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Idea from Paul Lewis 

A model of the Boston “T” System	
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A less complex model	
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An even better model?	







In the Felsenstein Zone	
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y = - 330+134x - 15.5x2 +0.816x3
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  - 0.00000255x6 +0.00000000777x7

(r 2 =1.000)



“The Principle of Parsimony” in the 
world of statistics	



•  Burnham and Anderson (1998): Model Selection and Inference	



–  Parsimony lies between the evils of underfitting and overfitting.  The 
concept of parsimony has a long history in in the sciences.  Often this has 
been expressed as “Occam’s razor”—shave away all that is not necessary.  
Parsimony in statistics represents a tradeoff between bias and variance as 
a function of the dimension of the model.  A good model is a balance 
between under- and over-fitting. 

•  Welch, J. J. 2006. Estimating the genomewide rate of adaptive protein 
evolution in Drosophila. Genetics 173: 821–837. 	



–  Model selection is a process of seeking the least inadequate model from a 
predefined set, all of which may be grossly inadequate as a representation 
of reality 



Assertion: In most situations, phylogenetic inference is relatively 
robust to model misspecification, as long as critical factors 
influencing sequence evolution are accommodated 

Caveat: There are some kinds of model misspecification that 
are very difficult to overcome (e.g., “heterotachy”) 
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Half of sites Other half 

Likelihood can be consistent in Felsenstein zone, but will be 
inconsistent if a single set of branch lengths are assumed when 
there are actually two sets of branch lengths (Chang 1996) 

E.g.: 





Among site rate heterogeneity	



•  Proportion of invariable sites 
–  Some sites extremely unlikely to change due to strong functional or structural 

constraint (Hasegawa et al., 1985) 

•  Gamma-distributed rates 
–  Rate variation assumed to follow a gamma distribution with shape parameter α 

•  Site-specific rates (another way to model ASRV) 
–  Different relative rates assumed for pre-assigned subsets of sites  
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“MODERATE”–Felsenstein zone	


α = 1.0, pinv=0.5
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“MODERATE”–Inverse-
Felsenstein zone	
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� 

δ = −2 ln L0 − ln L1( )
If model L0 is nested within model L1, δ is distributed 
as X2 with degrees-of-freedom equal to difference in 
number of free parameters 

� 

AICi = −2lnLi + 2K
where K is the number of free parameters estimated 

� 

BICi = −2lnLi + K lnn
where K is the number of free parameters estimated 
and n is the “sample size” (typically number of sites) 



AIC vs. BIC	


–  BIC performs well when true model is contained in model set, and 

AIC often selects a more complex model than the truth (indeed, 
AIC is formally inconsistent)	



–  But in phylogenetics, no model is as complex as truth, and the true 
model will never be contained in the model set	





� 

Histogram of δ = −2 ln L0 − ln L1( )



X1
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3.84 6.64 

0.05 and 0.01 critical values 



Model selection and partitioning	


•  Partitioning schemes	



–  By gene	


–  By codon	


–  By gene/codon combination	


–  Stems vs. loops	


–  Coding vs. noncoding	


–  Other clustering methods	



•  Overpartitioning is a risk���
Slightly silly example (different variations on the JC model):	



–  Gene A: HKY+G, π = (0.26,0.24,0.23,0.27), kappa=1.1, α=3.0	


–  Gene B: GTR, π = (0.25,0.24,0.25,0.26),(a,b,c,d,e)=(1.1,1.2,0.9,1.1,0.95)	


–  Gene C: JC+I (pinv=0.05)	



•  Use PartitionFinder (http://www.robertlanfear.com/partitionfinder/)	





When does model selection 
matter?	



•  Often, not at all… 	


•  When it matters, it may really matter	




