ECO 463
Simultaneous Games - Supplemental Problems

1. Rock, Paper, Scissors. Each of two players simultaneously announces either Rock
or Paper or Scissors. Paper beats Rock, Rock beats Scissors and Scissors beats Paper.
The player who names the winning object receives $1 from her opponent; if both
players make the same choice, then no payment is made. Each player’s preferences
are represented by the expected amount of money she receives:

Player 1 Player 2 pock Paper Scissors
0 1* -1
Rock

0 -1 1*
Paper 1 0 1*

P 1* 0 -1
. 1* -1 0

Scissors
_1 1 * 0

(a) Find all of its mixed strategy equilibria giving both the equilibrium strategies
and the payoffs.

Solution:

There are no equilibria in pure strategies and none in which one player’s
strategy is pure and the other’s is strictly mixed. For both players to mix
with row choosing rock with probability pg, paper with probability ppand
scissors with probability ps = 1 — pr — pp and column similarly using gg,
qr and gs = 1 — qr — qp wWe need

—ar+ (1 —qr—qp) = ¢

ar—(1—-qr—qpr) = ¢

—qr tqp = C
for row to be willing to mix. These equations have the unique solution
c = 0 and qr = qp = 1/3. The analogous requirement for column has the
unique solution pg = pp = 1/3. Thus the unique equilibrium is for each

player to play each action with probability 1/3 and get an expected payoff
of $0.
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(b) Find all the mixed strategy equilibria of a modified game in which player 1 is
prohibited from announcing Scissors.

Solution:

If player 1 is precluded from playing Scissors, then player 2’s choice of Rock
is strictly dominated by Paper. The resulting game is:

Player 1 Player 2 Paper Scissors
1* -1
Rock
_1 1*
0 1*
Paper
P 0* 1

There are no equilibria in pure strategies and none in which one player’s
strategy is pure and the other’s is strictly mixed. For both players to mix
with row choosing Rock with probability p, Paper with probability 1 — p
and column similarly playing Paper with probability q and Scissors with
probability 1 — g we need

—-(1-q) =

for row to be willing to mix. These equations have the unique solution
q = 2/3 and ¢ = —1/3. Thus Player 2 plays Paper with probability 2/3,
Scissors with probability 1/3 and Player 1 gets an expected payoff of —$1/3.
Similarly player 1 chooses Rock with probability 1/3, Paper with probability
2/3 and player 2 gets an expected payoff of $1/3.

2. Waiting in line. Two hundred people are willing to wait in line to see a movie at a
theater whose capacity is one hundred. Denote person i’s valuation of the movie
in excess of the price of admission, expressed in terms of the amount of time she
is willing to wait, by v;. That is, person i’s payoff if she waits to t; units of time is
v; — t;. Each person attaches no value to a second ticket, and cannot buy tickets for
other people. Assume v; > v > - - - > Uygo. Each person chooses an arrival time.
If several people arrive at the same time, then their order in line is determined by
their index with lower numbered people going first. If a person arrives to find 100
or more people in line, her payoff is zero. Model the situation as a variant of a
discriminatory multi-unit auction, in which each person submits a bid for only one
unit, and find its Nash equilibrium.'

(a) What would a supply and demand analysis suggest?

I Arrival times for people at movies do not in general seem to conform with a Nash equilibrium.
What feature missing from the model could explain the pattern of arrivals?

Page 2 of 3



(b) Will at least 100 people wait in line?

(c) Will the highest value people wait in line? IL.e., will anyone with an index greater
than 100 see the movie?

(d) Will people choose to wait different amounts of time?
(e) Will anyone that sees the movie wait more than v;g?

(f) Will anyone that sees the movie wait less than vq¢;?

Solution: vig9 = by = by = - - - = b1go = bj = V101 for at least one j > 100.
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