
Enabling Closed-Source Applications for Virtual Reality
via OpenGL Intercept-based Techniques

David J. Zielinski1 Ryan P. McMahan2 Solaiman Shokur3 Edgard Morya4 Regis Kopper5

Duke University University of Texas

at Dallas

International Institute of

Neuroscience at Natal

International Institute of

Neuroscience at Natal

Duke University

ABSTRACT

Everyday, people use numerous high-quality commercial software
packages on desktop systems. Many times, these software
packages are not able to access specialized virtual reality (VR)
display and input devices, which can enhance interaction and
visualization. To address this limitation, we have been using the
well-known OpenGL intercept concept to insert middleware at
runtime between the application and the graphics card. In this
paper, we motivate the use of OpenGL intercept techniques and
present three intercept-based techniques that enable closed-source
applications to be used with VR systems. To demonstrate the
usefulness of these intercept-based techniques, we describe two
case studies. In the first case study, we enabled MotionBuilder, a
commercial motion capture and animation software, to work with
the Oculus Rift, a consumer-level head-mounted display (HMD).
In the second case study, we enabled MATLAB, a commercial
mathematics and simulation software, to run in the Duke
immersive Virtual Environment (DiVE), six-sided CAVE-like
system. In both cases, display and interaction are successfully
handled by intercept-based techniques.

Keywords: Virtual Reality, OpenGL, MotionBuilder, MATLAB.

Index Terms: H.5.1 [Multimedia Information Systems]:
Artificial, augmented, and virtual realities; D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement.

1 INTRODUCTION

Virtual reality (VR) experiences often utilize special hardware [9]
that increases the fidelity of the interaction and display for the
purposes of increased immersion. The software for these
experiences must utilize libraries, languages, or software packages
that are developed to take advantage of these special display and
interaction devices. Asking a user to learn a new application-
programming interface (API) to utilize VR technology is non-
trivial and is often a barrier preventing the adoption of VR by
users of established desktop systems. Ideally, a developer would
modify the desktop software code directly. However, if the
current desktop software is commercial or proprietary, it is often
closed-source, which restricts the addition of code and
recompilation. In order to bypass such limitations for potential VR
users, we propose the use of OpenGL intercept-based techniques.

 OpenGL is a standardized API (i.e., list of commands) that a
programmer can use to draw graphics on a screen in real-time [8].
At runtime, an OpenGL application loads and accesses the
OpenGL driver (a dynamic-linked library under the Microsoft
Windows operating system), which contains the full functionality
for each of the supported OpenGL commands. If we would like to
modify the commands used by a closed-source application, we
could create a replacement driver that is loaded by the application,
which processes the commands before they are passed on to the
true OpenGL driver. This technique is known as an OpenGL
intercept, which was initially used in the WireGL [5] and
Chromium [4] projects (see section 2 for more details).
 In this paper, we present three OpenGL intercept-based
techniques that can be used to enable closed-source applications
for immersive VR systems. The first technique, called In-and-Out,
utilizes the built-in scripting or plugin architecture of a closed-
source application to facilitate access to VR input devices. The
second technique utilizes predefined OpenGL geometry calls,
known as intercept tags [16], which are interpreted as scene
information, cues, or function calls, instead of being rendered.
The third technique, called Driver-Mediated View, utilizes the VR
input data within the intercept driver to manipulate the current
view of the host’s generated graphics.
 To demonstrate the capabilities of these OpenGL intercept-
based techniques, we provide two case studies of enabling closed-
source applications for VR. The first case study involves enabling
Autodesk MotionBuilder, a commercial 3D character animation
and motion capture software, to be used with an Oculus Rift.
MotionBuilder has been successfully used for brain-computer
interface (BCI) experiments to provide visual feedback on a
desktop [13]. Using intercept-based techniques, we enabled
existing experiments in the Oculus Rift. The second case study
involves enabling MathWorks MATLAB, a commercial
computational software system and integrated development
environment (IDE), for use with the Duke immersive Virtual
Environment (DiVE), a six-sided cluster-based CAVE-like
system. This case study allowed users to immersively view and
interact with robotics-based simulations that they had created in
MATLAB [17].

2 RELATED WORK

One of the first OpenGL intercept projects was WireGL, which
used an intercept method to transmit OpenGL commands to one
or more pipeservers [5]. WireGL evolved into the better-known
Chromium, a software library for distributing streams of graphics
calls to a cluster-based display environment [4]. Chromium has
since been used to display graphics from closed-source
applications in immersive VR systems, such as the Allosphere at
the University of California Santa Barbara [3]. TechViz is a
commercial product similar to Chromium. It uses an intercept-
based approach for viewing the graphics generated by a desktop
application on immersive VR systems [14].
 In addition to duplicating the intercept OpenGL stream,
researchers have also investigated ways to modify the contents of
the stream. One example of this is HijackGL [7]. By modifying

1email address: djzielin@duke.edu
2email address: rymcmaha@utdallas.edu
3email address: solaiman.shokur@gmail.com
4email address: edmorya@gmail.com
5email address: regis.kopper@duke.edu

the incoming OpenGL stream of commands, HijackGL can create
several stylized rendering effects, including pencil sketch, blue
print, and cartoonish appearances.
 Our contribution is the presentation and application of existing
techniques in the context of immersive virtual environments,
along with our novel work with intercept tags and driver-mediated
viewing.

3 OPENGL INTERCEPT-BASED TECHNIQUES

Before we review the three intercept-based techniques used in our
case studies, we provide a clear explanation of how the underlying
OpenGL intercept works in a Microsoft Windows operating
system environment.
 In Windows, dynamic-linked libraries (DLLs) are used to
replace function calls with actual code at runtime, similar to the
shared object libraries (SOs) used in Linux-based operating
systems. When a DLL is requested by an application, the
LoadLibrary function first looks in the application’s current
directory and then in the directories specified by various
environment variables. By placing the intercept DLL in the
current directory, we can ensure that it gets loaded before the
actual OpenGL DLL.
 To create a new intercept, we must first create an Opengl32.dll
file that defines and implements all of the expected OpenGL
functions (e.g. glColor3f). This list can be quite long, and if we
fail to define all the OpenGL functions that the host is expecting,
the host application may crash during startup. Next, during an
initialization phase, we load the real Opengl32.dll file from within
the intercept DLL using the LoadLibrary function, and then use
the GetProcAddress function to make a table of the function
locations of the real OpenGL functions. If we want to create an
identity intercept, we just pass through all the data to the real DLL
without making changes. We can also modify the passed in
values. For example, by overriding the color values passed in to
the glColor3f function, we can make all the objects in the scene
blue (see Figure 1). In our implementations, we utilized the open
source project glTrace [2] as a starting point for our intercept
software.

Figure 1: Code example showing intercepted function.

3.1 In-And-Out Technique

The in-and-out technique, while not new, is quite effective at
enabling closed source applications for VR. In-and-out uses a
network connection to transmit interaction data from the VR
devices into the host application and then relies on an OpenGL
intercept to transmit the host’s graphics out to a VR display (see
Figure 2). This technique basically allows a closed-source
application to be modified for a VR system without needing
access to the host’s underlying source. The major limitation of
this technique is that the host application must allow for the
creation of a network server and for information received by the
server to be used as input data. Such functionality is normally
provided through an additional plugin, an advanced feature, or a
simple programming language offered by the host application.

MotionBuilder, MATLAB, and Unity3D [15] are examples of
applications that offer such functionality.

Figure 2: Diagram for In-And-Out technique. On the top, graphics

data goes out of the host application. On the bottom, event data

comes into the application.

3.2 Intercept Tag Technique

The intercept tag technique uses predefined OpenGL geometry
calls that are added to the scene within the original application
and then intercepted and interpreted by the intercept software as
scene information, cues, or function calls, instead of being
rendered [16]. This requires the ability to directly or indirectly
make OpenGL geometry calls within the host application.
Because intercept tags are interpreted and not rendered when
decoded by the intercept driver, the OpenGL geometry chosen to
define a tag must be carefully chosen. In practice, we have chosen
geometries that would never appear in our intercepted
applications, such as an empty polygon (e.g., a triangle with all
three vertices at (0, 0, 0)). We can also vary the specific values of
the points in the empty polygon to encode different types of tags
(e.g., (1, 1, 1)).
 We normally use intercept tags in pairs, like HTML or XML
tags, with a start tag and an end tag enclosing a block of OpenGL
calls. When the first tag is decoded, it provides additional
information about the upcoming OpenGL calls or signifies that
they should be specially handled. When the second tag is
encountered, it is interpreted as the end of the information or
special handling. Like XML, intercept tags can be nested. This
requires that the order in which the objects are drawn can be
controlled within the host application.
 We originally developed intercept tags in an attempt to reduce
the latency of interacting with a MATLAB-based robotics
simulation that was intercepted and displayed in the DiVE. In our
original case, the MATLAB script received the event data and
displayed the results of the simulation using the in-and-out
technique. However, this meant that the virtual hand interactions
happened at the frame rate of the simulation. This low frame rate
caused noticeable latency while attempting to manipulate objects
in the scene. Thus, the idea of utilizing intercept tags to hand off
control of certain latency-critical interactions to the end VR
application was developed.
 We have identified three potential uses of intercept tags: hand-
off techniques, display techniques, and visual enhancements.
Hand-off techniques use intercept tags to signal the use of a
particular interaction technique, such as a virtual hand technique
for manipulations or a slice plane technique for viewing the
structure and internal volume of geometries. Display techniques
specify how and when parts of the OpenGL scene should be
displayed through the concepts of display lists and levels of detail.
Finally, intercept tags can be used for visual enhancements, such
as interpolated animations and advanced shaders.

glColor3f(float r, float g, float b)

{

 r=0.0f;

 g=0.0f;

 b=1.0f; //make all colors blue

 real_ glColor3f(r,g,b);

}

3.3 Driver-Mediated View Technique

The in-and-out technique works only in applications that support
network connections and manipulation of the view. It also
requires extra effort for the target application user, as the network
connections must be specified and the input data must be
processed. To address the limitations of the in-and-out technique,
we propose the driver-mediated view technique. In this technique,
we utilize the VR input data within the intercept driver to
manipulate the current view of the host’s generated graphics
(Figure 4). The simplest example of this technique is to
implement head tracking inside the OpenGL intercept driver. To
accomplish this, we monitor glMatrixMode to determine when we
are in model view mode. We then wait for a call to glLoadMatrixd
and replace the passed-in model-view matrix with a matrix that
we create based on the VR input device tracking data.
 In addition to using the driver-mediated view technique for
physical view manipulations, such as head tracking, it can also be
used for virtual locomotion. For example, a steering technique
Error! Reference source not found. can be implemented using
the data from a 6-DOF wand and updating the model view matrix.
 The driver-mediated view technique has some limitations. For
example, frustum culling needs to be disabled, as camera views
are different between the host application and the final view.
Additionally, special intercept code needs to be written to handle
certain effects (e.g. shadows) that are natively enabled in the
application. An incidental benefit from the driver-mediated view
technique is that lower head tracking latency can be achieved, as
there is no need for network communication between the VR
device and the application.

4 CASE STUDIES

In order to demonstrate the usefulness of OpenGL intercept-based
techniques for enabling features for VR, we conducted two case
studies in two widely used closed-source desktop applications. In
the first case study, we present the use of intercept techniques to
enable MotionBuilder to be visualized with an Oculus Rift head-
mounted display. The second case study explains our work on
enabling MATLAB for the DiVE.

4.1 MotionBuilder

MotionBuilder is an advanced motion capture and animation
software by Autodesk. This software is commonly used for
motion capture and animation as part of a larger workflow,
perhaps ending with the use of the animations in a separate game
engine. However, MotionBuilder can also be used as an end-user
application to create interactive experiences via its constraints and
relations system, python scripting, and a C++ software
development kit (SDK). This is especially useful, as it is now
possible to use the high-quality real-time inverse kinematics, to
modify character animations directly in a simulation. We have
been using MotionBuilder for desktop visualizations during brain-
computer interface experiments [13]. Here, we describe the
process to enable such experiments in the Oculus Rift.

4.1.1 Brain Computer Interface

In order to provide input to a virtual scene, various tracking
systems, game pads, and body gestures can be used. An
interesting method of input is known as Brain Computer Interface
(BCI). These are methods of real-time decoding of brain activity
and can be classified as either invasive (using implanted
electrodes) [10] or non-invasive (using sensors placed on top of
the head) [13]. We believe that VR can be used to train subjects
with reduced mobility to utilize a BCI to control physical devices
in a safe environment (e.g., wheelchairs [6], exoskeletons).

4.1.2 Oculus Rift

The Oculus Rift is a low-cost head-mounted display (HMD) [11].
The current development version has a large 110-degree diagonal
field of view (FOV). This high FOV is obtained by using special
optics, which cause pincushion distortion. In order to remove the
distortion, we need to apply a post-processing barrel distortion to
the image, which is not currently available in Motion Builder. We
can also get head tracking data from the Oculus. We will later
discuss how we have integrated this tracking data into Motion
Builder.

4.1.3 Rendering

Typically, the intercept code will pass on the function calls to the
real DLL. However, several functions need to have additional
functionality added. The first step to implement the intercept
techniques for rendering is to conduct an analysis of the OpenGL
output of the program. For that, we utilized the open-source
program glIntercept.
 We have found that the analysis of the existing frame format is
one of the most important and challenging aspects to intercept-
based projects. It is easy to override every instance of a command
(e.g. change all colors to blue), but often we only want to override
a specific command in a specific location in the frame.
 We conducted an analysis of the output of the "parallel view" or
side-by-side mode, and we found that MotionBuilder already
renders a view for each eye to a texture. This is exactly the setup
needed to further apply the post-processing barrel distortion. In
order for everything to look correct, the correct projection and
model matrices need to be set, and the shaders need to be
activated at the appropriate time.
 In this side-by-side viewing mode of MotionBuilder, the image
does not extend to the top and bottom of the screen. Through
analysis of the glViewport function, we determined that this was
easily fixed by overriding the values on the sixth and seventh
glViewport function calls.
 Next, we look at the glLoadMatrixd function. This is the
function that is used to specify the projection matrix and also the
model view matrix, depending on the value from glMatrixMode.
The projection matrix encodes things like the field of view, aspect
ratio, and clipping planes. Through analysis of the OpenGL frame,
we determined that we needed to override the values that occurred
during the first and third viewports, which contain the original
rendering of the left and right images, respectively. We use the
calculations from the Oculus Rift SDK to compute the projection
matrices, and override the passed-in values to glLoadMatrixd.
 Finally, we activate the post-processing distortion shaders on the
sixth and seventh time glViewport is called. We used the shader
code from the Oculus Rift SDK, and modified them slightly, as
MotionBuilder writes the left and right images to separate off-
screen textures and the Oculus Rift examples are setup to use a
single image.

4.1.4 In-And-Out Technique

The Oculus currently has an internal sensor that can provide the
head orientation of the user. We can capture and send the data to
MotionBuilder and let it control the camera orientation. To
achieve this, we created a standalone UDP sender. We then wrote
a UDP receiver utilizing the MotionBuilder Plugin SDK. This
allowed us to send UDP data into MotionBuilder from an external
program. We utilized this custom plugin, along with our
standalone program, which obtains tracking data from the Oculus
Rift. MotionBuilder wants the Euler angles (0,0,0) to map to a
positive X orientation, so we needed to change the order of our
axes to Z,Y,-X. We then had to determine the correct order for the
Euler angles, which we found to be Z,Y,X. Finally, we utilized the

constraint system of MotionBuilder to have the received data
control the camera (see Figure 3).

Figure 3: MotionBuilder distortion shader insertion and view control

via the In-And-Out technique.

4.1.5 Driver-Mediated View Technique

The in-and-out technique worked, but required extra steps for the
MotionBuilder user. We realized that we could implement head
tracking inside the OpenGL driver (see Figure 4). When a
glLoadMatrixd is called while in model view mode, we query the
data from the Oculus Rift, which gives us back an orientation (but
not currently a position with the first development kit). We then
do an inverse of the passed-in matrix to get the existing camera
position. We can then add in our orientation from the Rift. We use
this new value to call the real glLoadMatrixd. This allows us to
have simple head tracking, without having to modify the
MotionBuilder projects.
 However, it does lead to some issues. We need to disable
frustum culling, since the camera views are now different between
MotionBuilder and the final view. This is simple to do, as we only
need to change a checkbox in the MotionBuilder profiler screen.
Another issue we had was that the “live shadow” effect in
MotionBuilder was now no longer working. We will soon discuss
how we addressed that issue. Finally, one potential benefit of the
driver-mediated technique is that we felt that we achieved lower
head tracking latency via this method, which could be critical for
reducing simulator sickness.

Figure 4: System diagram for MotionBuilder shader insertion and

driver-mediated head tracking.

4.1.6 Issues: Clipping Planes, Anti-Aliasing, Shadows

By overriding the projection matrixes and the model-view

matrices we introduce several problems. Our first problem is that

our clipping plane values are hardcoded into our software. The

correct behavior would be to get the values from MotionBuilder.

This is important, because in a large environment, we want to

move the far clipping plane back, so that not all of our objects get

culled and vanish from the scene. In a smaller environment, we

want to bring the clipping plane forward, so that we obtain higher

accuracy in terms of the depth tests. We can see that we ideally

have different clipping plane values in different simulations. So,

we can analyze the incoming projection matrix before we discard

it. As pictured in Figure 5, we can analyze the values of A and B.

Based on the MotionBuilder documentation, we learned that the

near clip is B/(A-1) and that the far clipping plane is B/(A+1). We

can now feed those values into the projection matrix generation

function in the oculus rift SDK.

Figure 5: Key positions in the projection matrix. X and Y facilitate

anti-aliasing, and A and B denote clipping plane information.

 The next issue we addressed was that anti-aliasing was now

broken in our system. Anti-aliasing is a technique where multiple

copies of the scene are rendered and combined, in order to smooth

out the jagged edges on objects. From analyzing the output of

MotionBuilder, we discovered that the shift in the camera position

was actually not in the model view matrix, but actually in the

projection matrix. We determined that the offset of the camera for

the multiple renders of the scene was stored in the projection

matrix in positions X and Y as illustrated in Figure 5. So once

again, we analyze the incoming projection matrix from

MotionBuilder and store the values. We then use these values by

adding them into the projection matrix that is generated from our

calls to the Oculus Rift SDK.

 Finally, we addressed the problem that our shadows were now

broken. We carefully analyzed the OpenGL output of

MotionBuilder and discovered that during the section of code that

dealt with the shadows, a glMultMatrixd call was applied to the

model-view matrix instead of glLoadMatrixd, which is used

everywhere else in the code. Our solution was to examine calls to

glMultMatrixd and see if the parameter being passed in was the

original model-view matrix. If they are equal, we substitute in our

new model-view matrix. This resolved our issues, and shadows

are now working.

4.1.7 Discussion

We are currently working on acquiring a high-speed camera to
enable us to have quantitative data about the latency differences
between the in-and-out and driver-mediated techniques. Perhaps
driver-mediated head tracking could be utilized to benefit other
VR applications. This project was deemed successful, as we can
now utilize MotionBuilder with the Oculus Rift for BCI
experiments (see Figure 6) with no introduced artifacts.

Figure 6: User utilizing Oculus Rift with MotionBuilder.

4.2 MATLAB

MATLAB is a commercial software product made by
MathWorks, Inc. It is often utilized by engineers for calculations,
modeling, and visualization. Our collaborators were modeling
robot path-planning algorithms on their desktop systems utilizing
MATLAB. They desired a way to easily use the DiVE, which has
a cluster-based architecture (e.g. one computer per screen). We
decided to develop software and utilize a preexisting VR software
library, Syzygy [12], to provide the features of cluster-based
rendering and access to VR input devices. We called our software
ML2VR [17].

Figure 7: User interacts with MATLAB robot simulation in VR.

4.2.1 Distributed Rendering

We utilized the OpenGL intercept technique and first analyzed the
MATLAB frame of OpenGL commands. We discovered the
geometry we wanted to capture was located after the matrix mode
had been switched into model view. Thus, in our intercept code,
we added code to send the results of the most necessary
commands (glColor, glVertex, glBegin) over to each Syzygy
node. After receiving and storing the data, a ready signal is sent
from each node to the “Swap Manager”, which is located on the
master Syzygy node (see Figure 8). The Swap Manager then
utilizes Syzygy’s variable distribution method to distribute the
ready signal. All nodes thus swap to a new content frame at the
same time, by watching the ready signal.
 Syzygy automatically updates the head position during each
frame. Our content swapping is synchronized among the nodes,
yet asynchronous to the main render loop. Thus, we obtained a
high frame rate when the user walks around the model, even if the

MATLAB content is arriving at a low rate. This is especially
useful when dealing with larger scenes or more complicated
MATLAB simulations.

Figure 8: System architecture of ML2VR utilizing In-And-Out.

4.2.2 In-And-Out Technique

For ML2VR, we decided to allow the MATLAB programmer to
easily access the VR input devices supported by the Syzygy
framework. This access was provided via the “Interface Server”
and a MATLAB script that we called the “VR Interface”. The
MATLAB user first initializes the VR Interface (by calling the
function in the provided MATLAB script file). Once connected,
they can query the VR Interface to determine if any button events
(i.e., presses and releases) have occurred. Every event also
contains the position and orientation of the wand device when that
event occurred. By tracking the state of the wand when they
occur, events provide more-accurate interactions than simple
polling since the current wand position usually has changed since
the button press. We also supported simple polling operations.

4.2.3 Intercept Tags

Our next work involved the development of intercept tags, which

are predefined geometry that are interpreted instead of rendered.

Our efforts focused on improving the interaction speed of the

virtual hand technique. The virtual hand technique essentially

consists of three phases: selection of the desired object,

manipulation of its position and orientation, and object release. In

our MATLAB-based simulation, selection and release of the

object functioned well thanks to the event-based input data

available from the wand. But, due to the slow frame rate of the

simulation, manipulation of the object’s position and orientation

was noticeably affected by latency.

 We have thus used intercept tags to hand off the manipulation of

the object from our MATLAB simulation to the DiVE application

intercepting the OpenGL calls. Once the simulation determines

that an object is selected, a pair of intercept tags is used to enclose

the OpenGL geometry of that object (See figure 9). Upon

intercepting the first handoff tag, the DiVE application uses a

glPushMatrix and an appropriate glMultMatrix command to

translate and rotate the upcoming geometry relative to the wand’s

current position. Once the second hand-off tag is intercepted, the

DiVE application uses glPopMatrix to leave the remaining scene

geometry unchanged. When the object is released, the simulation

removes the intercept tags, ending hand-off manipulation. While

the object has been handed off, the MATLAB simulation can still

update some properties of the object (e.g. color, size, shape). Thus

we can manipulate the object at the frame rate of the VR

application/viewer, rather than at the frame rate of the MATLAB

simulation.

 We conducted a user study to evaluate the differences between

the original in-and-out technique, and the new hand-off dragging

acceleration. The task for the user study was to place a cube inside

a slightly larger wireframe cube. We found that our new technique

was significantly faster. It also caused significantly fewer clutches

(i.e., the user releasing and picking up the object again). From our

analysis of the questionnaires, we found significantly more

usability, more presence, and less simulator sickness using the

intercept tags. For further details, see [16].

Figure 9: Hand-off technique for virtual hand acceleration. (1) User

presses and holds button on the wand. (2) The desktop software

(e.g. MATLAB) receives button event and adds intercept tags

around object of interest. (3) VR application facilitates low latency

manipulation of the object. (4) Release occurs and tags removed.

4.2.4 Discussion

Our work allows the MATLAB user to construct scripts as a loop:
query user activity, update the simulation, and then render the
resulting scene. This project was deemed a success, as our
robotics collaborators can now use the DiVE for their existing and
future MATLAB projects (Figure 7).

5 CONCLUSION

In this paper, we have described in detail how to utilize the
OpenGL intercept technique to add VR capabilities to popular
closed-source applications. We discussed the issues and successes
with this technique in two case study examples. In our most recent
work, we enabled MotionBuilder to utilize the Oculus Rift, by
inserting the proper distortion shaders. We discussed how the
frame format can be tricky to analyze, and thus our code to
intercept is often custom tailored to specific programs, or even
specific modes of the program. During development, we also
explored moving the head tracking from the application, to inside
the driver, which we call driver-mediated view technique, for
potentially lower latency head tracking independent from the host
application. Finally, we reviewed our successful work enabling
MATLAB for the DiVE, allowing the user to easily access 6-DOF
input device data, and enabling accelerated interactions via
intercept tags.

REFERENCES

[1] Bowman, Doug A., Ernst Kruijff, Joseph J. LaViola Jr, and Ivan

Poupyrev. 3D user interfaces: theory and practice. Addison-Wesley,

2004.

[2] glTrace. http://hawksoft.com/gltrace/

[3] Höllerer, Tobias, JoAnn Kuchera-Morin, and Xavier Amatriain.

"The allosphere: a large-scale immersive surround-view instrument."

In Proceedings of the 2007 workshop on Emerging displays

technologies: images and beyond: the future of displays and

interacton, p. 3. ACM, 2007.

[4] Humphreys, Greg, Mike Houston, Ren Ng, Randall Frank, Sean

Ahern, Peter D. Kirchner, and James T. Klosowski. "Chromium: a

stream-processing framework for interactive rendering on clusters."

In ACM Transactions on Graphics (TOG), vol. 21, no. 3, pp. 693-

702. ACM, 2002.

[5] Humphreys, Greg, Matthew Eldridge, Ian Buck, Gordan Stoll,

Matthew Everett, and Pat Hanrahan. "WireGL: a scalable graphics

system for clusters." In SIGGRAPH, vol. 1, pp. 129-140. 2001.

[6] Leeb, Robert, Doron Friedman, Gernot R. Müller-Putz, Reinhold

Scherer, Mel Slater, and Gert Pfurtscheller. "Self-paced

(asynchronous) BCI control of a wheelchair in virtual environments:

a case study with a tetraplegic." Computational intelligence and

neuroscience 2007 (2007).

[7] Mohr, Alex, and Michael Gleicher. "HijackGL: reconstructing from

streams for stylized rendering." In Proceedings of the 2nd

international symposium on Non-photorealistic animation and

rendering, pp. 13-ff. ACM, 2002.

[8] Neider, Jackie, Tom Davis, and Mason Woo, eds. OpenGL.

Programming guide. Addison-Wesley, 1997.

[9] Ni, Tao, Greg S. Schmidt, Oliver G. Staadt, Mark A. Livingston,

Robert Ball, and Richard May. "A survey of large high-resolution

display technologies, techniques, and applications." In Virtual

Reality Conference, 2006, pp. 223-236. IEEE, 2006.

[10] O’Doherty, Joseph E., Mikhail A. Lebedev, Peter J. Ifft, Katie Z.

Zhuang, Solaiman Shokur, Hannes Bleuler, and Miguel AL

Nicolelis. "Active tactile exploration using a brain-machine-brain

interface." Nature 479, no. 7372 (2011): 228-231.

[11] Oculus Rift. http://oculusvr.com

[12] Schaeffer, Benjamin, and Camille Goudeseune. "Syzygy: native PC

cluster VR." In Virtual Reality, 2003. Proceedings. IEEE, pp. 15-22.

IEEE, 2003.

[13] Shokur, Solaiman, Joseph E. O’Doherty, Jesse A. Winans, Hannes

Bleuler, Mikhail A. Lebedev, and Miguel AL Nicolelis. "Expanding

the primate body schema in sensorimotor cortex by virtual touches

of an avatar." Proceedings of the National Academy of Sciences 110,

no. 37 (2013): 15121-15126.

[14] Techviz. http://www.techviz.net/

[15] Unity3D. http://unity3d.com/

[16] Zielinski, David J., Regis Kopper, Ryan P. McMahan, Wenjie Lu,

and Silvia Ferrari. "Intercept tags: enhancing intercept-based

systems." In Proceedings of the 19th ACM Symposium on Virtual

Reality Software and Technology, pp. 263-266. ACM, 2013.

[17] Zielinski, David J., Ryan P. McMahan, Wenjie Lu, and Silvia

Ferrari. "ML2VR: providing MATLAB users an easy transition to

virtual reality and immersive interactivity." In Virtual Reality (VR),

2013 IEEE, pp. 83-84. IEEE, 2013.

http://hawksoft.com/gltrace/
http://www.techviz.net/
http://unity3d.com/

