A model of the Boston “T” System
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A less complex model
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An even better model?
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Why do models matter?

* Model-based methods including ML and Bayesian
inference (typically) make a consistent estimate of
the phylogeny (estimate converges to true tree as
number of sites increases toward infinity)

... even when you're in the “Felsenstein Zone”
A C

(Felsenstein, 1978)



In the Felsenstein Zone
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Why do models matter (continued)?

« Parsimony is inconsistent in the Felsenstein zone
(and other scenarios)

« Likelihood is consistent in any “zone” (when certain
requirements are met)

But this guarantee requires that the
model be specified correctly!

Likelihood can also be inconsistent if the
model is oversimplified

* Real data always evolve according to processes
more complex than any computationally feasible
model would permit, so we have to choose “good”
rather than “correct” models



What is a “good” model?

A model that appropriately balances fit of the data
with simplicity (parsimony, in a different sense)

i.e., if a simpler model fits the data almost as well as
a more complex model, prefer the simpler one
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“The Principle of Parsimony” in the
world of statistics

e Burnham and Anderson (1998): Model Selection and Inference

— Parsimony lies between the evils of underfitting and overfitting. The
concept of parsimony has a long history in in the sciences. Often this has
been expressed as “Occam’s razor’—shave away all that is not necessary.
Parsimony in statistics represents a tradeoff between bias and variance as
a function of the dimension of the model. A good model is a balance
between under- and over-fitting.

*  Welch, J. J. 2006. Estimating the genomewide rate of adaptive protein
evolution in Drosophila. Genetics 173: 821-837.

— Model selection is a process of seeking the least inadequate model from a

predefined set, all of which may be grossly inadequate as a representation
of reality



Why models don’t have to be perfect

Assertion: In most situations, phylogenetic inference is relatively
robust to model misspecification, as long as critical factors
influencing sequence evolution are accommodated

Caveat: There are some kinds of model misspecification that
are very difficult to overcome (e.g., “heterotachy”)

E.q.:
I A C A C

B D B D

Half of sites Other half

Likelihood can be consistent in Felsenstein zone, but will be
inconsistent if a single set of branch lengths are assumed when
there are actually two sets of branch lengths (Chang 1996)



GTR Family of Reversible DNA Substitution Models

(general time-reversible)

GTR
3 substitution types
(transversions, 2 transition classes) Equal base frequencies
(Tamura-Nei) TrN SYM
2 substitution types 3 substitution types
(transitions vs. (transitions,
transversions) 2 transversion classes)
(Hasegawa-Kishir.m-Yano] HKY85 K3 ST (Kimura 3-subst. type)
(Felsenstein) F84 Equal base
. - frequencies 2 substitution types
Single substitution type (transitions vs. transversions)
(Felsenstein) F81 K2P (Kimura 2-parameter)
Equal base frequencies Single substitution type

JC

Jukes-Cantor



Among site rate heterogeneity

* Proportion of invariable sites

— Some sites extremely unlikely to change due to strong functional or structural
constraint (Hasegawa et al., 1985)

 Gamma-distributed rates
— Rate variation assumed to follow a gamma distribution with shape parameter a

« Site-specific rates (another way to model ASRV)
— Different relative rates assumed for pre-assigned subsets of sites



Modeling ASRV with gamma distribution
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...can also include a proportion of “invariable” sites (p,,,)



Performance of ML when its model is violated

Tree o = 0.5, pinv=0.5 o = 1.0, pinv=0.5 o = 1.0, pinv=0.2
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Model selection criteria

 Likelihood ratio tests
§=-2(In L,—In L,)

If model L, is nested within model L, & is distributed
as X2 with degrees-of-freedom equal to difference in
number of free parameters

« Akaike information criterion (AIC)
AIC. =-2InL, +2K

where K is the number of free parameters estimated

« Bayesian information criterion (BIC)

BIC.,=-2InL.+ KlInn

where K is the number of free parameters estimated
and n is the “sample size” (typically number of sites)



AIC vs. BIC

— BIC performs well when true model is contained in model set, and
AIC often selects a more complex model than the truth (indeed,
AIC is formally inconsistent)

— But in phylogenetics, no model is as complex as truth, and the true
model will never be contained in the model set
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Density
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Model selection and partitioning

e Partitioning schemes

— By gene

— By codon

— By gene/codon combination
— Stems vs. loops

— Coding vs. noncoding

— Other clustering methods

e Overpartitioning 1s a risk
Slightly silly example (different variations on the JC model):
— Gene A: HKY+G, = (0.26,0.24,0.23,0.27), kappa=1.1, a=3.0
— Gene B: GTR, w=(0.25,0.24,0.25,0.26) (a,b,c,d,e)=(1.1,1.2,0.9,1.1,0.95)
— Gene C: JC+HI (p,,,,=0.05)

e Use PartitionFinder (http://www.robertlanfear.com/partitionﬁnder/)



When does model selection
matter?

e Often, not at all...

 When 1t matters, it may really matter



