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ABSTRACT: Importance-sampling technique has been used in recent years in con­
junction with Monte Carlo simulation method to evaluate the reliability of structural 
systems. Since the efficiency of the importance-sampling method depends primarily 
on the choice of the importance-sampling density, the use of the kernel method to 
estimate the optimal importance-sampling density is proposed. This method de­
viates from the current practice of prescribing the importance-sampling density 
from a given parametric family of density functions. Instead, the data obtained 
from an initial Monte Carlo run are utilized to determine the required importance-
sampling density. The kernel method yields unbiased estimates of the probability 
of failure. Two measures are developed to quantify the efficiency of the kernel 
method relative to the basic Monte Carlo method. The first measure, called the 
marginal efficiency, is used as an indicator of the effectiveness of the kernel method, 
whereas the second measure, the overall efficiency, defines the advantage of the 
kernel method over the basic Monte Carlo method. Finally, a variety of example 
problems are used to examine the characteristics of the proposed kernel method 
and its efficiency over the basic Monte Carlo method. 

INTRODUCTION 

In structural reliability theory, the calculation of the probability of failure, 
pF, of an engineering system requires the evaluation of the following mul­
tidimensional integral: 

PF = P[g(x) =s 0] = f /x(x) dx (1) 

where X = a vector of random variables (bold is used to denote a vector, 
and a random variable is indicated by an upper-case character); g(x) = the 
performance function of the system. For any realization x of the random 
variables X, g(x) s 0 implies the system has failed; and /x(x) = the joint 
probability density function of the random variables X. 

In general/x(x) is a multidimensional density function with complex math­
ematical form, and the failure domain g(x) < 0 is irregular in shape with 
piecewise, highly nonlinear boundaries. Hence, an analytical evaluation of 
the failure probability defined by (1) is usually impossible. This leads to the 
need for approximate approaches. 

Among the approximate methods, a class called the Monte Carlo sampling 
method is widely used (Rubinstein 1981). The basic Monte Carlo method 
is a numerical sampling technique that simulates a process involving reali­
zations of random variables, and determining if a particular event (e.g., 
failure) occurs for each simulation. The ratio of the number of failures to 
the total number of simulations is an estimate of the failure probability. 
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Because low failure probabilities are typically expected or required of struc­
tural systems, the total number of simulations necessary to obtain a sufficient 
number of "failure samples" can be extremely large, and for most realistic 
problems these methods are not affordable. To reduce the number of sim­
ulations required, a variance reduction technique called importance sampling 
has been introduced (Bourgund and Bucher 1986; Harbitz 1986; Schueller 
and Stix 1987). In this paper, however, the importance-sampling density is 
not prescribed to be from a given family of distributions (Schueller and Stix 
1987). Instead, data obtained from an initial basic Monte Carlo run are 
entirely utilized to determine the required importance-sampling density. 
Following sections present the concepts underlying the importance-sampling 
method in reliability computation, followed by the development of the bases 
for the kernel method of constructing the importance-sampling density. The 
kernel method was described by the writers in an earlier paper (Ang et al. 
1989). Karamchandani (1990) also presented a somewhat similar procedure, 
i.e., similar in the sense that the importance-sampling density is constructed 
as a weighted sum of probability densities. In this paper, two measures are 
developed to quantify the efficiency of the kernel method relative to the 
basic Monte Carlo method. A few examples are presented to illustrate the 
applicability of the kernel method. 

IMPORTANCE-SAMPLING TECHNIQUE 

The problem in the basic Monte Carlo method is that when the probability 
of failure is small, most of the simulations will not result in system failure. 
Therefore, the number of simulations required to obtain a sufficient number 
of failure samples can be extremely large, and for most realistic problems 
the method can become unaffordable. One solution to this problem is to 
bias the generated realizations of the random variables using an importance-
sampling density function such that the number of occurrences of system 
failure will increase. The results are then scaled to account for the bias in 
the sampling distribution. The mathematical basis for this latter technique 
may be described as follows. 

The integral in (1) can be rewritten as 

PF = f „ /fe(x) s 0]/x(x) dx (2) 
Jail x 

where 

I[g(x) < 0] = 0 if g(x) > 0 (3a) 

I[g(x) < 0] = 1 if g(x) < 0 (3b) 

An importance-sampling density, h^(x), can be introduced into (2) to obtain 

p. -L 'bw^^w. )* w 
A Monte Carlo algorithm to evaluate the integral in (4) would be to 

sample a series of x,- from hx(x) and esimate pF through 

P,4!/b<x,) = o]gg : (5) 
1147 

Downloaded 13 Apr 2011 to 152.3.236.131. Redistribution subject to ASCE license or copyright. Visit http://www.ascelibrary.org



A caret above pF is used to denote that it is an estimate of pF. The variance 
of pp is given by 

var; *xC X)(PF) = ^ I[g(x) < 0] /X (X ) 

^X(X) 
hx(\) dx P2F (6) 

Observe that if the importance-sampling density is chosen as (Rubinstein 
1981) 

AxW 
_ / [ g ( x ) < 0 ] / x ( x ) 

(7) 

then the variance of pF becomes zero, regardless of the number of simu­
lations. However, since pF is not known a priori, it is impossible to obtain 
the optimal importance-sampling density, hx(x). Therefore, the knowledge 
of the form of the optimal importance-sampling density defined by (7) is at 
best only a guide toward effective sampling. 

The importance-sampling density should be selected properly to yield 
reliable estimates of pF with ony a small number of samples. If a "bad" 
importance-sampling density is chosen, the procedure can be very ineffi­
cient, i.e., it can require a large number of samples for a reliable estimate 
of pF, and the resulting pF may be biased. For example, if the importance-
sampling density hx(x) is chosen such that it emphasizes only a small part 
of the failure domain, as illustrated in Fig. 1, the estimate of pF using this 
procedure will usually be less than the true value of pF. Caution should be 
exercised when using the estimated standard deviation, 6p as a measure 
of the accuracy of the estimator pF, because a low estimated &pp may be 
an indication of potential bias inpF (Ibrahim and Cornell 1988). A properly 
chosen sampling density is essential to obtain a good (unbiased) estimate 
with a low &pp. In the following sections, a method of determining the 
importance-sampling density hx(x) is developed. 

KERNEL SAMPLING DENSITY 

The kernel sampling density is defined by 

Failure Region 

equi-density contour of 

? / 

^1^2) = 0 

equi-density contour of /x(*i,*2) 

FIG. 1. Importance-Sampling Density Function hx(xux2) Covering Small Part of 
Failure Region 
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M !fi wd \ w 
y.-

(8) 

where M = the number of samples; {yi,y2, . . . ,yM} = the samples; w = 
the window width; d = the number of variables, and K{.) = any function 
that satisfies the conditions 

K(y) & 0 and |__ K(y) dy = 1 (9) 

With the conditions in (9), the kernel sampling density is itself a probability 
density, and it will inherit all the continuity and differentiability properties 
of the kernel function K(.). If d = 1 (one random variable case) and K(.) 
is the standard normal density function, then the kernel sampling density 
is given by 

1 M 1 

1 W 

1 

V2¥ 
-l/2(x-y,7n>)2 (10) 

This is illustrated in Fig. 2, where the sum of all the individual "bumps," 
M~1w~1K[(x - yt)/w], yields the estimator, hx{x). Also notice that the 
individual bumps are of equal shape. Consequently, if (8) is used to estimate 
a long-tailed distribution, fix{x) will have a rough tail, as shown in Fig. 3. 
This difficulty may be resolved by introducing X,s to vary the shape of each 
bump. The main idea is to use flatter bumps in regions of low density 
(Abramson 1982). The general strategy is as follows: 

1. Use the sampling density defined in (8) as an initial estimate of the optimal 
sampling density, and denote this by ^x(x) ' 

2. Define the local window width factors, X„ by 

K = [*x(y«)]-a (11) 

where a = the sensitivity parameter, a number between 0 and 1. A value of a 
= 0.5 is suggested (see the following). 

3. Define the adaptive kernel sampling density as 

h&) 

±<nm 

FIG. 2. Kernel Sampling Density and Individual Kernels 
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x 

FIG. 3. Kernel Sampling Density with Rough Tail 

**> = s,I^K(^r) (12) 

The sensitivity factor a is introduced to give flexibility in the design of 
the method. The value of a = 0 will reduce (12) back to (8); whereas a = 
1 will ensure that the number of observations within each window width 
will be approximately the same in all parts of the density. To see this, 
substitute a = 1 into (11) and multiply the result by w to obtain the window 
width w//ix(y,) centered at y,. The mean number of observations within 
this window width centered at y, is proportional to [w/ftx(y,)] X /ix(y,) = 
w, which is a constant. Practical experience, reported by Abramson (1982), 
suggests that the choice of a = 0.5 gives good results because the bias in 
hx(x) is minimized. Finally, it has been confirmed, also by Abramson (1982), 
that the method is insensitive to the choice of the initial estimate of hx(x) 
in step 1. 

The effect of varying the window width w is illustrated in Fig. 4 for the 
one random variable case and all X,s = 1.0. The limit as w tends to zero is 
(in a sense) a sum of Dirac delta function spikes at each sample point, as 
illustrated in Fig. 4(a), whereas as w becomes large, all details are obscured, 
as shown in Fig. 4(b), i.e., fix(x) is smoother. The appropriate choice of 
the value of w will always be influenced by the purpose for which hx(x) is 
to be used. Two criteria for choosing the value of w are discussed in the 
following. 

Minimizing Integrated Square Error (Abbreviated ISE) 
Given an estimator /JX(X) of hx(x),tne integrated square error is defined 

by 

ISE(/JX) = J" [£x(x) - hx(x)f dx (13a) 

ISE(/ix) = J [dl(x) - 2dx(x)hx(x) + h2
x(x)] dx (13&) 

Therefore, a choice of window width w can be obtained by minimizing the 
first two terms in (13), since last term does not depend on w. Denoting the 
first two terms by R(.) and substituting (12) into the integer, we can obtain 
[see Ang (1991)] 
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1 M 1 

(a) w = 0.1 

-LSffl 
In 

(b) w = 1.0 

FIG. 4. Effect of Varying Window Width on Kernel Sampling Density 

1 9 M 

*(*x) = ^ | K(2)(y,-,y,-; x/W,x,w) - ^ £ /L,(y,) 
where 

If ^ ( . ) is the multidimensional normal density 

1 
K(x) = 

then 

V(2ir)d|S| 
- 1 / 2 x 7 5 - l x 

(14) 

(16) 

^ > ( y „ y , , X,.w;X7.w) = V(2»)'|S|kW + ^ - ^ ^ - ^ M > 
(17) 

where S = the sample covariance matrix of the sample set {yi,y2, . . . ,yM}', 
and |S| is the determinant of S. The sample covariance matrix is introduced 
in (16) to take into account the spread of data in each direction and the 
coordinate scale used for each random variable. Therefore, to obtain w 
using this criterion, minimize (14) with respect to the window width. 
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Minimizing Variance of pF 
Since hx(x) is used to estimate pF, it is logical to choose w that will 

minimize the variance of pF defined by replacing hx(x) in (6) with ftx(x), 
i.e. 

^UXUPF) = Jj /"_ |/[g(x) < 0] ^ ] /^(x) rfx - ^ (18) 

Substitute (7) into (18) to obtain [see Ang (1991)] 

var;;x(x)(pF) = - M V ^ - pF) (19) 

where 

-i M 

= -y 
/x(y,0 

M i-̂ i /L,-(y,) 
(20) 

and fi-tiyi) is defined in (15). The window width, w, may then be selected 
to minimize (19). It is shown in Ang (1991) that minimizing the variance 
of pF is similar to minimizing-the integrated square error given by (13), 
except for a weighting factor l//ix(x). In regions where the value of 
hx(x) is smaller than hx(x), the contribution of [/zx(x) - /tx(x)] to the 
expression for the variance is greater because the weight, l/fix(x), is large. 
Consequently, minimizing the variance with respect to the window width 
would result in /zx(x) that approximates hx(x) better in regions where the 
value of /Jx(x) is small. 

In this paper, the kernel sampling density defined by (12) is proposed to 
estimate the optimal importance sampling, hx(x), defined in (7). 

ESTIMATING FAILURE PROBABILITY 

The two-step approach to estimate pF using the adaptive kernel sampling 
density is as follows: 

1. Construct the adaptive kernel sampling density as follows. 
A. A sample of size M is generated using the acceptance-rejection sam­

pling algorithm presented. The essence of the algorithm can be de­
scribed as follows: A sample x is generated from the original probability 
density function/x(x); if the inequality g(x) < 0 holds, then accept x 
as a sample. Accepted samples will be denoted by {yi,y2, • • • ,yM}-
The total number of samples generated to obtain the M samples is 
denoted by Nbasic. 

An initial estimate for the failure probability denoted by (pF)baiic 
and an estimate of its sample variance, denoted by dgasic are also 
computed using 

(PpXauic = T ; — (21) 
^ basic 

and 
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°"basic — ^basic V a r LC*V)basic] ~ KT _ 1 
•^' basic -*-

• [M - iVbasic(/7F)gasic] (22) 

B. These M samples are then used to compute the window width factors, 
{X,,\2, . . . ,kM}, as follows. 
1. Use the density defined in (8) as an initial estimate of the optimal 

sampling density, and denote this by hx(x). 
2. Compute the local window width factors 

h= [*x(y,)]-°-5 (23) 

for i = 1,2, . . . ,M. 
C. The optimal window width is computed by minimizing the ISE's R 

function or the variance of pF with respect to w. The ISE's R function 
is given by (14) and the variance of pFis given by (19). 

D. The adaptive kernel sampling density is then given by (12), where d 
= the number of random variables. 

2. Generate samples using the constructed adaptive kernel sampling density, 
and estimate pF as follows: 

A. A sample of size Nkcrnei is generated from the kernel sampling density 
/ix(x) defined previously. These samples, denoted by {xltx2,. . . ,xNkcmJ, 
are generated from the kernel sampling density by first generating a 
number at random from { 1 , 2 , . . . , M}, say/, then sampling from the 
density function 

(4*K(^) (24) 

B. Compute 

I ^kernel f („ \ 

(^)kernel = T7 1 I\g(*) * 0] ftfr ( 2 5 ) 

''kernel ( = 1 "Xl*i7 

and its variance 

J ^kernel 

var[(/SF)kernel] = — TTZ TT E 
JvkerneIVVkernel 1) ' = 1 

•{ 
7kw*°^-*F (26) 

C. The failure probability is then estimated as 

A ^basicV/V/basic ~*~ -'''equivvPF/kernel {17\ 

Pr~ Nh . + N . W> 
1T basic ' L ' equiv 

where 

CT2 • 
Nequiv = A^kernel T J '• (28fl) 

"kernel 
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var[(pJ?)kernel] (28b) 

ad crj;ernel
 a r e t n e estimated sample variances of the 

failure probability obtained using the basic Monte Carlo and kernel 
methods, respectively. 

The estimator pF defined by (27) utilizes the information from the initial 
simulation (to obtain the samples used to construct the kernel sampling 
density) and that from the simulation runs using the kernel sampling density. 
This estimator is found to be unbiased, with a smaller variance than that 
of (pF)kcrncl for small sample sizes Nksmel (Ang 1991). 

EFFICIENCY OF KERNEL METHOD 

To assess the efficiency of the kernel method relative to the basic Monte 
Carlo, two measures are developed. The first measure is the marginal ef­
ficiency, £marginai. This measure can be used to indicate the effectiveness of 
the kernel method after a sample size M has been generated. It can be 
obtained by equating the variance estimate of pF by the basic Monte Carlo 
and (19), and solving for the sample ratio, i.e., the marginal efficiency is 
defined by 

T? J v basic 'basic 
^marginal »r yy _ ^ • • • • \ ^ ) 

•* "kernel ' kerr 

•* 'hani r ' hasir }fF 

PF 

where V^emA is given by (20) and 
i M 

U = j j E W ^ 0 ] = 1 (30) 

To obtain the same variance of pF between the kernel method and the basic 
Monte Carlo method, (29) can be interpreted as the equivalent number of 
basic Monte Carlo samples for each sample generated using the kernel 
method. 

The second measure is the overall efficiency 

_ No. of g(x) calls using basic Monte Carlo 
-overall j ^ Q j ^ ^ c a j j s u g j n g k e r n e l m e t h o d 

N 
1 v t r>tal 

Nbasic + NV, 
(31) 

where iVtotal = used to denote the sum Nbasic + (Nbasic)2. The variable (ArbasiC)2 
denotes the number of additional basic Monte Carlo simulation runs re­
quired to obtain the same accuracy of pF as the kernel method. This measure 
is dependent on the required accuracy 8̂  and sample size M. The accuracy, 
defined as the coefficient of variation of pF, affects the total number of 
simulations required, whereas M affects the value of JVkernel. The significance 
of this measure is that a value of £overaU = 5 means that the kernel method 
needs only one-fifth of the number of simulations required by the basic 
Monte Carlo method to obtain the same accuracy. The £overaii is computed 
as follows: 

1. Generate a sample of size Nbasic from the original probability density func­
tion /x(x) for a given M. 
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2. With a prescribed value for the accuracy 8,,F, solve for JVtotal from the 
definition of bPp, i.e. 

M — * ~ ypFhasic , „ . 
^ total S.2 (A \ lyZ>> 

3. Compute (Nbasic)2 from 

(Wbasick = Metal - ^basic (33) 

4. Compute Afkernel from 

\7 - 1 basic-k /"?4\ 
"kernel _ c- (,o4J 

-'-'marginal 

where £marginal is defined by (29). 
5. Compute £overau from (31). 

The idea behind the development of the measure defined in (31) is mo­
tivated by the fact that the evaluation of the performance function, g(x), is 
generally the part requiring a major portion of the computer time in a 
simulation. For a typical structure, the computer time required to set up 
the kernel sampling density is assumed to be negligible, compared with that 
required for a single evaluation of its performance function. 

BASIC EXAMPLE 

Consider the following single-random-variable problem with a simple 
performance function given by 

g(x) = a - x (35) 

where a = a parameter. The failure probability is then given by 

pF = J _ /[(a - x) < 0]fx(x) dx (36) 

in which fx(x) = the standard normal density function. This problem is 
convenient for examining the following: (1) The best criterion for choosing 
the window width; and (2) the effect of the value of pF on the efficiency of 
the kernel method. 

Best Criterion for Choosing Window Width 
The objective is to obtain the best estimate of the optimal importance-

sampling density, which is 

^ ) = fc)£» (37) 
PF 

where fx(x) = the standard normal density. For this simple example, pF 
can be easily determined to be 0.02275; hence, the optimal importance 
sampling density, hx(x), can be determined from (37). In Fig. 5, the optimal 
importance-sampling density, and its kernel sampling densities obtained with 
window widths chosen by minimizing (14) and (19) with respect to w, are 
plotted together. The kernel sampling densities are constructed using M = 
10 for the case a = 2.0. The kernel sampling density with w chosen by 
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I*1-5 

0.5 

0 

A 

1.0850 
based on ISE criterion 

Myh&) : w = 0.1592 
\ \# based on variance reduction 

\ \ J[(2.0-*)s0]£fr) 
A V r 0.022750 

\v 

1.5 2 2.5 3 3.5 
x 

FIG. 5. Importance-Sampling Density Function 

using the variance reduction criterion approximates the optimal importance-
sampling density better than that based on the ISE criterion. The two kernel 
sampling densities also can be compared on the basis of the estimated failure 
probability. T h e s i s estimated using (25) for different samples each of size 
N generated from the constructed fix(x) based on ISE or the variance 
reduction criterion. The corresponding variance of pF is computed using 
(26). The pF and its &Pp are plotted in Fig. 6 with respect to N. This fig­
ure shows that values of &PF based on variance reduction are consis­
tently lower than those using the ISE criterion for choosing the window 
width w. Therefore, the variance reduction criterion is preferred since it 
yielded a smaller variance in the estimate of the failure probability. 

Effect of pF on Efficiency of Kernel Method 
The marginal efficiency, £margina l, defined in (29) is computed using only 

the sample set {y^, • • • ,VM} and an initial estimate of pF; no additional 
simulation run is performed. Hence, the marginal efficiency for future sim­
ulation can be predicted after any given value of M. However, the actual 
marginal efficiency could differ from this predicted value, as Fig. 7 shows. 
In this figure, the marginal efficiency is computed for different values of M 
and a. The actual £marginai is computed by first generating samples from the 
kernel sampling density, then computing the sample variance 6^ernel; the 
ratio 6-gasic/6-gernel is the actual marginal efficiency. The following observa­
tions can be made from the figure: 

1. The difference between the marginal efficiency of (29) and the actual 
efficiency is not significant. In general, the comparison may not be good for 
small M, because only a small sample set {yuy2, . . . ,vM} is used to evaluate 
the actual marginal efficiency, as shown for the case v/ithpF = 0.001350. How­
ever, good agreement is observed for the case with pF = 0.022750. 

2. The marginal efficiency increases as M increases and as pF decreases. 
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I S Based on ISE criterion 
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\ . Based on variance reduction 
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I 1 T" 
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Sample size, N 

• \ ~ Based on ISE criterion 
\*< w = 0.0850 

Based on variance reduction 

40 60 80 100 120 
Sample size, N 

FIG. 6. Estimates of pF and Its Standard Deviations: (a) Comparison of pF Esti­
mates; (b) Standard Deviations of p, Estimates 

3000 
2500 
2000 

Emwginal 1500 
1000 
500 

0 

^marginal 

10 15 20 
Sample size, M 

FIG. 7. Effect of pF on Marginal Efficiency 

The overall efficiency is computed for different value of M, bp , and a 
(or pF). The computed values of ôverall are plotted in Figs. 8 and 9. The 
following can be observed from the figures: 

1. For a given level of pF and M, the overall efficiency tends to increase as 
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—, , p _ _ , , _, _ , — 

8 12 16 20 
Sample size, M 

FIG. 8. Effect of Accuracy on Overall Efficiency (pF = 0.2275; a = 2.0) 

- 1 1 1 - T 1 1 1 T 

4 8 12 16 
Sample size, M 

20 

FIG. 9. Effect of Accuracy on Overall Efficiency (pr = 0.00135; a = 3.0) 

8,,F decreases, i.e., the overall efficiency increases with the degree of accuracy 
required on the estimate^. This conclusion also applies to the maximum £overaii 
for a given $Pf, and pF (see Table 1). The table also indicates that the smaller 
the value of pF, the higher the maximum £OVeraii> f° r t n e same accuracy. 

2. An optimal sample size M, denoted by Afoptima„ exists, depending on the 
accuracy of the pF estimate. It is defined as the number of samples used to 
construct the kernel sampling density that yields a maximum overall efficiency. 
As the required accuracy of thepF estimate is increased (i.e., S^ îs decreased), 
ôptimal increases, as shown in Table 2. The table also indicates the optimal 
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TABLE t. Effect of Accuracy on Maximum E, 

PF 

(D 
0.022750 
0.001350 

0.50 

(2) 

2.55 
3.74 

0.20 

(3) 

10.55 
16.08 

*W 
0.15 

(4) 

16.61 
22.18 

0.10 

(5) 

28.20 
33.98 

0.05 

(6) 

52.92 
68.62 

0.01 

(7) 

143.31 
532.64 

TABLE 2. Effect of Accuracy on M( 

PF 

0) 
0.022750 
0.001350 

0.50 
(20 

1 
1 

0.20 

(3) 

2 
1 

S ^ 
0.15 

(4) 

2 
1 

0.10 

(5) 

2 
2 

0.05 

(6) 

3 
2 

0.01 

(7) 

18 
7 

sample size required to construct the kernel sampling density is smaller for lower 
PF-

The main drawback of the kernel method is that the M samples to con­
struct the kernel sampling density must be obtained through the basic Monte 
Carlo method, e.g., in order to obtain M = 1 sample, one needs 1,000,000 
samples on the average ofpF= 1 x 10 ~6. 

MULTIVARIABLE EXAMPLE 

The purpose of this example is to illustrate the application of the kernel 
method to a multivariable problem. The effect of the covariance matrix of 
the random variables on the efficiency of the kernel method also is exam­
ined. 

The safety of a structural element may be evaluated on the basis of a 
linear performance function; for example 

g(R,D,L) = R - D - L 

where R = the resistance of the element; D = the dead-load effect; and 
L = the maximum live-load effect. The statistics of the random variables, 
including the correlations, are shown in Table 3. 

The overall efficiency is computed for the case p = 0.0 for different values 
of M and bPp, and plotted in Fig. 10 with respect to the sample size M. The 
underlying probability of failure is 0.00196. Similar observations made for 
the single random variable problem also can be made for this multivariable 
problem, i.e., the overall efficiency tends to increase as bPpdecreases, and 
the optimal sample size M increases as 8 ^ is increased. 

To isolate the effect of the correlation p on the efficiency of the kernel 
method, the mean of L is adjusted for different values of p to maintain the 
same value of pF (= 0.001960), as summarized in Table 4. The overall 
efficiency of the kernel method with 8 ^ = 0.10 is computed for different 
values of p and M, and plotted in Fig. 11. The results indicate that the 
efficiency of the kernel method is not affected by p provided that pF is kept 
constant (the apparent difference in the value of EmetM for M < 3 is due 
to statistical sampling error). 
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TABLE 3. Statistics of Random Variables 

Variable 
(1) 
R 
D 
L 

Distribution 
type 
(2) 

Normal 
Normal 
Normal 

Mean 
(3) 

2.831 
1.000 
0.745 

Coefficient of 
variation 

(4) 
0.11 
0.10 
0.25 

Note: pRP = p and pRL =• pDL = 0.0 

E » 1 0 ° ^overall g n ; 

6 5 
50 

Eovtrall 3 5 
2 0 

5: 

•6t, - 0.05 Q = 0.0 

0 
" I 1 1 1 ' I - I" I i 

4 8 12 16 20 

^overall 

15 
10-1 
5 
0 

"X" 
\ js°tp = 0.20 

Q =0.0 

—1 ef i 1 1 1 1 r 

0 4 8 12 16 
Sample size, M 

20 

FIG. 10. Effect of Accuracy on Overall Efficiency 

TABLE 4. L for Different Correlation Coefficient 

p 
(1) 
0.0 
0.2 
0.6 
0.8 

L 
(2) 

0.7450 
0.7804 
0.8524 
0.8891 

^-DIMENSIONAL SPHERICAL EXAMPLE 

To show the effect of the number of random variables on the overall 
efficiency of the kernel method, consider the following problem with the 
performance function given by 

d 

g(xlrx2, . . . ,*d; a) = a - *Z xf 

where a = a parameter. The random variables xux2, • • • ,xd are standard 
normal and statistically independent. 

The overall efficiency of the kernel method with M = 4 and 8 ^ = 0.10 
is computed for different numbers of random variables, d. To isolate the 
effect of d, the parameter a needs to be adjusted for different d to maintain 
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TABLE 5. Values of a for Different d 

d 

(D 
1 
2 
3 
4 
6 
8 
10 
15 
20 

a 
(2) 

10.07 
13.00 
15.40 
17.56 
21.48 
25.08 
28.49 
36.49 
44.00 

^overall 

~i 1 1 1 1-

4 8 12 16 
Number of Random Variables, d 

FIG. 12. Effect of d on £overall 

20 

a constant pF (= 0.00150). The values of a corresponding to different values 
of d are listed in Table 5. The results, plotted in Fig. 12, reveal a decrease 
in the overall efficiency as d is increased. The figure shows that the overall 
efficiency decreases sharply for d > 15. The drop in overall efficiency with 
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respect to d is expected because of the nature of estimating the optimal 
importance-sampling density. Fewer points are needed to fit a curve in a 
univariate problem than are required for a surface in a bivariate problem 
for a given accuracy; and fitting a hypersurface in a multivariable problem 
requires many more points or samples to obtain the same accuracy. 

CONCLUSIONS 

The proposed kernel method is much more efficient than the basic Monte 
Carlo method. In the few examples studied, the overall efficiency ranges 
from 2.5-500.0, depending on the problem and the accuracy required for 
the estimated pF. The main reason for the high efficiency is that the proposed 
procedure to construct the kernel sampling density ensures that this sampling 
density resembles the optimal sampling density. Moreover, a most important 
advantage of the kernel method is that it is completely automatic, i.e., the 
choice of the number of samples, M, required to construct the kernel sam­
pling density, and the number of simulations, N, to be generated from the 
kernel sampling density, can be determined automatically by the program 
based on the level of accuracy desired. 

Based on the results from the numerical examples, the following conclu­
sions can be observed: 

1. The pF estimated with the kernel method is sensitive to the method of 
choosing the window width. The variance reduction criterion is preferred, since 
it yielded a smaller variance in the estimated failure probability. 

2. The difference between the marginal efficiency expressed by (29) and the 
actual efficiency is not significant. Therefore, (29) can be used to estimate the 
actual marginal efficiency and compute the overall efficiency. The examples 
show that both the marginal and overall efficiencies of the kernel method in­
crease as pF decreases. Furthermore, it is shown that the maximum overall 
efficiency occurs at small values of M (< 10). This means that to obtain the 
maximum benefit of the kernel method, a small sample of size M is required 
to construct the kernel sampling density. However, the required size of M 
depends on the accuracy desired. The greater the accuracy desired, the larger 
the sample size M required to obtain the maximum overall efficiency of the 
kernel method. 

3. The degreee of correlation between random variables does not affect the 
overall efficiency of the kernel method, provided that pF remains the same. If 
the change in the covariance matrix results in a decrease iapF, the efficiency of 
the kernel method will increase, and vice versa. 

4. The overall efficiency of the kernel method decreases with the number of 
random variables. The reason for the decrease in efficiency with the number of 
random variables is that fewer samples are needed to construct the kernel 
sampling density for a univariate density function than for a multivariate density 
function, for a given accuracy. 
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