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1 Continuous-time systems in the frequency domain

In the frequency domain, the input-output relationship of a LTI system (with r inputs,
m outputs, and n internal states) is represented by the m-by-r rational frequency response
function matrix equation

y(ω) = H(ω)u(ω) .

At a frequency ω a set of inputs with amplitudes u(ω) generate steady-state outputs with
amplitudes y(ω). (These amplitude vectors are, in general, complex-valued, indicating mag-
nitude and phase.)

The singular value decomposition of the transfer function matrix is

H(ω) = Y (ω) Σ(ω) U∗(ω) (1)

where:
U(ω) is the r by r orthonormal matrix of input amplitude vectors, U∗U = I, and
Y (ω) is the m by m orthonormal matrix of output amplitude vectors, Y ∗Y = I
Σ(ω) is the m by r diagonal matrix of singular values, Σ(ω) = diag(σ1(ω), σ2(ω), · · ·σn(ω))
At any frequency ω, the singular values are ordered as: σ1(ω) ≥ σ2(ω) ≥ · · · ≥ σn(ω) ≥ 0

Re-arranging the singular value decomposition of H(s),

H(ω)U(ω) = Y (ω) Σ(ω)

or
H(ω) ui(ω) = σi(ω) yi(ω)

where ui(ω) and yi(ω) are the i-th columns of U(ω) and Y (ω). Since ||ui(ω)||2 = 1 and
||yi(ω)||2 = 1, the singular value σi(ω) represents the scaling from inputs with complex am-
plitudes ui(ω) to outputs with amplitudes yi(ω). Inputs amplitudes u1(ω) results in outputs
σ1y1(ω) with the largest L2 norm. These are called the principal input and output directions.
At a frequency ω, the minimum and maximum singular values bound the L2 norm of the
response amplitudes for any set of unit input amplitudes u, (||u||2 = 1),

σn(ω) ≤ ||y(ω)||2 ≤ σ1(ω) .

In modal coordinates (assuming diagonalizeable dynamics),

H(ω) = C̄(iωI − Λ)−1B̄ =
n∑
i=1

C̄1iB̄/(iω − λi) (2)
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where 1i is a square zero matrix with a 1 on the i-th diagonal element. Elements of the
modal input matrix B̄ir represent the coupling of input r to mode i, and elements of the
modal output matrix C̄mi represent the coupling of mode i to output m. If the i-th mode is
lightly damped (0 < ζi � 1), it dominates the transfer function at its resonant frequency,

H
(
ωni

√
1− ζ2

i

)
≈ C̄1iB̄/(ζiωni) = cibi/ (ζiωni) ,

where ci and bi are the i-th column and row of C̄ and B̄, respectively. For a classically-
damped system with force-input and velocity-output the modal output matrix, C̄, is real
and the modal input matrix, B̄, is complex. However, if the damping is light, H(ωdi) is
primarily real at the damped natural frequencies (ωdi = ωni

√
1− ζ2

i ). In the dynamics of
classically-damped structures, the values of c̄i and b̄i can be thought of as the values of the
(real-valued) i-th mode shape at the measurement and forcing locations, respectively.

The principal input and output directions at the resonant frequencies can be approxi-
mated by the singular value decomposition of the (m-by-r) matrix c̄ib̄i, with the associated
amplification being the largest singular value of c̄ib̄i divided by ζiωni. (Keep in mind here
that c̄i is the i-th column of the output matrix in modal coordinates and b̄i is the i-th row
of the input matrix in modal coordinates.) The dyad c̄ib̄i is rank-one; it has one non-zero
singular value equal to (||c̄i|| ||b̄i||). So at resonant frequencies,

σ1

(
ωni

√
1− ζ2

i

)
≈ σ(i) =

(
||c̄i|| ||b̄i||

)
/(ζiωni) . (3)

The variable σ(i) is called the Hankel singular value of the i-th mode. It is an approximation
of the largest singular value of the transfer function matrix at the i-th resonant frequency and
is expressed in terms of the continuous-time representation of the input to the i-th mode, the
output at the i-th mode, and the natural frequency and damping ratio of the i-th mode. The
maximum singular value of the transfer function matrix at other frequencies is very nearly
the sum of the transfer function magnitudes, σ1(ω) ≈ ∑

i,j |Hij(ω)|. The amplification from
inputs to outputs at mode i can be increased by moving sensor and actuator locations to
extrema of the i-th mode.
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2 Discrete-time systems in the time domain

Now consider the response of a LTI discrete-time system (having r inputs, m outputs,
and n internal states) to a unit impulse u(0) = 1. At times k ∈ [1, 2, . . .], the output response
to a unit impulse at t = 0 is

H(k) = CAk−1B ...
[
CB, CAB, CA2B, CA3B, · · ·

]
.

Likewise, the output response at times k ∈ [1, 2, . . .] to a unit impulse u(−1) = 1 are

H(k + 1) = CAkB ...
[
CAB, CA2B, CA3B, CA4B, · · ·

]
.

and the outputs at times k ∈ [1, 2, ...] to a unit impulse u(−2) = 1 are

H(k + 2) = CAk+1B ...
[
CA2B, CA3B, CA4B, CA5B, · · ·

]
,

and the outputs at times k ∈ [1, 2, ...] to a unit impulse u(−3) = 1 are

H(k + 3) = CAk+2B ...
[
CA3B, CA4B, CA5B, CA6B, · · ·

]
,

and the outputs at times k ∈ [1, 2, ...] to a unit impulse u(−4) = 1 are

H(k + 4) = CAk+3B ...
[
CA4B, CA5B, CA6B, CA7B, · · ·

]
,

and so on, and so on. The sequence of m-by-r matrices [CB, CAB, CA2B, CA3B, · · · ] are
called Markov parameters of the system, and are independent of the state-space realization.

In general, the output responses at future times k ∈ [1, 2, . . .], due to a sequence of
K past impulses [u(0), u(−1), u(−2), u(−3), u(−4), · · · , u(−K)] can be computed as a
convolution sum or as a matrix-vector product.

y(j) =
−K∑
k=0

H(j − k)u(k)

y(1)
y(2)
y(3)
y(4)

...
y(M)


=



CB CAB CA2B CA3B · · · CAR−1B
CAB CA2B CA3B CA4B · · · CAR−0B
CA2B CA3B CA4B CA5B · · · CAR+1B
CA3B CA4B CA5B CA6B · · · CAR+2B

... ... ... ... ...
CAM−1B CAMB CAM+1B CAM+2B · · · CAM+R−2B





u(0)
u(−1)
u(−2)
u(−3)

...
u(−R)


y(1,M) = H(M,R) u(0,−R) .

The block-symmetric matrix H(M,R) is a Hankel matrix of Markov parameters; it is a matrix
representation of the input-output relationship for the system in the discrete-time domain.
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Note that

H(M,R) =



C
CA
CA2

CA3

...
CAM−1


[
B AB A2B A3B · · · AR−1B

]
= PM QR (4)

=



CTT−1

CTT−1A
CTT−1A2

...
CTT−1AM−1

 TT−1
[
TT−1B ATT−1B A2TT−1B · · · AR−1TT−1B

]

=



C̄
C̄Λ
C̄Λ2

C̄Λ3

...
C̄ΛM−1


[
B̄ ΛB̄ Λ2B̄ Λ3B̄ · · · ΛR−1B̄

]
= P̄M Q̄R (5)

where AT = TΛ and x(k) = Tq(k) and the over-bar indicates input and output matrices in
modal coordinates. The matrix PM is an observability matrix, the matrix QR is a controlla-
bility matrix, Λ is a diagonal matrix of the eigenvalues of the discrete-time dynamics matrix,
A, and B̄ and C̄ are the input and output matrices in of the discrete-time system in modal
coordinates. For controllable and observable systems, the matrices P and Q are rank-n, and
HM,R is therefore also rank-n.

The sequence of free responses computed by equation (4) can be represented in modal
coordinates, y(k) = C̄q(k). The portion of the modal response in mode i is c̄iqi(k) where c̄i is
the i-th column of C̄ and qi(k) is the i-th modal coordinate at time instant k. Components
of the observability and controllability matrices in modal coordinates, P̄ and Q̄, can be
expanded as

C̄Λη =
n∑
i=1

c̄iλ
η
i

ΛνB̄ =
n∑
i=1

λνi b̄i

where c̄i is the i-th column of C̄ and b̄i is the i-th row of B̄. A component of the Hankel
matrix is therefore a product of these sums, and since the modal state sequence qi(k) couples
only only to the modal input vector b̄i and modal output vector c̄i, the product of sums may
be written as a sum of products,

C̄ΛηΛνB̄ =
(

n∑
i=1

c̄iλ
η
i

)(
n∑
i=1

λνi b̄i

)
=

n∑
i=1

λη+ν
i c̄ib̄i
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Extending this sum of products to the full Hankel matrix,

H(M,R) =
n∑
i=1



c̄i
c̄iλi
c̄iλ

2
i

c̄iλ
3
i

...
c̄iλ

M−1
i


[
b̄i λib̄i λ2

i b̄i λ3
i b̄i · · · b̄iλ

R−1
i

]
=

n∑
i=1

[
P̄Mi Q̄Ri

]
(6)

The vectors P̄Mi and Q̄Ri are the i-th column and row of P̄M and Q̄R, respectively.
The portion of the Hankel matrix corresponding to the free response of the i-th mode is a
rank-one matrix, and its sole non-zero singular value is

σ(i) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c̄i
c̄iλi
c̄iλ

2
i

c̄iλ
3
i

...
c̄iλ

M−1
i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣ b̄i λib̄i λ2
i b̄i λ3

i b̄i · · · b̄iλ
R−1
i

∣∣∣∣∣∣ = ||P̄Mi|| ||Q̄Ri|| (7)

= ||c̄i||
(
1 + |λi|2 + |λi|4 + |λi|6 + · · ·

)1/2
||b̄i||

(
1 + |λi|2 + |λi|4 + |λi|6 + · · ·

)1/2

= ||c̄i|| ||b̄i||
(
1 + |λi|2 + |λi|4 + |λi|6 + · · ·

)
= ||c̄i|| ||b̄i|| /

(
1− |λi|2

)
where, in the last steps, the sequences are extended to the limits R → ∞ and M → ∞.
Eigenvalues of the discrete-time dynamics, λi, are related to the natural frequency, damping
ratio, and time step, ∆t, through

λi = e−ζiωni∆t
(

cosωni

√
1− ζ2

i ∆t+ i sinωni

√
1− ζ2

i ∆t
)

so |λi|2 = e−2ζiωni∆t, and

σ(i) = 2 ||c̄i|| ||b̄i|| /
(
1− e−2ζiωni∆t

)
. (8)

The variable σ(i) is the Hankel singular value for the i-th mode expressed in terms of the
discrete-time representation of the input to the i-th mode, the output of the i-th mode, and
the natural frequency and damping ratio of the i-th mode. Computing σ(i) using equation
(8) requires only a small fraction of the computational time required for a singular value
decomposition of HM,R, and does not require the computation or storage of HM,R, PM , or
QR. With the scaling factor of 2, σ(i) in equation (8) numerically matches σ(i) in equation
(3) to within numerical round-off. (Note again that B in equation (3) is the input matrix
in modal coordinates for a continuous-time system, whereas B̄ in equation (8) is the input
matrix in modal coordinates for the associated discrete-time system.)

The identification of linear systems from finite-duration discrete-time data using meth-
ods such as the eigensystem realization algorithm involves the singular value decomposition
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of Hankel matrices of Markov parameters. In lightly-damped systems, the eigenvalues of A,
the columns of C, and the rows of B occur in complex-conjugate pairs, and it is reasonable
to expect that the singular values of H would also occur in pairs. When the singular values
of the Hankel matrix of such systems do not occur in pairs it is can be due to an inadequate
sampling of the Markov parameters or noise in the measured data. As a general rule of
thumb, the sample interval ∆t should be one tenth the shortest natural period and there
should be at least a few cycles of the longest period represented in the sequence of Markov
parameters. The number of Markov parameters in a row/column of H should therefore be
about 4π/(ωni∆t). If these rules are observed, the product of vector norms ||Pi||||Qi|| are
very nearly the same as the singular values of the (finite-dimensional) Hankel matrix, HM,R.
For very long sequences of Markov parameters, (20π/(ω1∆t), representing dozens of funda-
mental periods of response) ||Pi||||Qi|| approaches the Hankel singular values. Note, however,
that raising the discrete-time dynamics matrix to a very high power (Λk for k � n) can incur
round-off error.

3 Summary

In MIMO systems, the maximum singular values of transfer function matrices show
how strongly inputs can couple to outputs. The maximum singular values of the transfer
function matrix at resonant frequencies are the strengths of these couplings for each mode.
The left- and right- singular vectors give the associated input and output amplitudes.

Maximum singular values of the matrix of frequency response functions evaluated at
the resonant frequencies, σ(i), are the same as the singular values of an infinitely-large Hankel
matrix of Markov parameters, σ(i). These are called Hankel singular values. Hankel singu-
lar values are system properties that indicate the strength of modal coupling from inputs
to outputs for lightly-damped systems. Hankel singular values are easily computed from
realizations in modal coordinates.

As the finite dimensional Hankel matrix (equation (4)) gets large in dimension, its
singular values approach the Hankel singular values (equations (3) and (8)) but become
prohibitively expensive to compute, and can suffer from round-off errors.
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