l(\theta), r) - P^l(s^l(\theta), \theta) < 0 \) whenever \(P^l(s^l(\theta), \theta) \geq 0 \). Suppose that \(P^l(s^l(\theta), \theta) < 0 \) and, to the contrary, that \(\hat{S}^{-1}(s^l(\theta), r) - P^l(s^l(\theta), \theta) \geq 0 \). If \(\hat{S}^{-1}(s^l(\theta), r) - P^l(s^l(\theta), \theta) = 0 \) for some \(\theta \), then by continuity, there would be a sufficiently small \(\epsilon > 0 \) such that \(s^l(\theta) = s^l(\theta + \epsilon) \). But, from (2), this would imply \(p^l(\theta) < p^l(\theta + \epsilon) \), and thus \(s^l(\theta) \neq s^l(\theta + \epsilon) \), yielding a contradiction. Hence, \(\hat{S}^{-1}(s^l(\theta), r) - P^l(s^l(\theta), \theta) > 0 \). But then, by continuity, we would have \(\hat{S}^{-1}(s^l(\theta), r) - P^l(s^l(\theta), \theta) < 0 \) for some \(\epsilon > 0 \). Given \(\hat{S}^{-1}(\sigma, r) - P(\sigma, \theta) > 0 \), this would generate another equilibrium with a greater effort, contradicting our equilibrium selection. Thus, for \(\theta > \theta^l \) and thus \(s^l(\theta) \neq \sigma \), it must be that \(\hat{S}^{-1}(s^l(\theta), r) - P^l(s^l(\theta), \theta) < 0 \).

Hence, \(\frac{\partial}{\partial \theta} P^l(\theta) < 0 \).

Given that \(\frac{\partial}{\partial \theta} s^l(\theta) < 0 \), and from (10) that \(p^l(\theta) = \frac{r}{r + L(s^l(\theta))} \), it immediately follows

\[
\frac{\partial}{\partial \theta} p^l(\theta) = -\frac{rL'(\cdot)}{r + L(\cdot)^2} \frac{\partial}{\partial \theta} s^l(\theta) > 0.
\]

Finally, to prove the limits as \(\theta \to \infty \), suppose \(\lim_{\theta \to \infty} p^l(\theta) = \bar{p}^l < 1 \). From (10), this would imply \(\lim_{\theta \to \infty} s^l(\theta) = \sigma^l > \sigma \). But then, since \(F^l(\sigma^l) - F^h(\sigma^l) > 0 \), it must be that \(\bar{p}^l = 1 \) by (2), yielding a contradiction. Hence, \(\bar{p}^l = 1 \). As a result, \(\lim_{\theta \to \infty} s^l(\theta) = \sigma^l \).

PROOF OF PROPOSITION 3. Suppose \(\theta > \theta^C \). Since \(\theta^C < \theta^l \), clearly \(s^C(\theta) < s^l(\theta) = \sigma \) for \(\theta \in (\theta^C, \theta^l) \). Next, note that \(\theta^C \geq \theta^* \): otherwise, if \(\theta^C < \theta^* \), then there would be some finite \(\theta \geq \theta^C \) for which \(p^l = 1 \), contradicting Proposition 2.

Suppose \(\theta < \theta^* \), but, on the contrary, \(s^C(\theta) = s^l(\theta) \). Since \(s^l(\theta) > s^l(\theta^*) \), it follows that \(V_\delta(s^l(')(\cdot), p^l(')(\cdot)) = 0 \) and \(P_\delta(s^l(\theta), \theta) < 0 \), which imply \(\frac{d}{ds} V(s, P(s, \theta))\bigg|_{s=s^l(\theta)} < 0 \), and by Assumption 2 reveal \(s^C(\theta) < s^l(\theta) \) - a contradiction. Thus, \(s^C(\theta) < s^l(\theta) \) for \(\theta < \theta^* \).

Given \(\theta^C > \theta^* \), a similar line of argument shows that \(s^C(\theta^*) = s^l(\theta^*) \), and \(s^C(\theta) > s^l(\theta) \) for \(\theta^* < \theta \leq \theta^C \). Finally, suppose \(\theta > \theta^+ \). Then, \(s^C(\theta) = \min\{s|P(s, \theta) = 1\} \) by Proposition 1. If, on the contrary, \(s^C(\theta) \leq s^l(\theta) \), then since \(\theta > \theta^+ \), we would have \(1 = P(s^C(\theta), \theta) < P(s^l(\theta), \theta) \) because \(P^l(s, \theta) > 0 \) for \(\theta > \theta^C \). But this would imply \(p^l(\theta) = 1 \), contradicting Proposition
1. Hence, \(s^C(\theta) > s^I(\theta) \) for \(\theta > \theta^*_C \). Finally, to prove \(p^C(\theta) \geq p^I(\theta) \) with strict inequality if \(\theta \neq \theta^* \), simply recall \(P_s(s, \theta) = \text{sign} s^* - s \) whenever \(P_s(s, \theta) < 1 \). ■

Proof of Proposition 4. The claim directly follows from (13), (14), and (15). ■

Proof of Proposition 5. Since \(s^I(\theta) \) is strictly decreasing for \(\theta > \theta^I \), and \(s^B = s^I(\mu) \), part (i) immediately follows. To prove part (ii), note that \(F_I(s) - F_h(s) \) is strictly quasi-concave in \(s \), achieving its unique maximum at \(s = s^* \). Since \(s^I(\mu) \) is strictly decreasing, this implies that \(F_I(s^B) - F_h(s^B) = F_I(s^I(\mu)) - F_h(s^I(\mu)) \) is strictly quasi-concave in \(\mu \), admitting its maximum at \(\mu = \theta^* \). Thus, for a given type \(\theta \), \(p^B(\theta) - p^I(\theta) \) strictly increases in \(\mu \) as \(\mu \) approaches \(\theta^* \), and so does \(E[p^B(\theta)] - E[p^I(\theta)] \). Moreover, if \(\mu = \theta^* \) so that \(s^B = s^* \), then \(p^B(\theta) - p^I(\theta) > 0 \) for all \(\theta \neq \theta^* \) and \(p^B(\theta) - p^I(\theta) = 0 \) for \(\theta = \theta^* \), revealing that \(E[p^B(\theta)] - E[p^I(\theta)] > 0 \) at \(\mu = \theta^* \). ■

Proof of Lemma 2. Consider \(\theta > \theta^I \) so that \(p^I > 0 \). We first prove the following claim.

Claim. \(\frac{p^I}{p^I s^I} \rightarrow \infty \), as \(\theta \rightarrow \infty \).

Proof. Since \(p^I < 1 \) by Proposition 2, \(p^I = \theta u(F_I(s^I) - F_h(s^I)) \). Differentiating with respect to \(\theta \), we obtain

\[
p^{II} = u[(F_I(s^I) - F_h(s^I)) + \theta(f_I(s^I) - f_h(s^I))s^I]
\]

and

\[
p^{III} = u[(f_I(s^I) - f_h(s^I))(2s^I + \theta s^{III}) + (f'_I(s^I) - f'_h(s^I))\theta(s^{III})^2].
\]

Again, by Proposition 2, we know \(p^I \rightarrow 1 \) and \(s^I \rightarrow \sigma \) as \(\theta \rightarrow \infty \). Suppose \(\theta s^{III} \rightarrow 0 \), which implies \(s^{III} \rightarrow 0 \). Next, by definition \(\frac{p^{III}}{\theta s^{III}} = u\left[\frac{F_I(s^I) - F_h(s^I) + f_I(s^I) - f_h(s^I)}{s^I + \theta s^{III}} \right] \). This means for a sufficiently large \(\theta \), \(\frac{p^{III}}{\theta s^{III}} < 0 \) and \(\frac{p^{III}}{\theta s^{III}} \rightarrow 0 \), which implies \(s^{III} \rightarrow 0 \). Using L'Hopital's rule, \(\frac{p^{III}}{\theta s^{III}} \rightarrow 0 \), for a sufficiently large \(\theta \), implying that \(s^{III} \rightarrow 0 \). A similar limit argument shows that \(\frac{F_I(s^I) - F_h(s^I)}{s^I + \theta s^{III}} \approx \frac{|f'_I(s^I) - f'_h(s^I)|s^{III} + (f_I(s^I) - f_h(s^I))s^{III}}{s^{III}} \). Given \(s^{III} < 0 \), the numerator of the last ratio must be positive, or, equivalently \(\frac{f'_I(s^I) - f'_h(s^I)}{s^I + \theta s^{III}} > -\frac{s^{III}}{s^I + \theta s^{III}} \). Next, consider the following ratio:

\[
\frac{p^{III}}{p^I s^I} = \frac{u[(f_I(s^I) - f_h(s^I))(2s^I + \theta s^{III}) + (f'_I(s^I) - f'_h(s^I))\theta(s^{III})^2]}{p^I s^I}.
\]

Dividing the right side by \(\theta(s^{III})^2 \), we obtain

\[
\frac{p^{III}}{p^I s^I} = \frac{(f_I(s^I) - f_h(s^I))(2s^I + \theta s^{III}) + (f'_I(s^I) - f'_h(s^I))}{\frac{p^I s^I}{\theta s^{III}}} u.
\]
Thus, for a large θ

\[
\frac{p^{lll}}{p^{l s l}} \approx \frac{[f_{l}(\sigma) - f_{h}(\sigma)]2s^{l} + \theta s^{lll}}{[f_{l}(\sigma) - f_{h}(\sigma)]2s^{l} + \theta s^{lll}} \frac{s^{l} + \theta s^{lll}}{\theta(s^{l})^{2}} u
\]

\[
= \frac{s^{l} + \theta s^{lll}}{\theta(s^{l})^{2}} u + \frac{[f_{l}(\sigma) - f_{h}(\sigma)]}{[f_{l}(\sigma) - f_{h}(\sigma)]2s^{l} + \theta s^{lll}} \frac{s^{l} + \theta s^{lll}}{2s^{l} + \theta s^{lll}} u
\]

\[
= \frac{s^{l} + \theta s^{lll}}{2s^{l} + \theta s^{lll}} 2 \frac{2}{\theta(s^{l})^{2}} u = +\infty,
\]

where the last line follows because $p^{ll} = -\frac{(p^{l})^{2} L'}{r}$ and $L'(\sigma) < \infty$, revealing $\frac{p^{ll}}{\theta(s^{l})} = -\frac{(p^{l})^{2} L'}{\theta r} \rightarrow 0^{-}$ as $\theta \rightarrow \infty$. Furthermore, given $\frac{p^{ll}}{\theta(s^{l})} \approx u[f_{l}(\sigma) - f_{h}(\sigma)]2s^{l} + \theta s^{lll}$, we have $\frac{2}{\theta(s^{l})^{2}} \rightarrow -\infty$, which, together with $\frac{2}{\theta(s^{l})^{2}} \rightarrow -\infty$, proves the claim. ■

Now, in general

\[
V^{l''} = (V_{ss} s^{l''} + V_{sp} p^{l''}) s^{l'} + V_{s} s^{l'''} + (V_{ps} s^{l'} + V_{pp} p^{l''}) p^{l'} + V_{p} p^{l''}.
\]

Consider the right side of this expression. The first term is zero by straightforward (but tedious) algebra. Moreover, $V_{s} = 0$ by the principal’s FOC and $V_{pp} = 0$ by linearity. Hence,

\[
V^{l''} = V_{ps} s^{l''} p^{l'} + V_{p} p^{l''},
\]

(A1)

where $V_{ps} = -(f_{h}(s^{l})v + f_{l}(s^{l})c)$ and $V_{p} = (1 - F_{h}(s^{l}))v + (1 - F_{l}(s^{l}))c$.

If $\theta \rightarrow \theta_{l}$, then $s^{l} \rightarrow \sigma$, which implies $V_{ps} \rightarrow -f_{h}(\sigma)v - f_{l}(\sigma)c < 0$ and $V_{p} \rightarrow 0$. Hence, $V^{l''} > 0$. Finally, for $\theta \rightarrow \infty$, we have $s^{l} \rightarrow \sigma$, $V_{ps} \rightarrow -f_{h}(\sigma)v - c f_{l}(\sigma) < 0$ and $V_{p} \rightarrow v + c > 0$. Moreover, since, by the earlier Claim, $\frac{p^{ll}}{\theta(s^{l})} \rightarrow +\infty$, the second term in (A1) dominates, and given $p^{llll} < 0$, implies $V^{l''} < 0$.

Overall, this establishes the existence of two cutpoints $\theta_{l} < \theta_{l} \leq \theta_{H} < \infty$ such that $V^{l}(\theta)$ is strictly convex for $\theta < \theta_{l}$ and strictly concave for $\theta > \theta_{H}$. ■

PROOF OF PROPOSITION 6. Suppose $\theta < \theta_{l} \leq \theta_{H} < \overline{\theta}$, where θ_{l} and θ_{H} are the two cutpoints defined in Lemma 2, and by definition, they are independent of the type distribution. Since $V^{l}(\theta)$ is strictly concave for $\theta > \theta_{H}$, Jensen’s inequality implies

\[
\int_{\theta_{H}}^{\overline{\theta}} V^{l}(\theta) \frac{dG(\theta)}{1 - G(\theta_{H})} < V^{l} \left(\int_{\theta_{H}}^{\overline{\theta}} \frac{\theta dG(\theta)}{1 - G(\theta_{H})} \right),
\]

or equivalently

\[
\int_{\theta_{H}}^{\overline{\theta}} V^{l}(\theta) dG(\theta) < (1 - G(\theta_{H})) V^{l} \left(\int_{\theta_{H}}^{\overline{\theta}} \frac{\theta dG(\theta)}{1 - G(\theta_{H})} \right).
\]

37
Then, by adding the term $\int_{\theta}^{\theta_H} V^{I}(\theta) dG(\theta)$ to both sides,

$$E[V^{I}(\theta)] < (1 - G(\theta_H)) V^{I} \left(\frac{\mu(G(\theta_H)) - \int_{\theta}^{\theta_H} \theta dG(\theta)}{1 - G(\theta_H)} \right) + \int_{\theta}^{\theta_H} V^{I}(\theta) dG(\theta)$$

$$\leq (1 - G_H) V^{I} \left(\frac{\mu(G_H) - \theta G_H}{1 - G_H} \right) + V^{I}(\theta_H) G_H \equiv \Phi(G_H),$$

where $G(\theta_H) \equiv G_H$ and $\mu(G_H)$ is the mean type given G_H. For $G_H = 0$, note that $E[V^{I}(\theta)] < V^{I}(\mu(0)) = \Phi(0)$ because $V^{I}(\theta)$ is strictly concave for $\theta > \theta_H$ by hypothesis, and $\mu(0) > \theta_H$. Given that $\Phi(G_H)$ is continuous, there must exist some $\epsilon_0 > 0$ such that $E[V^{I}(\theta)] < V^{I}(\mu(G_H))$ whenever $G_H < \epsilon_0$. A similar line of argument shows that there must also exist some $\epsilon^l > 0$ such that $E[V^{I}(\theta)] > V^{I}(\mu(G_L))$ whenever $G_L \equiv G(\theta_L) > 1 - \epsilon^l$, completing the proof of part (i).

To prove the second part, fix a type distribution $G(\theta)$, and let $\hat{\theta} \equiv u\theta \in [u\theta, u\theta]$ so that $\hat{G}_u(\hat{\theta}) = G(\frac{\hat{\theta}}{u})$. Clearly, $\hat{G}_u(\theta_H) = G(\frac{\theta_H}{u}) \rightarrow 0$ as $u \rightarrow \infty$, which implies that there is some $u_H > 0$ such that $\hat{G}_u(\theta_H) < \epsilon^H$ for all $u > u_H$. Applying the result from part (i), we then have $E[V^I(\theta)] < V^I(\mu)$ for all $u > u_H$. A parallel line of argument reveals that there is some $u_L > 0$ such that $\hat{G}_u(\theta_L) > 1 - \epsilon^l$ for all $u < u_L$, and thus $E[V^{I}(\theta)] > V^{I}(\mu)$. ■

Proof of Lemma 3. Recall that $f_h(s^*) = f_l(s^*)$. Moreover, $L'(s^*) = \frac{f_h'(s^*) - f_l'(s^*)}{f_l(s^*)} > 0$ by MLRP. From (A1)

$$V^{II} = V ps \hat{p}^l \hat{p}^l + V_p p^{II}.$$

We wish to show that this is negative at $\theta = \theta^*$.

To obtain an expression for V_{ps}, invoke Young’s Theorem and differentiate the principal’s FOC with respect to p to get

$$V_{ps} = V_{sp} = -v p^l f_l(s^l) \frac{r}{(p^l)^2}.$$

To derive an expression for $s^{II}(\theta^*)$, consider the matrix of second derivatives obtained by differentiating the FOCs of the agent and principal, respectively.

$$\begin{bmatrix} U_{pp} & U_{ps} \\ V_{sp} & V_{ss} \end{bmatrix} = \begin{bmatrix} -1 & \theta u(f_l(s^l) - f_h(s^l)) \\ -v p^l f_l(s^l) \frac{r}{(p^l)^2} & -v p^l f_l(s^l) L'(s^l) \end{bmatrix}.$$

Hence, differentiating the system of FOCs with respect to θ yields

$$\begin{bmatrix} -1 & \theta u(f_l(s^l) - f_h(s^l)) \\ -v p^l f_l(s^l) \frac{r}{(p^l)^2} & -v p^l f_l(s^l) L'(s^l) \end{bmatrix} \begin{bmatrix} p^{II} \\ s^{II} \end{bmatrix} = \begin{bmatrix} -u(F_l(s^l) - F_h(s^l)) \\ 0 \end{bmatrix}.$$

Applying Cramer’s Rule and evaluating the result at $\theta = \theta^*$ reveals

$$s^{II}(\theta^*) = -r \frac{u(F_l(s^*) - F_h(s^*))}{(p^l(\theta^*))^2 L'(s^*)}.$$
To derive expressions for \(p^{II}(\theta^*) \) and \(p^{III}(\theta^*) \), differentiate \(p^I(\theta) = \theta u[F_l(s^I(\theta)) - F_h(s^I(\theta))] \) and evaluate at \(\theta = \theta^* \) to get
\[
p^{II}(\theta^*) = u(F_l(s^*) - F_h(s^*))
\]
and
\[
p^{III}(\theta^*) = -\theta^* u f_l(s^*) L'(s^*) (s^I(\theta^*) - s^I(\theta^*))^2,
\]
where we use the facts that \(f_h(s^*) = f_l(s^*) \) and \(L'(s^*) = \frac{f_h'(s^*) - f_l'(s^*)}{f_l'(s^*)} \).

Finally, noting \(V_p = (1 - F_h(s^I)) v + (1 - F_l(s^I)) c \), and putting the pieces together give
\[
V^{II}(\theta^*) = v p^* (\theta^*) f_l(\theta^*) L'(s^*) (s^I(\theta^*))^2 - [(1 - F_h(s^*)) v + (1 - F_l(s^*)) c] \theta^* u f_l(s^*) L'(s^*) (s^I(\theta^*))^2.
\]
Factoring the common term \(f_l(s^*) L'(s^*) (s^I(\theta^*))^2 > 0 \) out of the right side reveals that \(V^{II}(\theta^*) < 0 \) iff \(v p^I(\theta^*) - [(1 - F_h(s^*)) v + (1 - F_l(s^*)) c] \theta^* u < 0 \),
\[
\text{iff } v \theta^* u [F_l(s^*) - F_h(s^*)] - [(1 - F_h(s^*)) v + (1 - F_l(s^*)) c] \theta^* u < 0,
\]
\[
\text{iff } F_l(s^*) - F_h(s^*) - [(1 - F_h(s^*)) + (1 - F_l(s^*)) r] < 0,
\]
\[
\text{iff } -(1 - F_l(s^*)) (1 + r) < 0,
\]
which is evidently true. ■

Proof of Proposition 7. By Lemma 3, \(V^I(\theta) \) is strictly concave at \(\theta^* \). Hence, there exists \(\Delta > 0 \) such that
\[
V^I(\theta) < V^I(\theta^*) + V^{II}(\theta^*)(\theta - \theta^*)
\]
for all \(\theta \in (\theta^* - \Delta, \theta^* + \Delta) \) and \(\theta \neq \theta^* \). Suppose \(\bar{\theta} > \theta^* - \Delta \) and \(\bar{\theta} < \theta^* + \Delta \). Then, taking expectations on each side of the above inequality yields
\[
E[V^I(\theta)] < V^I(\theta^*) + V^{II}(\theta^*) (\mu - \theta^*).
\]
(A2)

If \(\mu = \theta^* \), then this yields directly \(E[V^I(\theta)] < V^I(\mu) \). Suppose \(\mu > \theta^* \). Then, setting \(\epsilon = \frac{V^I(\mu) - V^I(\theta^*)}{V^{II}(\theta^*)} > 0 \) and letting \(\mu - \theta^* < \epsilon \), we obtain
\[
V^I(\mu) = V^I(\theta^*) + V^{II}(\theta^*) \epsilon
\]
\[
> V^I(\theta^*) + V^{II}(\theta^*) (\mu - \theta^*)
\]
\[
> E[V^I(\theta)].
\]
Finally, suppose \(\mu < \theta^* \). By way of contradiction, assume \(E[V^I(\theta)] - V^I(\mu) > 0 \). Note that the value of \(\theta^* \) does not affect this difference because it is independent of type distribution. Hence, by continuity of \(V^I(\theta) \) and the fact that \(V^{II}(\theta) \) is bounded (both easily verified), for any \(\theta^* \) sufficiently close to \(\mu \), we have

\[
V^I(\theta^*) - V^I(\mu) + V^{II}(\theta^*)(\mu - \theta^*) < E[V^I(\theta)] - V^I(\mu).
\]

But then, \(V^I(\theta^*) + V^{II}(\theta^*)(\mu - \theta^*) < E[V^I(\theta)] \), contradicting (A2). Hence, \(E[V^I(\theta)] - V^I(\mu) \leq 0 \). ■

Lemma A1.

(i) \(F_h(\sigma; \alpha) \) decreases in \(\alpha \) for \(\sigma \neq \sigma \); and \(F_l(\sigma; \alpha) \) increases in \(\alpha \) for \(\sigma \neq \sigma \).

(ii) For \(\alpha_1 > \alpha_0 \), \(L(\sigma; \alpha_1) - L(\sigma; \alpha_0) = \text{sign } \sigma - s^* \).

(iii) As \(\alpha \to \infty \), we have \(L(\sigma; \alpha) \to 0 \) if \(\sigma < s^* \), and \(L(\sigma; \alpha) \to \infty \) if \(\sigma > s^* \).

Proof. Take any \(\alpha_1 > \alpha_0 \). By Definition 1, \(f_h(\sigma; \alpha) \) satisfies MLRP, which implies FOSD or \(F_h(\sigma; \alpha_1) < F_h(\sigma; \alpha_0) \) for all \(\sigma \neq \sigma \). Using a parallel argument for \(f^I(\sigma; \alpha) \), it also follows that \(F_l(\sigma; \alpha_1) > F_l(\sigma; \alpha_0) \) for all \(\sigma \neq \sigma \). To prove part (ii), note first that \(L(s^*; \alpha_1) - L(s^*; \alpha_0) = 0 \) or equivalently \(\frac{L(s^*; \alpha_1)}{L(s^*; \alpha_0)} = 1 \) by Assumption 4. Next, since \(\frac{L(\sigma; \alpha_1)}{L(\sigma; \alpha_0)} = f_h(\sigma; \alpha_1) f_l(\sigma; \alpha_1) / f_h(\sigma; \alpha_0) f_l(\sigma; \alpha_0) \) increases in \(\sigma \). Suppose \(\sigma < s^* \), and, to the contrary, \(L(\sigma; \alpha_1) - L(\sigma; \alpha_0) \geq 0 \) or \(\frac{L(\sigma; \alpha_1)}{L(\sigma; \alpha_0)} \geq 1 \). But then, \(\frac{L(s^*; \alpha_1)}{L(s^*; \alpha_0)} > 1 \) - a contradiction. Hence, \(L(\sigma; \alpha_1) - L(\sigma; \alpha_0) < 0 \). Now, suppose \(\sigma > s^* \), and, to the contrary, \(L(\sigma; \alpha_1) - L(\sigma; \alpha_0) \leq 0 \) or \(\frac{L(\sigma; \alpha_1)}{L(\sigma; \alpha_0)} \leq 1 \). But then, \(\frac{L(s^*; \alpha_1)}{L(s^*; \alpha_0)} < 1 \) - a contradiction. Hence, \(L(\sigma; \alpha_1) - L(\sigma; \alpha_0) > 0 \). Finally, note that Assumption 4 implies that \(L(\sigma; \alpha) = \psi(\sigma) h(\alpha) \) for some \(\psi \) and \(h \) such that \(\psi(\sigma) = 0, \psi(s^*) = 1, \psi(\sigma) = \infty, \psi' > 0 \), and that \(h(0) = 0, h(\infty) = \infty, h' > 0 \). From here, if \(\sigma < s^* \), then \(\psi(\sigma) < 1 \), and thus \(L(\sigma; \alpha) \to 0 \) as \(\alpha \to \infty \). And if \(\sigma > s^* \), then \(\psi(\sigma) > 1 \), and thus \(L(\sigma; \alpha) \to \infty \) as \(\alpha \to \infty \). ■

Proof of Lemma 4. Suppose \(p^I(\theta; \alpha) > 0 \). In an informed equilibrium, \(p^I(\theta; \alpha) < 1 \) by Proposition 2, which means \(p^I(\theta; \alpha) = \theta u[F_l(s^I(\theta; \alpha); \alpha) - F_h(s^I(\theta; \alpha); \alpha)] \). Differentiating with respect to \(\alpha \), we obtain

\[
p^I(\theta; \alpha) = \frac{\theta u[F_l(s^I(\theta; \alpha); \alpha) - F_h(s^I(\theta; \alpha); \alpha)]}{\frac{1}{p^I(\theta; \alpha)} r}.
\]

Since \(L(s^I(\theta; \alpha), \alpha) = \frac{1}{p^I(\theta; \alpha)} r \), we also obtain

\[
s^I(\theta; \alpha) = -\frac{L(\alpha) + \frac{1}{p^I(\theta; \alpha)} r p^I(\theta; \alpha)}{L(s^I(\theta; \alpha), \alpha)}.
\]

Substituting for \(s^I(\theta; \alpha) \) and arranging terms yields

\[
p^I(\theta; \alpha) = \frac{\theta u[F_l(s^I(\theta; \alpha); \alpha) - F_h(s^I(\theta; \alpha); \alpha)]}{L(s^I(\theta; \alpha), \alpha) + \theta u[(f_l(\cdot) - f_h(\cdot))(s^I(\theta; \alpha), \alpha)]\frac{1}{p^I(\theta; \alpha)} r}.
\]
Notice that \((L(s^I) - 1)L_\alpha(\cdot) > 0\) for \(s^I \neq s^*\), because \(L(s^I) = \text{sign} L_\alpha(s^I)\) by Lemma A1. Hence, the numerator is strictly positive. The denominator is also positive because of the stability of the equilibrium (i.e., the principal’s reaction function crosses the agent’s from above). Hence, \(p^I_\alpha(\theta;\alpha) > 0\). To prove part (ii), note that as \(\alpha \to 0\), we have \(F_1(\sigma;\alpha) - F_h(\sigma;\alpha) = 0\) for all \(\sigma\), and thus \(p^I(\theta;\alpha) \to 0\) and \(s^I(\theta;\alpha) \to \overline{\sigma}\). Finally, since \(p^I(\theta;\alpha)\) is increasing and bounded, \(p^I(\theta;\alpha) \to \overline{p}\) as \(\alpha \to \infty\) for some \(\overline{p}\). Suppose \(\overline{p} < \theta u < 1\). Then, \(\lim_{\alpha \to \infty} s^I(\theta;\alpha) = \overline{\sigma}\), which means \(F_1(s^I(\theta;\alpha),\alpha) \to 1\) and \(F_h(s^I(\theta;\alpha),\alpha) \to 0\) as \(\alpha \to \infty\), revealing \(\overline{p} = \theta u - a\) contradiction. Hence, \(\overline{p} = \theta u\). Moreover, since \(\frac{1}{\overline{p}} r = \frac{1}{\theta u} r \neq 0,\infty\), Lemma A1 implies that \(\lim_{\alpha \to \infty} s^I(\theta;\alpha) = s^*\) whenever \(\theta u \leq 1\). A similar line of argument proves the case when \(\theta u \geq 1\).

Proof of Proposition 8 Suppose \(\overline{\theta} u < 1\). Part (i) follows directly from Lemma 4. To prove part (ii), note from (A1) that

\[
V^I_{\theta\theta}(\theta;\alpha) = V_{ps} p^I s^I + V_p p^I',
\]

where

\[
V_{ps} = -f_1(\sigma;\alpha)[L(\sigma;\alpha) u + c],
\]

\[
V_p = [1 - F_h(\sigma;\alpha)] u + [1 - F_1(\sigma;\alpha)] c,
\]

and

\[
p^I' = u [F_1(\sigma;\alpha) - F_h(\sigma;\alpha) + \theta (f_1(\sigma;\alpha) - f_h(\sigma;\alpha)) s^I'],
\]

\[
p^I'' = u [(f_1(\sigma;\alpha) - f_h(\sigma;\alpha))(2 s^I' + \theta s^I'') + (f_1'(\sigma;\alpha) - f_h'(\sigma;\alpha)) \theta (s^I')^2].
\]

As \(\alpha \to 0\), we have \(p^I(\theta;\alpha) \to 0\) and \(s^I(\theta;\alpha) \to \overline{\sigma}\) by Lemma 4, and thus \(V_p \to 0\), \(V_{ps} \to -f_h(\overline{\sigma}) u\), and \(p^I' \to -\theta u f_h(\overline{\sigma}) s^I'\), implying that \(V^I_{\theta\theta}(\theta;\alpha) \to \theta u v(f_h(\overline{\sigma}))^2 (s^I')^2 > 0\). Thus, \(V^I(\theta;\alpha)\) is strictly convex for a sufficiently small \(\alpha > 0\), and \(E[V^I(\theta;\alpha)] > E[V^B(\theta;\alpha)]\) by Jensen’s inequality.

As \(\alpha \to \infty\), we have \(p^I(\theta;\alpha) \to u\theta\) and \(s^I(\theta;\alpha) \to s^*\) by Lemma 4, which imply that \(F_h(s^I(\theta;\alpha);\alpha) \to 0\), \(F_1(s^I(\theta;\alpha);\alpha) \to 1\), \(f_1(\theta;\alpha) - f_h(s^I(\theta;\alpha);\alpha) \to 0\), \(p^I' \to u\), and \(V_p \to v\). In addition, as \(\alpha \to \infty\), we also have \(p^I'' \to u (f_1'(s^*;\alpha) - f_h'(s^*;\alpha)) \theta (s^I')^2 < 0\) because \(f_1'(s^*;\alpha) - f_h'(s^*;\alpha) = -L'(s^*;\alpha) f_1(s^*;\alpha) < 0\) for any \(\alpha\). Similarly, as \(\alpha \to \infty\), \(V_{ps} \to 0\) because \(L(s^*;\alpha) = 1\) and \(f_1(s^*;\alpha) = 0\). Overall, as \(\alpha \to \infty\), \(V^I_{\theta\theta}(\theta;\alpha) - \nu u (f_1'(s^*;\alpha) - f_h'(s^*;\alpha)) (s^I')^2 < 0\). This means \(V^I(\theta;\alpha)\) is strictly concave for a sufficiently large \(\alpha < \infty\), and \(E[V^I(\theta;\alpha)] < E[V^B(\theta;\alpha)]\) by Jensen’s inequality.

Proof of Lemma 5. Integrating by parts and rearranging terms, (16) simplifies to:

\[
H(m_1;\phi) \equiv 2 (1 - \phi) \int_{\overline{\theta}}^{m_1} G(\theta) d\theta + \phi m_1 - \phi \mu = 0.
\]

(A3)
Note that $H(m_1; \phi)$ is strictly increasing in m_1 and that $H(\mu; \phi) < 0$ and $H(\mu; \phi) > 0$. Thus, there is a unique solution $m_1 = \mu_1(\phi)$ to (A3), and its boundary values are $\mu_1(0) = \theta$ and $\mu_1(1) = \mu$. Furthermore, $\mu_1(\phi)$ is strictly increasing because $H_{\phi}(m_1; \phi) = -2\int_{0}^{m_1} G(\theta)d\theta + m_1 - \mu < 0$ for $m_1 \leq \mu$.

Proof of Lemma 6. Recall that

$$\pi^{B,I}_1(\phi) = \left[(1 - \phi) G(\mu_1(\phi)) + \frac{\phi}{2} (1 - G(\mu_1(\phi))) \right] V^I(\mu_1(\phi))$$

and

$$\pi^{B,I}_2(\phi) = \frac{\phi}{2} \int_{\theta}^{\mu_1(\phi)} V^I(\theta)dG(\theta) + \frac{\phi}{2} \int_{\mu_1(\phi)}^{\theta} V^I(\theta)dG(\theta).$$

From Lemma 5, we have $\pi^{B,I}_1(0) = 0$ and $\pi^{B,I}_1(1) = \frac{1}{2} V^I(\mu)$. Next, we differentiate $\pi^{B,I}_1(\phi)$ to obtain

$$\frac{d}{d\phi} \pi^{B,I}_1(\phi) = \left[(1 - \phi) G(\mu_1) + \frac{\phi}{2} \right] \frac{d}{d\theta} V^I(\mu_1) \mu_1' + \left[-G(\mu_1) + (1 - \phi) g(\mu_1) \mu_1' + \frac{1}{2} \right] V^I(\mu_1) > 0,$$

where $-G(\mu_1) + (1 - \phi) g(\mu_1) \mu_1' + \frac{1}{2} \geq 0$ follows from (16).

Again, from Lemma 5, we have $\pi^{B,I}_2(0) = E[V^I(\theta)]$ and $\pi^{B,I}_2(1) = \frac{1}{2} E[V^I(\theta)]$. Differentiating $\pi^{B,I}_2(\phi)$ yields

$$\frac{d}{d\phi} \pi^{B,I}_2(\phi) = \frac{1}{2} \left[\int_{\theta}^{\mu_1(\phi)} V^I(\theta)dG(\theta) - \int_{\mu_1(\phi)}^{\theta} V^I(\theta)dG(\theta) \right] - (1 - \phi)V^I(\mu_1) g(\mu_1) \mu_1' < 0.$$

Proof of Proposition 9. Suppose $\frac{1}{2} V^I(\mu) < E[V^I(\theta)] < V^I(\mu)$. Since $0 < \frac{1}{2} E[V^I(\theta)] < \frac{1}{2} V^I(\mu)$, by Lemma 4 there is $\phi_1 \in (0,1)$ such that $\pi^{B,I}_1(\phi) < \frac{1}{2} E[V^I(\theta)]$ if and only if $\phi < \phi_1$. Moreover, since $\frac{1}{2} E[V^I(\theta)] < \frac{1}{2} V^I(\mu) < E[V^I(\theta)]$, by Lemma 4 there is also $\phi_2 \in (0,1)$ such that $\pi^{B,I}_2(\phi) > \frac{1}{2} V^I(\mu)$ if and only if $\phi < \phi_2$. Define $\phi^* = \min\{\phi_1, \phi_2\}$ and $\phi^{**} = \max\{\phi_1, \phi_2\}$. Clearly, $0 < \phi^* \leq \phi^{**} < 1$. If $\phi < \phi^*$, then $\pi^{B,I}_1(\phi) < \frac{1}{2} E[V^I(\theta)]$ and $\pi^{B,I}_2(\phi) > \frac{1}{2} V^I(\mu)$, which imply that choosing informed review is a strictly dominant strategy for each evaluator, and thus the unique equilibrium has $\tau_1 = \tau_2 = I$. A similar argument shows that if $\phi > \phi^{**}$, then choosing blind review is a strictly dominant strategy for each evaluator, and thus the unique equilibrium has $\tau_1 = \tau_2 = B$. Suppose $\phi^* \neq \phi^{**}$ and $\phi \in (\phi^*, \phi^{**})$. If $\phi^* = \phi_2$ and $\phi^{**} = \phi_1$, then there are exactly two equilibria: $\tau_1 = \tau_2 = I$ and $\tau_1 = \tau_2 = B$. If, on the other hand, $\phi^* = \phi_1$ and $\phi^{**} = \phi_2$, then there are also two equilibria: $\tau_i = B$ and $\tau_j = I$ for $i, j = 1, 2$ and $i \neq j$.

Proof of Proposition 10. Suppose $c > 0$ and $\overline{c} > 0$. To prove part (i), observe that $\nabla_{p,s}(s,p) < 0$, $\nabla_{p}(s,p) = v + c > 0$, and $\nabla_{p}(\overline{c},p) = -\overline{c} < 0$. Thus, there is a unique $\sigma_d \in (\overline{\sigma}, \overline{c})$ such that $\nabla_{p}(s,p) = \text{sgn} \sigma_d - s$. In equilibrium under informed review, the exact argument used in the proof of Proposition 2 reveals that $\pi^I(\theta) = \sigma$ (and $\pi^I(\theta) = 0$) if and only
if $\theta < \frac{r}{u(\lambda_h - \lambda_l)} = \bar{\theta}$. Thus, $\nabla^l(\theta) = 0$ for $\theta < \bar{\theta}$. The arguments in Proposition 2 also reveal $\frac{d}{d\theta} \tilde{V}^l(\theta) < 0$ and $\frac{d}{d\theta} \tilde{V}^l(\theta) > 0$ for $\theta \geq \bar{\theta}$. Let $\theta \geq \bar{\theta}$. Then, $\frac{d}{d\theta} \nabla^l(\theta) = \frac{d}{d\theta} \tilde{V}^l(\theta), \tilde{p}^l(\theta)) = \tilde{V}_\theta(\tilde{V}^l(\theta), \tilde{p}^l(\theta)) + \frac{d}{d\theta} \tilde{p}^l(\theta)$. Since $\frac{d}{d\theta} \tilde{V}^l(\theta) > 0$, this implies $\frac{d}{d\theta} \nabla^l(\theta) = \text{sign} \sigma_d - \tilde{V}^l(\theta)$, and since $\frac{d}{d\theta} \tilde{V}^l(\theta) < 0$, it also implies that there is a unique $\bar{\theta}_d > \bar{\theta}_l$ such that $\frac{d}{d\theta} \nabla^l(\theta) < 0$ for $\theta < \bar{\theta}_d$ and $\frac{d}{d\theta} \nabla^l(\theta) > 0$ for $\theta > \bar{\theta}_d$. Clearly, $\nabla^l(\theta) < 0$ for $\theta \leq \bar{\theta}_d$. Given that $\frac{d}{d\theta} \nabla^l(\theta) > 0$ for $\theta > \bar{\theta}_d$ and $\nabla^l(\theta) > 0$ for a sufficiently large θ, there is a unique $\bar{\theta}_r > \bar{\theta}_d$ such that $\nabla^l(\bar{\theta}_r) = 0$ and thus $\nabla^l(\theta) < 0$ for $\theta \in (\bar{\theta}_d, \bar{\theta}_r)$. Overall, there exist two types $\bar{\theta}_l$ and $\bar{\theta}_r$ such that $\nabla^l(\theta) = 0$ if $\theta < \bar{\theta}_l$ or $\theta = \bar{\theta}_r$; $\nabla^l(\theta) < 0$ if $\theta \in (\bar{\theta}_l, \bar{\theta}_r)$; and $\nabla^l(\theta) > 0$ if $\theta > \bar{\theta}_r$.

To prove part (ii), note that since, under commitment, setting $\tilde{S}^C(\theta) = \bar{\sigma}$ is always feasible for the principal, $\nabla^C(\theta) \geq 0$ for all θ. Note also that type $\theta = \bar{\sigma} \equiv \frac{r}{u(\lambda_h - \lambda_l)}$ is not prescreened under commitment if and only if $\nabla^C(\bar{\theta}_l) > 0$. Let $\theta(\epsilon) = \bar{\theta}_l + \epsilon$ for $\epsilon > 0$. By definition, $\tilde{V}^l(\theta(\epsilon)) < \bar{\sigma}$, and $\theta(\epsilon) - \epsilon$ as $\epsilon \to 0$. Suppose $\tilde{S}^C(\theta(\epsilon))) < \bar{\sigma}$. Then, $\nabla^C(\tilde{S}^C(\theta(\epsilon)))) \approx \frac{\pi (\tilde{S}^C(\theta(\epsilon))))c < 0$ for a small ϵ and large $\bar{\sigma}$, which means the principal is better off setting $\tilde{S}^C(\theta(\epsilon))) = \bar{\sigma}$.

Proof of Lemma 7. If $s \in \{\sigma, \bar{\sigma}\}$, then $p = e = 0$ is clearly optimal for the agent. Suppose $s \in (\sigma, \bar{\sigma})$. The second-order necessary Hessian condition for an interior maximum is

$$-[u(F_l(s) - F_h(s))]^2 - 2\frac{u(F_l(s) - F_h(s))}{\sqrt{\bar{t}}} \geq 0,$$

which obviously fails. Hence, the agent’s utility function is a saddle which is maximized as indicated in the statement of the lemma.

Proof of Proposition 11. First we define the unique number $\bar{\theta} < \bar{\sigma}$. To do this, consider the function

$$\rho(t) \equiv \int_t^{\bar{\sigma}} \theta dG(\theta) - rtG(t).$$

Observe that: $\rho(\bar{\theta}) = \mu$, $\rho(\bar{\sigma}) = -\bar{\sigma}r$ and $\rho'(t) = -(1 + r)tg(t) - rG(t) < 0$. Hence, there exists a unique number $\bar{t} < \bar{\theta}$ satisfying $\rho(\bar{t}) = 0$.

Next, we characterize equilibrium under blind review in the presence of non-productive effort. Given that agents with $\theta < t$ exert only non-productive effort and agents with $\theta \geq t$ exert only productive effort, the principal’s reaction function is defined by

$$L(s^B) = \frac{1 - e^B G(t) - \int_t^{\bar{\theta}} p^B(\theta) dG(\theta)}{\int_t^{\bar{\theta}} p^B(\theta) dG(\theta) - e^B G(t)r}. $$

Also from Lemma 7, $p^B(\theta) = \theta u[F_l(s^B) - F_h(s^B)]$ and $e^B = tu[F_l(s^B) - F_h(s^B)]$. Substituting these expressions into the principal’s reaction function implicitly defines the standard under blind review

$$L(s^B) = \frac{1 - tG(t) - \int_t^{\bar{\theta}} \theta dG(\theta)}{\rho(t)}.$$
For $t < t_0$, $\rho(t) > 0$ so the right side of this expression is clearly finite, which implies $s^B < \sigma$.

As $t \to t_0$, $\rho(t) \to 0$, so the right side of the above expression approaches infinity, which implies $s^B = \sigma$. ■
Appendix B

In this appendix an example is solved for general values of \(r = \frac{c}{v} \) and \(u \), and comparative statics with respect to these parameters are illustrated. Hence, suppose the signal technology from Example 1. Also, suppose the agent’s ability is distributed uniformly on \([\theta, \bar{\theta}]\).

10.1 Commitment

The commitment solution is

\[
s^C(\theta) = \begin{cases}
1 & \text{if } \theta < \theta_C^- \\
\frac{1}{1-\sqrt{17 + 10r + 9r^2 + 16r(1-r)/(\theta u) - 5r - 1}} & \text{if } \theta \in [\theta_C^-, \theta_C^+] \\
1-\sqrt{1-2\theta u} & \text{if } \theta > \theta_C^+,
\end{cases}
\]

where \(\theta_C^- = \frac{r}{4u} \) and \(\theta_C^+ = \frac{13 + 20r - r^2 + (5 + r)\sqrt{17 + 14r + r^2}}{16u(1 + r)} \).

Notice that the evaluator optimally prescreens agents with sufficiently low types, i.e., \(\theta \leq \frac{r}{4u} \). Prescreening naturally becomes more prevalent as her loss-to-benefit ratio, \(r \), from accepting projects rises. Prescreening, however, becomes less endemic as the agent’s payoff from acceptance increases, because all types work harder when \(u \) rises. Note also that for agents whose projects are evaluated, the optimal standard, \(s^C(\theta) \) increases in \(r \), and decreases in \(\theta \) and \(u \), which is intuitive. It is somewhat more surprising that as \(r \) increases, more agents are induced to exert full effort; i.e., \(\theta_C^+ \) decreases. In fact, if \(r > 8.05 \), then \(\theta_C^+ < \theta_C^- \). In this case, the agent is either induced to exert no effort (if \(\theta < \theta_C^+ \)) or full effort (if \(\theta \geq \theta_C^+ \)).

10.2 Informed and Blind Review

The equilibrium standard under informed review is

\[
s^I(\theta) = \begin{cases}
1 & \text{if } \theta < \frac{r}{2u} \\
\frac{1}{\sqrt{r^2 + 2r(1-r)/(\theta u) - r}} & \text{if } \theta \geq \frac{r}{2u}.
\end{cases}
\]

The comparative statics and prescreening properties of the informed-review standard are qualitatively similar to the commitment case. However, informed review leads to more prescreening by also excluding the types between \(\frac{r}{4u} \) and \(\frac{r}{2u} \). Moreover, the informed-review standard is higher than the commitment standard for \(\theta < \theta^* = \frac{2r}{(1+r)u} \), and lower otherwise.

In this setting, Assumption 3 is \(\bar{\theta} < \frac{2}{u} \). This ensures that the highest type does not exert full effort under blind review. With this in hand, the standard under blind review is \(s^B = s^I(\mu) \).

The principal’s expected equilibrium payoff under informed review is \(V^I(\theta) = V(s^I(\theta), P(s^I(\theta), \theta)) \). Clearly, \(V^I(\theta) = 0 \) for \(\theta < \frac{r}{2u} \), because these low types are prescreened. Moreover, it is easy to
verify that $V^I(\theta)$ is strictly convex for $\theta \in (\frac{r}{2u}, \theta_L)$ and strictly concave for $\theta \in (\theta_H, \frac{2}{u})$, where $\theta_L = \theta_H = \frac{3r}{2(1+r)u}$.

10.3 The Principal’s Review Preference

For ease of exposition, set $\theta = \frac{r}{2u}$ to eliminate prescreening, because the same effect from including prescreened types can be captured by a lower $\overline{\theta}$. It follows that the principal strictly prefers blind review, i.e., $V^I(\mu) > E[V^I(\theta)]$ if and only if $\overline{\theta} > \hat{\theta}(r,u)$, where $\hat{\theta}(r,u) > \theta_H$, and $\hat{\theta}(r,u)$ is strictly increasing in r and strictly decreasing in u. In other words, blind review becomes more attractive as the principals’ loss/benefit ratio decreases and the agents’ payoff from acceptance increases. Moreover, the condition, $\hat{\theta}(r,b) > \theta_H$ for blind review to dominate highlights the need for a sufficient mass of high types above the inflection point. For instance, if $r = u = 1$, then $\hat{\theta} \approx 1.09435$ and $\theta_H = 0.75$.

Remark 1. If, in this example, one posed the more general question of what the best hybrid information structure is, then the answer would be for the principal to optimally adopt informed review for $\theta \in [\frac{r}{2u}, \theta_1]$ and blind review for $\theta \in [\theta_1, \overline{\theta}]$, where θ_1 maximizes the principal’s expected payoff. For a general treatment of optimal hybrid review policies, see Taylor and Yildirim (2006).

Remark 2. In some evaluation settings, applicants may receive direct compensation conditional on the acceptance of their projects. Although a full analysis of a setting involving transferable utility is beyond the scope of this paper, some insight can be gleaned by extending Example 1. Consider the informed review setting, but now suppose the principal solicits a type θ agent to submit his project and commits to paying him $w \geq 0$ if accepted. For a given w, this implies the following change of payoffs at the evaluation stage: $u' := u + w$, $c' := c + w$ and $v' := v - w$, which in turn implies $L' := \frac{c + w}{v - w}$. Hence, a direct payment increases the loss/benefit ratio, and raises the standard for all θ. Note that if payoffs were purely transfers, i.e., $c = u = 0$, then clearly the optimal w, denoted $w^*(\theta)$ would be strictly positive for all θ to induce any effort. The same would still be true if the agent enjoyed an intrinsic benefit, but the principal incurred no loss from accepting a bad project, i.e, $c = 0$ and $u > 0$. If, on the contrary, $c > 0$, and $u = 0$, then it is easy to verify that $w^*(\theta) > 0$ for a sufficiently small c, and $w^*(\theta) = 0$ for a sufficiently large c. Finally, if $c > 0$ and $u > 0$, specifically if $c = u = v = 1$, one finds that $w^*(\theta) > 0$ if $\theta \in (1, 1.5)$ and $w^*(\theta) = 0$ if $\theta \notin (1, 1.5)$. Overall, it seems that direct compensation to the agent is less likely to occur when the principal’s loss/benefit ratio becomes larger, but not when the agent has an intrinsic benefit.
Figure 1: Equilibrium Standards
Figure 2: Evaluator's Iso-Payoffs and Standard Choices
References

