Dynamic Models for Yielding and Friction Hysteresis

CEE 541. Structural Dynamics

Department of Civil and Environmental Engineering Duke University

> Henri P. Gavin Fall 2018

In materials or elements with hysteresis, for *any* monotonic or reciprocating deformation of a sufficiently large amplitude, response of stresses (forces) depend on the deformation history [11]. Such hysteretic behavior is commonly depicted as loops in graphs (2D plots) of periodic (oscillatory) output vs. periodic input. In rate-dependent hysteresis, the size and shape of the hysteresis loop changes with the rate or frequency of the input. If the loop collapses to a function (e.g., a curved line) for any input (e.g., quasi-static), then the system is *not* hysteretic [11]. Hysteresis implies a non-linear relationship between inputs and outputs: differential equation models for hysteresis must be nonlinear and convolution models for hysteresis must be nonhomogeneous. Linear visco-elastic materials are rate-dependent but are *not hysteretic* because forces and displacements are proportional in the limit of quasi-static loading. This document describes various Duhem hysteresis models [10, 16, 18, 21] which are nonlinear ordinary differential equations of the form

$$\dot{z}(t) = f(z(t), \dot{u}(t)) g(\dot{u}(t)) , \qquad z(0) = z_0 , \qquad (1)$$

where z(t) is a force, u(t) is a displacement, and $f(\cdot)$ and $g(\cdot)$ are functions. Usually, $g(\dot{u})$ is simply \dot{u} . Such differential equations relate the force, displacement, and velocity to the rate of change of force. Duhem models can be used to model the kinds of rate-independent hysteresis representative of material yielding and stick-slip friction. Consider the following ordinary differential equation,

$$\dot{z}(t) = \dot{u}(t) - |\dot{u}(t)| \, z^{\eta}(t) \,, \qquad z(0) = z_0 \,, \qquad -1 < z_0 < 1 \,.$$

$$\tag{2}$$

The variable z(t) represents the force normalized by the fully-plastic force or friction sliding force $(-1 < z(t) < 1 \forall t)$, u(t) represents a ductility ratio (the displacement divided by the *yield displacement*, defined here as the plastic force divided by the stiffness), and η is an odd positive integer.

Noting that $|\dot{u}| = \dot{u} \operatorname{sgn}(\dot{u})$, equation (2) may be expressed as a Duhem model with $g(\dot{u}) = \dot{u}$,

$$\dot{z} = (1 - z^{\eta} \operatorname{sgn}(\dot{u})) \ \dot{u} \ , \qquad z(0) = z_0 \ , \qquad -1 < z_0 < 1 \ .$$
 (3)

and the slope of the force-displacement relationship is

$$\frac{dz}{du} = \frac{\dot{z}}{\dot{u}} = 1 - z^{\eta} \operatorname{sgn}(\dot{u}) \tag{4}$$

From this expression it is easy to see that:

- When the force is zero (z = 0), the dimensionless stiffness is 1 (the dimensional stiffness is the plastic force divided by the yield displacement).
- As the force approaches the plastic force $(z \to 1, \dot{u} > 0 \text{ or } z \to -1, \dot{u} < 0), dz/du$ approaches zero.
- When the velocity is positive, $dz/du = 1 z^{\eta}$, and when the velocity is negative, $dz/du = 1 + z^{\eta}$.
- $dz/du \ge 0$; sgn $(\dot{z}) = sgn(\dot{u})$; and $(\dot{z})(\dot{u}) \ge 0$.

Figure 1. The vector field of dz/du for $\dot{z} = (1 - z^{\eta} \operatorname{sgn} \dot{u})\dot{u}$ depends on $\operatorname{sgn} \dot{u}$. Larger values of η result in a sharper "knee."

Extension 1 - even values of the exponent η

Replacing z^{η} in equation (3) with $|z|^{\eta} \operatorname{sgn}(z)$ and noting that $\operatorname{sgn}(a) \operatorname{sgn}(b) = \operatorname{sgn}(ab)$,

$$\dot{z} = (1 - |z|^{\eta} \operatorname{sgn}(\dot{u}z)) \dot{u} ,$$
 (5)

allows the exponent η to be any positive value.

Extension 2 - purely dissipative

Replacing sgn($\dot{u}z$) in equation (5) with (β sgn($\dot{u}z$) + γ)

$$\dot{z} = (1 - |z|^{\eta} \left(\beta \operatorname{sgn}(\dot{u}z) + \gamma\right)) \dot{u} , \qquad (6)$$

allows for a wide range of hysteretic forms, as shown in figure 2. If $\beta + \gamma = 1$, then -1 < z < 1. If $\eta > 0$, $\gamma > 0$ and $-\gamma < \beta < \gamma$ the model respects the Second Law of Thermodynamics [1, 12, 15] (that dissipated energy cannot be recovered).

Figure 2. Dependence of hysteretic shape on β , γ , and η .

Extension 3 - scaling

Replacing the value 1 in equation (6) with a positive-valued scaling parameter A,

$$\dot{z} = (A - |z|^{\eta} \left(\beta \operatorname{sgn}(\dot{u}z) + \gamma\right)) \dot{u} .$$
(7)

If $\beta + \gamma = A$ then -A < z < A. This is the "Bouc-Wen" model for hysteresis [5, 6, 15, 27] and is a Duhem hysteresis model with $g(\dot{u}) = \dot{u}$ [18, 25, 26].

If $A \gg 1$, (7) can be stiff. It is preferable to use (6) with $\alpha + \beta = 1$ and scale the force via $f(t) = f_{p}z(t)$.

Extension 4 - isotropic biaxial hysteresis

Isotropic biaxial hysteretic behavior may be modeled in orthogonal directions x and y by coupling the hysteretic variables and velocities [13, 23].

$$\dot{z} = A \ \dot{u} - a(z, \dot{u}) \ z \tag{8}$$

where $z = [z_x, z_y]$, $\dot{u} = [\dot{u}_x, \dot{u}_y]$, A is the scaling parameter, usually set to 1, and

$$a(z, \dot{u}) = \left[\beta(|z_x \dot{u}_x| + |z_y \dot{u}_y|) + \gamma(z_x \dot{u}_x + z_y \dot{u}_y)\right] (z_x^2 + z_y^2)^{(\eta-2)/2} \tag{9}$$

This is a Duhem hysteresis model with $g(\dot{u}) = 0$.

Extension 5 - material hardening

Hysteretic behavior with material hardening (a non-zero post-yield stiffness) may be modeled modeled by combining equation (6) or (8) with

$$f(t) = f_{\mathsf{p}}((1-\kappa)z(t) + \kappa u(t)) , \qquad (10)$$

where f_{p} is a plastic force level, u is the displacement divided by the yield displacement (the ductility), and κ is the ratio of the post yield stiffness to the pre-yield stiffness. When using (10), set $A = \beta + \gamma = 1$.

Extension 6 - degrading strength and stiffness

To model the accumulation of damage [4], strength f_{p} and other model parameters may be linked to a damage accumulation index \mathcal{D} , where $\dot{\mathcal{D}} \approx |\dot{u} - \dot{z}|$ and

$$f_{p}(t) = \frac{f_{p}(0)}{1 + \mathcal{D}(t)/d_{0}} , \qquad (11)$$

where d_0 is a positive constant.

Extension 7 - stick-slip friction

Friction models [2] are similar to models for yielding hysteresis. For example, the Dahl friction model [8, 9], $\dot{z} = (1 - z \operatorname{sgn}(\dot{u}))^{\eta} \dot{u}$ is a Duhem hysteresis model and is equivalent to (5) with $\eta = 1$.

The "LuGre" friction model [7], developed in a collaboration of researchers from universities in Lund and Grenoble, is a friction model which captures the Stribeck ("stick-slip") effect [2]. The following is a re-parameterization of the LuGre model as it is presented in [18, 25, 26], and is consistent with the the well-conditioned and purely dissipative dynamic hysteresis model (6).

$$\dot{z}(t) = (1 - |z|^{\eta} (\beta \operatorname{sgn}(\dot{u}z) + \gamma) q(\dot{u})) \dot{u}$$
 (12)

$$q(\dot{u}) = \frac{q_0}{1 + e^{-(\dot{u}/v_s)^2}}$$
(13)

$$f(t) = f_{c} q_{0}^{1/\eta} (z(t) + T_{s}\dot{z}(t))$$
(14)

Generally, the static friction scaling parameter $q_0 \approx 1$, the stiction decay time $T_s \approx 0.05$ s, and the Stribeck velocity $v_s \approx 0.001/s$. As the stiction decay time T_s goes to zero, the static friction drops to the Coulomb friction f_c . Observations of the behavior of this model indicates that the coefficient g_0 affects the stiffness more than the peak static friction and T_s affects the peak static friction more than the stiffness.

References

- Ahmadi, G., Fan, F.C., and Noori, M., "A thermodynamically consistent model for hysteretic materials," Iranian Journal of Science and Technology, 1997; 21:257–278.
- [2] Armstrong-Hélouvry, B., DuPont, P., Canudas de Wit, C., "A Survey of Models, Analysis Tools, and Compensation methods for the Control of Machines with Friction," Automatica, 1994; 30(7):1083–1138.
- [3] Atalik, T.S. and Utku, S., "Stochastic Linearization of Multi-Degree-Of-Freedom Non-Linear Systems," Earthquake Engineering and Structural Dynamics, 1976; 4:411–420.
- Baber, T.T. and Wen, Y-K., "Random Vibration of Hysteretic Degrading Systems," Journal of Engineering Mechanics, 1982; 107(EM6):1069–1087.
- [5] Bouc, R., "Influence du cycle d'hysteresis dur la resonance non lineare d'un circuit serie," Colloques Internationeaux. Centre International de la Recherche Scientifique, Sept 1964.
- [6] Bouc, R., "Modele mathematique d'hysteresis." Acustica, 1971; 24:16–25.
- [7] Canudas de Wit, C., Olsson, H. Astrom, K.J., and Lischinsky, P., "A New Model for Control of Systems with Friction," IEEE Trans. Automatic Control, 1995; 40(3):419–425.
- [8] Dahl, P.R., A Solid Friction Model, Technical Report SAMSO-TR-77-131, May 1968.
- [9] Dahl, P.R., "Solid Friction Damping of Mechanical Vibrations," AIAA Journal, 1976; 14(12):1675-
- [10] Duhem, Pierre, "Die dauernden Aenderungen und die Thermodynamik," I, Z. Phys. Chem., 22 (1897), pp. 543-589.
- [11] Drinčić, Bojana, "Mechanical Models of Friction That Exhibit Hysteresis, Stick-Slip, and the Stribeck Effect," Ph.D. dissertation, University of Michigan, 2012.
- [12] Erlicher, S., and Point, N., "Thermodynamic admissibility of Bouc-Wen type hysteresis models," C R Méc, 2004; 332(1):51– 55.
- Harvey, P.S., Jr., and Gavin, H.P., "Truly isotropic biaxial hysteresis with arbitrary knee sharpness," Earthquake Engineering & Structural Dynamics, 43(13):2051-2057 (2014)
- [14] Hassani, Vahid, Tjahjowidodo, Tegoeh, and Do, Thanh Nho, "A survey on hysteresis modeling, identification and control" Mechanical Systems and Signal Processing, 49 (1-2) (2014) 209-233.
- [15] Ismail, M., Ikhouayne, F. and Rodellar, J., "The Hysteresis Bouc-Wen Model a Survey," Arch. Computational Methods in Engineering, 2009; 16:161–188.
- [16] Macki, J.W., Nistri, P., and Zecca, P., "Mathematical-Models for Hysteresis," SIAM Review, 35(1) (1993): 94-123.
- [17] Merriam-Webster Online. "hysteresis, n.," Merriam-Webster, 2016. Web. 14 October 2016.
- [18] Naser, Mohammad Fuad Mohammad, and Ikhouane, Fayçal, "Consistency of the Duhem Model with Hysteresis," Mathematical Problems in Engineering, 2013, Article ID 586130.
- [19] Oh, JinHyoung and Bernstein, Dennis S., "Semilinear Duhem model for rate-independent and rate-dependent hysteresis," IEEE Transactions on Automatic Control, 2005
- [20] Oh, JinHyoung, Drincic, Bojana, and Bernstein, Dennis S., "Nonlinear Feedback Models of Hysteresis," IEEE Control Systems Magazine, February 2009; 100–119.
- [21] Ouyang Ruiyue, Andrieu Vincent, and Jayawardhana, Bayu, "On the characterization of the Duhem hysteresis operator with clockwise input-output dynamic," Systems & Control Letters 62 (2013) 286-293.
- [22] Özdemir, H. Nonlinear Transient Dynamic Analysis of Yielding Structures, Ph.D. Dissertation, University of California, Berkeley, June 1976.
- [23] Park, Y.J., Wen, Y.K., and Ang, A. H-S. "Random Vibration of Hysteretic Systems under Bi-Directional Ground Motion," Earthquake Engineering and Structural Dynamics, 1986; 14(4):543–557.
- [24] Sain, P.M., Sain, M.K., Spencer, B.F., and Sain, J.D. "The Bouc Hysteresis Model: An Initial Study of Qualitative Characteristics," Proc. American Control Conference, Philadelphia, 1998: 2559–2563.
- [25] Visintin, A. Differential models of hysteresis, Springer-Verlag, 1994.
- [26] Visintin, A. "Mathematical models of hysteresis" in: The Science of Hysteresis, (G. Bertotti, I. Mayergoyz, eds.) Elsevier (2006), cap. 1, pp. 1-123
- [27] Wen, Y-K. "Method for Random Vibration of Hysteretic Systems," Journal of Engineering Mechanics, 1976; 102(EM2):249–263.