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ABSTRACT 

Everyday, people use numerous high-quality commercial software 
packages on desktop systems. Many times, these software 
packages are not able to access specialized virtual reality (VR) 
display and input devices, which can enhance interaction and 
visualization. To address this limitation, we have been using the 
well-known OpenGL intercept concept to insert middleware at 
runtime between the application and the graphics card. In this 
paper, we motivate the use of OpenGL intercept techniques and 
present three intercept-based techniques that enable closed-source 
applications to be used with VR systems. To demonstrate the 
usefulness of these intercept-based techniques, we describe two 
case studies. In the first case study, we enabled MotionBuilder, a 
commercial motion capture and animation software, to work with 
the Oculus Rift, a consumer-level head-mounted display (HMD). 
In the second case study, we enabled MATLAB, a commercial 
mathematics and simulation software, to run in the Duke 
immersive Virtual Environment (DiVE), six-sided CAVE-like 
system. In both cases, display and interaction are successfully 
handled by intercept-based techniques. 

Keywords: Virtual Reality, OpenGL, MotionBuilder, MATLAB. 

Index Terms: H.5.1 [Multimedia Information Systems]: 
Artificial, augmented, and virtual realities; D.2.7 [Software 
Engineering]: Distribution, Maintenance, and Enhancement. 

1 INTRODUCTION 

Virtual reality (VR) experiences often utilize special hardware [9] 
that increases the fidelity of the interaction and display for the 
purposes of increased immersion. The software for these 
experiences must utilize libraries, languages, or software packages 
that are developed to take advantage of these special display and 
interaction devices. Asking a user to learn a new application-
programming interface (API) to utilize VR technology is non-
trivial and is often a barrier preventing the adoption of VR by 
users of established desktop systems. Ideally, a developer would 
modify the desktop software code directly. However, if the 
current desktop software is commercial or proprietary, it is often 
closed-source, which restricts the addition of code and 
recompilation. In order to bypass such limitations for potential VR 
users, we propose the use of OpenGL intercept-based techniques.  

   OpenGL is a standardized API (i.e., list of commands) that a 
programmer can use to draw graphics on a screen in real-time [8]. 
At runtime, an OpenGL application loads and accesses the 
OpenGL driver (a dynamic-linked library under the Microsoft 
Windows operating system), which contains the full functionality 
for each of the supported OpenGL commands. If we would like to 
modify the commands used by a closed-source application, we 
could create a replacement driver that is loaded by the application, 
which processes the commands before they are passed on to the 
true OpenGL driver. This technique is known as an OpenGL 
intercept, which was initially used in the WireGL [5] and 
Chromium [4] projects (see section 2 for more details). 
   In this paper, we present three OpenGL intercept-based 
techniques that can be used to enable closed-source applications 
for immersive VR systems. The first technique, called In-and-Out, 
utilizes the built-in scripting or plugin architecture of a closed-
source application to facilitate access to VR input devices. The 
second technique utilizes predefined OpenGL geometry calls, 
known as intercept tags [16], which are interpreted as scene 
information, cues, or function calls, instead of being rendered. 
The third technique, called Driver-Mediated View, utilizes the VR 
input data within the intercept driver to manipulate the current 
view of the host’s generated graphics. 
   To demonstrate the capabilities of these OpenGL intercept-
based techniques, we provide two case studies of enabling closed-
source applications for VR. The first case study involves enabling 
Autodesk MotionBuilder, a commercial 3D character animation 
and motion capture software, to be used with an Oculus Rift. 
MotionBuilder has been successfully used for brain-computer 
interface (BCI) experiments to provide visual feedback on a 
desktop [13]. Using intercept-based techniques, we enabled 
existing experiments in the Oculus Rift. The second case study 
involves enabling MathWorks MATLAB, a commercial 
computational software system and integrated development 
environment (IDE), for use with the Duke immersive Virtual 
Environment (DiVE), a six-sided cluster-based CAVE-like 
system. This case study allowed users to immersively view and 
interact with robotics-based simulations that they had created in 
MATLAB [17]. 

2 RELATED WORK 

One of the first OpenGL intercept projects was WireGL, which 
used an intercept method to transmit OpenGL commands to one 
or more pipeservers [5]. WireGL evolved into the better-known 
Chromium, a software library for distributing streams of graphics 
calls to a cluster-based display environment [4]. Chromium has 
since been used to display graphics from closed-source 
applications in immersive VR systems, such as the Allosphere at 
the University of California Santa Barbara [3]. TechViz is a 
commercial product similar to Chromium. It uses an intercept-
based approach for viewing the graphics generated by a desktop 
application on immersive VR systems [14]. 
   In addition to duplicating the intercept OpenGL stream, 
researchers have also investigated ways to modify the contents of 
the stream. One example of this is HijackGL [7]. By modifying 
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the incoming OpenGL stream of commands, HijackGL can create 
several stylized rendering effects, including pencil sketch, blue 
print, and cartoonish appearances.  
   Our contribution is the presentation and application of existing 
techniques in the context of immersive virtual environments, 
along with our novel work with intercept tags and driver-mediated 
viewing.   

3 OPENGL INTERCEPT-BASED TECHNIQUES 

Before we review the three intercept-based techniques used in our 
case studies, we provide a clear explanation of how the underlying 
OpenGL intercept works in a Microsoft Windows operating 
system environment.   
   In Windows, dynamic-linked libraries (DLLs) are used to 
replace function calls with actual code at runtime, similar to the 
shared object libraries (SOs) used in Linux-based operating 
systems. When a DLL is requested by an application, the 
LoadLibrary function first looks in the application’s current 
directory and then in the directories specified by various 
environment variables. By placing the intercept DLL in the 
current directory, we can ensure that it gets loaded before the 
actual OpenGL DLL.   
   To create a new intercept, we must first create an Opengl32.dll 
file that defines and implements all of the expected OpenGL 
functions (e.g. glColor3f). This list can be quite long, and if we 
fail to define all the OpenGL functions that the host is expecting, 
the host application may crash during startup. Next, during an 
initialization phase, we load the real Opengl32.dll file from within 
the intercept DLL using the LoadLibrary function, and then use 
the GetProcAddress function to make a table of the function 
locations of the real OpenGL functions. If we want to create an 
identity intercept, we just pass through all the data to the real DLL 
without making changes. We can also modify the passed in 
values. For example, by overriding the color values passed in to 
the glColor3f function, we can make all the objects in the scene 
blue (see Figure 1). In our implementations, we utilized the open 
source project glTrace [2] as a starting point for our intercept 
software. 
 

Figure 1: Code example showing intercepted function. 

3.1 In-And-Out Technique 

The in-and-out technique, while not new, is quite effective at 
enabling closed source applications for VR. In-and-out uses a 
network connection to transmit interaction data from the VR 
devices into the host application and then relies on an OpenGL 
intercept to transmit the host’s graphics out to a VR display (see 
Figure 2). This technique basically allows a closed-source 
application to be modified for a VR system without needing 
access to the host’s underlying source. The major limitation of 
this technique is that the host application must allow for the 
creation of a network server and for information received by the 
server to be used as input data. Such functionality is normally 
provided through an additional plugin, an advanced feature, or a 
simple programming language offered by the host application. 

MotionBuilder, MATLAB, and Unity3D [15] are examples of 
applications that offer such functionality. 
 

 

Figure 2: Diagram for In-And-Out technique. On the top, graphics 

data goes out of the host application. On the bottom, event data 

comes into the application.  

3.2 Intercept Tag Technique 

The intercept tag technique uses predefined OpenGL geometry 
calls that are added to the scene within the original application 
and then intercepted and interpreted by the intercept software as 
scene information, cues, or function calls, instead of being 
rendered [16]. This requires the ability to directly or indirectly 
make OpenGL geometry calls within the host application. 
Because intercept tags are interpreted and not rendered when 
decoded by the intercept driver, the OpenGL geometry chosen to 
define a tag must be carefully chosen. In practice, we have chosen 
geometries that would never appear in our intercepted 
applications, such as an empty polygon (e.g., a triangle with all 
three vertices at (0, 0, 0)). We can also vary the specific values of 
the points in the empty polygon to encode different types of tags 
(e.g., (1, 1, 1)).  
   We normally use intercept tags in pairs, like HTML or XML 
tags, with a start tag and an end tag enclosing a block of OpenGL 
calls. When the first tag is decoded, it provides additional 
information about the upcoming OpenGL calls or signifies that 
they should be specially handled. When the second tag is 
encountered, it is interpreted as the end of the information or 
special handling. Like XML, intercept tags can be nested. This 
requires that the order in which the objects are drawn can be 
controlled within the host application. 
   We originally developed intercept tags in an attempt to reduce 
the latency of interacting with a MATLAB-based robotics 
simulation that was intercepted and displayed in the DiVE. In our 
original case, the MATLAB script received the event data and 
displayed the results of the simulation using the in-and-out 
technique. However, this meant that the virtual hand interactions 
happened at the frame rate of the simulation. This low frame rate 
caused noticeable latency while attempting to manipulate objects 
in the scene. Thus, the idea of utilizing intercept tags to hand off 
control of certain latency-critical interactions to the end VR 
application was developed. 
   We have identified three potential uses of intercept tags: hand-
off techniques, display techniques, and visual enhancements. 
Hand-off techniques use intercept tags to signal the use of a 
particular interaction technique, such as a virtual hand technique 
for manipulations or a slice plane technique for viewing the 
structure and internal volume of geometries. Display techniques 
specify how and when parts of the OpenGL scene should be 
displayed through the concepts of display lists and levels of detail. 
Finally, intercept tags can be used for visual enhancements, such 
as interpolated animations and advanced shaders.  

glColor3f(float r, float g, float b)  

{  

   r=0.0f;  

   g=0.0f;  

   b=1.0f; //make all colors blue  

 

   real_ glColor3f(r,g,b);  

}  



3.3 Driver-Mediated View Technique 

The in-and-out technique works only in applications that support 
network connections and manipulation of the view. It also 
requires extra effort for the target application user, as the network 
connections must be specified and the input data must be 
processed. To address the limitations of the in-and-out technique, 
we propose the driver-mediated view technique. In this technique, 
we utilize the VR input data within the intercept driver to 
manipulate the current view of the host’s generated graphics 
(Figure 4). The simplest example of this technique is to 
implement head tracking inside the OpenGL intercept driver. To 
accomplish this, we monitor glMatrixMode to determine when we 
are in model view mode. We then wait for a call to glLoadMatrixd 
and replace the passed-in model-view matrix with a matrix that 
we create based on the VR input device tracking data. 
   In addition to using the driver-mediated view technique for 
physical view manipulations, such as head tracking, it can also be 
used for virtual locomotion. For example, a steering technique 
Error! Reference source not found. can be implemented using 
the data from a 6-DOF wand and updating the model view matrix.  
   The driver-mediated view technique has some limitations. For 
example, frustum culling needs to be disabled, as camera views 
are different between the host application and the final view. 
Additionally, special intercept code needs to be written to handle 
certain effects (e.g. shadows) that are natively enabled in the 
application. An incidental benefit from the driver-mediated view 
technique is that lower head tracking latency can be achieved, as 
there is no need for network communication between the VR 
device and the application.  

4 CASE STUDIES 

In order to demonstrate the usefulness of OpenGL intercept-based 
techniques for enabling features for VR, we conducted two case 
studies in two widely used closed-source desktop applications. In 
the first case study, we present the use of intercept techniques to 
enable MotionBuilder to be visualized with an Oculus Rift head-
mounted display. The second case study explains our work on 
enabling MATLAB for the DiVE. 

4.1 MotionBuilder 

MotionBuilder is an advanced motion capture and animation 
software by Autodesk. This software is commonly used for 
motion capture and animation as part of a larger workflow, 
perhaps ending with the use of the animations in a separate game 
engine. However, MotionBuilder can also be used as an end-user 
application to create interactive experiences via its constraints and 
relations system, python scripting, and a C++ software 
development kit (SDK). This is especially useful, as it is now 
possible to use the high-quality real-time inverse kinematics, to 
modify character animations directly in a simulation. We have 
been using MotionBuilder for desktop visualizations during brain-
computer interface experiments [13]. Here, we describe the 
process to enable such experiments in the Oculus Rift.  

4.1.1 Brain Computer Interface 

In order to provide input to a virtual scene, various tracking 
systems, game pads, and body gestures can be used. An 
interesting method of input is known as Brain Computer Interface 
(BCI). These are methods of real-time decoding of brain activity 
and can be classified as either invasive (using implanted 
electrodes) [10] or non-invasive (using sensors placed on top of 
the head) [13]. We believe that VR can be used to train subjects 
with reduced mobility to utilize a BCI to control physical devices 
in a safe environment (e.g., wheelchairs [6], exoskeletons).  

4.1.2 Oculus Rift 

The Oculus Rift is a low-cost head-mounted display (HMD) [11]. 
The current development version has a large 110-degree diagonal 
field of view (FOV). This high FOV is obtained by using special 
optics, which cause pincushion distortion. In order to remove the 
distortion, we need to apply a post-processing barrel distortion to 
the image, which is not currently available in Motion Builder. We 
can also get head tracking data from the Oculus. We will later 
discuss how we have integrated this tracking data into Motion 
Builder.  

4.1.3 Rendering 

Typically, the intercept code will pass on the function calls to the 
real DLL. However, several functions need to have additional 
functionality added. The first step to implement the intercept 
techniques for rendering is to conduct an analysis of the OpenGL 
output of the program. For that, we utilized the open-source 
program glIntercept. 
   We have found that the analysis of the existing frame format is 
one of the most important and challenging aspects to intercept-
based projects. It is easy to override every instance of a command 
(e.g. change all colors to blue), but often we only want to override 
a specific command in a specific location in the frame. 
   We conducted an analysis of the output of the "parallel view" or 
side-by-side mode, and we found that MotionBuilder already 
renders a view for each eye to a texture. This is exactly the setup 
needed to further apply the post-processing barrel distortion. In 
order for everything to look correct, the correct projection and 
model matrices need to be set, and the shaders need to be 
activated at the appropriate time. 
   In this side-by-side viewing mode of MotionBuilder, the image 
does not extend to the top and bottom of the screen. Through 
analysis of the glViewport function, we determined that this was 
easily fixed by overriding the values on the sixth and seventh 
glViewport function calls. 
    Next, we look at the glLoadMatrixd function. This is the 
function that is used to specify the projection matrix and also the 
model view matrix, depending on the value from glMatrixMode. 
The projection matrix encodes things like the field of view, aspect 
ratio, and clipping planes. Through analysis of the OpenGL frame, 
we determined that we needed to override the values that occurred 
during the first and third viewports, which contain the original 
rendering of the left and right images, respectively. We use the 
calculations from the Oculus Rift SDK to compute the projection 
matrices, and override the passed-in values to glLoadMatrixd.  
   Finally, we activate the post-processing distortion shaders on the 
sixth and seventh time glViewport is called. We used the shader 
code from the Oculus Rift SDK, and modified them slightly, as 
MotionBuilder writes the left and right images to separate off-
screen textures and the Oculus Rift examples are setup to use a 
single image. 

4.1.4 In-And-Out Technique 

The Oculus currently has an internal sensor that can provide the 
head orientation of the user. We can capture and send the data to 
MotionBuilder and let it control the camera orientation. To 
achieve this, we created a standalone UDP sender. We then wrote 
a UDP receiver utilizing the MotionBuilder Plugin SDK. This 
allowed us to send UDP data into MotionBuilder from an external 
program. We utilized this custom plugin, along with our 
standalone program, which obtains tracking data from the Oculus 
Rift. MotionBuilder wants the Euler angles (0,0,0) to map to a 
positive X orientation, so we needed to change the order of our 
axes to Z,Y,-X. We then had to determine the correct order for the 
Euler angles, which we found to be Z,Y,X. Finally, we utilized the 



constraint system of MotionBuilder to have the received data 
control the camera (see Figure 3). 
 

 

Figure 3: MotionBuilder distortion shader insertion and view control 

via the In-And-Out technique. 

4.1.5 Driver-Mediated View Technique 

The in-and-out technique worked, but required extra steps for the 
MotionBuilder user. We realized that we could implement head 
tracking inside the OpenGL driver (see Figure 4). When a 
glLoadMatrixd is called while in model view mode, we query the 
data from the Oculus Rift, which gives us back an orientation (but 
not currently a position with the first development kit). We then 
do an inverse of the passed-in matrix to get the existing camera 
position. We can then add in our orientation from the Rift. We use 
this new value to call the real glLoadMatrixd. This allows us to 
have simple head tracking, without having to modify the 
MotionBuilder projects.  
    However, it does lead to some issues. We need to disable 
frustum culling, since the camera views are now different between 
MotionBuilder and the final view. This is simple to do, as we only 
need to change a checkbox in the MotionBuilder profiler screen. 
Another issue we had was that the “live shadow” effect in 
MotionBuilder was now no longer working. We will soon discuss 
how we addressed that issue. Finally, one potential benefit of the 
driver-mediated technique is that we felt that we achieved lower 
head tracking latency via this method, which could be critical for 
reducing simulator sickness.  
 

 

Figure 4: System diagram for MotionBuilder shader insertion and 

driver-mediated head tracking. 

 

4.1.6 Issues: Clipping Planes, Anti-Aliasing, Shadows 

By overriding the projection matrixes and the model-view 

matrices we introduce several problems. Our first problem is that 

our clipping plane values are hardcoded into our software. The 

correct behavior would be to get the values from MotionBuilder. 

This is important, because in a large environment, we want to 

move the far clipping plane back, so that not all of our objects get 

culled and vanish from the scene. In a smaller environment, we 

want to bring the clipping plane forward, so that we obtain higher 

accuracy in terms of the depth tests. We can see that we ideally 

have different clipping plane values in different simulations. So, 

we can analyze the incoming projection matrix before we discard 

it. As pictured in Figure 5, we can analyze the values of A and B. 

Based on the MotionBuilder documentation, we learned that the 

near clip is B/(A-1) and that the far clipping plane is B/(A+1). We 

can now feed those values into the projection matrix generation 

function in the oculus rift SDK. 

 

                        

Figure 5: Key positions in the projection matrix. X and Y facilitate 

anti-aliasing, and A and B denote clipping plane information. 

   The next issue we addressed was that anti-aliasing was now 

broken in our system. Anti-aliasing is a technique where multiple 

copies of the scene are rendered and combined, in order to smooth 

out the jagged edges on objects. From analyzing the output of 

MotionBuilder, we discovered that the shift in the camera position 

was actually not in the model view matrix, but actually in the 

projection matrix. We determined that the offset of the camera for 

the multiple renders of the scene was stored in the projection 

matrix in positions X and Y as illustrated in Figure 5. So once 

again, we analyze the incoming projection matrix from 

MotionBuilder and store the values. We then use these values by 

adding them into the projection matrix that is generated from our 

calls to the Oculus Rift SDK. 

   Finally, we addressed the problem that our shadows were now 

broken. We carefully analyzed the OpenGL output of 

MotionBuilder and discovered that during the section of code that 

dealt with the shadows, a glMultMatrixd call was applied to the 

model-view matrix instead of glLoadMatrixd, which is used 

everywhere else in the code. Our solution was to examine calls to 

glMultMatrixd and see if the parameter being passed in was the 

original model-view matrix. If they are equal, we substitute in our 

new model-view matrix. This resolved our issues, and shadows 

are now working.  

4.1.7 Discussion 

We are currently working on acquiring a high-speed camera to 
enable us to have quantitative data about the latency differences 
between the in-and-out and driver-mediated techniques. Perhaps 
driver-mediated head tracking could be utilized to benefit other 
VR applications. This project was deemed successful, as we can 
now utilize MotionBuilder with the Oculus Rift for BCI 
experiments (see Figure 6) with no introduced artifacts.   
 



 

Figure 6: User utilizing Oculus Rift with MotionBuilder. 

4.2 MATLAB 

MATLAB is a commercial software product made by 
MathWorks, Inc. It is often utilized by engineers for calculations, 
modeling, and visualization. Our collaborators were modeling 
robot path-planning algorithms on their desktop systems utilizing 
MATLAB. They desired a way to easily use the DiVE, which has 
a cluster-based architecture (e.g. one computer per screen).  We 
decided to develop software and utilize a preexisting VR software 
library, Syzygy [12], to provide the features of cluster-based 
rendering and access to VR input devices. We called our software 
ML2VR [17]. 
 

 

Figure 7: User interacts with MATLAB robot simulation in VR.  

4.2.1 Distributed Rendering 

We utilized the OpenGL intercept technique and first analyzed the 
MATLAB frame of OpenGL commands. We discovered the 
geometry we wanted to capture was located after the matrix mode 
had been switched into model view. Thus, in our intercept code, 
we added code to send the results of the most necessary 
commands (glColor, glVertex, glBegin) over to each Syzygy 
node.  After receiving and storing the data, a ready signal is sent 
from each node to the “Swap Manager”, which is located on the 
master Syzygy node (see Figure 8). The Swap Manager then 
utilizes Syzygy’s variable distribution method to distribute the 
ready signal. All nodes thus swap to a new content frame at the 
same time, by watching the ready signal. 
   Syzygy automatically updates the head position during each 
frame. Our content swapping is synchronized among the nodes, 
yet asynchronous to the main render loop. Thus, we obtained a 
high frame rate when the user walks around the model, even if the 

MATLAB content is arriving at a low rate. This is especially 
useful when dealing with larger scenes or more complicated 
MATLAB simulations.  
 

 

Figure 8: System architecture of ML2VR utilizing In-And-Out.  

4.2.2 In-And-Out Technique 

For ML2VR, we decided to allow the MATLAB programmer to 
easily access the VR input devices supported by the Syzygy 
framework. This access was provided via the “Interface Server” 
and a MATLAB script that we called the “VR Interface”. The 
MATLAB user first initializes the VR Interface (by calling the 
function in the provided MATLAB script file). Once connected, 
they can query the VR Interface to determine if any button events 
(i.e., presses and releases) have occurred. Every event also 
contains the position and orientation of the wand device when that 
event occurred. By tracking the state of the wand when they 
occur, events provide more-accurate interactions than simple 
polling since the current wand position usually has changed since 
the button press. We also supported simple polling operations. 

4.2.3 Intercept Tags 

Our next work involved the development of intercept tags, which 

are predefined geometry that are interpreted instead of rendered. 

Our efforts focused on improving the interaction speed of the 

virtual hand technique. The virtual hand technique essentially 

consists of three phases: selection of the desired object, 

manipulation of its position and orientation, and object release. In 

our MATLAB-based simulation, selection and release of the 

object functioned well thanks to the event-based input data 

available from the wand. But, due to the slow frame rate of the 

simulation, manipulation of the object’s position and orientation 

was noticeably affected by latency. 

   We have thus used intercept tags to hand off the manipulation of 

the object from our MATLAB simulation to the DiVE application 

intercepting the OpenGL calls. Once the simulation determines 

that an object is selected, a pair of intercept tags is used to enclose 

the OpenGL geometry of that object (See figure 9). Upon 

intercepting the first handoff tag, the DiVE application uses a 

glPushMatrix and an appropriate glMultMatrix command to 

translate and rotate the upcoming geometry relative to the wand’s 

current position. Once the second hand-off tag is intercepted, the 

DiVE application uses glPopMatrix to leave the remaining scene 

geometry unchanged. When the object is released, the simulation 

removes the intercept tags, ending hand-off manipulation. While 

the object has been handed off, the MATLAB simulation can still 

update some properties of the object (e.g. color, size, shape). Thus 

we can manipulate the object at the frame rate of the VR 

application/viewer, rather than at the frame rate of the MATLAB 

simulation.  



 

   We conducted a user study to evaluate the differences between 

the original in-and-out technique, and the new hand-off dragging 

acceleration. The task for the user study was to place a cube inside 

a slightly larger wireframe cube. We found that our new technique 

was significantly faster. It also caused significantly fewer clutches 

(i.e., the user releasing and picking up the object again). From our 

analysis of the questionnaires, we found significantly more 

usability, more presence, and less simulator sickness using the 

intercept tags. For further details, see [16].  

 

 

Figure 9: Hand-off technique for virtual hand acceleration. (1) User 

presses and holds button on the wand. (2) The desktop software 

(e.g. MATLAB) receives button event and adds intercept tags 

around object of interest. (3) VR application facilitates low latency 

manipulation of the object. (4) Release occurs and tags removed.  

4.2.4 Discussion 

Our work allows the MATLAB user to construct scripts as a loop: 
query user activity, update the simulation, and then render the 
resulting scene. This project was deemed a success, as our 
robotics collaborators can now use the DiVE for their existing and 
future MATLAB projects (Figure 7). 

5 CONCLUSION 

In this paper, we have described in detail how to utilize the 
OpenGL intercept technique to add VR capabilities to popular 
closed-source applications. We discussed the issues and successes 
with this technique in two case study examples. In our most recent 
work, we enabled MotionBuilder to utilize the Oculus Rift, by 
inserting the proper distortion shaders. We discussed how the 
frame format can be tricky to analyze, and thus our code to 
intercept is often custom tailored to specific programs, or even 
specific modes of the program. During development, we also 
explored moving the head tracking from the application, to inside 
the driver, which we call driver-mediated view technique, for 
potentially lower latency head tracking independent from the host 
application. Finally, we reviewed our successful work enabling 
MATLAB for the DiVE, allowing the user to easily access 6-DOF 
input device data, and enabling accelerated interactions via 
intercept tags.  
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