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Abstract 24 
Three-dimensional geometric morphometric (3DGM) methods for placing 25 

landmarks on digitized bones have become increasingly sophisticated in the last 20 years, 26 
including greater degrees of automation. One aspect shared by all 3DGM methods is that 27 
the researcher must designate initial landmarks. Thus, researcher interpretations of 28 
homology and correspondence are required for and influence representations of shape. 29 
We present an algorithm allowing fully automatic placement of correspondence points on 30 
samples of 3D digital models representing bones of different individuals/species, which 31 
can then be input into standard 3DGM software and analyzed with dimension reduction 32 
techniques. We test this algorithm against several samples, primarily a dataset of 106 33 
primate calcanei represented by 1,024 correspondence points per bone.  34 

We compared results of our automated analysis of these samples to a published 35 
study using a traditional 3DGM approach with 27 landmarks on each bone. Data were 36 
analyzed with morphologika2.5 and PAST. Results show strong correlations between 37 
principal component scores, similar variance partitioning among components, and 38 
similarities between the shape spaces generated by the automatic and traditional methods. 39 
While cluster analyses of both automatically generated and traditional datasets produced 40 
broadly similar results, there were also differences. Overall these results suggest to us 41 
that automatic quantifications can lead to shape spaces that are as meaningful as those 42 
based on observer landmarks, thereby presenting potential to save time in data collection, 43 
increase completeness of morphological quantification, eliminate observer error, and 44 
allow comparisons of shape diversity between different types of bones. We provide an R 45 
package for implementing this analysis. 46 

 47 
Introduction 48 

As the theme of this volume is the application of three dimensional (3D) geometric 49 

morphometrics (GM) to functional morphology, there is little need to convince most 50 

readers about the importance of morphological studies to evolutionary and developmental 51 

biological research. However, the utility of detailed morphological information in such 52 

research has become increasingly questioned (see Springer et al. [2013] comment on 53 

O’Leary et al. [2013a, b]). Therefore, we would like to emphasize that patterns of 54 

phenotypic variation (including morphology) among biological structures form the basis 55 

for understanding gene function (e.g., Morgan, 1911; Abzhanov et al., 2006), 56 

developmental mechanisms (e.g., Harjunmaa et al., 2012), ecological adaptation (e.g., 57 

Losos, 1990; Frost et al., 2003), and evolutionary history (e.g., Leakey et al., 1964; 58 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Ostrom, 1975; Gingerich et al., 2001). Given its importance in a diverse set of biological 59 

disciplines, we believe that morphological information remains highly relevant to 60 

scientific discovery and advancement.  61 

Since the Modern Synthesis of Evolutionary Theory was reached in the 1940s and 62 

evolution was appropriately re-defined in its most basic population-genetic context, 63 

genomic approaches to studying evolution have exploded. In part, this sea change is a 64 

result of increasingly available data and improving computational power. Ever more 65 

comprehensive and rapid assessments of genetic variation have been possible as a result 66 

(Venter et al., 2003). Since the late 1980s, large-scale automated genomic analyses have 67 

flourished and a great deal is now known about genotypic variation (McVean et al., 2005; 68 

Houle et al., 2010). Genetic data are even accessible from remains of extinct organisms 69 

such as subfossil lemurs (Orlando et al., 2008) and Neandertals (Green et al., 2010).  70 

The utility of morphology is now questioned, in part, because the ability to analyze 71 

morphological data has progressed much more slowly than the ability to analyze genomic 72 

data. However, there is a call from some evolutionary biologists for the collection and 73 

analysis of high-dimensional phenotypic data (Houle et al., 2010) in an analogous high-74 

throughput and automated fashion. This perspective proposes that the utility and 75 

information content of genetic data will only reach its fullest extent once data on 76 

associated phenotypes can be analyzed at equivalent rates and scales. Ideally, increasing 77 

availability of phenomic data would promote comprehension of how the interaction 78 

between phenotypic variation and the environment is mediated by the genome and how 79 

selective pressures on the phenome are transferred to the genome. Reflecting the 80 

perceived importance of such data, the field of phenomics has recently been defined as 81 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that endeavoring to acquire high-dimensional phenotypic data on an organism-wide scale 82 

(Houle et al., 2010). Although phenomics is defined in analogy to genomics, the analogy 83 

is misleading in one respect. We can come close to characterizing a genome completely 84 

but not a phenome, as the information content of phenomes dwarves genomes and is 85 

heavily influenced by the mode, tempo, duration, and timing of its observation and 86 

quantification (Houle et al., 2010).  87 

By itself, variation in morphological structure (a component of phenomic variation) 88 

has higher dimensionality than variation in the genome, which makes it exponentially 89 

more difficult to quantify in a meaningful way (e.g., Boyer et al., 2011). This is not to say 90 

that significant advances in analysis of morphology are impossible or that the field of 91 

morphometrics has stagnated. As emphasized and demonstrated by work in this volume, 92 

new and more sophisticated approaches are being developed. More sophisticated 93 

statistical contexts (Nunn, 2011) are available thanks to improved computing power and 94 

flexible open-source coding languages (Orme et al., 2011; R Coding Team, 2012). 95 

Additionally, there is growing automation of shape quantification based on new 96 

variations of methods for spreading semi-landmarks over a 3D surface model (Bookstein, 97 

1997; Bookstein et al., 1999; Bookstein et al., 2002; Perez et al., 2006; Harcourt-Smith et 98 

al., 2008; Mitteroecker and Gunz, 2009). However, 3D shape analyses are generally tied 99 

to at least two-user determined landmarks (Polly and MacLeod, 2008), and 3DGM 100 

analyses do not appear to be very meaningful without four or more (Gunz et al., 2005; 101 

Wiley et al., 2005). As a result, these approaches continue to have many of the same 102 

limitations as morphological studies from 30-40 years ago. Part of the problem is sample 103 

size; in most cases the number of measurements, and the sample sizes per study have 104 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changed little (compare Berge and Jouffroy [1986] to Moyà-Solà et al. [ 2012] – though 105 

statistical analyses are more sophisticated in the more recent study, there are no 106 

substantial differences in measurement complexity or sample sizes in these two studies 107 

almost 30 years apart). Other principal limitations to the current traditional approach to 108 

morphological studies include: 1) subjectivity/observer-error in interpretation and 109 

measurement, 2) time intensiveness for generating large datasets, 3) sparse and 110 

potentially incomplete and/or biased representation of specimen morphology and sample 111 

variation, and 4) limited accessibility of information encapsulated in morphology due to 112 

lack of widespread researcher expertise. All restrictions stem from the necessity that 113 

researchers must directly observe, interpret, and actively measure (or mark) every 114 

specimen of a study. These limitations may explain why genetic data currently provide a 115 

more statistically powerful approach to certain evolutionary questions, and also why 116 

questions that can be addressed only by morphology (e.g., what physical traits are 117 

functionally beneficial for a certain behavior?) are often less thoroughly examined or 118 

appear more controversial despite long histories of analyses. 119 

As discussed by MacLeod et al. (2010), in order to make the study of morphology 120 

less of a “cottage industry” and bring it to a new level of objectivity, standardization, 121 

efficiency, and accessibility, we should seek more automation in the determination of 122 

patterns of morphological similarity and difference. Several researchers (Lohmann, 1983; 123 

MacLeod, 1999; Polly and MacLeod, 2008; Sievwright and MacLeod, 2012) have 124 

worked to develop techniques that minimize assumptions involved in measuring shape 125 

similarity. Initiatives for “automated taxonomy” exist (Weeks et al., 1999; MacLeod, 126 

2007) and have had some degree of success. However, all of these automated approaches 127 



  6 

require a “dimension reduction” in the initial analytical stages, which still necessitates 128 

that the researcher make a decision, informed by their understanding of important and 129 

“equivalent” morphological features, on how to make that reduction. Most automated 130 

work has been carried out on 2D outlines or raster-photographs. In such cases, the shape 131 

of an outline and the images in a photograph are determined by how the researcher 132 

orients the camera with respect to the specimen. Even when attempting the “same” view, 133 

two different researchers may have systematic error with respect to one another or 134 

different levels of random error in setting up specimens for photography. Furthermore, 135 

many techniques described as automated, including those for 2D objects, still require 136 

direct interaction with the study materials to determine at least one “corresponding point” 137 

common to all the shapes of the study sample (see papers in MacLeod, 2007). 138 

Biomedical and neuroscience research pursued by computer scientists has led to some 139 

successful automated quantification procedures in 3D (Styner et al., 2006; Paniagua et al., 140 

2012). However, these methods have been designed with a limited range of variation in 141 

mind and applied to monospecific samples. Whether these methods would have 142 

meaningful success in a sample with more substantial shape diversity among homologous 143 

objects is unknown. 144 

In order to begin testing the limits on the degree to which, and the questions for 145 

which, shape analysis can be automated towards a scientifically meaningful end, we 146 

present a new fully automated algorithm for aligning digital 3D models of bones and 147 

placing landmarks comprehensively on them. We also provide an R package application 148 

to promote its testing and use by other researchers. This method builds conceptually on a 149 

previously published approach (Boyer et al., 2011) where it was shown that a 150 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superficially similar algorithm can 1) reasonably match corresponding points on different 151 

instances of the same bone (represented by different individuals and species), 2) estimate 152 

shape differences that allow classification of shapes to species with accuracy comparable 153 

to, or better than, user selected landmarks on the same specimens, and 3) allow for the 154 

entertainment of different “correspondence hypotheses” based on the morphocline (or 155 

“path”) that is assumed to connect shapes in the dataset. Operationally, the method of 156 

Boyer et al. (2011) finds several hundred candidate alignments between conformally-157 

flattened representations of two objects. Each initial alignment is “improved” using a thin 158 

plate spline to align automatically identified extremal points (points of high local 159 

curvature – i.e., “type II landmarks”).  These mappings are then applied to unflattened 160 

versions of the two objects and a continuous Procrustes distance is computed (Lipman 161 

and Daubechies, 2010).  The mapping that results in the minimum continuous Procrustes 162 

distance is treated as the best mapping among the many candidate maps. This minimum 163 

distance mapping was found to usually represent a biologically meaningful alignment 164 

according to criteria 1 and 2 described above. 165 

Despite its successes, the method presented by Boyer et al. (2011) has several 166 

shortcomings: 1) since correspondences used to determine shape differences are purely 167 

pairwise and not transitive, there is an inconsistent template for biological 168 

correspondence relating all pairs of shapes in the dataset); 2) the conformal flattening 169 

procedure of the analysis limits its application to “disc-type” shapes with an open end 170 

(like the tooth crowns or ends of long bones of that dataset); and 3) the MATLAB® 171 

application for the analysis is difficult to work with, lacks good visualization tools, and 172 

does not yield output that can be widely employed in other analytical procedures.  173 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We overcome these limitations in the new algorithm presented here, which we have 174 

developed into an R-package called auto3dgm. One of the most exciting prospects of 175 

auto3dgm is its potential to help quantify morphology more comprehensively and 176 

equably (if not exhaustively). It has long been acknowledged that measurements of select 177 

characters are less meaningful than more comprehensive approaches: 178 

 179 

“Direct determination of rate of evolution for whole organisms, as 180 

opposed to selected characters of organisms, would be of the greatest 181 

value for the study of evolution. Matthew wrote, nearly a generation ago 182 

(1914), ‘to select a few of the great number of structural differences for 183 

measurement would be almost certainly misleading; to average them all 184 

would entail many thousands of measurements for each genus or species 185 

compared.’” (Simpson, 1944: pg.14) 186 

 187 

“Another level of description -of entire surface regions, or of volumetric 188 

elements, or of qualitative aspects of structures rather than structures 189 

themselves- may in some instances be most meaningful (Roth, 1984, 190 

1991) and bring us closer to identifying the biological processes of 191 

interest. Hence the appeal and utility of methods of comparison that 192 

interpolate between landmark points, such as D'Arcy Thompson's 193 

transformation grids” (Roth, 1993: pg. 53) 194 

 195 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Matthew’s implied perspective was that increasing the number of measurements 196 

would be useful (though impractical) and would approach a representation of the “total 197 

taxonomic distance.” This taxonomic distance is sometimes referred to as “morphological 198 

disparity” and may allow meaningful discussion of the amount, rate and pattern of 199 

evolution among a sample of species in certain settings. A greater amount of 200 

morphological difference between corresponding and homologous structures is assumed 201 

to relate to the amount of evolutionary change that has occurred in the compared taxa 202 

since they diverged from their common ancestor. This idea is reflected in the numerical 203 

taxonomy movement (Sokal, 1966; Sneath and Sokal, 1973).  204 

A wealth of careful, mathematically-rooted consideration has been aimed at these 205 

premises over the years. It has been effectively argued that it is actually impossible to 206 

generate a generalized comprehensive view of the total phenetic distance between 207 

specimens or taxa (Bookstein, 1980; Bookstein, 1994; MacLeod, 1999). In fact, 208 

Bookstein (1991; 1994) argues that morphometrics is purely about documenting 209 

covariance among biological forms, stating that morphometric methods are neither suited 210 

for “the computation of ‘magnitude’ of shape change nor for the clustering of individual 211 

specimens according to degree of similarity of shape” (Bookstein, 1994, p.205). 212 

MacLeod (1999) explains the insufficiency of morphometrics in this regard, saying: “All 213 

morphological disparity estimates published thus far represent indices that are 214 

inextricably tied to particular methods of morphological representation and particular 215 

scales of morphological assessment”, that “it seems…unlikely that a generalized estimate 216 

of ‘morphological disparity,’…can ever be achieved.” and finally that it is imperative that 217 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“the morphometrician remembers the domain within which he/she operates is strictly 218 

limited” (MacLeod, 1999, p.134).  219 

We do not suggest the method we present fundamentally resolves any of these issues. 220 

It aids in the discussion of morphological disparity because it is more objective and 221 

comprehensive in its measurement of shape than previous methods. Though Bookstein 222 

(1994) argues that morphometrics must be applied after homology considerations have 223 

taken place, we suggest that our method can help identify an “operational homology” or 224 

“biological correspondence” (Smith, 1990) more objectively.  225 

Of the various types of homology discussed by evolutionary biologists and 226 

paleontologists, it is relevant to review at least three different types here: these include 227 

transformational, operational, and taxic homology (Patterson, 1982; Smith, 1990).  It 228 

would seem that transformational homology is of primary importance in an evolutionary 229 

sense. It is similar to Darwinian homology (Simpson, 1961), in which features are 230 

considered homologous among several taxa if they are equivalent through “descent with 231 

modification” from the common ancestor. This also matches Van Valen’s (1982) 232 

definition of homology as “continuity of information” through evolution. Of course, 233 

comprehension of transformational homology is often fairly elusive, since the 234 

morphoclines describing it can be expected to gain accuracy with a more complete fossil 235 

record and an accurate phylogeny of life (Van Valen, 1982).  236 

Operational homology most generally appears to refer to ontologies defining 237 

biological correspondence for the sake of measurement, comparison among taxa, and/or 238 

as a working hypothesis of transformational homology. What Macleod (2001, p.3) 239 

describes as “geometric (or morphometric) homology (sensu Bookstein 1991)” of 240 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geometric morphometrics can be considered as specific types of operational homologies. 241 

In a way, Thompson (1942), as also quoted by Roth (1993), reminds researchers not to 242 

forget the distinction between operational homologies and carefully tested hypotheses of 243 

transformational homology: 244 

 245 

“The morphologist, when comparing one organism with another, describes the 246 

differences between them point by point and "character" by "character" ....and he 247 

falls readily into the habit of thinking and talking of evolution as though it had 248 

proceeded on the lines of his own descriptions, point by point, and character by 249 

character.” (Thompson, 1942, p.1036) 250 

 251 

Finally, taxic homology is equivalent to “synapomorphy” or “symplesiomorphy” 252 

whereby similarity in morphological form (usually referred to as a “character state”) of a 253 

transformationally homologous feature exhibited by a taxonomic sample of interest is 254 

thought to reflect the inheritance of that “state” from a common ancestor. Whether 255 

identified taxic homologies help elucidate phylogenetic relationships depends on whether 256 

particular character states have evolved numerous times and exhibit homoplasy, as well 257 

as whether perceptions of transformational homology are correct. When discussing 258 

features on a finer scale than whole bones or organs, hypotheses of transformational 259 

homology are usually difficult to test. When the data necessary for such tests are 260 

available (e.g., via a dense fossil record [Van Valen, 1982]) the results can be surprising.  261 

The empirical route to homology hypotheses is a recursive one. Van Valen (1982) 262 

says that homology is “more than similarity” which means that assessment of shape 263 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similarity is involved. Shubin (1994) discusses tests and evaluations of homology 264 

hypotheses, saying homology is “only indirectly related to similarity” and that 265 

“homologous features may be very dissimilar”. But without an a priori phylogeny, how 266 

does one postulate homology of dissimilar features? In many cases, operational 267 

homology hypotheses are qualitatively rooted in geometric similarities even for matching 268 

dissimilar features in two taxa. For skeletal elements, operational homology (= 269 

topological correspondence) hypotheses are established by researchers physically or 270 

conceptually seriating features of specimens into morphoclines. The correspondence 271 

among end-members of the morphocline (the humeri of a whale and a bat – for instance) 272 

may be un-interpretable next to each other, but will have more definitive operational 273 

homologies if they are compared through the intermediate forms along a taxonomically 274 

rich seriated sample. Of course, this task is aided by information beyond the geometry of 275 

isolated bones: the position and orientation of the bone in the complete skeleton is also 276 

known and used (i.e., cues from “type I” landmarks). Different researchers may see and 277 

emphasize different aspects of shape, and samples with different taxa will suggest 278 

different morphoclines and possibly different patterns of correspondence among end-279 

members. As Roth (1993, p.53) says “The recognition, and operational definition, of 280 

homologous points is a non-trivial problem (Jardine, 1969; Smith, 1990), and one not 281 

necessarily with unique solutions.” Furthermore, different skeletal element sets from the 282 

same taxonomic sample may seriate in morphoclines with different taxonomic orderings. 283 

For example, the calcaneus bone of a tarsier has the most extreme form in comparison to 284 

any sample of primate species, whereas the astragalus bone of tarsiers can be described as 285 

roughly intermediate between that of certain anthropoid and strepsirrhine primates). For a 286 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given taxonomic sample, a consideration of which bones arrange in morphoclines with 287 

similar orderings of taxa (and thereby present congruent pictures of operational 288 

homology) aids in formulating phylogeny hypotheses. Cladistic parsimony analyses are 289 

conceptually related to this practice. Clearly, determination of operational homology is at 290 

least partly based on a qualitative consideration of geometric similarity and morphoclines 291 

among samples. Our automated procedure, which considers the total surface of bones and 292 

the pattern of distances between them, can be implemented toward this end.  293 

Because auto3dgm determines feature correspondence objectively (algorithmically) 294 

and more comprehensively, it can assess morphological differences in a way that suffers 295 

from less measurement sensitivity. This decreased sensitivity makes the shape 296 

quantifications of one bone or ‘part’ more easily generalizable to other parts compared 297 

with previous methods (as we will demonstrate with an example). Ultimately, this allows 298 

greater insight into patterns in, and the generation of, morphological disparity through the 299 

evolutionary process.  300 

 301 

Materials and Methods 302 

Institutional abbreviations.— AMNH, American Museum of Natural History, 303 

New York, NY; CGM, Egyptian Geological Museum, Cairo, Egypt; DPC, Duke Lemur 304 

Center Division of Fossil Primates, Durham, NC; GU, H.N.B Garhwal University, 305 

Srinagar, Uttarakhand, India; IGM, Museo Geológico del Instituto Nacional de 306 

Investigaciones Geológico-Mineras, Bogotá, Colombia; IRSNB, Institut Royal des 307 

Sciences Naturelles del Belgique, Brussels, Belgium; KU, Kyoto University, Kyoto, 308 

Japan; MCZ, Museum of Comparative Zoology, Harvard University, Cambridge, MA; 309 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MNHN, Muséum National d’Histoire Naturelle, Paris, France; NMB, Naturhistorisches 310 

Museum Basel, Basel, Switzerland; NMNH, Smithsonian Institution National Museum of 311 

Natural History, Washington, D.C.; NYCEP, New York Consortium in Evolutionary 312 

Primatology, New York, NY; SBU, Stony Brook University, Stony Brook, NY; 313 

SDNHM, San Diego Natural History Museum, San Diego, California; SMM, Science 314 

Museum of Minnesota, Minneapolis, MN; UCM, University of Colorado Museum of 315 

Natural History, Boulder, CO; UCMP, University of California Museum of Paleontology, 316 

Berkeley, California; UK, University of Kentucky, Lexington, KY; UM, University of 317 

Michigan, Ann Arbor, Michigan; USGS, U.S. Geological Survey, Denver, Colorado. 318 

Samples.—We utilize four samples of surface meshes generated from either microCT 319 

or laser scans to test auto3dgm. Table 1 is a taxonomic list for each dataset with sample 320 

sizes per genus (supplemental tables 1-3 give the specimen numbers for each sample). 321 

The first sample includes 106 calcaneal bones of 67 genera, and is the exact sample used 322 

by Gladman et al. (2013). We test our method by running the same analyses on this 323 

sample as Gladman et al. (2013) and compare the results. auto3dgm produces landmark 324 

datasets that can be analyzed in a manner identical to traditional user-collected landmark 325 

datasets. The second sample is comprised of 80 astragali that we analyze and compare to 326 

a subset of 80 calcanei from the first sample. The third sample is of 49 distal phalanges 327 

representing fossil and extant taxa to demonstrate the method on a bone with a “different 328 

quality” of shape variation. Distal phalanges are basically cone-shaped with fewer 329 

consistent “feature points” than astragali or calcanei, but exhibit a range of forms from 330 

“blade-like” (falcular) to “spatulate” (unguliform) (Fig. 1). Therefore, each bone is less 331 

complex, but the range of variation across the sample remains substantial. The fourth 332 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sample also represents astragali and overlaps the second, but includes additional 333 

specimens and species (Table 1). This sample is used to demonstrate the semi-supervised 334 

alignment procedure of the R-package “Shape_Alignment”. 335 

Sample processing.—Very little pre-processing is required for auto3dgm. Surface 336 

files should be in the Open file format (.off) and of sufficient resolution to capture all 337 

surface features of interest. It should be noted that the .off format is closely related to 338 

more widely known Stanford Polygonal Mesh (.ply) format. The free software MeshLab 339 

can be used to convert .ply files to .off files, as well as batch converters (see 340 

http://www.stat.duke.edu/~sayan/3DGM/index.shtml).  If made from CT scans, the 341 

surfaces must be carefully checked and cleaned so they have no internal vertices. 342 

Virtually no processing is required for laser-scan generated data aside from smoothing or 343 

filling holes in the mesh.  344 

The majority of surface files in our datasets were generated by microCT scanning. 345 

Details on both laser- and microCT scanning parameters of the astragalus and calcaneus 346 

specimens have been reported on previously in appendices and supplementary tables 347 

(Boyer and Seiffert, 2013; Boyer et al., 2013). The distal phalanx dataset is new. 348 

auto3dgm input and output files.— The method demonstrated here was developed by 349 

Puente (2013) as a major component of a Ph.D. thesis and the mathematical details can 350 

be found there. Additional technical papers focusing on mathematics are forthcoming 351 

(Puente and Daubechies, in preparation). The input files for the routine are a set of 352 

surface mesh files in .off format. The user must also supply a set of “low resolution” 353 

versions of the mesh files that will be used by the algorithm to generate summary images. 354 

Downsampling of mesh files can be accomplished with visualization programs such as 355 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Meshlab (Cignoni et al., 2012), Avizo (Visualization Sciences Group, 2009), and 356 

Geomagic (3D Systems Inc., 2013). 357 

The outputs include 1) an “alignment file”, which is a “multi-surface”.off file that 358 

includes displays of user-supplied low resolution renderings of all specimens shown in 359 

the algorithm-determined optimal alignment (Fig. 2); 2) an “MDS file,” which is another 360 

multi-surface file that embeds the same aligned renderings of specimens in a coordinate 361 

space determined by a multi-dimensional scaling (MDS) analysis of the distance matrix 362 

of aligned specimens (again for visualization purposes) (Fig. 3); 3) a “scaled”.txt file with 363 

all of the coordinate data for all specimens scaled to the same centroid size, that can be 364 

loaded into, visualized, and analyzed in morphologika2.5 (O’Higgins and Jones, 2006); 4) 365 

an “unscaled”.txt file with all of the coordinate data for all specimens at the scale of the 366 

original input files which can also be analyzed in morphologika2.5; and 5) a folder with 367 

copies of all the original input files, the coordinates of which have been multiplied by the 368 

rotation matrix used in the final alignments. 369 

The purpose of the alignment file is to check for errors generated by the alignment 370 

algorithm. If errors are found, we provide functions allowing for a semi-supervised 371 

repair, though most likely such errors indicate insufficient degrees of incremental 372 

variation in the dataset (i.e., the morphological gaps between a single specimen, or 373 

certain groups of specimens, and the rest of the dataset are too large). The purpose of the 374 

MDS file is to provide a quick view of the phenetic affinities suggested by the matrix of 375 

continuous Procrustes distances between specimens in the analysis. The morphologika2.5 376 

file allows further analyses of the sample of shapes as aligned by the method. Finally, the 377 

aligned versions of the input files provides data for users who wish to standardize 378 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alignment before taking measurements that are sensitive to orientation [like relief indices 379 

or other topographic variables measured on teeth (Bunn et al., 2011)], or who wish to use 380 

the images for figure generation. 381 

Pseudolandmarks and alignment.— In order to facilitate adoption of this method by 382 

3DGM community, this protocol represents and aligns pairs of surfaces with landmark-383 

like feature points. We say these are “landmark-like” because we represent each bone 384 

with same number of points (in this study 1,024 points per bone are used, but the 385 

algorithm can be set to use more or fewer), and by the final stage of the algorithm each 386 

point has a fairly consistent biological identity across all bones of the sample. Each of 387 

these points is therefore analogous to an observer-placed landmark. On the other hand, 388 

they are not identified based on any of the criteria for determining type I, II, or III 389 

landmarks (Zelditch et al., 2004), or even semi-landmarks (Bookstein, 1997; 390 

Mitteroecker and Gunz, 2009), and therefore are dubbed “pseudolandmarks” here. Other 391 

recent fully automated algorithms (Boyer et al., 2011) do not generate a globally 392 

consistent mapping of a set number of points across all specimens of a dataset, and this 393 

limits their utility for certain applications. 394 

Major computational steps.— There are at least four important ingredients to the 395 

protocol. The first is re-sampling of surface coordinates to a specified standard number of 396 

points (Fig. 4). This is done using approaches that evenly spread points over the surface 397 

(Eldar et al., 1997). Once a new sample of bones with a standard number of evenly 398 

spread coordinates has been generated, the algorithm attempts to align each pair of bones 399 

using an iterative closest points (ICP) procedure (Besl and McKay, 1992). We avoid 400 

incorrect local minima known to plague ICP by having our algorithm assume that 401 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principal axes of variation will tend to be homologous in some sense between bones. 402 

After computing the principal axes of variation in points for two surfaces, the algorithm 403 

attempts alignments where the first principal axes are aligned in one of two possible ways 404 

(Fig. 5). There are a total of eight ways to align the first through third principal axes, and 405 

these eight possible alignments are our starting points for ICP. They can be run 406 

simultaneously, and an approximation of the global minimum Procrustes distance can be 407 

found quickly (especially if a low number of pseudolandmarks are used). Of course, a 408 

major advantage of the method is the ability to include large numbers of data points on 409 

the surface. To resolve the conflict between processing speed and accuracy, our algorithm 410 

performs initial alignments with highly down-sampled surfaces using several hundred 411 

points (the exact number of pseudolandmarks is a user-defined parameter). Next, more 412 

densely sampled surfaces are rigidly transformed to match their down-sampled 413 

counterparts, so that only the final “tweaking” of the alignment has to be performed on 414 

the full-resolution surface file. 415 

Since the best alignment is found by computing a Procrustes distance, a Procrustes 416 

distance matrix is available for computation of a minimum spanning tree (MST) for the 417 

sample. The MST connects all cases in the dataset using the shortest edge length possible 418 

and is a unique solution, except in datasets where several cases are exactly equidistant 419 

from each other. Though not all points will be connected to their nearest neighbors in 420 

such a tree, most connections represent a joining of nearest neighbors for one of the cases 421 

involved. In datasets with high degrees of shape diversity, it is virtually guaranteed that 422 

between certain pairs of bones, the minimum Procrustes alignment will be a biologically 423 

meaningless arrangement. However, because the pairs connected by the segments of 424 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MST are among the shortest in the distance matrix, they are the most likely to be 425 

biologically meaningful and/or precise alignments. Therefore, instead of attempting to 426 

directly align pairs of shapes that have a relatively large Procrustes distance separating 427 

them, alignments between such pairs are generated by propagating alignments between 428 

intermediate shapes, ultimately allowing very different shapes to be aligned indirectly 429 

(Fig. 6). 430 

Parameters that must be specified.—Before the “automated part” of our algorithm can 431 

begin, the user must choose values for three parameters. Varying values of these 432 

parameters (see below), improves fidelity, detail, and accuracy of alignment in the one 433 

direction, and speed of calculation in the other. It may be possible to determine optimal 434 

values for these parameters in more or less general conditions by incrementally 435 

modifying them, re-running analyses, and checking the results. We have not yet done this 436 

systematically. The parameters to be set include 1) the number of points used to represent 437 

shapes in the low resolution version of the alignment; 2) the number of points to 438 

represent shapes in the high-resolution, or final version of the alignment; and 3) the 439 

number of principal alignments (usually this number is set to the eight possible 440 

combinations of the alignments along the first three principal axes, but additional random 441 

principal alignments can be chosen). In the first three samples we evaluate in this study, 442 

we use the following pairs of point numbers: Calcaneus dataset of 106 specimens: 443 

initial=150 points, final=1,024 points, 8 principal alignments; paired calcaneus and 444 

astragalus datasets: initial=256 points, final=1,024 points, 12 principal alignments; distal 445 

phalanx dataset: same as for paired astragalus and calcaneus. In the fourth dataset we use 446 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far fewer points in order to generate problematic alignments: initial = 32, final = 64, 8 447 

principal alignments. 448 

Fixing errors in the alignment protocol.—Because it is sometimes the case that at 449 

least one specimen is mapped into the MST with an incorrect alignment, it is important to 450 

provide options for correcting the problem.  451 

1. Usually such problems stem from insufficient number of initial points (first 452 

parameter above). Thus, the first step is to try re-running the initial steps of the 453 

algorithm with slightly greater numbers of points per file. However, the problem 454 

can also stem from the lack of an adequately similar partner shape in the dataset 455 

(from the perspective of its orientation and articulation in the skeleton). This 456 

shape represents an “island shape” for which the best geometric alignment (that 457 

with the smallest Procrustes distance) to any other shape is a biologically 458 

"incorrect" alignment. This property does not guarantee a bad alignment since it 459 

may not connect to its nearest neighbor in the minimum spanning tree, but it often 460 

allows one. However, it is possible that there are still some shapes in the sample 461 

with which the island shape(s) will correctly align. We do not currently have an 462 

automated protocol for discovering such shapes, if they exist. We have 463 

implemented two different protocols for fixing alignment problems. If there is a 464 

single misaligned shape: We allow the user to display the results of direct 465 

alignments of the island shape to each of the other shapes in the sample using the 466 

function branch_pw_distances.r in the R-package. If there are n specimens in the 467 

sample, this function creates n-1 multi-surface mesh files.  There is one file for 468 

every corresponding pair between the island shape and the remaining shapes. 469 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Even if n is very large, these can be visually scanned quickly to find a correct 470 

alignment.  Tiling the multiple files in Meshlab or Aviso is one possible way of 471 

quickly arriving at the correct alignment when n is large.   If the user finds a shape 472 

to which the island shape correctly aligns, the MST is re-calculated without the 473 

island shape, the global alignment of the remaining shapes is double-checked, and 474 

the island shape is connected to the new MST through its successfully aligning 475 

partner. The analysis is then completed in the usual way. If there are multiple 476 

specimens with which the island shape correctly aligns, the user can choose which 477 

to use as the connecting shape, though it seems logical to choose that with the 478 

smallest Procrustes distance to the island shape.  The pairwise output files from 479 

branch_pw_distances.r orders the shape correspondences by their Procrustes 480 

distance.  The ordering of correspondence will be in the name of the files for 481 

clarity.    482 

2. If there are multiple island shapes, a more involved protocol is required, because 483 

there may be several groups of consistently aligned shapes (Fig. 7). The general 484 

problem is that the analysis may return a result in which certain branches are 485 

internally consistent, but are misaligned with respect to other such branches. It is 486 

therefore necessary to have a protocol allowing the user to chop apart these 487 

branches and stick them back together in a way that ensures a globally consistent 488 

alignment. The work-flow described below is provided by the example file 489 

“alignFix.r” and is available on the first author’s website. Documentation that 490 

accompanies “alignFix.r” guides the user through a sample problematic dataset 491 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(our dataset 4). Users should then be able to edit the code of “alignFix.r” to suit 492 

their datasets. 493 

a. Observe misaligned regions using alignment and map files (Figs. 7A and 494 

7B) together. 495 

a.i. If only one misaligned file is observed, follow the procedure 496 

described above. 497 

a.ii. If more than one misaligned file is observed: 498 

a.ii.1. Record the alignment numbers of the misaligned 499 

files.  500 

a.ii.2. View the MDS graph showing the MST 501 

connections on points labeled by the alignment number 502 

they represent.  503 

b. Using the map file and the MST, figure out how many "groups" of 504 

misaligned files exist, and how many specimens in each group, 505 

and record this information.  506 

b.i. Specify all "groups greater than 2" (three or more files that are 507 

correctly aligned to each other, but not to surrounding shapes) as 508 

"groups to analyze separately", since a MST will need to be re-509 

computed within each group. 510 

c. For “b.i.”, a separate alignment analysis is run on each group of three or 511 

more that were internally consistent and all the necessary information is 512 

saved (Fig. 7C). 513 

d. Now the user must decide how to "re-connect" the separate sub-groups. 514 



  23 

d.i. First attempt to analyze all of the shapes in non-connected 515 

segments of the minimum spanning tree. For example, with four 516 

groups (A, B, C, and D), it is possible that only one will end up 517 

connecting to the other three through the MST. If both A, C and D 518 

connect to B in the original analysis, and are misaligned with 519 

respect to B, it is possible that with B excluded, A, C and D will 520 

align correctly. If this is true, skip to “d.iv.1” of this description. If 521 

not, go to number “d.ii.” 522 

d.ii. For cases in which the set of non-connecting groups is still an 523 

incorrect alignment, the non-connecting groups should be 524 

compared in a pairwise fashion. For instance A-C, A-D, and D-C 525 

should each be analyzed separately. It is possible that some of 526 

these will have correct alignments. If more than two of these are 527 

correct, a decision will have to be made on which two to merge, 528 

since it has already been demonstrated that all three cannot be. We 529 

would suggest merging the two that result in the biggest difference 530 

in the number of specimens represented in the final two groups, 531 

since this makes the subsequent task of searching for a correct 532 

alignment between groups that are not correct via their MST 533 

easier. At this stage, the goal should be to merge as many isolated 534 

groups together as possible in order to reduce computational 535 

demand in the next steps. Ultimately, the user can decide which 536 

groups to merge. 537 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d.iii. After managing the isolated but internally consistent segments of 538 

the original MST (groups A, C and D above), the user needs to 539 

find a "correct" connection between the isolated groups that 540 

were misaligned with respect to each other through the 541 

original MST. Some remnant of the original MST will still be 542 

preserved, which can be called the “base tree” (group B in our 543 

example). Attempting to reconnect the isolated groups to the base 544 

tree using the minimum distance pair will likely generate 545 

misalignments, since the MST connections were wrong in the 546 

original analysis. However, as MST connections often only 547 

represent nearest neighbors for one of the two connected cases, 548 

there is still a possibility that one of the cases involved in the 549 

incorrectly aligning connection between the base tree and another 550 

segment was not connected to its nearest neighbor. This makes it 551 

important to look at the minimum distance pairs of the isolated 552 

groups and the base tree. 553 

d.iv. Assuming the minimum distance pair is still a misalignment, a 554 

protocol for checking alignments between particular shapes in each 555 

group must be implemented.  This again utilizes the function 556 

branch_pw_distances.r.    557 

d.iv.1. The user has the option to check all alignments. The 558 

output is n x m "summary alignment files" in which n is the 559 

number of specimens in one group and m is the number in 560 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the other group being searched. Each file shows one shape 561 

from the group with n with one of the m specimens of the 562 

second group (Fig. 7E). The output files are labeled 563 

according to minimum Procrustes distance, so that the first 564 

compared specimens are nearest neighbors. The user can 565 

then easily identify the correctly aligning pair that also has 566 

the minimum Procrustes distance (since there may be more 567 

than one correctly aligning pair). 568 

d.iv.2. This process should be repeated for all segments 569 

that could not be merged. If there were three remaining 570 

segments (e.g., a base tree B, an A-C group and D), there 571 

will likely be an option of whether to link each tree to one 572 

of two others. We would suggest this linking be done using 573 

the option when the Procrustes distance between the linking 574 

pair is minimized. 575 

d.iv.3. The user can also opt to only compare specific 576 

specimens from one group to specific specimens in the 577 

other. 578 

d.v. Finally, all groups are re-aligned using a tree that represents each 579 

separate MST connected along user-specified pathways in “d.iv.2” 580 

This should result in correct alignments for all bones in the sample 581 

(Fig. 7G). 582 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If the user determines successful alignments between groups of island shapes are 583 

impossible, there are two options: 1) remove any island shape groups from the analysis 584 

(particularly if their inclusion does not directly address the main questions of the 585 

analysis); or 2) add more shapes with the hope of bridging distances between island 586 

shapes.  587 

Getting the code for running analyses.— The R package we developed is called 588 

auto3dgm.  At the time of publication auto3dgm has been submitted to CRAN for review, 589 

and will ultimately be accessible from their repositories.  Until then, auto3dgm can be 590 

downloaded at www.dougmboyer.com or 591 

http://www.stat.duke.edu/~sayan/3DGM/index.shtml.  The sample/instructional file for 592 

fixing misaligned shapes, alignFix.R, is not part of the R-package itself and will not be 593 

available on CRAN.  It can however be downloaded from the personal websites 594 

mentioned above.  Documentation for the packages can be found at these sites as well. 595 

Comparison to results from traditional landmarks.—In order to maximize our ability 596 

to compare and contrast shape information provided by our pseudolandmarks with 597 

traditional geometric morphometric datasets, we used the same sample and performed the 598 

same analyses on the pseudolandmarked dataset as Gladman et al. (2013) conducted 599 

using 27 landmarks and traditional 3DGM techniques. 600 

First, the 3D pseudolandmark coordinate-scaled output file from our algorithm was 601 

imported into morphologika2.5. We then ran a General Procrustes Analysis (GPA) with 602 

reflections enabled, followed by a Principal Components Analysis (PCA) with “Full 603 

Tangent Space Projection” checked for Calculation Options and “Eigenvalues” and “PC 604 

Scores” checked for Printing Output Options. The results were saved as a .csv file that 605 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included the PCA output, along with the raw Procrustes distance data in the form of 3D 606 

coordinates for each landmarked individual. In morphologika2.5, the cloud of 1,024 607 

landmarks was visualized and the morphospace of the PC axes was explored. In the 608 

traditional 3DGM analysis of this sample, Gladman et al. (2013) added wireframes to the 609 

landmarks in order to directly visualize shape changes. Due to the number of 610 

pseudolandmarks used by auto3dgm, wireframes are currently impractical, but shape 611 

changes can easily be observed from transformations of the densely packed 612 

pseudolandmarks. All Principal Components (PCs) were examined in morphologika2.5 by 613 

tracking changes in the cloud of 3D landmarks between the extreme morphospace of each 614 

axis. The amount and nature of variation represented by these axes in the 1,024 615 

pseudolandmark dataset was then compared to results from the 27 user-determined 616 

landmarks of the Gladman et al. (2013) analyses. 617 

Gladman et al. (2013) also used analyses of “generic” means for cluster analyses in 618 

their study of the 106 calcanei sample used here. They felt that averaging the few 619 

individuals for each genus helped control for any extreme variation that might otherwise 620 

dominate the small samples being used to represent extant genera. We replicated their 621 

approach with the pseudolandmark coordinates here. Extant genera represented by more 622 

than one individual were averaged into a single genus representative (Table 1). As in 623 

Gladman et al. (2013), fossil individuals were not averaged together in the analyses. 624 

Altogether the dataset was reduced from 106 individuals to 67 generic representatives 625 

(Table 1). 626 

In order to generate generic means, the matrix of 3D coordinate Procrustes output 627 

data (generated in morphologika2.5) was imported into PAST statistical software 628 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(Hammer et al., 2001; Hammer et al., 2006). In PAST, all individuals of a single genus 629 

were highlighted and averaged using the “Evaluate Expression” function in the 630 

“Transform” menu. “Mean (of current column)” was selected in the “Evaluate 631 

Expression” menu and then “Compute” in order to change all highlighted rows to the 632 

same averaged values. Only one of these newly averaged rows was kept in the dataset to 633 

represent a given genus. This technique can be done manually by averaging each X, Y, 634 

and Z value separately for each landmark for members of each genus, although with 635 

increasingly larger datasets this becomes untenable. Once the averaged dataset was 636 

complete, cluster analyses were run within PAST and then compared to the generic mean 637 

analyses of Gladman et al. (2013). 638 

Mixed bone analysis.—It has been suggested that traditional 3DGM methods could be 639 

used to “pool information” from more than one structure (Rohlf, 2002). However, the 640 

meaning of results from such an approach is questionable, as the weight of each structure 641 

added will depend on the user’s choice of landmarks, as well as the number of landmarks 642 

used to represent each bone. Furthermore, since there is no basis for collecting landmark 643 

data across bone types, it has never been possible to include multiple bone types in the 644 

same 3DGM analysis using the same landmark template. Our approach with auto3dgm, 645 

based on spreading landmarks evenly and selecting alignments based on overall 646 

geometric similarity, provides a solution to this problem and allows mutli-bone types of 647 

analysis. There are many questions that can be addressed if shape variation can be 648 

compared between bone types. For instance, we might wish to ask whether the astragalus 649 

has less shape diversity than the calcaneus, due to the former articulating with a greater 650 

number of bones and lacking muscular attachments as exhibited by the latter. We might 651 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also be interested in investigating whether the degree of overall shape variation is 652 

associated with stronger phylogenetic signal (Nunn, 2011) or stronger functional signals. 653 

We performed the first “mixed bone” analysis on a sample of 80 astragali and 80 calcanei 654 

representing the same taxa (although sometimes composed of different specimens) and 655 

we compare intrinsic levels of overall shape variation. 656 

The basic goal of such an analysis (given the questions above) is to provide a 657 

quantitative criterion for comparing size-standardized shape variation between two bones. 658 

Since regions on the surface of a calcaneus do not “biologically correspond” in any way 659 

to regions on the surface of the astragalus, there is no need to determine a biologically 660 

meaningful regional correspondence between them. Therefore, only the most efficient 661 

geometric alignment must be established (i.e., the alignment that minimizes the 662 

Procrustes distance). However, in a mixed bone analysis, astragali will not only be 663 

compared to calcanei, they will also be compared to other astragali. Thus, for some bones 664 

in the sample, there is a biologically significant alignment that must be discovered before 665 

comparisons can be made.  666 

To establish a globally transitive pseudolandmark coordinate dataset for a mixed bone 667 

sample, we first ran auto3dgm on the calcaneus and astragalus datasets separately to 668 

produce two sets of globally consistent pseudolandmark datasets. We then performed 669 

searches for the alignment and correspondence between an astragalus and calcaneus that 670 

exhibited the minimum Procrustes distance among all such pairs in the combined dataset 671 

using the branch_pw_distance.r function. In the second step, we were only concerned 672 

with distances since no details about the alignment mattered biologically. Once we found 673 

the mixed bone pair with the smallest geometric distance separating them, we used that 674 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pair to link the MSTs of the initial analyses, creating a mixed-bone, global-675 

correspondence, 3D pseudolandmark dataset. This dataset was imported into 676 

morphologika2.5 and processed with GPA followed by PCA, with results exported as a 677 

.csv file, and final analyses performed in PAST like the analyses above.  678 

We ran statistics on four samples: 1) pairwise distances separating the calcanei, 2) 679 

pairwise distances separating the astragali, 3) the combined dataset of 160 astragali and 680 

calcanei, and 4) a combined dataset representing only 40 astragali and 40 calcanei (with 681 

taxa matched between the two halves of the sample). We also analyzed the first two PC 682 

scores of the astragalus and calcaneus separately looking at their range, variation, and 683 

computing their phylogenetic signal. Phylogenetic signal was also calculated on 684 

Procrustes distances from the mean for the astragalus dataset and calcaneus dataset. 685 

Phylogenetic signal was calculated using caper (Orme et al., 2011) in R, and a tree based 686 

on v3 of the primate dataset from 10k Trees (Arnold et al., 2010). Testing for 687 

phylogenetic signal (Pagel’s λ) required using generic means of the sample and reduced 688 

the sample size from 80 individuals to 42 genus-averaged individuals. 689 

 690 

Results 691 

Alignment success.— Alignment for the calcaneal dataset of 106 bones was 692 

successfully accomplished with a low resolution initial alignment of 150 points, and eight 693 

principal alignments (Suppl. Fig. 1). The final high-resolution surface alignment was 694 

based on 1,024 points. Successful alignment for the calcaneal dataset of 80 bones was 695 

accomplished with a low-resolution initial alignment of 256 points, eight initial positions 696 

based on all possible combinations along three principal axes, and a high-resolution final 697 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surface alignment based on 1,024 points. Successful alignment for the astragalar dataset 698 

of 80 bones was accomplished with a low-resolution initial alignment of 256 points, 12 699 

initial alignments, and a high-resolution final surface alignment based on 1,024 points 700 

(Suppl. Fig. 2).  701 

The distal phalanx dataset was aligned using a low-resolution initial alignment of 256 702 

points, 12 initial alignments, and a high-resolution final surface alignment based on 1,024 703 

points (Suppl. Fig. 3). One specimen, UCMP 217919 (a fossil of unknown taxonomic 704 

affinities), had an incorrect alignment to its connecting shape in the MST (a tarsier 705 

second digit grooming claw, USNM 196477). We identified a correct alignment with 706 

SMM P77.33.517, a claw of Plesiadapis churchilli. This is not to say these two bones are 707 

very similar. It simply shows that it is usually possible to establish correct alignments for 708 

every bone in the sample without manually registering them to each other. 709 

Comparison to results from traditional landmarks.— For the PCA of output from 710 

auto3dgm on individual specimens (n=106, with no genus-level averaging), the first four 711 

principal component (PC) axes account for 59.6% of the total variance. This is very close 712 

to that explained in the analysis of the same sample using 27 landmarks by Gladman et 713 

al. (2013) (Table 2). Generally speaking, major clades were well separated when plotted 714 

in morphospace, as in Gladman et al. (2013) (Fig. 8). Examination of the 3D landmark 715 

cloud in morphologika2.5, and the general distribution of specimens in the scatter plots of 716 

the PCA morphospace, indicates that PC1 (34.7%) is mostly associated with the overall 717 

length and width proportions of the calcanei, with some emphasis on the distal 718 

elongation. The distally elongated and narrow-bodied calcanei of omomyiforms and 719 

some strepsirrhines dominate one extreme of the PC1 axis, while the distally shorter and 720 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wide hominoid calcanei fall on the opposite extreme. This pattern matched well that 721 

found by Gladman et al. (2013). Regressing PC1 scores based on manually positioned 722 

landmarks against the PC1 scores from analysis of auto3dgm output showed high 723 

correlations (Table 3). Other axes were more modestly correlated or lacked significant 724 

correlations. 725 

Variation found in PC2 (13.6%) captured some aspects of the “flexing” of the 726 

calcaneus described by Gladman et al. (2013), although the distribution of the taxa within 727 

this PC is not identical to the original description. This PC most notably varies in the 728 

position of the distal margin of the ectal facet relative to the body of the calcaneus, either 729 

raised dorsally off of the body or sunken plantarly. The hominoids are found on one 730 

extreme, with ectal facets that sit atop of the calcaneal body, while platyrrhines are the 731 

most consistent examples of calcanei with ectal facets depressed into the body. Although 732 

more difficult to observe directly from the cloud of pseudolandmarks in morphologika2.5, 733 

there also does seem to be variation in the magnitude, although not the position, of the 734 

peroneal tubercle captured in this axis. 735 

The variation found in PC3 (6.7%) also resembles some of the “flexing” that has been 736 

previously described, although it also includes new variation not recognized in the 737 

previous traditional analyses. On the extremes for this PC axis are the hominoids 738 

(excluding hylobatids), which have a pronounced proximal plantar heel process and a 739 

dorsal bowing of the body of the calcaneus (giving an un-flexed appearance). At the other 740 

extreme are most of the colobines (excluding only Colobus), which have no proximal 741 

plantar heel process and have a more prominent plantar bowing (flexed appearance) 742 

caused, in part, by a more prominent angulation of the body at the distal plantar tubercle. 743 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The tradeoff in this axis is between an unflexed calcaneus driven by the presence of a 744 

plantar heel and a flexed calcaneus driven by a heightened angle at the distal plantar 745 

turbercle.  746 

Finally, similar to PC3 above, PC4 (4.6%) also contributes to variation at the distal 747 

plantar tubercle. However, unlike the variation in PC3, the distal plantar tubercle in PC4 748 

only gets larger or smaller in size, and there are no clear changes in the angulation at the 749 

tubercle. This PC exhibits variation most notably in the amount of proximal segment 750 

elongation and the position of the dorsal heel relative to the ectal facet. While PC1 751 

contained aspects of distal elongation within the larger length and width proportional 752 

changes of the calcaneus, PC4 is specifically associated with the elongation of the 753 

proximal segment of the calcaneus, measured from the ectal facet to the heel. 754 

Additionally, at the extreme of the PC where the proximal segment is shortest, the dorsal 755 

heel is near level with the ectal facet, while at the elongated proximal extreme the heel is 756 

sub-level to the ectal facet. The fossil euprimates lie at the extremes for this variation, 757 

with omomyiforms exhibiting very low amounts of proximal elongation and the 758 

adapiforms in this sample with some of the highest levels.  759 

Cluster analyses of the genus-averaged sample provide another way to compare the 760 

results of the analyses of auto3dgm generated pseudolandmarks to the results of the 761 

traditional landmark analyses reported by Gladman et al. (2013). Though there are many 762 

differences when comparing the two analyses by their various dendrograms, there are 763 

broad similarities as well (Figs. 9-11). Dendrograms for traditional landmark analysis can 764 

be viewed in Gladman et al. (2013: their figures 9 & 10, pp. 384-386). We detail 765 

comparisons for the Neighbor-Joining (NJ) trees here, and note that similar results are 766 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obtained from comparisons between the UPGMA and Wards trees (although these latter 767 

two clustering algorithms will not be discussed further).  768 

Similarities in the NJ tree (Fig. 9) include the clustering of adapiforms near the taxon 769 

chosen as the tree root, Marcgodinotius indicus. Extant strepsirrhines and omomyids also 770 

cluster together. Within this cluster there are more detailed similarities: Lepilemur + 771 

Ourayia (SDNM 60933) and Omomyid indet. (AMNH 29164) + Washakius insignis 772 

(AMNH 88824) form two pairs of nearest neighbors, which form a unitary cluster with 773 

Teilhardina (IRSNB 16786-03) and Omomys (UM 98604) in both analyses. Eulemur, 774 

Hapalemur, and Lemur form a cluster in both analyses. Varecia is external to all 775 

members of the strepsirrhine + omomyiform group except Daubentonia. All indriids are 776 

adjacent to each other. Anthropoids form a unitary cluster separate from non-anthropoids 777 

in both analyses, and hominid and pitheciine genera form unitary clusters with respective 778 

members of their clades alone (i.e., monophyletic clusters). 779 

Major differences include Daubentonia falling outside of all clusters and occupying 780 

the position closest to the root in the auto3dgm based analyses, whereas in Gladman et al. 781 

(2013) it clusters with other strepsirrhines. Adapiforms form a unitary cluster with 782 

strepsirrhines and omomyiforms in the auto3dgm based results, whereas in Gladman et 783 

al. (2013), adapiforms formed a unitary cluster basal to all other clusters  (in the position 784 

of Daubentonia in the auto3dgm based analysis). In Gladman et al. (2013), the 785 

strepsirrhine + omomyiform cluster and the anthropoid cluster group more closely to each 786 

other than either does to the adapiform cluster. Though indriids are adjacent in both 787 

analyses, they do not form a unitary cluster in the auto3dgm based analysis, and 788 

Propithecus groups with Avahi, rather than with Indri as in Gladman et al. (2013). In the 789 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auto3dgm based analysis, adapiform fossils cluster cleanly by assigned genus with four 790 

Cantius, two Smilodectes, and two Notharctus fossils forming three sets of unitary 791 

clusters, while in Gladman et al. (2013) these specimens are more mixed. Atelids form a 792 

unitary cluster in auto3dgm based analysis; in Gladman et al. (2013), they are only 793 

adjacent. Hylobatids do not cluster near other hominoids in auto3dgm based analysis, 794 

whereas hominoids form a unitary cluster in Gladman et al. (2013). Proteopithecus (DPC 795 

24776) clusters at the base of a grouping composed primarily of platyrrhines in auto3dgm 796 

based analysis, whereas it clusters at the base of, and exclusively with, Fayum 797 

parapithecid fossils in Gladman et al. (2013). Generally speaking, auto3dgm based results 798 

were less precise when it comes to interpretable clusters of platyrrhines, cercopithecoids, 799 

and hominoids compared to the results of Gladman et al. (2013). 800 

Mixed bone analysis.—Because all bones are first scaled to the same unit centroid 801 

size (the square root of the sum of squared distances of all landmarks to the centroid of 802 

the object), there is a theoretical maximum distance that can accumulate between any pair 803 

of bones, and therefore also among all pairs of bones of a given sample size. Nonetheless, 804 

the Procrustes distance for any pair of bones and a sample of any size can also approach 805 

zero, meaning that shape diversity can be compared by looking at the mean and variance 806 

of distances in the distance matrix.  807 

Interestingly, we found that the mean inter-specimen distance and standard deviation 808 

were virtually identical for the calcaneal dataset and astragalus dataset treated separately. 809 

On the other hand, the mixed samples (both the full 160 specimen sample, and reduced 810 

80 specimen sample - with 40 of each bone type) showed significantly higher mean 811 

distance and distance variance (Table 4). That is, results indicate what might be expected 812 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intuitively – that there is greater shape diversity in samples containing two kinds of bones 813 

than samples containing one kind of bone. Plotting principal component scores reveals 814 

obvious taxonomic and phylogenetic clustering (Fig. 12).  815 

Comparing phylogenetic signal shows consistently higher estimates of Pagel’s 816 

lambda in principal component scores of the calcaneus dataset for PCs 1-3 as calculated 817 

from both the separate and combined datasets (Table 5). The distance-from-combined-818 

sample-mean dataset (“mix MD” in Table 5) for the astragalus had a value of lambda that 819 

was higher and more similar to lambda values of the calcaneus datasets. Interestingly, 820 

while there was no correlation between PC1 of the astragalus dataset and that of the 821 

calcaneus dataset from the separate analyses, those variables from the combined analyses 822 

were significantly correlated (Table 6). 823 

 824 

Discussion 825 

Comparisons with conventional 3DGM.— We found the degree of similarity between 826 

auto3dgm based analyses and those performed on the same sample by Gladman et al. 827 

(2013) to be surprising. Compared to our analysis using 1,024 automatically determined 828 

points, the carefully selected 27 landmarks used by Gladman et al. (2013) showed similar 829 

loadings of shape variance on its Principal Component (PC) axes, similar variance 830 

breakdown on the first several PCs, and even a strong correlation between some of the 831 

principal component scores (Table 3). The traditional landmark analysis consolidated 832 

slightly more variance in its first 4 PCs, though the differences are more pronounced on 833 

PCs 3 and 4. Because there are more PCs for the automated analyses than for the manual 834 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one (two orders of magnitude more), it makes sense that the automated method should 835 

have a steeper drop-off.  836 

Our automated approach appears more sensitive to errors caused by noise in the 837 

surface mesh. This intuitively makes sense and is supported by consideration of some of 838 

the clustering “errors” and/or differences between the automated and manual methods. 839 

The relatively poor sorting of platyrrhines, hominoids, and cercopithecoids by our 840 

automated analysis can be attributed to cases that do not represent mean values, but are 841 

the only exemplars of their genus. In particular, the vast majority of catarrhine species in 842 

our sample are represented by single specimens, whereas most of our platyrrhines and 843 

strepsirrhines are represented by at least two individuals. A single Colobus (AMNH 844 

27711) breaks up an otherwise consistent platyrrhine cluster. Though observation of this 845 

specimen does not suggest mesh-defects, its lack of any peroneal tubercle projection is 846 

anomalous when compared to the prominent peroneal tubercles of all other 847 

cercopithecoids in the sample. The lack of a projecting tubercle may give this bone 848 

overall length to width proportions that better match the more slender platyrrhines than 849 

more robust cercopithecoids. Perhaps the use of a single point in the 27 landmark 850 

analysis to represent the peroneal region reduces the effect of this feature’s variance on 851 

the pattern of morphological affinities (a feature represented by ~100 points in the 852 

automated analysis). Similar problems with other specimens likely indicate that having 853 

multiple specimen samples is more important generally with our automated approach.  854 

Aside from anomalous individuals, broken specimens and faulty meshes can be 855 

expected to “fool” the analysis. A likely example of this is Leontopithecus joining a 856 

parapithecid (DPC 20576) among a cluster otherwise represented by cercopithecoids. 857 



  38 

This fossil is not well preserved in its distal aspect, which likely accentuates the 858 

appearance of a strongly sloping lateral border as seen in the callitrichine. It should also 859 

be noted however, that Gladman et al. (2013) found that among sampled, extant 860 

platyrrhines, Leontopithecus has the strongest morphological affinities to cercopithecoids. 861 

Both our auto3dgm analyses and those of Gladman et al. (2013) suggest morphological 862 

affinities uniting Fayum fossil parapithecids with cercopithecoids. 863 

Comparisons of morphological diversity among parts (mixed bone analysis).— Our 864 

analyses revealed that the astragalus and calcaneus reflect almost identical amounts of 865 

shape variation (similar “disparity” as measured with 1,024 evenly distributed points and 866 

using either the raw distance matrix, or ordinations based on it). This appears to be a 867 

meaningful result since the mixed bone samples (which we believe should express greater 868 

shape variation) do, indeed, exhibit significantly greater average distances between 869 

shapes.  870 

Interestingly, the phylogenetic signal for a given bone-type was minimally affected (if 871 

at all) by running GPA and PCA on a mixed bone sample (Table 5). Despite similar 872 

overall variance by almost all measures (Table 4), the calcaneus seems to have developed 873 

a stronger phylogenetic signal than the astragalus (Table 5). This suggests that change in 874 

calcaneus shape has approximated a Brownian motion model along the branches of the 875 

primate phylogenetic tree more so than the astragalus. This difference in mode may be 876 

explained functionally by noting that the calcaneus comes into (almost) direct contact 877 

with the environment (through the skin, etc.) as the heel, and helps comprise a load arm / 878 

lever arm pair that experiences functional demands for leaping and other forms of 879 

locomotion (Boyer et al., 2013). In contrast, the astragalus is almost completely isolated 880 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with no part that touches the ground, and no attaching muscles. Therefore, the astragalus 881 

may often be insulated from subtle changes in functional demands and be more likely to 882 

experience periods of stasis, whereas the calcaneus probably responds more faithfully to 883 

small changes in mechanical environment.  884 

The astragalus has long been noted for its high valence in reflecting systematic 885 

relationships, while the calcaneus appears less useful. At first pass, this observation 886 

seems contradicted by our results. However, if the astragalus has experienced stasis more 887 

generally than the calcaneus and developed its comparable morphological variance 888 

through more punctuated changes, then the resulting variance may be more clearly 889 

associated with more inclusive taxonomic groups (like strepsirrhines, tarsiers, 890 

platyrrhines, cercopithecoids, and hominoids) than with species-level differences.  891 

Biological Significance of Automated Pseudolandmarks.— The most obvious 892 

difference between pseudolandmarks of our method and traditional landmarks is that 893 

points associated with a particular feature (e.g., peroneal tubercle) or an articular surface 894 

on one bone, may not be located on those features in another bone. This may rub some 895 

morphologists the wrong way if they feel that they know that the peroneal tubercle is 896 

homologous between two taxa, but the algorithm does not bear this out.  897 

There are several points to be made here. First, as reviewed by MacLeod (2001), 898 

Owen’s (1846) original definition considered homology as pertaining to “organs” (or we 899 

could say “whole bones” here) but did not define mappings of sub-regions therein. In a 900 

strict sense, the concept of homology does not apply to features of organs. 901 

Second, the essence of Darwinian homology is that features in different taxa are 902 

biologically equivalent if they can be traced to the same feature in a common ancestor 903 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through the process of “descent with modification.” This is reflected in a more recent 904 

definition stating that homology is a “continuity of information” (Van Valen, 1982). 905 

Given that the ultimate arbiter of homology hypotheses is the pattern of transformations 906 

that occurred in evolution, it is rare that they can ever be verified.  907 

Third, the critics of the adaptationist programme (Gould and Lewontin, 1979) warn us 908 

to beware of “spandrels.” One can ask whether the feature of interest exists by genetic 909 

design or by developmental context.  If the peroneal tubercle “exists” as a genetically 910 

specified bump on the side of the calcaneus (in the sense that there are gene products that 911 

cause the formation of this bump, and variation in the position or size of the tubercle can 912 

be explained by these gene products being expressed at different positions, at different 913 

concentrations, and/or for different durations along the shaft of the calcaneus), then it 914 

follows that this “bump” should be marked with a landmark of the same identity on any 915 

bone regardless of where topologically it occurs.  However, it seems equally likely that 916 

the form of the bony peroneal tubercle is a mechanical and re-modeling consequence of 917 

the paths of the peroneal tendons and where the retinacular ligaments attach. In this 918 

alternative scenario, representing the position of this bump by the same “point” 919 

regardless of its position on the calcaneus seems misrepresentative. The truth is that the 920 

genetic influences and developmental homologies for most features are not known. An 921 

informative test of these alternatives (although cruel) would be to remove the tendons at 922 

an early stage of development and observe whether and where a peroneal tubercle 923 

developed. Even if it were to become known that peroneal tubercle development occurred 924 

independent of attaching ligaments and tendons, and the forces they exert, this would 925 

only imply evolutionary homology if we assume parsimony in evolution (or Hennig’s 926 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auxiliary principle) which some researchers are willing to do, but others are not. This also 927 

comes down to whether type I or type II landmarks are preferred when the respective 928 

criteria suggest different correspondence patterns for a given anatomical region.  929 

Finally, in this particular example, there is no widespread agreement on the 930 

evolutionary homology of the peroneal tubercle among primates (Decker and Szalay, 931 

1974). Variation in features that are plastic and can be modified during life (such as 932 

ligament attachment points and articular surface areas and boundary shapes) may be 933 

explained by ontogenetic causes. For instance, variation in the development of certain 934 

astragalar facets in humans has been explained by different postural tendencies among 935 

populations (Barnett, 1954). If we use the distal boundary of the tibial facet as a 936 

landmark, this feature point may extend all the way down the astragalar neck in some 937 

people, or not approach it at all in others. This would be useful for quantifying variation 938 

due to postural differences among humans, but probably not for distinguishing the shape 939 

of a human astragalus from a chimpanzee astragalus. 940 

Another argument for adding the use of pseudolandmarks to the morphologist’s 941 

toolkit is the fact that the research community already accepts similar approaches to 942 

shape comparison including Fourier analysis (Rohlf and Archie, 1984), eigenshape 943 

analysis (MacLeod, 1999), and eigensurface analysis (Polly and MacLeod, 2008). These 944 

methods retain no fidelity to specific landmark-like features. The most significant 945 

conceptual difference between our approach and eigensurface analysis is that the 946 

anatomical axes must be manually set in the latter. A more practical difference is that 947 

eigensurface is restricted to “relief-type” or “disc-type” surfaces, whereas auto3dgm can 948 

be applied to either disc-type or fully 3D surfaces.  949 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The question of whether points or regions on different instances of the same bone are 950 

“equivalent” is ultimately a question about transformational homology. Our method 951 

provides an “operational homology” (= topological correspondence). The minimum 952 

spanning tree used to link forms can be taken as a hypothesis of transformational 953 

homology to be tested. The best answer to whether certain “point features” are equivalent 954 

must be answered by assessing whether treating them as such results in phenetic patterns 955 

that correlate with independent datasets on phylogenetic relationships or functional 956 

capacity. This means that if the utility of automated methods is going to increase, then 957 

automated correspondence determinations that are more sensitive to feature points (type 958 

II landmarks) must also be developed. This requires algorithms based on “non-area 959 

preserving maps”. The original work of Boyer et al. (2011) presents such a method but 960 

lacks applicability to “full 3D” shapes and does not provide a means for inducing 961 

transitivity of comparisons. Different patterns of transformational homology will be 962 

implied by different phylogenetic hypotheses, which could be evaluated according to 963 

different optimization criteria. 964 

Too many variables, not enough specimens?– A major challenge in statistical 965 

modeling as applied to molecular biology (Golub et al., 1999), genetics (Patterson et al., 966 

2006), image analysis (Roweis and Saul, 2000), and text analysis (Blei et al., 2003) has 967 

been the large P, small N setting (Poggio and Smale, 2003; West, 2003) where the 968 

number of variables is typically much larger than the number of samples. In statistics, the 969 

difficulty of modeling data as the number of variables increases and exceeds the number 970 

of observations is often called “the curse of dimensionality”, a phrase coined by Bellman 971 

with respect to optimization problems (Bellman, 1984). However, many of the great 972 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advances in the last ten years in statistics, machine learning, and applied mathematics are 973 

related to the observation that the relevant dimension of the data is not the number of 974 

variables, but the number of independent variables (the intrinsic dimension) (Donoho, 975 

2000). For 1,024 landmarks spread on a sample of 80-160 objects, the intrinsic 976 

dimensionality will be much lower than the number of landmarks. If the perspective 977 

promoted by statisticians dealing with large P, small N problems is correct, then the 978 

problem of over-determination can be avoided by limiting the number of independent 979 

variables generated by data reduction techniques from a landmark dataset with hundreds 980 

or thousands of points. The idea that seemingly high-dimensional data have few degrees 981 

of freedom, or low intrinsic dimensionality, is central to the methodologies developed in 982 

this paper.  983 

As a matter of precedent, this philosophy is implicitly acknowledged in papers that 984 

use large numbers of evenly (or “optimally”) spread semi-landmarks as well as in 985 

eigenshape analysis (Polly, 2008; Polly and MacLeod, 2008; Sievwright and MacLeod, 986 

2012). Harcourt-Smith et al. (2008) provides a pertinent example, in which a total of nine 987 

user-defined landmarks were used to generate 361 semilandmark points on the talo-tibial 988 

facets of a sample with 54 specimens representing three species. Another example is 989 

Sievright and MacLeod (2012). These authors used 62 points to represent the dorsal 990 

surface of the proximal humerus in a sample of 50 falconiform specimens. They 991 

projected their coordinates into tangent space and used principal component analysis to 992 

generate projection scores. These mutually orthogonal (independent) projection scores 993 

were then used to run a Canonical Variates Analysis (=DFA). They limited the number of 994 

principal components used in their analysis to 21 (because they argued that this number 995 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represented 95% of the total variation in the dataset and was much less than their n=50). 996 

These authors recognize the importance of the number of independent variables, but do 997 

not discuss the statistical ramifications of the number of original, yet correlated, 998 

variables.  999 

 1000 

Summary and Conclusion 1001 

Greater automation and standardization for morphological studies are needed if 1002 

morphology is to survive as a branch of phenomics with relevance comparable to 1003 

genomics. The most important level at which such automation must occur is in 1004 

determining biological/geometric correspondence between shapes. Past attempts to 1005 

automate such determinations have suffered from the prospect that computations 1006 

involved were too time intensive (as well as philosophical arguments against the idea of 1007 

such an approach). Dimension reduction techniques such as working from photographs 1008 

and outlines have been applied to circumvent this issue, but an observer is needed to 1009 

orient objects before such application, slightly defeating the purpose of automation. 1010 

Greater computing power and techniques for simplifying the search for alignment and 1011 

correspondence mapping between 3D digital models are applied here and an R package 1012 

for implementing this method has been created. 1013 

Our analyses show a surprising and reassuring degree of similarity between 1014 

quantifications based on user-defined landmarks and our auto3dgm approach. Although 1015 

human interaction must occur at several stages of the analyses to verify that erroneous 1016 

alignments have not been generated, this approach still represents a step beyond any 1017 

automation procedures yet applied, because 1) no qualitative decisions about the 1018 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geometric equivalence of point features are required and 2) protocols for generating 1019 

alignments and pseudolandmark datasets lack observer error, since the final procedure for 1020 

the exact result of the algorithm can be described via the numerical parameter input to the 1021 

model. Very little familiarity with anatomical terminology or features is required. Only a 1022 

basic ability to visually compare shapes is necessary in auto3dgm in order to verify the 1023 

absence of misalignments. This method has the potential for adoption by geneticists, 1024 

molecular biologists, and biomedical engineers who may feel uncomfortable about their 1025 

ability to take measurements with repeated accuracy or with biological significance to 1026 

their questions of interest.  1027 

One of the most exciting capabilities provided by this algorithm is the ability to 1028 

compare variance magnitude and patterns for different skeletal elements. Our initial 1029 

experiments with this approach show that two articulating bones of the skeleton have 1030 

identical levels of morphological diversity with strong covariance, which makes sense 1031 

developmentally, but the calcaneus has a consistently stronger phylogenetic signal in its 1032 

variance patterns than the astragalus.  1033 

Future work will explore different types of correspondence algorithms with an 1034 

emphasis on constructing algorithms that can efficiently determine non-area preserving 1035 

maps (those that mimic user-defined type II landmarks of 3DGM more closely). 1036 

Furthermore, we intend to compare variance levels among different regions of the 1037 

skeleton with the expectation that patterns of covariance and variance magnitudes will 1038 

differ more between bones that are far apart from each other on the skeleton and are more 1039 

likely to have different developmental and historical natural-selective contexts. We 1040 

recognize that these quantities are still dependent on the sample composition, the 1041 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parameters of any particular run of auto3dgm, and any ordination methods that are used. 1042 

Nonetheless, we feel that the patterns will be informative for evolutionary questions 1043 

including those dealing with disparity because the quantification of inter-bone shape 1044 

distance is objective and more comprehensive auto3dgm, and we have articulated a 1045 

rationale geometric basis for comparing variance between groups of non-homologous 1046 

elements. 1047 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Tables 1290 

Table 1. Taxonomic samples for this study 1291 
Extant Set 1 Set 2 Set 3 Set 4  Fossil Set 1 Set 2 Set 3 
Taxon n Calc. n Ast. n Phal. n Ast.  Taxon Calc. Cat. # Ast. Cat. # Phal. Cat. # 
Avahi laniger 1 1 -- --  Cantius abditus USGS 6783 USG 21832 -- 
Microcebus murinus -- -- 1 1  Cantius sp. USGS 6774 -- -- 
Cheirogaleus major 1 1 2 --  Cantius trigonodus AMNH 16852 -- -- 
Mirza coquereli -- -- 1 --  Cantius trigonodus USGS 21829 -- -- 
Daubentonia madagascariensis 1 1 -- 1  Cebupithecia sarmientoi UCMP 38762* UCMP 38762* -- 
Eulemur fulvus 2 2 1 1  Marcgodinotius indicus GU 709 GU 748 -- 
Hapalemur griseus 3 3 1 1  Mesopithecus pentelici* MNHN PIK-266 -- -- 
Indri indri 2 2 1 --  Neosaimiri fieldsi* IGM-KU 89202 IGM-KU -- 
Lemur catta 3 3 1 1  Neosaimiri fieldsi* IGM-KU 89203 -- -- 
Lepilemur mustelinus 3 3 -- 1  Notharctus sp. AMNH 55061 AMNH 11474 -- 
Propithecus verreauxi 2 2 1 --  Notharctus tenebrosus AMNH 11474 AMNH 129382 AMNH 143612-3 
Propithecus diadema -- -- 1 --  Omomyid AMNH 29164 UM 38321 -- 
Varecia variegata 1 1 1 --  Omomys sp. UM 98604 UM 98648 -- 
Galago senegalensis -- -- 2 --  Oreopithecus bambolii NMB 37* -- -- 
Otolemur crassicaudatus -- -- 2 --  Ourayia uintensis SDNM 60933 -- -- 
Loris tardigradus -- -- -- 1  Parapithecid DPC 15679 DPC 5027 -- 
Nycticebus coucang -- -- -- 1  Parapithecid DPC 20576 DPC 5416A -- 
Perodicticus potto -- -- -- 1  Parapithecid DPC 2381 DPC 1001 -- 
Alouatta seniculus, sp. 4 3 -- 1  Parapithecid DPC 8810 -- -- 
Aotus azarae, infulatus, sp. 3 3 2 1  Proteopithecus sylviae DPC 24776 DPC 22844 -- 
Ateles paniscus, sp. 3 3 -- 1  Smilodectes gracilis AMNH 131763 -- -- 
Brachyteles arachnoides 1 1 -- --  Smilodectes gracilis AMNH 131774 -- -- 
Cacajao calvus 2 2 -- 1  Teihardina belgica IRSNB16786-03 IRSNB16786-01 -- 
Callicebus donaco., moloch 3 3 -- 1  Washakius insignis AMNH 88824 UM 99704 -- 
Callimico goeldi 2 2 -- --  Carpolestes simpsoni -- -- UM 101963 (x4) 
Callithrix jacchus 2 2 -- 1  Ignacius clarksforkensis -- -- UM 82606 
Cebuella pygmaea 2 2 -- --  Plesiadapis churchilli -- -- SMM P77.33.517 
Cebus apella, sp. 2 2 -- 1  Nannodectes intermedius -- -- USNM 442229 
Chiropotes satanus, sp. 3 3 -- --  Incertae sedis -- -- 6 from UCMP 
Leontopithecus rosalia 2 2 -- --  TOTAL fossil N: 24 14 14 
Pithecia monachus, pithecia 2 2 -- 1         
Saguinus midas, mystax, sp. 4 3 -- --         
Saimiri boliviensis, sciureus, sp. 5 3 -- --         
Cercopithecus sp. 2 -- -- --      
Chlorocebus aethiops, cynosuros 2 1 -- --      
Colobus geureza 1 0 -- --      
Erythrocebus patas 1 0 -- --      
Lophocebus albigena 1 0 -- --      
Macaca nigra, tonkeana 2 2 -- --      
Mandrillus sphinx 1 0 -- --      
Nasalis larvatus 1 1 -- --      
Papio hamadryas 1 -- -- --      
Piliocolobus badius 2 -- -- --      
Pygathrix nemaeus 1 -- -- --      
Theropitheucs gelada 1 -- -- --      
Trachypithecus obscurus 1 1 -- --      
Gorilla sp. 1 1 -- --      
Hylobates lar 1 1 -- --      
Pan troglodytes 2 2 -- --      
Pongo pygmaeus 1 1 -- --      
Symphalangus syndactylus 1 1 -- --      
Tarsius pumilus -- -- 2 --      
Tarsius bancanus -- -- 2 1      
Tarsius spectrum -- -- 2 1      
Tarsius syrichta -- -- -- 1      
Cynocephalus volans -- -- -- 2      
Galeopterus variegatus -- -- -- 1      
Ptilocercus lowii -- -- -- 2      
Tupaia glis -- -- -- 2      
Lepus sp. -- -- -- 2      
Sylvilagus sp. -- -- -- 1      
Ochotona princeps -- -- -- 1      
Erethizon sp. -- -- -- 1      
Coendou prehensilis -- -- -- 1      
Marmota sp. -- -- -- 1      
Sciurus sp. -- -- -- 1      
Aplodontia rufa -- -- -- 1      
Allactaga major -- -- -- 1      
Hemiechinus auritus -- -- 4 1      
Erinaceus europaeus -- -- 3 1      
Erinaceus roumanicus -- -- 4 --      
Chrysochloris asiatica -- -- -- 1      
Crocidura olivieri -- -- -- 1      
Desmana moschata -- -- -- 1      
Solenodon paradoxus -- -- -- 1      
Potos flavus -- -- -- 1      
Arctictis binturong -- -- -- 1      
Nasua narica -- -- -- 1      
Petrodromus tetradactylus -- -- -- 1      
Tenrec ecaudatus -- -- -- 1      
Setifer setosus -- -- -- 1      
Hemicentetes semispinosus -- -- -- 1      
Echinops telfairi -- -- -- 1      
Potamogale velox -- -- -- 1      
TOTAL extant N: 82 66 34 52      

1292 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Table 2. Comparison between traditional 3DGM of 106 calcanei sample and FAA of this 1292 
study. 1293 

Comparison point 27 landmark—Manual analysis 1,024 landmark—Automated 
PC 1 % variance 35.9 34.7 
PC 2 % variance 13.6 13.6 
PC 3 % variance 9.5 6.7 
PC 4 % variance 6.7 4.6 
Sum PC 1-4 64.9 59.6 
PC 1 loadings 

 

Overall width/length proportions 
with emphasis on distal elongation. 

Overall width/length proportions 
with emphasis on distal elongation. 

PC 2 loadings 

 

Position of lateral peak of the 
peroneal tubercle relative to both 
ectal and cuboid facets. 

1) Dorsoplantar elevation of the 
ectal facet’s distal margin relative to 
the calcaneus body; 2) 
distinctiveness, but not position, of 
peroneal tubercle. 

PC 3 loadings 

 

1) Proximal segment elongation, 
shape/orientation of ectal facet, 2) 
dorsal projection of dorsal heel. 

Tradeoff between a prominent 
proximal plantar heel process and an 
accentuated angulation at the distal 
plantar tubercle. 

PC 4 loadings 

 

Ectal facet position, curvature, and 
orientation relative to long axis of 
the calcaneus. 

Proximal elongation and dorsal 
projection of dorsal heel. 

 1294 

Table 3. Correlation (r) and Probability (p) between manual and automated PCs. 1295 

 Linear correlations (r)   
Manual Automated Pseudolandmarks  
3DGM PC-1 PC-2 PC-3 PC-4 

PC-1 -0.96 -0.16 0.09 0.07 
PC-2 0.11 -0.50 0.34 -0.28 
PC-3 0.15 -0.64 0.03 0.18 
PC-4 -0.01 0.06 -0.38 -0.32 

     
 Probability of no correlation (P)  

Manual Automated Pseudolandmarks  
3DGM PC-1 PC-2 PC-3 PC-4 

PC-1 <0.0001 ns ns ns 
PC-2 ns <0.0001 0.0004 0.0042 
PC-3 ns <0.0001 ns ns 
PC-4 ns ns <0.0001 0.0008 

1296 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Table 4. Distance matrices from mixed bone analyses. “Dev. From Mean” represent the 1296 
distance between each object and the mean object. Thus the number of distances is the 1297 
same as the sample size. The t-test is done on this sample of deviations from the mean. 1298 
“Mix” represents the results of analysis of 40 astragali with 40 taxon-matched calcanei. 1299 

Full Distance Matrix  
n=3,120 Calc. Ast. mix 
mean 0.18 0.19 0.29 
max 0.40 0.37 0.54 
min 0.05 0.06 0.05 
sd 0.06 0.05 0.11 
Dev. from Mean   
n=80 Calc. Ast. mix 
Mean dev. 0.13 0.13 0.21 
max 0.25 0.27 0.31 
min 0.07 0.07 0.16 
sd 0.04 0.03 0.03 
t-test (on Dev.) df t P 
Ast. vs. Calc. 158 0.50 0.62 
Ast. vs. Mix 158 15.16 <0.0001 
Calc. vs. Mix 158 14.81 <0.0001 
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Table 5. Phylogenetic signal in astragalus and calcaneus shape data based on automated 1300 
analysis of 1,024 pseudolandmarks. “Mix” preceding the variable name indicates that the 1301 
data were the result of the sequential GPA and PCA on a “mixed” sample of 160 astragali 1302 
and calcanei. “MD” stands for mean distance and values represent the continuous 1303 
Procrustes distance of each specimen from the mean shape. P(0/1) stands for the 1304 
probability of lambda being zero or one. 1305 

Phylogenetic Signal   
Astragalus    Calcaneus    
Variable lambda(CI) P(0) P(1) Variable lambda(CI) P(0) P(1) 
mix PC1 0.884 (0.578, NA) <0.0001 0.13 mix PC1 1.0 (0.924, NA) <0.0001 1 
mix PC2 0.861 (0.623, NA) <0.0001 0.06 mix PC2 1.0 (0.919, NA) <0.0001 1 
mix PC3 0.871 (0.638, NA) <0.0001 0.06 mix PC3 1.0 (0.954, NA) <0.0001 1 
mix MD 1.0 (0.855, NA) <0.0001 1 mix MD 1.0 (0.949, NA) <0.0001 1 
sep PC1 0.862 (0.641, NA) <0.0001 0.05 sep PC1 1.0 (0.945, NA) <0.0001 1 
sep PC2 0.995 (0.856, NA) <0.0001 0.89 sep PC2 1.0 (0.942, NA) <0.0001 1 
sep PC3 0.846 (0.339, 0.985) 0.003 0.01 sep PC3 1.0 (0.845, NA) <0.0001 1 
sep MD 0.990 (0.769, NA) <0.0001 0.91 sep MD 1.0 (0.929, NA) <0.0001 1 
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Table 6A. Correlations between PC scores of astragalus and calcaneus, and correlations 1306 
between PC scores of mixed and separate bone analyses. Linear correlation (r) values in 1307 
boxes on the left, (P) values in boxes on the right. 1308 
 1309 
Between Bone Correlations (comparisons within separate & mixed 
analyses)    
sep. ast.     sep. ast.    
calc. 1 2 3 MD  calc. 1 2 3 MD 

1 0.86 -0.17 -0.13 --  1 <0.0001 ns ns -- 
2 -0.08 0.86 0.05 --  2 ns <0.0001 ns -- 
3 -0.16 -0.02 0.02 --  3 ns ns ns -- 

MD -- -- -- 0.57  MD -- -- -- <0.0001 
           
mix. ast.     mix. ast.    
calc. 1 2 3 MD  calc. 1 2 3 MD 

1 0.68 0.86 0.57 --  1 <0.0001 <0.0001 <0.0001 -- 
2 0.40 0.84 0.76 --  2 0.007 <0.0001 <0.0001 -- 
3 -0.25 -0.76 -0.80 --  3 ns <0.0001 <0.0001 -- 

MD -- -- -- -0.25  MD -- -- -- ns 
           
Within Bone Correlations (comparisons between separate & mixed 
analyses)    
calc. mix.     calc. mix.    
sep. 1 2 3 MD  sep. 1 2 3 MD 

1 -0.93 -0.98 0.93 --  1 <0.0001 <0.0001 <0.0001 -- 
2 0.43 -0.01 0.23 --  2 0.004 ns ns -- 
3 -0.08 -0.01 -0.05 --  3 ns ns ns -- 

MD -- -- -- 0.45  MD -- -- -- 0.003 
           

ast. mix.     ast. mix.    
sep. 1 2 3 MD  sep. 1 2 3 MD 

1 -0.57 -0.98 -0.90 --  1 <0.0001 <0.0001 <0.0001 -- 
2 0.80 0.26 -0.29 --  2 <0.0001 ns ns -- 
3 -0.10 0.07 -0.11 --  3 ns ns ns -- 

MD -- -- -- 0.95  MD -- -- -- <0.0001 
1310 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Table 6B. Phylogenetically informed correlations between astragalus and calcaneus 1310 
variables that resulted from sequential GPA followed by PCA on 1,024 pseudolandmarks 1311 
per bone. See Table 5A for explanation of variable names. 1312 

PGLS correlations      
test lambda(CI) P(0) P(1) slope r square P 
sep PC1 (ast. vs. calc.) 1.0 (0.946, NA) <0.0001 1 0.28 0.073 0.05 
mix PC1 (ast. vs. calc.) 1.0 (0.924, NA) <0.0001 1 0.84 0.204 0.0002 
sep MD (ast. vs. calc.) 1.0 (0.925, NA) <0.0001 1 0.1 0.057 0.79 
mix MD (ast. vs. calc.) 1.0 (0.952, NA) <0.0001 1 -0.36 0.074 0.05 
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Figures/Captions 1313 

 1314 

Figure 1. Bones of the study. This study utilizes scan datasets of three different types of 1315 
bones. These datasets are chosen to challenge the automatic alignment algorithm we 1316 
present with a range of geometric properties. The astragalus and calcaneus datasets are 1317 
samples that represent geometrically complex bones with seemingly modest sample 1318 
variance, while the distal phalanges are geometric more simple bones with apparently 1319 
large sample variance. Analyses include one on a sample of 106 calcanei that is 1320 
compared to a traditional 3DGM analysis using 27 landmarks by Gladman et al. (2013); 1321 
one on a sample of 80 calcanei and 80 taxon-matched astragali in a single “mixed-bone” 1322 
analysis; and one on a sample of 49 distal phalanges (Table 1). 1323 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 1324 
 1325 
Figure 2. Example of bones in an alignment file. One of the outputs of the fully 1326 
automated alignment algorithm is a 3D mesh file that shows all the specimens of the 1327 
sample aligned. This allows the researcher to quickly survey the results to determine if 1328 
he/she should proceed with shape analyses based on the implied correspondence. 1329 
Sometimes one or more bones may be misaligned. If this results the researcher will catch 1330 
it at this stage: we present several strategies for correcting such misalignments. The 1331 
“numbering direction indicators” are mesh objects that show where the #1 bone in the 1332 
spreadsheet is located. The arrow points down column #1, and numbering proceeds down 1333 
rows. This allows the researcher to match bones in the alignment file with a spreadsheet 1334 
containing any metadata on the surface files (like taxonomic information). 1335 

1336 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 1336 
 1337 
Figure 3. Multi-Dimensional Scaling (MDS) & Minimum Spanning Tree (MST) 1338 
embedding file. This second output is of the same file type as that in Figure 2. It is 1339 
however, less essential, because it is not useful for visualizing alignments and the data it 1340 
presents can be re-calculated by the user later. The file simply displays the bones of the 1341 
sample with their centroids embedded in the coordinate space of an MDS analysis result 1342 
that is run on the pairwise distance matrix as determined via the MST. The MST is also 1343 
shown. The point of this file is to give researchers a quick look at the clustering of their 1344 
specimens. 1345 

1346 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 1346 
Figure 4. Down-sampling meshes prior to analysis. The algorithm is run on point 1347 
clouds represented by a standard number of points specified by the researcher. These 1348 
points are chosen by randomly picking a point on the surface, and then picking another 1349 
point that is farthest from the first point, then by picking a third point whose position on 1350 
the surface maximizes the sum distance between it and the two existing points, and so on 1351 
until the specified number of points is achieved. 1352 

1353 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 1353 

 1354 
 1355 
Figure 5. Principal alignments to improve Iterative Closest Points (ICP) searches. 1356 
The best alignment between two bones is almost impossible to find using an ICP 1357 
approach without any good initial guesses. The problem with supplying an initial guess is 1358 
that usually this means user intervention is required. Our algorithm supplies at least eight 1359 
initial guesses withoutuser intervention. It does this by computing the first three principal 1360 
axes of variance and uses these axes as starting points for ICP. The principal axes along 1361 
which the smallest continuous Procrustes distance between two shapes is found is almost 1362 
always correct if the shapes are similar. This is a computationally rapid way of solving a 1363 
complex problem. The algorithm performs better on samples with many incrementally 1364 
intermediate shapes (see text and Fig. 4). Red lines on calcaneal surfaces represent 1365 
principal axes of point variance. Shapes on left have yet to be aligned, while shapes on 1366 
the right have been aligned so that their principal axes match. 1367 

1368 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 1368 

1369 
Figure 6. Method for successfully aligning disparate shapes. A, the result of applying 1370 
our version of ICP to two similar shapes. B, the incorrect result that emerges when 1371 
applying our ICP directly to two dis-similar shapes. In the first stage of the analysis, a 1372 
pairwise distance matrix is calculated using “direct-matches” (even potentially incorrect 1373 
ones as in B) between all shapes. That distance matrix is used to compute a minimum 1374 
spanning tree. Because the minimum spanning tree connects only the most similar 1375 
shapes, these connected pairs almost always represent correct alignments as in “A.” C. 1376 
These connections therefore define a path of intermediates that can be used to figure out 1377 
the correct alignment between different shapes. D, The MST route is shown graphically. 1378 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Figure 7. Schematic of alignFix protocol. A) Visual inspection of initial alignment 1380 
reveals several specimens are misaligned. B) Minimum spanning tree shows misaligned 1381 
specimens (shown in red) can be found on two branches. C) Minimum spanning tree is 1382 
broken into three components representing the base tree (in which all alignments are 1383 
good), and Branches A and B (the misaligned specimens). D) Unsupervised alignment 1384 
protocol is performed on originally unconnected branches A and B to determine if global 1385 
alignment exists for those specimens when base tree specimens are excluded from 1386 
consideration. Here, we show a successful global alignment. If no such alignment exists, 1387 
then Branches A and B should be treated separately as if they had been a set connected to 1388 
each other, as each was to the base tree. E) All misaligned specimens are compared to all 1389 
specimens in the Base Tree to find the appropriate attachment point (i.e., a pair with a 1390 
correct alignment). Several example alignments from this exhaustive process are shown 1391 
here. Pairwise comparisons are visually inspected by the user to find an acceptable 1392 
alignment with the lowest Procrustes distance between the two specimens. F) The 1393 
designated pair serves as the connection (dotted line) for Branch A+B to the Base Tree. 1394 
G) Recomputed global alignment using user determined tree in E reveals all specimens to 1395 
now align correctly. 1396 

1397 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 1397 

 1398 
 1399 
Figure 8. Shape space of our analysis and comparison to a traditional 3DGM 1400 
analysis. A, PCA plot of principal component scores 1 and 3 for data from Gladman et 1401 
al. (2013) based on 27 landmarks of the calcaneus in a sample of 106 bones. B, PCA plot 1402 
of principal component scores 1 and 3 for the same sample, but as represented by 1,024 1403 
pseudolandmark points generated by the algorithm presented here. Both datasets, 1404 
including our automated output, and that from Gladman et al. (2013) were analyzed with 1405 
morphologika2.5. One of the benefits of the output of our algorithm is that it can be 1406 
analyzed as if it were observer-collected data with traditional statistical software.  1407 

1408 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 1408 

 1409 
 1410 
Figure 9. Neighbor Joining tree. To explore phenetic affinites implied by 1411 
pseudolandmarks in the calcaneal dataset we averaged coordinate data from individual 1412 
specimens into species means as described in the text and then performed three types of 1413 
clustering algorithms, just as was also done by Gladman et al. (2013) for a 27 landmark 1414 
traditional dataset. The neighbor-joining tree requires specification of a root to which 1415 
nearest neighbors are attached. Fossils were not averaged. Therefore stars and specimen 1416 
numbers represent individual fossils. These analyses were carried out in PAST (Hammer 1417 
et al. 2001; 2006). 1418 

1419 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 1419 
 1420 
 1421 

 1422 
 1423 
Figure 10. UPGMA tree. To explore phenetic affinities implied by pseudolandmarks in 1424 
the calcaneal dataset we averaged coordinate data from individual specimens into species 1425 
means as described in the text and then performed three types of clustering algorithms, 1426 
just as was also done by Gladman et al. (2013) for a 27 landmark traditional dataset. 1427 
Fossils were not averaged. Therefore stars and specimen numbers represent individual 1428 
fossils. These analyses were carried out in PAST (Hammer et al. 2001; 2006). 1429 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 1430 

 1431 
 1432 
Figure 11. Wards tree. To explore phenetic affinities implied by pseudolandmarks in the 1433 
calcaneal dataset we averaged coordinate data from individual specimens into species 1434 
means as described in the text and then performed three types of clustering algorithms, 1435 
just as was also done by Gladman et al. (2013) for a 27 landmark traditional dataset. 1436 
Fossils were not averaged. Therefore stars and specimen numbers represent individual 1437 
fossils. These analyses were carried out in PAST (Hammer et al. 2001; 2006). 1438 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Figure 12. Mixed bone analyses. A, PCA plot (PC’s 1 and 2) of the mixed bone 1440 
analysis. MST’s were established for each bone type independently using our FAA in the 1441 
way described above with 1,024 pseudolandmark correspondence points for each set. 1442 
Then we exhaustively computed the minimum Procrustes distance between every pair of 1443 
astragalus and calcaneus. We used that pair with smallest distance to connect the 1444 
calcaneal to the astragalar MST and allow the template to extend between two bones. 1445 
Then we were able to run GPA and PCA on the mixed bone analysis. B, PCA plot (PC’s 1446 
1 and 2) for the calcaneus when no astragali are included. C, PCA plot (PC’s 1 and 2) for 1447 
the astragalar dataset when no calcanei are included. The star represents the Fayum 1448 
anthropoid Proteopithecus. Note that the there is good phylogenetic correlation with and 1449 
between bones on the same axes whether the analyses are done on mixed or single bone 1450 
samples. This is demonstrated quantitatively in Tables 6A-B.  1451 
 1452 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Supplemental information list 1453 
Supplemental Figure 1. Alignment file as 3D pdf of 106 calcanei 1454 
Supplemental Figure 2. Alignment file as 3D pdf of 80 astragali 1455 
Supplemental Figure 3. Alginment file as 3D of 49 claws 1456 
Supplemental Table 1. Specimen numbers for 106 calcanei of first sample. 1457 
Supplemental Table 2. Specimen numbers for astragalus & calc pairs of second sample. 1458 
Supplemental Table 3. Specimen numbers for claws of third sample. 1459 
Supplemental Table 4. Specimen numbers for additional astragalus sample 1460 
 1461 
Table S1A. Full calcaneal data set. Bone # column can be used to look up specimens in 1462 
3D alignment file as explained in text. 1463 
Taxon Specimen Bone # 
Avahi laniger AMNH 170461 1 
Cheirogaleus major AMNH 100640 2 
Daubentonia madagascariensis AMNH 185643 3 
Eulemur fulvus AMNH 17403 4 
Eulemur fulvus AMNH 31254 5 
Hapalemur griseus AMNH 170675 6 
Hapalemur griseus AMNH 170689 7 
Hapalemur griseus AMNH 61589 8 
Indri indri AMNH 100504 9 
Indri indri AMNH 208992 10 
Lemur catta AMNH 150039 11 
Lemur catta AMNH 170739 12 
Lemur catta AMNH 22912 13 
Lepilemur mustelinus AMNH 170565 14 
Lepilemur mustelinus AMNH 170568 15 
Lepilemur mustelinus AMNH 170569 16 
Propithecus verreauxi AMNH 170463 17 
Propithecus verreauxi AMNH 170491 18 
Varecia variegata AMNH 100512 19 
Alouatta seniculus AMNH 42316 20 
Alouatta seniculus SBU NAl13 21 
Alouatta sp. SBU NAl17 22 
Alouatta sp. SBU NAl18 23 
Aotus azarae AMNH 211482 24 
Aotus infulatus AMNH 94992 25 
Aotus sp. AMNH 201647 26 
Ateles paniscus SBU NAt10 27 
Ateles sp. SBU NAt13 28 
Ateles sp. SBU NAt18 29 
Brachyteles arachnoides AMNH 260 30 
Cacajao calvus AMNH 70192 31 
Cacajao calvus SBU NCj1 32 
Callicebus donacophilus AMNH 211490 33 
Callicebus moloch AMNH 244363 34 
Callicebus moloch AMNH 94977 35 
Callimico goeldi AMNH 183289 36 
Callimico goeldi SBU NCa1 37 
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Callithrix jacchus AMNH 133692 38 
Callithrix jacchus AMNH 133698 39 
Cebuella pygmaea AMNH 244101 40 
Cebuella pygmaea SBU NC1 41 
Cebus apella SBU NCb4 42 
Cebus sp. SBU NCb5 43 
Chiropotes satanus AMNH 95760 44 
Chiropotes satanus AMNH 96123 45 
Chiropotes sp. SBU NCh2 46 
Leontopithecus rosalia AMNH 137270 47 
Leontopithecus rosalia AMNH 60647 48 
Pithecia monachus AMNH 187978 49 
Pithecia pithecia AMNH 149149 50 
Saguinus midas AMNH 266481 51 
Saguinus mystax AMNH 188177 52 
Saguinus sp. SBU NSg12 53 
Saguinus sp. SBU NSg2 54 
Saimiri boliviensis AMNH209934 55 
Saimiri boliviensis AMNH211650 56 
Saimiri boliviensis AMNH211651 57 
Saimiri sciureus AMNH188080 58 
Saimiri sp. SBU NSm2 59 
Cercopithecus sp. SBU No Number 60 
Cercopithecus sp. SBU No Number 61 
Chlorocebus aethiops SBU OCr7 62 
Chlorocebus cynosuros AMNH 80787 63 
Colobus geureza AMNH 27711 64 
Erythrocebus patas AMNH 34709 65 
Lophocebus albigena AMNH 52603 66 
Macaca nigra SBU OCn1 67 
Macaca tonkeana AMNH 153402 68 
Mandrillus sphinx AMNH 89367 69 
Nasalis larvatus AMNH 106272 70 
Papio hamadryas AMNH 80774 71 
Piliocolobus badius AMNH 52303 72 
Piliocolobus badius ED 4651 73 
Pygathrix nemaeus AMNH 87255 74 
Theropitheucs gelada AMNH 201008 75 
Trachypithecus obscurus AMNH 112977 76 
Gorilla sp. AD 6001 77 
Hylobates lar AMNH 119601 78 
Pan troglodytes AMNH 51202 79 
Pan troglodytes AMNH 51278 80 
Pongo pygmaeus AMNH 28253 81 
Symphalangus syndactylus AMNH 106583 82 
Cantius abditus USGS 6783 83 
Cantius sp. USGS 6774 84 
Cantius trigonodus AMNH 16852 85 
Cantius trigonodus USGS 21829 86 
Cebupithecia sarmientoi UCMP 38762* 87 
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Marcgodinotius indicus GU 709 88 
Mesopithecus pentelici MNHN PIK-266* 89 
Neosaimiri fieldsi IGM-KU 89202* 90 
Neosaimiri fieldsi IGM-KU 89203* 91 
Notharctus sp. AMNH 55061 92 
Notharctus tenebrosus AMNH 11474 93 
Omomyid AMNH 29164 94 
Omomys sp. UM 98604 95 
Oreopithecus bambolii NMB 37* 96 
Ourayia uintensis SDNM 60933 97 
Parapithecid DPC 15679 98 
Parapithecid DPC 20576 99 
Parapithecid DPC 2381 100 
Parapithecid DPC 8810 101 
Proteopithecus sylviae DPC 23662A 102 
Smilodectes gracilis AMNH131763 103 
Smilodectes gracilis AMNH131774 104 
Teihardina belgica IRSNB 16786-03 105 
Washakius insignis AMNH 88824 106 
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Table S1B. Reduced sample of calcaneal specimens for combining with Astragali (Table 1464 
S2) 1465 

Taxon Specimen Bone # 
Avahi laniger AMNH 170461 1 
Cheirogaleus major AMNH 100640 2 
Daubentonia madagascariensis AMNH 185643 3 
Eulemur fulvus AMNH 17403 4 
Eulemur fulvus AMNH 31254 5 
Hapalemur griseus AMNH 170675 6 
Hapalemur griseus AMNH 170689 7 
Hapalemur griseus AMNH 61589 8 
Indri indri AMNH 100504 9 
Indri indri AMNH 208992 10 
Lemur catta AMNH 150039 11 
Lemur catta AMNH 170739 12 
Lemur catta AMNH 22912 13 
Lepilemur mustelinus AMNH 170565 14 
Lepilemur mustelinus AMNH 170568 15 
Lepilemur mustelinus AMNH 170569 16 
Propithecus verreauxi AMNH 170463 17 
Propithecus verreauxi AMNH 170491 18 
Varecia variegata AMNH 100512 19 
Alouatta seniculus AMNH 42316 20 
Alouatta seniculus SBU NAl13 21 
Alouatta sp. SBU NAl17 22 
Aotus azarae AMNH 211482 24 
Aotus infulatus AMNH 94992 25 
Aotus sp. AMNH 201647 26 
Ateles paniscus SBU NAt10 27 
Ateles sp. SBU NAt13 28 
Ateles sp. SBU NAt18 29 
Brachyteles arachnoides AMNH 260 30 
Cacajao calvus AMNH 70192 31 
Cacajao calvus SBU NCj1 32 
Callicebus donacophilus AMNH 211490 33 
Callicebus moloch AMNH 244363 34 
Callicebus moloch AMNH 94977 35 
Callimico goeldi AMNH 183289 36 
Callimico goeldi SBU NCa1 37 
Callithrix jacchus AMNH 133692 38 
Callithrix jacchus AMNH 133698 39 
Cebuella pygmaea AMNH 244101 40 
Cebuella pygmaea SBU NC1 41 
Cebus apella SBU NCb4 42 
Cebus sp. SBU NCb5 43 
Chiropotes satanus AMNH 95760 44 
Chiropotes satanus AMNH 96123 45 
Chiropotes sp. SBU NCh2 46 
Leontopithecus rosalia AMNH 137270 47 
Leontopithecus rosalia AMNH 60647 48 
Pithecia monachus AMNH 187978 49 
Pithecia pithecia AMNH 149149 50 
Saguinus midas AMNH 266481 51 
Saguinus mystax AMNH 188177 52 
Saguinus sp. SBU NSg12 53 
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Saimiri boliviensis AMNH209934 55 
Saimiri boliviensis AMNH211650 56 
Saimiri boliviensis AMNH211651 57 
Chlorocebus aethiops SBU OCr7 62 
Macaca nigra SBU OCn1 67 
Macaca tonkeana AMNH 153402 68 
Nasalis larvatus AMNH 106272 70 
Trachypithecus obscurus AMNH 112977 76 
Gorilla sp. AD 6001 77 
Hylobates lar AMNH 119601 78 
Pan troglodytes AMNH 51202 79 
Pan troglodytes AMNH 51278 80 
Pongo pygmaeus AMNH 28253 81 
Symphalangus syndactylus AMNH 106583 82 
Cantius abditus USGS 6783 83 
Cebupithecia sarmientoi UCMP 38762* 87 
Marcgodinotius indicus GU 709 88 
Neosaimiri fieldsi IGM-KU 89203* 91 
Notharctus sp. AMNH 55061 92 
Notharctus tenebrosus AMNH 11474 93 
Omomyid AMNH 29164 94 
Omomys sp. UM 98604 95 
Parapithecid DPC 15679 98 
Parapithecid DPC 20576 99 
Parapithecid DPC 2381 100 
Proteopithecus sylviae DPC 23662A 102 
Teihardina belgica IRSNB 16786-03 105 
Washakius insignis AMNH 88824 106 
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Table S2. Astragalar specimens 1466 

Genus Specimen Bone # 
Cebus AMNH 133606 1 
Cebus AMNH 133608 2 
Macaca MCZ 34714  3 
Cheirogaleus DPC 031 4 
Chiropotes AMNH 95760 5 
Chiropotes SBU NCh2 6 
Chiropotes AMNH 95027 7 
Daubentonia AMNH 185643 8 
Eulemur fulvus AMNH 170728 9 
Eulemur fulvus AMNH 31254 10 
Hapalemur  AMNH 61589 11 
Hapalemur  AMNH 170680 12 
Hapalemur  AMNH 170689  13 
Hylobates MCZ 41456 14 
Hylobates MCZ 41458 15 
Lemur catta AMNH 170739 16 
Lemur AMNH 170740  17 
Lemur AMNH 170765 18 
Lepilemur AMNH 170556 19 
Lepilemur AMNH 170560  20 
Lepilemur AMNH 170565 21 
Nasalis MCZ 37327 22 
Pan AMNH 167343 23 
Pan NMNH 176229 24 
Pithecia AMNH 149149  25 
Pithecia AMNH 187978 26 
Alouatta AMNH 211585 27 
Alouatta SBU NAl13 28 
Alouatta SBU NAl18 29 
Pongo NMNH 49853 30 
Propithecus AMNH 170474 31 
Propithecus AMNH 170463 32 
Indri AMNH 100504 33 
Indri AMNH-208992 34 
Saguinus AMNH 188174 35 
Saguinus 33B AMNH 97316 36 
Saguinus AMNH 207726 37 
Saimiri AMNH 209934 38 
Saimiri SBU NSm06 39 
Saimiri SBU Sm2 40 
Notharctus AMNH 11474 41 
Notharctus AMNH 129382 42 
Omomys UM 38321 43 
Omomys UM 98648 44 
Teilhardina IRSNB vert-16786-01 45 
Aotus AMNH 239851 46 
Aotus AMNH 201647 47 
Aotus AMNH 94992 48 
Cebuella AMNH 244101 49 
Cebuella SBU NC1 50 
Marcgodinotius GU 748 51 
Callimico AMNH 183289 52 
Callimico SBU NCm01 53 
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Varecia AMNH 100512 54 
Apidium DPC5027 55 
Apidium DPC 5416A  56 
Apidium DPC1001 57 
Proteopithecus DPC22844 58 
Ateles AMNH 259 59 
Ateles AMNH 172985 60 
Ateles SBU NAt10 61 
Cacajao AMNH-70192 62 
Cacajao SBU NCj1 63 
Callicebus AMNH 210393 64 
Callicebus AMNH 211491 65 
Callicebus AMNH 211488  66 
Callithrix AMNH 133698  67 
Callithrix AMNH 133702  68 
Cantius USGS 21832 69 
Trachypithecus AMNH 11297 70 
Avahi AMNH 170461 71 
Leontopithecus AMNH 185347 72 
Brachyteles AMNH 260 73 
Washakius UM 99074 74 
Gorilla MCZ 20038 75 
Neosaimiri Neosiaimiri 76 
Macaca SBU OCN1 77 
Chlorocebus SBU OCr7 78 
Cebupithecia UCMP 38762 79 
Leontopithecus USNM 588177 80 
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Table S3. Distal Phalanx Specimens 1467 

Taxon Specimen Bone R/L Bone # 
Tarsius bancanus AMNH 106754 P/dp2 R 001 
Tarsius bancanus AMNH 106754 P/dp3 R 002 
Tarsius spectrum AMNH 109367 P/dp2 R 003 
Tarsius spectrum AMNH 109367 P/dp3 R 004 
Notharctus tenebrosus AMNH 143612-3 P/dp2 R 005 
Hemiechinus auritus AMNH 185374A P/dp4 L 006 
Hemiechinus auritus AMNH 185374B P/dp3 L 007 
Hemiechinus auritus AMNH 185374C P/dp2 L 008 
Hemiechinus auritus AMNH 185374D M/dp4 L 009 
Erinaceus europaeus AMNH 3770A P/dp4 L 010 
Erinaceus europaeus AMNH 3770B P/dp2 L 011 
Erinaceus europaeus AMNH 3770C M/dpX L 012 
Erinaceus roumanicus AMNH 69553A P/dp1 L 013 
Erinaceus roumanicus AMNH 69553B P/dp2 L 014 
Erinaceus roumanicus AMNH 69553C P/dp3 L 015 
Erinaceus roumanicus AMNH 69553E P/dp4 L 016 
Galago senegalensis DPC 003 P/dp2 L 017 
Cheirogaleus medius DPC 0130 P/dp2 R 018 
Otolemur crassicaudatus DPC 024 P/dp2 R 019 
Microcebus murinus DPC 035 P/dp2 R 020 
Mirza coquereli DPC 097 P/dp2 L 021 
Galago senegalensis DPC 1063F P/dp2 R 022 
Cheirogaleus medius DPC 1285 P/dp2 L 023 
Propithecus verreauxi DPC 1397 P/dp2 L 024 
Aotus sp. DPC nn P/dp2 R 025 
Aotus sp. SBU-11 P/dp2 R 026 
Hapalemur griseus SBU-12 P/dp2 L 027 
Varecia sp. SBU 1383 P/dp2 L 028 
Eulemur fulvus SBU-13 P/dp2 L 029 
Indri indri SBU 1474 P/dp2 R 030 
Lemur catta SBU-14 P/dp2 L 031 
Galago senegalensis SBU-15 P/dp2 L 032 
Propithecus diadema SBU 1155 P/dp2 L 033 
Otolemur crassicaudatus SBU PGa1163 P/dp2 R 034 
Incertae sedis UCMP 217999 P/dp2 L 035 
Incertae sedis UCMP 218000 P/dp2 R 036 
Tarsius pumilus USNM 196477 P/dp2 R 037 
Tarsius pumilus USNM 196477 P/dp3 R 038 
Carpolestes simpsoni UM 101963A ?/dpX ? 039 
Carpolestes simpsoni UM 101963B ?/dpX ? 040 
Carpolestes simpsoni UM 101963C ?/dpX ? 041 
Carpolestes simpsoni UM 101963D ?/dpX ? 042 
Ignacius clarksforkensis UM 82606 ?/dpX ? 043 
Plesiadapis churchilli SMM P77.33.517 ?/dpX ? 044 
Nannodectes intermedius USNM 442290 ?/dpX ? 045 
Incertae sedis UCMP 217919 ?/dpX ? 046 
Incertae sedis UCMP 217935 ?/dpX ? 047 
Incertae sedis UCMP 218245 ?/dpX ? 048 
Incertae sedis UCMP 218246 ?/dpX ? 049 
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Table S4. Additional astragali specimens 1468 
Genus Specimen Bone # 
Alouatta AMNH 211585 001 
Aotus AMNH 239851 002 
Ateles AMNH 259 003 
Cacajao AMNH 201122 004 
Callicebus AMNH 210393 005 
Callithrix AMNH 133688 006 
Cebus AMNH 133606 007 
Cheirogaleus DPC 0142 008 
Cynocephalus AMNH 207001 009 
Cynocephalus UNSM 15502 010 
Galeopterus USNM 317118 011 
Daubentonia USNM 119694 012 
Eulemur AMNH 170708 013 
Hapalemur AMNH 61589 014 
Lemur AMNH 170739 015 
Lepilemur AMNH 170556 016 
Microcebus AMNH 174428 017 
Nycticebus AMNH 90381 018 
Perodicticus AMNH 269851 019 
Pithecia AMNH 149149 020 
Tarsius AMNH 203296 021 
Tarsius AMNH 106754 022 
Tarsius  AMNH 109369 023 
Ptilocercus USNM 488055 024 
Ptilocercus USNM 488058 025 
Tupaia SBU MIN2 026 
Tupaia AMNH 215176 027 
Loris AMNH 150038 028 
Lepus SBU MLG3 029 
Lepus SBU MLG4 030 
Sylvilagus Boyer collection 031 
Ochotona AMNH 124392 032 
Erethizon Boyer collection 033 
Coendou AMNH 80045 034 
Marmota Boyer collection 035 
Sciurus SBU MRd10 036 
Aplodontia AMNH 142747 037 
Allactaga AMNH 227 038 
Tenrec AMNH 170513 039 
Setifer AMNH 170547 040 
Hemicentetes AMNH 170593 041 
Echinops AMNH 170607 042 
Potamogale AMNH 55204 043 
Erinaceus AMNH 3770 044 
Hemiechinus AMNH 180318 045 
Chrysochloris AMNH 205 046 
Crocidura AMNH 48490 047 
Desmana AMNH 97807 048 
Solenodon AMNH 77745 049 
Potos AMNH 267053 050 
Arctictis AMNH 119600 051 
Nasua AMNH 14062 052 
Petrodromus AMNH 115790 053 
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