
Struct Multidisc Optim (2010) 42:645–663
DOI 10.1007/s00158-010-0518-6

REVIEW ARTICLE

A survey on approaches for reliability-based optimization

Marcos A. Valdebenito · Gerhart I. Schuëller

Received: 29 January 2010 / Revised: 8 April 2010 / Accepted: 9 May 2010 / Published online: 29 May 2010
c© Springer-Verlag 2010

Abstract Reliability-based Optimization is a most appro-
priate and advantageous methodology for structural design.
Its main feature is that it allows determining the best design
solution (with respect to prescribed criteria) while explic-
itly considering the unavoidable effects of uncertainty. In
general, the application of this methodology is numerically
involved, as it implies the simultaneous solution of an opti-
mization problem and also the use of specialized algorithms
for quantifying the effects of uncertainties. In view of this
fact, several approaches have been developed in the litera-
ture for applying this methodology in problems of practical
interest. This contribution provides a survey on approaches
for performing Reliability-based Optimization, with empha-
sis on the theoretical foundations and the main assumptions
involved. Early approaches as well as the most recently
developed methods are covered. In addition, a qualitative
comparison is performed in order to provide some gen-
eral guidelines on the range of applicability on the different
approaches discussed in this contribution.

Keywords Reliability-based optimization ·
Reliability assessment · Approximate reliability methods ·
Advanced simulation methods

1 Introduction

Reliability-based Optimization (RBO) is a methodology
that allows solving optimization problems while explic-
itly modeling the effects of uncertainty; these effects are
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accounted for by means of probabilities of occurrence and
expected values. RBO constitutes a most powerful method-
ology for solving problems in structural design. This is due
to the fact that in practical situations, one is often inter-
ested in determining the structural configuration that opti-
mizes a certain predefined criterion (e.g. construction costs,
benefits, etc.) while taking into account the unavoidable
uncertainties in the structural performance.

Despite the evident advantages of RBO over determinis-
tic design procedures, its application to problems of engi-
neering interest can be quite challenging, i.e. due to high
numerical costs involved in its solution. Both, optimization
and reliability assessment require the repeated evaluation
of the structural response for different sets of design vari-
ables and uncertain parameters; in turn, the evaluation of the
structural response may require the computation of numer-
ically involved virtual simulation models (e.g. Finite Ele-
ment models). In view of this issue, several different tools
have been developed for solving RBO problems efficiently.
For example, the development of approximate reliability
methods (see, e.g. Breitung 1994; Ditlevsen and Madsen
1996; Rackwitz 2001) and advanced simulation methods
(see, e.g. Schuëller et al. 2005) allow the estimation of
probabilities of failure and expected costs most efficiently.
The application of meta-modeling techniques has allowed
replacing numerically intensive virtual simulation models
by inexpensive ones (see, e.g. Hurtado 2004; Jin et al.
2003; Papadrakakis and Lagaros 2002; Zhang and Foschi
2004). The introduction of efficient strategies and approx-
imation concepts also play a fundamental role in yielding
challenging RBO problems tractable (see, e.g. Royset and
Polak 2004b; Du and Chen 2004; Chen et al. 1997).
In addition, the advent of High Performance Computing
(HPC) and—in particular—the application of parallel com-
puting techniques has opened the possibility of performing
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demanding numerical simulations in reduced time, see e.g.
Johnson et al. (2003), Leite and Topping (1999), Pellissetti
(2009), Thierauf and Cai (1997) and Umesha et al. (2005).

In view of the scenario described above, the objec-
tive of this contribution is to presenting an overview of
different techniques developed in the literature for solv-
ing RBO problems. Nonetheless, the field of optimization
under uncertainties is quite vast. Therefore, issues addressed
in this contribution are confined to selected topics. Thus,
the emphasis is on methods for solving problems and not
on practical applications, as in applications of RBO, it is
usually necessary to deal with the particulars of the underly-
ing physical problem, see e.g. Ellingwood (2001), Hellevik
et al. (1999), Madsen et al. (1991), Moan and Song (2000)
and Petryna and Krätzig (2005); similarly, aspects on par-
allel computing are not treated in this contribution. More-
over, this contribution considers approaches using classical
probabilities only; however, it should be noted that non-
classical approaches (see, e.g. Moens and Vandepitte 2005;
Möller and Beer 2007) have been applied as well for prob-
lems of optimization under uncertainties, see e.g. Beer and
Liebscher (2008) and De Munck et al. (2008).

This paper is organized as follows. Section 2 provides a
general description of the RBO problem as well as the chal-
lenges involved by its solution. Section 3 summarizes some
assumptions made throughout this contribution. Methods
for solving optimization problems considering uncertainties
are presented in Sections 4, 5 and 6. The different methods
for RBO discussed in these Sections are categorized accord-
ing to the reliability method that is applied to account for
the effects of uncertainties. The reason for proposing this
categorization is that the application of one particular class
of methods for assessing structural reliability has a major
impact in the type of RBO problems that can be analyzed;
however, other classification criteria are certainly possi-
ble. Thus, Section 4 presents RBO approaches that apply
simplification concepts in order to solve the associated
reliability problem. Section 5 addresses approaches using
approximate reliability methods while Section 6 focuses on
approaches based on simulation techniques. After present-
ing and discussing the different methods for solving RBO
problems, Section 7 provides a qualitative critical appraisal
on these methods in order to provide some guidelines on
their range of applicability and efficiency. Finally, Section
8 closes this contribution drawing some conclusions on the
current status of methods for solving RBO problems and
possible future research directions.

2 Description of the problem

RBO problems can be formulated in different ways
(Moses and Kinser 1967; Enevoldsen and Sørensen 1994;

Vanmarcke 1973); typical examples of such formulations
include, e.g. minimization of (deterministic) construction
costs under constraints including probability terms, mini-
mization of the failure probability under fixed costs, min-
imization of expected life time costs considering mainte-
nance costs and eventual failure, etc. The last formulation
is of particular relevance in engineering, as it considers
costs due to partial damage and structural collapse (Kupfer
and Freudenthal 1977); in mathematical terms, this problem
is defined as follows (Freudenthal 1956; Vanmarcke 1973;
Royset et al. 2001b).

min
y

E
[
C( y, ζ )

]
, y ∈ �y (1)

subject to

hi ( y) ≤ 0, i = 1, . . . , nC (2)

p j ( y) ≤ ptol
j , j = 1, . . . , n P (3)

In the optimization problem above, y denotes the vector of
design variables (of length ny), which are those variables
that can be selected among a certain set and that influence
the performance of a structural system or trigger specific
events; ζ denotes the vector uncertain parameters; hi are
constraints of the problem (e.g. side constraints on y); C
is a cost function (which can eventually be a random vari-
able depending on ζ ) and E[·] is the expectation operator;
finally, p j denotes the probability of occurrence of the j-th
event, which should be equal or smaller than a certain tol-
erable threshold ptol

j . For the sake of simplicity, the index
j is dropped in the remaining part of this publication (i.e.
n P = 1). However, it should be noted that in many prob-
lems n P may be larger than 1. The terms E

[
C( y, ζ )

]
and

p( y) in (1) and (2), respectively, are defined by means of
the multi-dimensional integrals shown below:

E
[
C( y, ζ )

] =
∫

g∗( y,ζ )≤0
C( y, ζ ) f (ζ/ y)dζ (4)

p( y) = P
[
g( y, ζ ) ≤ 0

] =
∫

g( y,ζ )≤0
f (ζ/ y)dζ (5)

In (4) and (5), f (ζ/ y) is the joint probability density func-
tion associated with the vector of uncertain parameters ζ ; it
should be noted that the joint probability density function
may depend on y in case the some of the parameters of the
probability distributions (e.g. mean values) are considered
as design variables. Additionally, in the aforementioned
equations, g∗( y, ζ ) and g( y, ζ ) are two performance func-
tions that are associated with the cost function and the
probability of occurrence of a certain event, respectively.
A performance function is a function used to model the
performance objectives associated with a specific system.
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It is defined such that it assumes a value smaller or equal
to zero when a specific realization of the vector of uncer-
tain parameters and a set of the design variables causes an
unacceptable performance of the system; otherwise, the per-
formance function assumes a value larger than zero. In other
words, the role of the performance function is comparing
the capacity of a structure with the demand (Freudenthal
1956); this comparison may involve any relevant indicator
derived from a virtual simulation, e.g. stresses, displace-
ments, stress intensity factors, etc. In order to illustrate the
definition of a performance function, consider a particu-
lar structural response r( y, ζ ) and the maximum tolerable
threshold level b associated with this response. Then, the
performance function can be defined as follows.

g( y, ζ ) = b − r( y, ζ ) (6)

It is important to note that several performance functions
may be required in order to consider all possible mecha-
nisms that may lead to an unacceptable behavior (Moses
1997). It is also important to mention that the locus of real-
izations of the uncertain parameters and values of the design
variables for which the performance function is equal to
zero is the so-called limit state function.

The solution of a RBO problem is numerically demand-
ing for cases of practical interest. This is due to the fact
that it is necessary to assess expected values and proba-
bilities within the optimization algorithm (cf. (1) and (2),
respectively). For a better understanding of this last point, a
schematic representation of a RBO problem is presented in
Fig. 1. As shown in the figure, the outer loop of a RBO prob-
lem consists of an optimization algorithm. This algorithm
explores the space of design variables in order to deter-
mine the best design solution. Starting from a certain initial
design ( y(1)), a candidate optimal design ( y(k)) is generated
based on some rules which are specific to the optimiza-
tion algorithm being applied. The solution of the underly-
ing optimization problem (either using a gradient-based or
gradient-free algorithm) may require several cycles of eval-
uations of the objective function and constraints for different

Fig. 1 Schematic representation of a RBO problem

sets of the design variables. Each of these cycles demands
the computation of multi-dimensional integrals (cf. (4) and
(5)). In turn, the evaluation of these integrals requires sim-
ulating the virtual model for different realizations of the
vector of uncertain parameters (ζ (s), s = 1 . . . , NS) in order
to obtain the value of the performance function(s). Addi-
tionally, the simulation of the virtual model may be quite
demanding as well, e.g. in the case of a large models includ-
ing non linearities, considerable computational time can be
required to compute the structural response.

From the discussion above, it is clear that a RBO problem
is a double-loop problem (Enevoldsen and Sørensen 1994;
Chen et al. 1997), i.e. the reliability evaluation algorithm
is nested within the optimization loop. The numerical costs
associated with such formulation are usually unaffordable
(except by the case of academic examples). Therefore,
methods for solving RBO problems seek the introduction
of simplifications or special formulations for reducing the
numerical efforts.

3 Structure of the paper and conventions

The remaining part of this contribution provides an
overview on different techniques for solving RBO prob-
lems efficiently. As already mentioned in the Introduction,
these techniques are categorized according to the approach
that is used to solve the associated reliability problem. In
particular, Section 4 presents those RBO techniques where
the underlying reliability problem is solved introducing
appropriate simplifications such as, e.g. characterization of
uncertainty using normal or log-normal distributions (as this
allows solving analytically the problem of adding two inde-
pendent normal variables or multiplying two independent
log-normal random variables, respectively); approxima-
tion of functions by means of linearization; assumption of
independence between different failure modes; simplified
mechanical models, etc. Most of the RBO techniques that
are presented in Section 4 were developed approximately
between the years 1960 and 1980 and they are termed
in this contribution as early approaches. Due to the sim-
plifications introduced, these techniques led to solutions
which were numerically inexpensive, as the computational
power was quite limited at the time these approaches were
developed. Sections 5 and 6 focus on RBO approaches
that apply approximate reliability methods and simula-
tion techniques, respectively. These approaches are usually
numerically more intensive than those using simplifications,
although they provide much more accurate reliability esti-
mates. They were developed starting approximately from
the year 1980. It is important to note that some of the
approaches presented Sections 5 and 6 are described in more
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details as—in opinion of the authors—they have constituted
important milestones in the development of RBO.

For the presentation of the different approaches for solv-
ing RBO problems, it is assumed that the readership is
familiar with optimization algorithms and their capabilities,
advantages and limitations. A review on these algorithms is
outside the scope of this contribution; for more details on
these techniques, it is referred to, e.g. Arora (1989, 2007),
Goldberg (1989), Haftka and Gürdal (1992), Nocedal and
Wright (1999) and Spall (2003). However, it should be
noted that the selection of a particular optimization algo-
rithm can be crucial for solving a particular RBO problem.
For example, gradient-based optimization methods (such as
quasi-Newton methods, see e.g. Bonnans et al. (2003) and
Schittkowski (1983)) can be quite efficient for determin-
ing optimal solutions, although the estimation of gradients
may become an issue and also there is the possibility of
finding local optima only. On the contrary, stochastic search
algorithms such as Genetic Algorithms (see, e.g. Goldberg
1989), Evolution Strategies (see, e.g. Beyer and Schwefel
2002; Thierauf and Cai 1997), Simulated Annealing (see,
e.g. Kirkpatrick et al. 1983), etc. may be able of finding
the global optimum of a specific RBO problem; moreover,
this class of algorithms does not rely on gradient infor-
mation. Nonetheless, stochastic search algorithms usually
require much more function evaluations than gradient-based
optimization methods.

As in the case of methods for optimization, it is also
assumed that the readership is familiar with the state-of-
the-art of methods for structural reliability analysis. For the
sake of completeness, a brief description of these methods
is included in Appendix A. Moreover, throughout this con-
tribution it is assumed that the evaluation of deterministic
constraints of a RBO problem is numerically less involved
than the evaluation of probabilistic constraints. Therefore,
deterministic constraints are omitted in the following for the
sake of brevity. In the same manner, only a single proba-
bilistic constraint is included in the description of different
methods for solving RBO problems.

Finally, it is important to note that for the applica-
tion of a number of methods for structural reliability and
RBO, a common assumption is that the vector of uncertain
parameters is composed by independent, Gaussian stan-
dard distributed random variables. For those cases where
this condition is not satisfied, it is always possible to
apply a suitable mapping (e.g. Nataf’s model, Liu and
Der Kiureghian (1986)) in order to ensure that the vector
of uncertain parameters fulfills the aforementioned require-
ments. In order to maintain consistency throughout this
contribution, the following notation is adopted. The vector
ζ denotes the random variables associated with a particular
structural reliability problem, considering both correlations
and non Gaussian distributions. The vector ξ is a mapping of

the vector ζ into the independent Gaussian space of random
variables, i.e. ζ = Tξζ (ξ); consequently, ξ ∼ N (μξ , σξ ),
where μξ and σξ are the vectors of the mean and stan-
dard deviation, respectively. Additionally, θ is a mapping
of the vector ζ into the independent, Gaussian standard
space of random variables, i.e. ζ = Tθζ (θ). The vector ξ

can also be mapped into the independent, Gaussian stan-
dard space, i.e. ξ = Tθξ (θ); the mapping is such that
ξp = μξp + θpσξp , p = 1, . . . , nζ .

4 Early approaches

Some of the first approaches for solving RBO problems
that were developed focused on the minimization of the
weight of a structural system under a constraint referring
to probability of failure (Hilton and Feigen 1960). In such
approaches, the overall failure probability is calculated con-
sidering that the probability of failure of the individual
components of the system is independent. The optimization
problem is solved using, e.g. Lagrange multipliers (Hilton
and Feigen 1960; Silvern 1963). Thus, an optimality cri-
terion was developed where the proportion between the
weights of two components of a system should be equal
to the proportion of the probability of failure of the com-
ponents (Silvern 1963; Switzky 1965). This criterion was
extended in Murthy and Subramanian (1968), where the
probability of failure of a component was approximated by
an exponential function, i.e.:

p(y) = c0ec1 y (7)

where c0, c1 are constants and the dimension of the vector
of design variables is equal to one, i.e. ny = 1. Such an
assumption led to a correction on the optimality criterion
described above, by introducing a non linear term related
with probabilities.

In Moses and Kinser (1967), it is demonstrated that the
way multiple failure modes are considered for calculating
system reliability may seriously affect the optimization of
the weight of a structure. In particular, it is shown that ignor-
ing the correlation between these failure modes may cause
overestimation of the probability of failure, thus leading
to design solutions with increased weight. This drawback
can be overcome by considering the correlation between
some (but not all) the failure modes (Moses 1997); such
an approximation yields more accurate estimates of the
probability of failure while providing more economic final
designs.

The possibility of applying Monte Carlo Simulation
(MCS) for assessing reliability within the context of RBO
was also discussed in the literature (see, e.g. Broding et al.
1964). In spite of the advantages of MCS for treating
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highly non linear problems involving non Gaussian ran-
dom variables, other possibilities for assessing reliability
were investigated, as the numerical costs of MCS could
be unaffordable. In particular, the possibility of calculating
approximate reliability using the linear perturbation method
was explored in Broding et al. (1964) for minimizing the
weight of a composite plate considering thermal stresses. In
this approach, the safety factor associated with a particular
structure is approximated by means of a first-order Taylor
series expansion. In addition, the weight function is also
approximated using a linear expansion. Thus, the optimiza-
tion problem can be solved efficiently using the simplex
method (see, e.g. Haftka and Gürdal 1992).

Besides the minimization of weight, another problem
studied in the literature has been the minimization of
expected costs. In Heer and Yang (1971), the minimization
of the costs associated with testing and eventual degradation
of a pressure vessel belonging to a spacecraft was analyzed.
In Vanmarcke (1973), an approach for minimizing construc-
tion costs and eventual failure costs of a structural system
was formulated. In this approach, the interaction between
different failure modes is accounted for using correlation
coefficients. Moreover, an efficient formulation which gen-
erated two subsets of failure events denoted as basis and
remainder allowed the efficient computation of lower and
upper bounds for the solution of the optimization problem.

Another approach that has been applied for the solution
of RBO problems is the so-called chance constrained pro-
gramming (see, e.g. Charnes and Cooper 1959). In this
approach, the performance function is linearized around
the mean value of the random variables involved in the
reliability problem. Thus, the reliability can be estimated
approximately by means of an explicit formula (see, e.g.
Ditlevsen and Madsen 1996). This method has been applied
in several studies in the field of RBO, e.g. Davidson et al.
(1977), Rao (1980) and Jóźwiak (1986).

5 Solution methods applying approximate reliability
techniques

This section presents different methods for solving RBO
problems which apply approximate reliability techniques.
These techniques include the First and Second Order Relia-
bility Methods (FORM and SORM, respectively) and the
Dimension Reduction Method (DRM). Two important
parameters that are involved in the application of these tech-
niques are the so-called design point θ∗ and its norm—the
so-called reliability index β. Details on these parameters are
discussed in Appendix A.

The methods for solving RBO problems presented
in this section are organized in three groups: double-
loop approaches, single-loop approaches and decoupling

approaches. This classification has been suggested in a
number of publications, see e.g. Aoues and Chateauneuf
(2010), Bichon et al. (2009) and Chen et al. (1997).
Nonetheless, other classification criteria could be applied
as well.

5.1 Double-loop implementation

The most direct approach for solving a RBO problem is
implementing a double-loop approach, i.e. estimation of
the structural reliability for each set of design variables
evaluated by the optimization algorithm. In case FORM is
applied for reliability analysis, there are two nested opti-
mization cycles, as the assessment of probability is equiva-
lent to the solution of an optimization problem (in order to
identify the design point). Such an approach was followed
in, e.g. Nikolaidis and Burdisso (1988), where a determin-
istic function C( y) is minimized subject to a probabilistic
constraint. Thus, the optimization problem is expressed as
follows.

min
y

C( y) (8)

subject to

β( y) − β tol ≥ 0 (9)

Equation (9) corresponds to the probabilistic constraint,
where β(·) is the reliability index associated with the prob-
ability of failure of the structure and β tol is the minimum
acceptable reliability index, which is defined as:

β tol = �−1(1 − ptol) (10)

where �−1(·) is the inverse of the standard normal cumula-
tive density function. The reliability index β(·) is equal to∣∣∣∣θ∗∣∣∣∣, where θ∗ is the solution of the following optimization
problem (see also Appendix A).

min
θ

||θ || (11)

subject to

g( y, Tθζ (θ)) ≤ 0 (12)

As the formulation of the probabilistic constraint in (9)
applies the reliability index, it has been denoted in the lit-
erature as the Reliability Index Approach (RIA, see e.g. Tu
et al. 2001).

A key issue for the efficient implementation of the
double-loop approach using FORM is the computation of
the sensitivity of the reliability index w.r.t. design variables
in case gradient-based algorithms are employed. Sensitivity
estimation was studied, e.g. in Kwak and Lee (1987), where
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an approach for the weight minimization under a num-
ber of probability constraints was introduced. The salient
feature of this approach is that the sensitivity of the reli-
ability index with respect to the design variables is calcu-
lated using a formula involving Lagrange multipliers related
with the optimality conditions that must be fulfilled at the
design point. In addition, this approach has been extended
taking advantage of the Neumann expansion for solving
the state equations of structural systems including random
parameters (Lee and Kwak 1995).

The double-loop approach has been applied to several
types of RBO problems aside those involving determinis-
tic objective functions. For example, in Enevoldsen and
Sørensen (1994), several different formulations of the RBO
problem were investigated considering construction costs
and costs due to eventual failure, repair, etc. In that contribu-
tion, much attention is paid to the issue on how to calculate
the probabilities associated with structural systems (see, e.g.
Ditlevsen 1978), which can be much more involved than the
calculation of component reliability. Moreover, the issue on
how to estimate probability sensitivity is discussed as well.
In particular, it is pointed out that sensitivities should be
calculated using semi-analytical methods in order to ensure
sufficient accuracy (see, e.g. Bjerager and Krenk 1989;
Enevoldsen and Sørensen 1993).

Besides the contributions described above, several other
authors explored different aspects of the implementation of
the double-loop approach, e.g. introduction of approxima-
tion concepts for estimating probability and its sensitivity
(Reddy et al. 1994), evaluation of approaches for account-
ing for different failure modes in reliability analysis (Yang
and Nikolaidis 1991), two-point approximations of the
performance function (Grandhi and Wang 1998), etc.

The approaches described above formulate probability
constraints using the so-called RIA (see (9)). However,
an alternative means for expressing a probability con-
straint is using the so-called inverse FORM (iFORM)
approach (Der Kiureghian et al. 1994; Li and Foschi 1998;
Winterstein et al. 1994), which is also denoted as the
Performance Measure Approach (Tu et al. 2001). Using the
iFORM approach, the RBO problem is formulated as shown
below.

min
y

C( y) (13)

subject to

g
(

y, Tθζ

(
θ i F

))
≥ 0 (14)

In (14), θ i F is a realization of the uncertain parameters
derived from the iFORM analysis; θ i F is the solution of the
following optimization problem.

min
θ

g
(

y, Tθζ (θ)
)

(15)

subject to

||θ || = β tol (16)

The equality constraint of the optimization problem in (15)
and (16) imposes the prescribed tolerable failure probability
by setting the norm of θ equal to β tol . It has been indicated
in the literature (see, e.g. Lee et al. 2002; Ramu et al. 2006)
that iFORM is numerically more stable than RIA. This is
due to the fact that it is much simpler to solve an optimiza-
tion problem with an equality constraint (see (15) and (16))
than solving a problem comprising an involved inequality
constraint (see (11) and (12)) (Youn et al. 2003). More-
over, iFORM is much more amenable than RIA for treating
inactive probabilistic constraints (Tu et al. 2001). For the
solution of the optimization problem related with iFORM,
different methods have been applied, taking advantage on
the convexity or concavity of the performance function, see
e.g. Youn et al. (2003, 2005). A schematic representation
of the solution of a RBO problem considering a double-
loop approach and iFORM is shown in Fig. 2. In this figure,
the segmented lines represent the contour levels of the cost
function; moreover, it is assumed that σ ξ = 1 and that y
corresponds to the mean value of the vector of random vari-
ables, i.e. y = μξ . Starting from a design y(1), the iFORM
analysis is carried out; it is found that the probabilistic

constraint is not active because g
(

y, Tθζ

(
θ i F,(1)

))
> 0.

Thus, the optimization algorithm explores a new candi-
date optimum design y(2) at which iFORM is carried out
again. Finally, the design optimal design y(3) is determined;
at this design, the optimality conditions are fulfilled and

g
(

y, Tθζ

(
θ i F,(3)

))
= 0.

It is most interest to note that the so-called iFORM
approach and its application within RBO is closely related
with semi-infinite programming techniques, as shown in
Royset et al. (2001a). In that contribution, the RBO prob-
lem is replaced by an approximate, deterministic one using

Fig. 2 Schematic representation of the double-loop approach applying
iFORM (considering σ ξ = 1)
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semi-infinite programming. That is, the probabilistic con-
straint is replaced by an infinite number of deterministic
constraints; such a replacement is based on the theory
of FORM. Thus, the RBO problem can be solved most
efficiently using specialized algorithms for semi-infinite
programming problems (Polak 1997). Two types of prob-
lems are studied: the minimization of a deterministic func-
tion subjected to a number of reliability constraints and
the maximization of the reliability under deterministic con-
straints; in both cases, both, component and series sys-
tem reliability are considered. In subsequent contributions,
the semi-infinite approximation of the RBO problem was
extended to cover the case of minimization of an expected
cost function (Royset et al. 2001b, 2006). It should be noted
that the approaches introduced in Royset et al. (2001a, b,
2006) can be applied using not only FORM, but also SORM,
MCS or any other appropriate reliability technique.

Aside the application of classical approximate reliabil-
ity methods, the so-called Dimension Reduction Method
(DRM) (Rahman and Xu 2004; Xu and Rahman 2004) has
also been applied within the context of RBO using a double-
loop approach. For example, in Rahman and Wei (2008),
the RBO problem is solved using gradient-based optimiza-
tion, where the sensitivity of the probability is calculated
using semi-analytical expressions based on DRM reliabil-
ity analysis. Another example is the approach developed in
Lee et al. (2008), where the DRM is applied within the con-
text of inverse reliability analysis (as in iFORM) for solving
RBO problems.

5.2 Converting the double-loop into a single-loop

An approach for avoiding the so-called double loop in RBO
was proposed in Chen et al. (1997). The problem treated
in that contribution refers to the minimization of the struc-
tural weight under a number of probabilistic constraints.
The design variables correspond to the mean value of all
uncertain parameters present in the problem, i.e. y = μξ .
This particular structure of the problem allows replacing the
probabilistic constraint with an approximate, deterministic
constraint; the latter constraint is formulated in terms of the
associated performance function g(·, ·) and depends exclu-
sively on the value of the design variables. Thus, the original
double-loop problem is converted into a single-loop prob-
lem. In mathematical terms, the RBO problem is formulated
as follows.

min
y

C( y) (17)

subject to

g
(

y, Tξζ

(
ξ (k)

))
≥ 0 (18)

where:

ξ (k) =
〈
y1 − β tolσξ1α

(k−1)
1 ,. . ., ynζ − β tolσξnζ

α(k−1)
nζ

〉T
(19)

α(k) =
∇θ

(
g

(
y, Tξζ (ξ)

))⎪⎪⎪⎪ξ=ξ (k)

∣
∣∣
∣
∣∣∇θ

(
g

(
y, Tξζ (ξ)

))⎪⎪⎪⎪ξ=ξ (k)

∣
∣∣
∣
∣∣

(20)

The strategy for solving the RBO problem according to the
method described above is shown schematically in Fig. 3.
In this figure, the segmented lines represent the contour
levels of the cost function; moreover, it is assumed that
σ ξ = 1. Starting from an initial candidate ξ (1), the unit
vector α(1) (cf. (20)) is calculated. Then, the optimization
problem in (17) and (18) is solved w.r.t. to y, keeping α(1)

constant; as shown in the figure, the distance between ξ (1)

and y is kept—by construction—equal to β tol (cf. (19)).
Once the optimization is finished, ξ (2) is calculated based
on the optimum y(2). Thus, α(2) can be determined and opti-
mization is performed again, starting from the design y(2)′

(in the figure, the distance between y(2)′ and ξ (2) is—by
construction—equal to β tol ); this leads to the optimal design
y(3). In this way, the steps described above are repeated until
fulfilling a prescribed convergence criterion.

The key issue in the approach described above is that
the unit direction α is kept constant within each itera-
tion. This is equivalent to assume that the direction of
the design point vector associated with the performance
function remains constant despite eventual changes in the
value of y. In this way—and applying the theory of FORM
(see Appendix A)—it is possible to construct the constraint
in (18). This allows breaking the inner loop related with
reliability analysis.

Although the method presented in Chen et al. (1997) can
be quite advantageous, it should be noted that its efficiency
and accuracy can be affected by several factors. For exam-
ple, the selection of a particular starting point ξ (1) for the
algorithm may affect the efficiency considerably (Yang and

Fig. 3 Schematic representation of the single-loop approach proposed
in Chen et al. (1997) (considering σ ξ = 1)
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Gu 2004). Moreover, in those cases where the performance
function is non linear, the application of this algorithm may
not be appropriate, as the FORM hypothesis may not be
representative of the actual reliability problem.

Another important class of approaches that allows avoid-
ing the so-called double loop are those that take advantage
of the Karush–Kuhn–Tucker (KKT) optimality conditions
(see, e.g. Bonnans et al. 2003) and Lagrange multipliers.
For example, in Kuschel and Rackwitz (1997), the KKT
conditions related with the design point identification are
incorporated in the formulation of the RBO problem. In
this way, the inner reliability loop is avoided. This allows a
simultaneous convergence w.r.t. the design variables and the
design point location. In spite of the evident advantage that a
single optimization loop provides, the approach requires the
computation of second order derivatives. Moreover, a recent
benchmark study (Aoues and Chateauneuf 2010) indicates
that this approach may suffer instability problems. More
recently, in Agarwal et al. (2007), an approach similar to the
one introduced in Kuschel and Rackwitz (1997) was devel-
oped, with the difference that the probabilistic constraints
are formulated using the iFORM approach and that the cal-
culation of second order sensitivities is avoided by applying
a quasi-Newton method (see, e.g. Bonnans et al. 2003).
Another example of the application of the KKT conditions
can be found in Kharmanda et al. (2002) and Mohsine et al.
(2006), where a hybrid formulation is applied for solving
the RBO problem, i.e. the objective function is expressed as
the product between the objective function and the reliabil-
ity of the structure. In Kaymaz and Marti (2007) and Marti
and Kaymaz (2006), the KKT conditions were employed to
formulate RBO problems related with the design of elasto-
plastic mechanical structures. Finally, an approach that uses
the KKT conditions and that is very similar to the one intro-
duced in Chen et al. (1997) was proposed in Liang et al.
(2008); the distinctive characteristic of the latter approach is
that the unit direction α is calculated exactly for each design
explored by the optimizer.

5.3 Decoupling approach

The implementation of a decoupling approach implies that
information from the reliability analysis stage is extracted
and used at the optimization stage in order to improve
numerical efficiency. In this way, the so-called double loop
problem associated with RBO is avoided, i.e. it may not be
necessary to perform a full reliability analysis each time a
new point in the space of the design variables is explored by
the optimization algorithm.

One of the first decoupling approaches was introduced
in Li and Yang (1994), where the RBO problem is for-
mulated as a linear programming problem; the key step
in this approach is the construction of a linear approxim-

ation of the reliability index using information on sensitivi-
ties, i.e.:

β( y) = β
(

y(k)
)

+
ny∑

l=1

∂β( y)
∂yl

⎪⎪⎪⎪⎪⎪⎪
y= y(k)

(
yl − y(k)

l

)
(21)

where y(k) is the k-th candidate optimal design. In Tu
et al. (2001), the idea of constructing a linear approxi-
mation of the probability was explored as well; however,
in this approach, the special treatment of active and inac-
tive constraints allows improving the overall efficiency.
Besides the approaches described previously, other alter-
natives have been investigated as well, e.g. consideration
of both linear and reciprocal approximations of the relia-
bility index (Chandu and Grandhi 1995), introduction of
approximations using Benders cuts (Mínguez and Castillo
2009), calculation of the sensitivity of the reliability index
using Lagrange multipliers and the (approximate) Hessian
matrix associated with the design point identification prob-
lem (Agarwal and Renaud 2006), application of Sequential
Linear Programming and identification of active constraints
(Chan et al. 2006, 2007), application of recursion formu-
las for estimating the design point and its sensitivity (Cheng
et al. 2006), etc.

The approaches described above use information on sen-
sitivity for constructing approximations of the probability. A
different approach which does not rely on sensitivities is the
so-called Sequential Optimization and Reliability Assess-
ment (SORA) method (Du and Chen 2004). In order to
describe this approach, assume that all the design variables
correspond to the mean values of the Gaussian distributed
random variables, i.e. y = μξ . This assumption is intro-
duced here for the sake of simplicity. The optimization
problem that is solved in SORA is shown below.

min
y

C( y) (22)

subject to

g
(

y, Tξζ

(
y − s(k)

))
≥ 0 (23)

In (23), s(k) is a vector which is equal to:

s(k+1) =
{

0 k = 1

y(k) − Tθξ

(
θ i F,(k)

)
k ≥ 2

(24)

where y(k) is the solution of the optimization problem in
(22) and (23) for the k-th iteration and θ i F,(k) is the solu-
tion of the iFORM optimization problem (cf. (15) and
(16)), considering y(k) as the mean value of the uncer-
tain parameters. The way SORA proceeds is as follows.
The first iteration (i.e. k = 1) solves the RBO problem
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considering the performance function as a regular determin-
istic constraint. This will lead to an optimum design y(1).
This design will be—for problems of practical interest—
unfeasible. Then, the iFORM problem is solved in order
to determine θ i F,(1), which is a realization of the uncertain
parameters lying in the failure domain with Euclidean norm
equal to β tol (see (15) and (16)). After solving the iFORM
problem, the parameter s(2) is determined. The purpose of
this parameter is introducing a shifting in the deterministic
constraint in (23) such that actual probabilistic constraint is
enforced. Thus, when the optimization problem considering
s(2) is solved, an improved design (from the point of view
of reliability) will be obtained. By repeating this procedure
a number of times, it is possible to determine the sought
optimum.

6 The use of simulation techniques in reliability-based
optimization

This section presents techniques for solving RBO prob-
lems that apply simulation methods for assessing reliability.
These techniques are organized in three groups: application
of meta-models, decoupling approach and direct integration
with optimization algorithms. As in the case of the previ-
ous Section, other classification criteria could be certainly
applied as well.

Before discussing in detail the different RBO techniques
applying simulation methods, an important issue must be
addressed. As it is well known, simulation methods pro-
duce reliability estimates that are subject to a certain degree
of variability. That is, for analyzing the same problem of
structural reliability, two independent runs of a simulation
technique would most likely produce different estimates
of the associated probability. Although in principle such
variability can be controlled by increasing the number of
samples of the uncertain parameters that are drawn when
applying a simulation method, this alternative can become
numerically demanding. An alternative means for coping
with the variability of the reliability estimates generated
through simulation techniques is the application of common
random numbers (CRN) and smoothing of indicator func-
tions (Taflanidis and Beck 2008a). The application of CRN
implies that the same stream of random numbers is used
for evaluating the reliability associated with two different
sets of design variables y(k1) and y(k2). The use of a smooth
indicator function implies that instead of using a binary cri-
terion to classify whether or not a particular realization of
the uncertain parameters is included in the probability inte-
gral (cf. (5)), a relaxed criterion is applied. It should be
noted that these strategies do not eliminate the variability
of the estimates. Instead, they introduce a consistent estima-
tion error. That is, although the estimates (of, e.g. reliability)

for two different sets of the design variables still contain
error, these estimates are still comparable between them.
For more details on the application of this approach, it is
referred to, e.g. Taflanidis and Beck (2008a, b).

6.1 Application of meta-models for assessing reliability
using simulation techniques

The evaluation of virtual simulation models (based on, e.g.
finite elements, boundary elements, etc.) may be compu-
tationally expensive, specially when analyzing large struc-
tures with a high degree of refinement in the discretization
and possibly including non linearities. Within the context of
RBO, the simulation of such models may lead to compu-
tation times which are unaffordable. As a means to reduce
computational efforts, the virtual simulation model can be
approximated with a meta-model. The advantage of using
a meta-model in this context is that the numerical effort
associated with its evaluation is usually negligible. In this
manner, the reliability analyses using simulation techniques
that are performed for solving the RBO problem can be
carried out at low numerical costs.

In order to ensure that the meta-model is accurate, a
proper training should be carried out, where the parameters
of the meta-model are adjusted based on simulations of the
full model. A key issue to be defined at the training phase is
which data points should be used to perform the calibration
and how many of these points are required. The points to be
selected for performing the calibration can be selected using
an appropriate design of experiments scheme (see, e.g. Cox
and Reid 2000), such as factorial designs, latin hypercube
designs, etc. Additionally, the training points can also be
selected adaptively according to the specific needs of the
problem at hand. Concerning the number of points to be
selected, this can be chosen based on some prescribed con-
vergence criterion. For example, in Bichon et al. (2008),
meta-models for reliability analysis are trained using the
so-called Ef f icient Global Optimization procedure, which
allows selecting the samples to train the meta-model adap-
tively in order to ensure accuracy in the vicinity of the
limit state function. Another example of adaptive selection
of training points is the approach introduced in Basudhar
and Missoum (2008); in that approach, points for training a
Support Vector Machine (SVM) are selected such that they
improve the quality of the meta-model.

Once a meta-model has been calibrated, the associated
RBO problem can be solved using virtually any appropri-
ate optimization algorithm and simulation technique, as the
meta-model is very inexpensive to evaluate. In this context,
the construction of a meta-model is not restricted to a vir-
tual simulation model. A meta-model can also replace, e.g.
spectral quantities (vibration frequencies and modes), per-
formance functions, etc. It should also be noted that for
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solving a RBO problem, meta-models do not need to be
global. That is, it may be easier and more efficient to con-
struct several meta-models that are valid over subdomains
of the variables involved in a particular problem.

Meta-models can be applied in two different forms when
solving a particular RBO problem. In the first one, the meta-
model is used to represent directly a performance function,
i.e. given a certain realization of the uncertain parameters
and design variables, the meta-model produces a numeri-
cal value that approximates the one that would be obtained
by evaluating the performance function. In the second one,
the meta-model is used as a classif ication tool, i.e. the
meta-model determines whether or not a certain realiza-
tion of the uncertain parameters and design variables causes
an acceptable or unacceptable behavior (i.e. the associated
value of the performance function is larger than zero or
smaller than zero, respectively) without actually computing
an approximate value of the performance function.

Meta-models as a means for approximating directly the
performance function have been used thoroughly in the lit-
erature. A typical example of this class of meta-models
is the response surface (RS) methodology. The applica-
tion of RS techniques in context with reliability analysis
has been investigated in, e.g. Bucher and Bourgund (1990)
and Rajashekhar and Ellingwood (1993). The RS method-
ology has also been applied for solving RBO problems
efficiently. For example, in Foschi et al. (2002), the per-
formance function is replaced with an incomplete quadratic
RS; then, FORM and Importance Sampling techniques are
applied in order to assess the reliability. A similar approach
is implemented in Agarwal and Renaud (2004), where
the performance function is replaced with a quadratic RS.
This meta-model is constructed using information extracted
from approximate reliability analysis; once the RS model
is calibrated, direct Monte Carlo Simulation (MCS, see
Appendix A) is carried out with reduced computational
efforts. The RS methodology has been applied not only
to replace the performance function but also intermediate
responses. For example, in Jensen (2005), the spectral quan-
tities associated with a structure are approximated by means
of linear response surfaces. This allows reducing consider-
ably the number of eigenvalue/ eigenvector decompositions
required to solve RBO problems involving linear structures
subject to stochastic dynamic loadings.

Although the RS methodology has been widely used,
there are several other techniques that are a viable alter-
native for reducing numerical costs within the context
of RBO. For example, the possibility of approximating
numerically demanding FE models with Artificial Neural
Networks (ANN) been investigated in, e.g. Papadrakakis
et al. (2005), Papadrakakis and Lagaros (2002); in these
contributions, the RBO problem has been solved using
Monte Carlo Simulation (MCS) for reliability analysis and

evolution strategies (see, e.g. Beyer and Schwefel 2002)
for optimization. In Zhang and Foschi (2004), ANN were
applied for the optimization of dynamical systems. Another
strategy for RBO where meta-models approximate the per-
formance function was recently introduced in Bichon et al.
(2009). In this approach, the performance function is
replaced with a Gaussian process (GP) meta-model, which
allows assessing probability efficiently. The meta-model
is incorporated at different levels of the RBO problem,
leading to double-loop, single-loop or decoupled solution
strategies. In addition to the applications described above,
meta-models have also been used as classification tools
for solving RBO problems. For example, Support Vec-
tor Machines (SVM) have shown to be a feasible means
for determining whether or not particular realizations of
( y, ζ ) lead to failure. An important feature of SVM is
their flexibility and adaptability for approximating the exact
model when compared to the RS approach (Hurtado 2004,
2007). Within the context of RBO, SVM have been applied
in Basudhar et al. (2008), Basudhar and Missoum (2008)
and Basudhar and Missoum (2009); in these contributions, it
has been shown that SVM can be used to deal with involved
limit state functions that might even be discontinuous. In
addition to SVM, Convex sets are another alternative for
constructing a meta-model that works as a classification
tool. In Missoum et al. (2007), it is proposed to approx-
imate the limit state functions related to the failure event
by means of a convex hull; such an approximation allows
to apply direct MCS at low numerical costs, rendering a
feasible means for performing RBO.

6.2 Decoupling

As already discussed in Section 5.3, a feasible means for
solving RBO problems efficiently is the application of a
decoupling approach. Within the context of RBO consid-
ering simulation techniques for reliability assessment, the
possibility of constructing an approximate representation
of the probabilities as an explicit function of the design
variables around an expansion point has been widely inves-
tigated. This allows solving the optimization problem most
efficiently, as the outer optimization loop (that explores the
space of the design variables) is decoupled from the inner
reliability loop. Thus, the key issue in such an approach
is the construction of an approximate representation of the
probabilities. Early efforts demonstrated that a probability
function may be approximately represented by means of an
exponential function (Murthy and Subramanian 1968; Lind
1976; Kanda and Ellingwood 1991). This approach was
employed in the context of RBO in Gasser and Schuëller
(1997), in order to generate a global approximation of the
failure probabilities as an explicit function of the design
variables; in this context, global refers to the fact that the
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approximation was assumed to be valid over the whole
domain of the design variables. The exponential approxi-
mation is constructed by selecting some predefined interpo-
lation points in the space of the design variables, at which
the failure probability is calculated by means of simulation;
then, an exponential function is adjusted to the data col-
lected at the interpolation points in a least square sense.
The argument of the exponential function is a polynomial
of second or higher order, i.e.:

p( y) = e(pol( y)) (25)

where pol(·) is a polynomial depending on y. The approach
introduced in Gasser and Schuëller (1997) was further
extended in Jensen and Catalan (2007) and Jensen (2005),
where it was shown that the construction of local approxi-
mations of the failure probabilities could be advantageous.
This is due to the fact that the argument of the exponential
function can be selected as a polynomial of lower order than
in the case of the global approximation. The approach using
local approximations can be incorporated in a sequential
approximate optimization framework (see, e.g. Haftka and
Gürdal 1992; Jacobs et al. 2004) in order to solve the target
RBO problem. That is, after identifying a candidate optimal
design located within a given subdomain of the design vari-
ables, a new approximation of the probability is constructed
around this candidate and the optimization w.r.t. the design
variables is repeated (within a new subdomain of the design
variables). A schematic representation on how this approach
operates is shown in Fig. 4. In this figure, the RBO prob-
lem is represented in the space of the design variables. The
continuous line indicates a contour level of the probability
function; the segmented line, contour levels of the objec-
tive function and the dash-dotted line, sub-domains �

(k)
y

Fig. 4 Schematic representation of sequential approximate optimiza-
tion for RBO

for performing optimization, where the approximate repre-
sentation of the probability is constructed. The dots denote
candidate optimal designs. As depicted in the figure, the
optimization procedure starts from an unfeasible design; as
iterations progress, the candidate design is improved until
finding the optimal solution at the fifth iteration.

The major disadvantage of the approaches based on
global and local approximations of the failure probability
described above is that the number of reliability analy-
ses required to adjust the exponential approximation grows
rapidly with the number of design variables, i.e. at least
linearly with ny .

An alternative technique for constructing an approxima-
tion of the failure probabilities was proposed in Au (2005).
The key issue in this technique is associating a so-called
instrumental variability with the (deterministic) design vari-
ables; then, the sought approximation can be obtained using
Bayes’ theorem in conjunction with histograms representing
the probability distribution of the design variables condi-
tioned on the failure event; in this context, it is important
to note that a single reliability analysis suffices for obtain-
ing all required information. This technique was further
developed in Ching and Hsieh (2007a, b), where the afore-
mentioned histograms were replaced by probability density
functions determined using the maximum entropy principle
(Jaynes 1968; Ormoneit and White 1999), in order to con-
struct a global approximation of the failure probabilities in
the space of the design variables. An approach based on cal-
culating the area and first moments of area of the failure
probability function over a sub-domain of �y was proposed
in Jensen et al. (2008) for constructing a local approxima-
tion of p( y) using a single reliability analysis; it can be
shown that such an approach is actually equivalent to the
one proposed in Ching and Hsieh (2007b), although they
rely on a different theoretical background. More recently, in
Koutsourelakis (2008), an approach which is also based on
associating an instrumental variability with the (determin-
istic) design variables and Bayes’ theorem was presented;
the information extracted from the samples of the design
variables at different stages of the reliability analysis is
employed to construct a global approximation of p( y) using
probabilistic classifiers. However, it was also shown in that
contribution that the construction of approximate represen-
tations of the probability using a single reliability analysis
may be restricted to a low number of design variables, e.g.
three or four.

An alternative strategy for constructing an approximate
representation of the probability function is using informa-
tion on sensitivity, e.g.:

p( y) = p
(

y(k)
)

+
ny∑

l=1

∂p( y)
∂yl

⎪⎪⎪⎪⎪⎪⎪
y= y(k)

(
yl − y(k)

l

)
(26)
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where y(k) is the expansion point. Such an approach was
adopted in Zou and Mahadevan (2006), where the problem
of weight minimization under probabilistic constraints was
analyzed considering that the vector of design variables cor-
responds to the mean value of the uncertain parameters. The
required sensitivities at the expansion point are calculated
using an approach proposed in Wu (1994). The salient fea-
ture of this approach is that the required sensitivities can be
calculated using the same samples generated for estimating
the reliability. Another approach using information on sen-
sitivity was introduced in Valdebenito and Schuëller (2010).
In that approach, the probability of failure is approximated
using an exponential function. The sensitivity is calculated
with a novel algorithm which is applicable in cases where
the number of uncertain parameters is very large, e.g. nζ in
the order of hundreds or even thousands.

6.3 Direct integration with optimization algorithms

In the previous section, the possibility of constructing
an approximate representation of the probability functions
using information on the sensitivity was analyzed. How-
ever, the information on the probability sensitivity could
be used directly within a gradient-based optimization algo-
rithm in order to solve the RBO problem efficiently. For
example, in Royset and Polak (2004a, b), the issue as to
how to compute the gradient of the probabilities is addressed
by means of simulation. In particular, an algorithm for
estimating ∂p( y)/∂yl using either Monte Carlo simulation
(MCS) or Importance Sampling (IS) is proposed. This algo-
rithm requires solving the equation g

(
y, Tθζ (θ)

) = 0 for
one component of θ , either analytically or numerically.
The information on the sensitivities is then used within an
efficient optimization scheme in order to determine an opti-
mal solution for the RBO problem. In Jensen et al. (2009),
another approach for solving RBO problems based on sen-
sitivity information is presented. In this approach, sensitiv-
ities of the probability are computed using the algorithm
developed in Valdebenito and Schuëller (2010). The sensi-
tivity information is then integrated within an optimization
algorithm based on feasible directions. The efficiency of
the procedure is increased by performing line search using
a polynomial approximation of the probability along the
search direction; this approximation is constructed using
information on both the probability estimate and its direc-
tional derivative, following a procedure developed in van
Keulen and Vervenne (2004).

Another approach that integrates directly a simulation
technique with optimization is the so-called Stochastic
Subset Optimization (SSO) method (Taflanidis and Beck
2008a, b). In this technique, the capabilities of exploring
the space of the uncertain parameters for reliability assess-
ment of Subset Simulation (Au and Beck 2001)—which is

an advanced simulation method—are exploited for explor-
ing the space of the design variables at the same time. This
allows then the evaluation of the structural reliability and
identification of the optimal solution of the RBO problem
simultaneously. SSO operates by generating a pool of sam-
ples of the uncertain parameters and design variables (note
that an instrumental variability is associated with the design
variables, see Au 2005). In this way, it is possible to iden-
tify a subset of the design variables which, on the average,
improves the value of the objective function. By repeating
this procedure a number of times, it is possible to determine
at each step a smaller subset of the design variables which
in turn improves the value of the objective function. At the
end, this subset will be sufficiently small to identify directly
the optimum solution of the optimization problem or it will
provide sufficient information in order to launch another
optimization algorithm, such as the Stochastic Perturbation
Simultaneous Approximation (SPSA) algorithm (see, e.g.
Spall 2003). A schematic representation on how SSO pro-
ceeds is shown in Fig. 5. In this figure, it is considered that

(b) Second iteration of SSO

(a) First iteration of SSO

Fig. 5 Schematic representation of two iterations of SSO
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�y = [−2, 6] × [−2, 6]. In the first iteration, samples of
the design variables are generated over �y ; then, a region
(in this case, an ellipse marked with continuous line) with
the lowest density of samples is identified, as this region
improves—on the average—the value of the objective func-
tion. In the second iteration, a new region (smaller than the
previous one) is identified again. In this manner, SSO can
converge towards the optimal solution of a RBO problem.

7 Comparison of different methods

The spectrum of algorithms for solving RBO problems is
quite wide. Several methods have been developed under
specific assumptions or tailored to specific problems; very
few approaches can be applied in a black box fashion to
any arbitrary problem in structural design. Therefore, an
objective comparison of the different methods based on
quantitative results is—in opinion of the authors—currently
not feasible. In view of this fact, this section attempts to
provide a qualitative comparison between different methods
for solving RBO problems. Nonetheless, it should be noted
that a few benchmark studies covering part of the spectrum
of algorithms for RBO are available, see e.g. Aoues and
Chateauneuf (2010) and Yang and Gu (2004). Such studies
are certainly a very valuable tool for comparing some of the
algorithms available.

The discussion and comparison of different approaches
for RBO is carried out on the basis of five main issues which
are presented in detail below.

Dimensionality of the vector of design variables A large
part of the RBO algorithms developed so far addresses prob-
lems involving very few design variables. In fact, few con-
tributions consider problems involving more than 10 design
variables; a notable exception is Grandhi and Wang (1998).
Naturally, the fact that only a low number of design vari-
ables is considered is a direct consequence of the difficulties
in addressing uncertainties. That is, the multi-dimensional
integrals associated with the evaluation of probabilities and
expected costs impose a major challenge for performing
function evaluations and sensitivity analysis. Therefore, the
application of RBO in problems involving structural sys-
tems with a large number of decision variables can be quite
challenging. In such cases, a feasible approach is imple-
menting a screening strategy (Sues et al. 2001) in order
to determine the most influential variables and reduce the
dimensionality of the design variable vector.

Dimensionality of the uncertain parameters The num-
ber of uncertain parameters required to characterize a par-
ticular model will be highly variable. While in a given
problem, very few random variables might be required, in
others hundreds or even thousands might be necessary. For

example, large models may require a high number of ran-
dom variables in order to capture the effects of uncertainty,
see e.g. Pellissetti et al. (2006). Another example is the rep-
resentation of stochastic processes and random fields, see
e.g. Katafygiotis and Wang (2009). The number of ran-
dom variables involved in a RBO problem may become a
challenging issue in case approximate reliability methods
are used. Two reasons justify this assertion. In the first
place, several methods rely on optimization for determin-
ing the design point. The identification of this point can be
quite challenging, as an increasing number of dimensions
will imply—in most cases—an increase in the number of
evaluations of the performance function. Secondly, approx-
imate reliability methods may not be applicable when the
dimensionality of ζ is high, as discussed in Katafygiotis and
Zuev (2008) and Valdebenito et al. (2010). On the contrary,
RBO approaches using simulation methods are much better
suited for treating problems with a large number of random
variables. In fact, several methods of this class have been
developed especially for treating such problems.

Application of meta-models The application of meta-
models always constitutes a very attractive approach for
solving RBO problems. As the meta-model is inexpensive
to evaluate, it is possible to try several different solu-
tion approaches, perform exhaustive sensitivity analyses,
etc. Moreover, certain types of meta-models—such as soft
computing techniques—are capable of capturing involved
input-output relations of a virtual simulation model. How-
ever, a major issue in applying meta-models is that their
training can be challenging for cases where the input vector
is of high dimension.

Component reliability vs. system reliability Partial fail-
ure in a structural system may cause loss of serviceability.
Such type of failure can be originated due to, e.g. failure of a
particular component. However, structural systems are often
designed such that they possess a high level of redundancy.
Thus, structural collapse will occur most likely due to the
combined effect of several different failure modes. These
arguments indicate that both component and system reliabil-
ity are very important when formulating and solving a RBO
problem. In spite of the relevance of both types of reliabil-
ity, RBO considering system reliability has received little
attention compared to component reliability, see e.g. Aoues
and Chateauneuf (2008) and Pu et al. (1997). In the case
of RBO methods based on approximate reliability meth-
ods, almost all contributions refer to component reliability.
Although efforts have been devoted for considering system
reliability (see e.g. Enevoldsen and Sørensen 1993; Royset
et al. 2001a), the accuracy of the assessment of the prob-
ability becomes a serious issue. Approximate formulas for
assessing reliability in these cases (see, e.g. Ditlevsen 1978)
usually assume linear or weakly non linear performance
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functions. RBO methods based on simulation can be more
appropriate when considering system reliability. In particu-
lar, RBO methods applying black box simulation techniques
(such as Subset Simulation, Au and Beck (2001)) are able to
handle even thousands of non linear performance functions
simultaneously.

Overall ef f iciency As already discussed above, a fair com-
parison of RBO methods is quite challenging, as different
approaches treat different types of problems. For example,
while some approaches treat small structural systems under
static loads, other approaches address non linear systems
subject to stochastic loading. Or while some approaches are
restricted to analyzing a few failure modes, others can con-
sider simultaneously thousands of possible failure modes.
However, some general guidelines can be established. RBO
methods based on approximate reliability methods can be
very efficient for problems involving component reliabil-
ity, a low number of uncertain parameters and linear or
mild non linear performance functions. In such cases, the
basic hypotheses of approximate reliability methods will
be most likely fulfilled. In addition, the identification
of the design point and assessment of the probabilistic
constraints can be performed most efficiently using well-
established techniques, see e.g. Youn et al. (2003) and Liu
and Der Kiureghian (1991). Results reported in the litera-
ture (see e.g. Du and Chen 2004; Chen et al. 1997; Agarwal
et al. 2007) indicate that for such cases, the total number
of function evaluations (e.g. FE simulations) required for
solving a RBO problem may be between two or three orders
of magnitude. For those problems involving system relia-
bility, a large number of random variables and non linear
performance functions, RBO methods based on simulation
constitute a natural choice for solution. According to results
in the literature (see, e.g. Ching and Hsieh 2007a; Taflanidis
and Beck 2008b; Jensen et al. 2009), the number of function
evaluations required for solving a RBO problem may vary
between three and five orders of magnitude.

8 Conclusions

This contribution has addressed nearly 50 years of devel-
opments in the field of RBO. The progress achieved in this
field during this period has been considerable. While early
efforts focused on simplified analysis and explicit formu-
las, modern approaches are capable of addressing complex
problems involving realistic models and several failure cri-
teria most efficiently. The progress achieved during this
period is the product of a combination of factors such as
increased computational power, advances in virtual simula-
tion, efficient strategies for assessing reliability and a better
understanding of the RBO problem. In particular, the latter

feature has allowed the introduction of, e.g. approxima-
tion concepts, simplifications of the double-loop approach,
efficient sensitivity estimation, etc.

The spectrum of approaches for RBO is quite broad.
Some approaches are highly specialized and can treat cer-
tain classes of problems most efficiently. For example,
single-loop approaches are most appropriate for treating
component reliability, linear or mildly non linear perfor-
mance functions and small or medium sized problems from
the point of view of reliability. However, this high efficiency
comes at the price of a narrowing field of application. Other
approaches, such as Stochastic Subset Optimization, are
capable of treating problems involving a large number of
random variables and failure criteria considering non linear
performance functions. Nonetheless, the price of generality
is higher numerical costs. Correspondingly, general guide-
lines have been discussed in this contribution in order to
select which class of algorithm might be more appropriate
for a particular RBO problem.

The considerable development of algorithms for RBO
indicates that optimization under uncertainty is not any
longer the subject of academic examples, but a well devel-
oped methodology that can be applied in realistic engi-
neering problems. It is expected that this tendency will
accentuate even more in the near future due to the progress
in the application of high performance computing. In partic-
ular, parallel computing allows reducing computation times
considerably.

In spite of all the advances that have been achieved so
far in the field of optimization under uncertainties, there are
still many open issues to be addressed in the future. In the
opinion of the authors, three main research directions can
be envisioned. The first one refers to the improvement of
current strategies for solving RBO problems, particularly
with respect to aspects of numerical efficiency and robust-
ness. As optimization under uncertainties is more involved
than its deterministic counterpart, the efficiency of strate-
gies for RBO will always be a crucial issue. Probably, the
most promising strategies for RBO from the point of view
of numerical costs are those that integrate partially or totally
the reliability assessment step and the optimization algo-
rithm. In addition, strategies for solving RBO problems
should also improve their robustness, i.e. these strategies
should be applicable to a wide spectrum of problems that
can be found in engineering.

The second research direction that can be identified
within the context of RBO is application of parallel comput-
ing. As the solution of a problem can be time consuming,
parallel computing becomes a necessity in order to render
the application of RBO feasible. Efforts in this direction
should be focused towards identifying the real potential
of parallel computing and the most effective strategies for
applying it in a problem. In this context, it is important
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to note that parallel computing techniques can be applied
at different levels, e.g. at the virtual simulation level,
reliability analysis or optimization.

The third research direction that can be identified is
the translation of tools developed within the field of RBO
towards the engineering community. That is, the tools for
RBO should be put in such way that they are accessible
in engineering practice. For achieving this purpose, a key
issue is the implementation of appropriate software tools
that enable access to these procedures in a user-friendly,
automatized environment. Although at first sight the imple-
mentation of appropriate software may seem to be the task
of programmers, researchers on the field of RBO should
play a major role in defining how the aforementioned soft-
ware tools should be developed. In the opinion of the
authors, this is the only feasible means for spreading all the
knowledge and methods that have been developed within
the field of RBO.
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Appendix A: Methods for reliability analysis

This appendix presents a brief overview on methods that
have been developed in order to compute the integral asso-
ciated with probability. These methods can be broadly clas-
sified into two categories (Schuëller et al. 2004): approxi-
mate methods and simulation methods.

A.1 Approximate reliability methods

The key concept of approximate reliability methods is
introducing an asymptotic approximation of the limit state
function (LSF), i.e. g( y, θ) = 0, using a Taylor series.
Although this approximation of the limit state function can
be regarded as a meta-model, its scope is different from
the meta-models discussed in Section 6.1. This is due to
the fact that in approximate reliability methods, the objec-
tive of generating a Taylor series is replacing an unknown
probability integral by a known one. The approximation
using a Taylor series is constructed around the so-called
design point. For defining the design point, assume that
the vector θ is composed by independent, Gaussian stan-
dard distributed random variables. Thus, the design point
(which is denoted as θ∗) can be defined using two equivalent
criteria (Freudenthal 1956). According to the geometrical
criterion, the design point is the realization in the standard
normal space which lies on the LSF (g( y, θ) = 0) with the
minimum Euclidean norm (β) with respect to the origin; this

is shown schematically in Fig. 6. According to the proba-
bilistic interpretation, the design point is the failure point
with highest probability density. This means, it is the point
that maximizes f (θ) subject to g( y, θ) ≤ 0, where f (·)
is the standard normal probability density function in Rnθ

(see Fig. 6). It should be noted that the norm of the design
point (β = ∣

∣
∣
∣θ∗∣∣∣∣) has been denoted in the literature as

reliability index.
From the discussion above, it is clear that the iden-

tification of the design point is also an optimization prob-
lem, as it is necessary either to minimize the Euclidean norm
or maximize the probability density function. For details on
how to determine the design point, it is referred to, e.g. Liu
and Der Kiureghian (1991), Au (2006), Koo et al. (2005)
and Wu et al. (1990).

Once the design point has been determined, the integral
associated with the probability of failure can be approxi-
mated using the First or Second Order Reliability Method
(FORM and SORM, respectively). In the case of FORM,
the LSF is replaced by a first order Taylor expansion cen-
tered around the design point. In the case of SORM, the
LSF is replaced with an incomplete second order Taylor
expansion (also centered around the design point). A more
detailed explanation of FORM and SORM is outside the
scope of this paper; for more details on these reliability tech-
niques, it is referred to, e.g. Rackwitz (2001). However,
it is important to note that no estimator of the error intro-
duced when approximating the probability integral using
FORM and/or SORM is available. Moreover, these meth-
ods may not always be applicable, e.g. in cases where
the performance function is highly non linear and/or the
dimensionality of θ is high (Katafygiotis and Zuev 2008;
Valdebenito et al. 2010).

Besides FORM and SORM, another technique that can
be classified as an approximate reliability method is the so-
called Dimension Reduction Method (DRM), which was
introduced in the field of structural reliability analysis in
(Rahman and Xu 2004; Xu and Rahman 2004). The key idea
of this approach is approximating the original performance

Fig. 6 Schematic representation of the design point and the
FORM/SORM approximations in the standard normal space
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function—with an associated nθ -dimensional domain—as a
summation of a number of simpler functions, where each
of the domains of the latter functions has lower dimension-
ality. This approximate representation of the performance
function can then be used to perform reliability analysis at
reduced numerical costs using, e.g. uni-dimensional numer-
ical integration (Rahman and Wei 2008), an appropriate
response surface (Rahman and Wei 2006), etc.

A.2 Simulation methods

Simulation methods estimate the value of the probability
integral by generating samples of the uncertain parameters
according to some prescribed rule. The most widely known
method of this class is Monte Carlo Simulation (MCS)
(Metropolis and Ulam 1949). This method is based on gen-
erating NS samples of θ which are distributed according to
f (θ). Then, the failure probability can be estimated as:

p ≈ p̂ = 1

NS

NS∑

i=1

I
(

y, θ (s)
)
, θ (s) ∼ f (θ) (27)

where I (·) is an indicator function which is equal to one

in case g
(

y, θ (s)
)

≤ 0 and zero, otherwise. The error

in the estimator of the failure probability can be estimated
by means of the coefficient of variation δMC , i.e. δMC =√

(1 − p̂)/(NS p̂).
The MCS method is a general simulation technique, i.e. it

is applicable to linear and non linear problems indifferently.
Moreover, its efficiency is independent of the number of
random variables involved in the problem under analysis.
However, its major drawback is that for calculating low fail-
ure probabilities, a large number of samples (proportional
to 1/p) is required for generating a reliable estimator, i.e.
with sufficient accuracy (or, equivalently, a low coefficient
of variation). Hence, the numerical costs involved in esti-
mating probabilities of rare occurrence of failure events may
be extremely high and even prohibitive, especially when
a structural system is modeled using large FE models. In
view of this shortcoming, the so-called advanced simulation
methods have been developed, which allow estimating low
failure probabilities with increased efficiency if compared
with MCS.

Advanced simulation methods are also based on generat-
ing samples of the uncertain parameters. However, specific
sampling procedures are followed in order to increase the
efficiency. An important characteristic of several advanced
simulation methods is that they are specially designed
for addressing reliability problems involving a large num-
ber of uncertain parameters (Katafygiotis and Zuev 2008;
Valdebenito et al. 2010). Some examples of these advanced
simulation methods are Importance Sampling (Schuëller

and Stix 1987), Line Sampling (Schuëller et al. 2003),
Subset Simulation (Au and Beck 2001), Domain Decompo-
sition Method (Katafygiotis and Cheung 2006), Auxiliary
Domain Method (Katafygiotis et al. 2007), Linked Impor-
tance Sampling (Katafygiotis and Zuev 2007; Neal 2005),
Horseracing Simulation method (Katafygiotis and Zuev
2009; Zuev 2009), etc.
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