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1 Linearity and Time Invariance

A system G that maps an input u(t) to an output y(t) is a linear system if
and only if

(α1y1(t) + α2y2(t)) = G[α1u1(t) + α2u2(t)] (1)
where y1 = G[u1], y2 = G[u2] and α1 and α2 are scalar constants. If (1) holds
only for α1 + α2 = 1 the system is called affine. The function G(u) = Au + b

is affine, but not linear.

A system G that maps an input u(t) to an output y(t) is a time-invariant
system if and only if

y(t − to) = G[u(t − to)] . (2)

Systems described by

ẋ(t) = Ax(t) + Bu(t) , x(0) = xo (3)
y(t) = Cx(t) + Du(t) (4)

are linear and time-invariant.

variable description dimension
x state vector n by 1
u input vector r by 1
y output vector m by 1
A dynamics matrix n by n

B input matrix n by r

C output matrix m by n

D feedthrough matrix m by r
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2 Example: a spring-mass-damper oscillator

An externally-forced spring-mass-damper oscillator is described by

mr̈(t) + cṙ(t) + kr(t) = f(t) , r(0) = do , ṙ(0) = vo . (5)

Setting the external forcing to zero, substituting an assumed solution of the
form r(t) = r̄eλt, and factoring out the eλt, results in

(mλ2 + cλ + k)r̄ = 0 .

This equation is valid for r̄ = 0 (the trivial solution) and for (mλ2 + cλ +
k) = 0, which is called the characteristic equation of this differential equa-
tion. The roots of this polynomial are given by the quadratic formula,

λ = − c

2m
±
√√√√ c2

4m
− k

m
.

Defining the natural frequency ω2
n ≡ k/m and the damping ratio ζ ≡ c/(2

√
mk),

we find c/(2m) = ζωn, so,

λ = −ζωn ±
√

ζ2ω2
n − ω2

n

= −ζωn ± ωn
√

ζ2 − 1 (6)

and if ζ < 1, the root may be written

λ = −ζωn ± iωn
√

1 − ζ2
(
i =

√
−1

)
.

Complex values of λ are written λ = σ ± iω. Note that (ζ > 0) ⇔ (c > 0) ⇔
(σ < 0) ⇔ the simple oscillator is stable.

Now presuming that the external forcing f(t) and the position response r(t)
are harmonic, f(t) = f̄(s)est and r(t) = r̄(s)est (s ∈ C), substituting the
presumed solution into the differential equation and factoring out est

(ms2 + cs + k) r̄(s) = f̄(s) or r̄(s) = f̄(s) / (ms2 + cs + k) .

Now, considering inputs u(t) = f(t) and outputs y1(t) = r̈(t) and y2(t) =
kr(t) + cṙ(t) and their Laplace transforms, y1(t) = ȳ1(s)est = s2r̄(s)est and
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y2(t) = ȳ2(s)est = kr̄(s)est + csr̄(s)est we can derive transfer functions from
ū(s) to ȳ1(s) and ȳ2(s).

ȳ1(s)
ū(s) = s2

ms2 + cs + k
(7)

and
ȳ2(s)
ū(s) = k + cs

ms2 + cs + k
(8)

The second-order ordinary differential equation (5) may be written as two
first-order ordinary differential equations, by defining a state vector of the
position and velocity, x = [r ṙ]T.

d

dt

 r

ṙ

 =
 0 1

−k/m −c/m

  r

ṙ

 +
 0

1/m

 f(t) ,

 r(0)
ṙ(0)

 =
 do

vo

 (9)

In terms of a desired response from this system, we may be interested in the
force on the foundation, fF, and the acceleration of the mass, both of which
can be computed directly through a linear combination of the states and the
input.  fF

r̈

 =
 k c

−k/m −c/m

  r

ṙ

 +
 0

1/m

 f(t) (10)

A single degree of freedom oscillator and all other linear dynamical systems
may be described in a general sense using a state variable realization,

ẋ(t) = Ax(t) + Bu(t) , x(0) = xo

y(t) = Cx(t) + Du(t) .

The next section shows the equivalence of differential equations, transfer
functions, and state variable realizations, and shows how the state variable
realizations (9) and (10) can be obtained directly from the transfer functions
(7) and (8) without considering the differential equations.
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3 System Interconnections: parallel, cascade, and feedback

The facility with which models of interconnected subsystems can be derived is
one of the powerful benefits of state-space modeling. This section describes
the three fundamental types of system interconnections: parallel, cascade,
and feedback. The individual interconnected subsystems are described by:

ẋ1 = A1x1 + B1u1 , y1 = C1x1 + D1u1

ẋ2 = A2x2 + B2u2 , y2 = C2x2 + D2u2

3.1 Parallel interconnections

In the parallel interconnection of two subsystems, the same output drives both
subsystems, u1 = u2 = u, and the output is the sum of the two subsytem
outputs, y = y1 + y2. So,

y = C1x1 + D1u + C2x2 + D2u

d

dt

 x1

x2

 =
 A1 0

0 A2

  x1

x2

 +
 B1

B2

u (11)

y =
[

C1 C2
]  x1

x2

 +
[

D1 + D2
]
u (12)

3.2 Cascade interconnections

In the cascade interconnection of two subsystems, the output of subsystem 1
provides the input to subsystem 2, u2 = y1. So,

ẋ2 = A2x2 + B2(C1x1 + D1u1) y2 = C2x2 + D2(C1x1 + D1u1)

ẋ2 = B2C1x1 + A2x2 + B2D1u1 y2 = D2C1x1 + C2x2 + D2D1u1

d

dt

 x1

x2

 =
 A1 0

B2C1 A2

  x1

x2

 +
 B1

B1 + B2D1

u1 (13)

y2 =
[

D2C1 C2
]  x1

x2

 +
[

D2D1
]
u1 (14)
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3.3 Feedback interconnections

In the feedback interconnection of two subsystems, the output of subsystem
1 provides the input to subsystem 2, and the input to subsystem 1 is the sum
of the output of subsystem 2 and the overall system input, u. The overall
system output is the output of subsystem 1.

u2 = y1 and u1 = u + y2 and y = y1

So,
ẋ1 = A1x1 + B1(u + y2) y = C1x1 + D1(u + y2)

ẋ2 = A2x2 + B2(C1x1 + D1(u + y2)) y2 = C2x2 + D2(C1x1 + D1(u + y2))

y2 = (I − D1)−1D2C1x1 + (I − D1)−1C2x2 + (I − D1)−1D1u

ẋ1 = A1x1 + B1(I − D1)−1D2C1x1 + B1(I − D1)−1C2x2 + B1(I − D1)−1D1u + B1u

ẋ1 = (A1 + B1(I − D1)−1D2C1)x1 + B1(I − D1)−1C2x2 + B1((I − D1)−1D1 + I)u

ẋ2 = B2C1x1 + A2x2 + B2D1y2 + B2D1u

ẋ2 = B2C1x1 + A2x2 + B2D1((I − D1)−1D2C1x1 + (I − D1)−1C2x2 + (I − D1)−1D1u) + B2D1u

ẋ2 = (B2C1 + B2D1(I − D1)−1D2C1)x1 + (A2 + B2D1(I − D1)−1C2)x2 + B2D1((I − D1)−1D1 + I)u

y = C1x1 + D1((I − D1)−1D2C1x1 + (I − D1)−1C2x2 + (I − D1)−1D1u) + D1u

y = (C1 + D1(I − D1)−1D2C1)x1 + D1(I − D1)−1C2x2 + D1((I − D1)−1 + I)D1u

d

dt

[
x1
x2

]
=

[
A1 + B1(I − D1)−1D2C1 B1(I − D1)−1C2

B2C1 + B2D1(I − D1)−1D2C1 A2 + B2D1(I − D1)−1C2

][
x1
x2

]
+
[

B1((I − D1)−1D1 + I)
B2D1((I − D1)−1D1 + I)

]
u

y =
[

C1 + D1(I − D1)−1D2C1 D1(I − D1)−1C2
] [ x1

x2

]
+
[

D1((I − D1)−1 + I)D1
]

u

In the special case where D1 = 0 and D2 = 0,

d

dt

 x1

x2

 =
 A1 B1C2

B2C1 A2

  x1

x2

 +
 B1

0

u (15)

y =
[

C1 0
]  x1

x2

 +
[

0
]
u (16)

cbnd H.P. Gavin May 14, 2025

http://creativecommons.org/licenses/by-nc-nd/4.0/


6 CEE 629. – System Identification – Duke University – Spring 2019 – H.P. Gavin

4 Differential Equations, Transfer Functions, and Continuous Time State Space
Realizations

In general, any linear ordinary differential equation with constant coefficients

a0y(t) + a1ẏ(t) + a2ÿ(t) + · · · + an−1y
(n−1)(t) + y(n)(t)

= b0u(t) + b1u̇(t) + b2ü(t) + · · · + bn−1u
(n−1)(t) + bnu(n)(t) (17)

can be expressed in state-space form as long as the highest order of the
derivitives of u do not exceed the highest order of the derivitives of y. Setting
the external forcing, u(t) and all its derivitives, to zero and substituting an
assumed solution of the form y(t) = ȳeλt, and factoring out the eλt, results in

( a0 + a1λ + a2λ
2 + · · · + an−1λ

n−1 + λn ) ȳ = 0.

This equation is valid for ȳ = 0 (the trivial solution) and for

ao + a1λ + a2λ
2 + · · · + an−1λ

n−1 + λn = 0 , (18)

which is the characteristic equation of the differential equation (17). For n > 3
the n roots of this polynomial, (λ1, ..., λn) may be computed numerically. In
general, these roots are complex and are conventionally expressed as

λi = σi ± iωi ,
(
i =

√
−1

)
.

Now considering harmonically forced steady state inputs and outputs, as-
sume a harmonic input of the form u(t) = ū(s)est and a harmonic output of
the form y(t) = ȳ(s)est. Allowing the Laplace variable to be complex, s ∈ C,
these assumed solutions can represent both harmonic and exponential func-
tions. Substituting the assumed solutions into the differential equation, and
factoring out est from both sides, gives the differential equation expressed in
the Laplace domain.

( a0 + a1s + a2s
2 + · · · + an−1s

n−1 + sn ) ȳ(s)
= ( b0 + b1s + b2s

2 + · · · + bn−1s
n−1 + bnsn ) ū(s)
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The ratio of the output ȳ(s) to the input ū(s) in the Laplace domain is called
the transfer function

H(s) ≡ ȳ(s)
ū(s) = b0 + b1s + b2s

2 + · · · + bn−1s
n−1 + bnsn

a0 + a1s + a2s2 + · · · + an−1sn−1 + sn
(19)

The frequency response function is the transfer function evaluated along the
imaginary (frequency) axis of the complex Lapace domain s = σ + iω. The
frequency response function is complex valued and is most commonly de-
picted as a plot of its magnitude |H(ω)| =

√
[ReH(ω)]2 + [ImH(ω)]2 and

phase ∠H(ω) = arctan(Im[H(ω)]/Re[H(ω)]). This plot is known as the Bode
plot. The time shift of a frequency component is τ = (∠H(ω))/ω.

To obtain a state space realization of this differential equation, we convert the
Laplace domain transfer function back to a time domain differential equation
by multiplying the numerator and the denominator of the transfer function
by the same Laplace domain variable v̄(s), which will be used to represent
the states of the system.

ȳ(s)
ū(s) = ( b0 + b1s + b2s

2 + · · · + bn−1s
n−1 + bnsn ) v̄(s)

( a0 + a1s + a2s2 + · · · + an−1sn−1 + sn ) v̄(s) (20)

Now defining

ȳ(s) ≡ ( b0 + b1s + b2s
2 + · · · + bn−1s

n−1 + bnsn ) v̄(s) ,

ū(s) ≡ ( a0 + a1s + a2s
2 + · · · + an−1s

n−1 + sn ) v̄(s) ,

taking the inverse Laplace transform,

y(t) = b0v(t) + b1v̇(t) + b2v̈(t) + · · · + bn−1v
(n−1)(t) + bnv(n)(t) ,

u(t) = a0v(t) + a1v̇(t) + a2v̈(t) + · · · + an−1v
(n−1)(t) + v(n)(t) ,

and defining states
x1 = v(t)
x2 = ẋ1 = v̇(t) ,

x3 = ẋ2 = v̈(t) ,
... ... ...

xn = ẋn−1 = v(n−1)(t) ,

ẋn = f(x1, ..., xn, u) = v(n)(t) ,
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we obtain expressions for y(t) and u(t) in terms of n states x1, ... , xn, and
ẋn.

y(t) = b0x1(t) + b1x2(t) + b2x3(t) + · · · + bn−1xn(t) + bnẋn(t)
u(t) = a0x1(t) + a1x2(t) + a2x3(t) + · · · + an−1xn(t) + ẋn(t)

Solving the second equation for ẋn(t) we obtain the highest state derivitive
as a function of the states and the input

ẋn(t) = u(t) − a0x1(t) − a1x2(t) − a2x3(t) − · · · − an−1xn(t) .

Inserting this equation into the equation for y(t), we obtain the output equa-
tion as a function of states and the input,

y(t) = b0x1(t) + b1x2(t) + b2x3(t) + · · · + bn−1xn(t)
+ bn( u(t) − a0x1(t) − a1x2(t) − a2x3(t) − · · · − an−1xn(t) ) .

Combining terms with the same states

y(t) = (b0 − a0bn) x1(t) + (b1 − a1bn) x2(t) + (b2 − a2bn) x3(t) + · · ·
+ (bn−1 − an−1bn) xn(t) + bnu(t)

and combining with the definition of the states, leads to a system of first
order linear differential equations for the single n-th order ordinary differential
equation.

d

dt



x1(t)
x2(t)

...
xn−1(t)
xn(t)


=



0 1 0 · · · 0
0 0 1 · · · 0
... ... ... . . .
0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1





x1(t)
x2(t)
x3(t)

...
xn(t)


+



0
0
...
0
1


u(t)

(21)

y(t) =
[

b0 − a0bn b1 − a1bn b2 − a2bn · · · bn−1 − an−1bn

]


x1(t)
x2(t)
x3(t)

...
xn(t)


+ [bn] u(t)
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This is called the controllable canonical companion matrix state space realiza-
tion of the system described by differential equation (17) or transfer function
(19). The coefficients a0, · · · , an−1 or, equivalently, the roots λ1, · · · , λn, of
the characteristic equation, and the input coefficients b0, ..., bn fully specify
the system.

The dynamics matrix A of the canonical controlable companion matrix re-
alization, can be recovered by its n eigenvalues λ1, λ2, ..., λn, provided the
eigenvalues are distinct, by noting that for any eigenvalue λj,



0 1 0 · · · 0
0 0 1 · · · 0
... ... ... . . .
0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1





1
λj

λ2
j...

λn−1
j


= λj



1
λj
...

λn−2
j

λn−1
j



in which the last row is the characteristic equation (18). The Vandermonde
matrix built from columns

V̄ =



1 1 · · · 1
λ1 λ2 · · · λn

λ2
1 λ2

2 · · · λ2
n... ... ...

λn−1
1 λn−1

2 · · · λn−1
n



contain the eigenvectors of the dynamics matrix of the conrollable canon-
ical companion matrix realization, so AV̄ = V̄ Λ and A = V̄ ΛV̄ −1, where
Λ = diag(λ1, ...λn) and provided V̄ is full rank.

A somewhat more cumbersome approach leads to the observable canonical
companion matrix state space realization of a differential equation or transfer
function. To do so, we solve the differential equation (17) for y(n)(t) and
integrate this equation (n − 1) times to get an expression for ẏ(t), and then
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collect terms with common orders of integration or differentiation,

y(n)(t) = −a0y(t) − a1ẏ(t) − a2ÿ(t) − · · · − an−1y
(n−1)(t)

+ b0u(t) + b1u̇(t) + b2ü(t) + · · · + bn−1u
(n−1)(t) + bnu(n)(t)

ẏ(t) = −a0
∫
n−1

y(t)dtn−1 − a1
∫
n−2

y(t)dtn−2 − a2
∫
n−3

y(t)dtn−3 − · · ·
− an−1y(t)
+ b0

∫
n−1

u(t)dtn−1 + b1
∫
n−2

u(t)dtn−2 + b2
∫
n−3

u(t)dtn−3 + · · ·
+ bn−1u(t) + bnu̇(t)

ẏ(t) − bnu̇(t) =
∫
n−1

b0u(t) − a0y(t)dtn−1 +
∫
n−2

b1u(t) − a1y(t)dtn−2

+
∫
n−3

b2u(t) − a2y(t)dtn−3 + · · · + bn−1u(t) − an−1y(t)

In these equations ∫p f(t)dtp is shorthand for integrating f(t) p times. Now
we define the first state to be the integral of the left hand side of the last
expression and the second state to be all the integrals on the right hand side

x1(t) ≡ y(t) − bnu(t) (22)
x2(t) ≡

∫
n−1

b0u(t) − a0y(t)dtn−1 +
∫
n−2

b1u(t) − a1y(t)dtn−2

+
∫
n−3

b2u(t) − a2y(t)dtn−3 + · · · +
∫

bn−2u(t) − an−2y(t)dt

giving us the first state equation

ẋ1 = x2 + bn−1u(t) − an−1y(t)
= −an−1x1(t) + x2 + bn−1u(t) − an−1bnu(t)

The derivitive of x2 is

ẋ2(t) =
∫
n−2

b0u(t) − a0y(t)dtn−2 +
∫
n−3

b1u(t) − a1y(t)dtn−3

+
∫
n−4

b2u(t) − a2y(t)dtn−4 + · · · + bn−2u(t) − an−2y(t)

Defining the terms with integrals in the expression above as x3(t)

x3(t) ≡
∫
n−2

b0u(t) − a0y(t)dtn−2 +
∫
n−3

b1u(t) − a1y(t)dtn−3

+
∫
n−4

b2u(t) − a2y(t)dtn−4 + · · · +
∫

bn−3u(t) − an−3y(t)dt
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gives us the second state equation

ẋ2 = x3 + bn−2u(t) − an−2y(t)
= −an−2x1(t) + x3 + bn−2u(t) − an−2bnu(t)

One more time — the derivitive of x3 is

ẋ3(t) =
∫
n−3

b0u(t) − a0y(t)dtn−3 +
∫
n−4

b1u(t) − a1y(t)dtn−4

+
∫
n−5

b2u(t) − a2y(t)dtn−5 + · · · + bn−3u(t) − an−3y(t)

Defining the terms with integrals in the expression above as x4(t)

x4(t) ≡
∫
n−3

b0u(t) − a0y(t)dtn−3 +
∫
n−4

b1u(t) − a1y(t)dtn−4

+
∫
n−5

b2u(t) − a2y(t)dtn−5 + · · · + bn−3u(t) − an−3y(t)

gives us the third state equation

ẋ3 = x4 + bn−3u(t) − an−3y(t)
= −an−3x1(t) + x4 + bn−3u(t) − an−3bnu(t)

Repeating the pattern, we obtain the observable canonical companion matrix
realization.

d

dt



x1(t)
x2(t)

...
xn−1(t)
xn(t)


=



−an−1 1 0 · · · 0
−an−2 0 1 · · · 0

... ... ... . . .
−a1 0 0 · · · 1
−a0 0 0 · · · 0





x1(t)
x2(t)
x3(t)

...
xn(t)


+



bn−1 − an−1bn

bn−2 − an−2bn
...

b1 − a1bn

b0 − a0bn


u(t)

(23)

y(t) =
[

1 0 0 · · · 0
]


x1(t)
x2(t)
x3(t)

...
xn(t)


+ [bn] u(t)
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Notes:

• State space realizations for a given differential equation or transfer func-
tion are not unique.

• The observable canonical realization is the flipped transpose of the con-
trollable canonical realization. By reversing the order of the states, the
A matrix for the observable canonical realization is the transpose of A

for the controllable canonical realization; B for the observable canonical
realization is the transpose of C for the controllable canonical realiza-
tion; and transpose of C for the observable canonical realization is B

for the controllable canonical realization. The feedthrough matrix D is
realization independent, as it should be.

• The roots of a characteristic equations of an ordinary differential equa-
tion with real valued coefficients are real or occur in complex conjugate
pairs. In the matlab language, the vector [a0, a1, a2, · · · , an−1, 1] is
encoded in reverse (“fliped”) order as as [1, an−1, an−2, · · · , a1, a0].
So computations can be carried out as,

a = flip(real(poly(lambda))); % coeff’s from eigenvalues
A = [ zeros(N-1,1) , eye(N-1) ; -a(1:N) ]; % dynamics matrix
lambda = roots(flip(a)); % eigenvalues from coeff’s
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5 Difference Equations, Transfer Functions, and Discrete Time State Space
Realizations

In discrete time where variables are sampled at uniform time increments (∆t),
y(k) is shorthand for y(k∆t), and u(k) is shorthand for u(k∆t). Any linear
ordinary difference equation with constant coefficients

y(k) + a1y(k − 1) + a2y(k − 2) + · · · + an−1y(k − n + 1) + any(k − n)
= b0u(k) + b1u(k − 1) + b2u(k − 2) + · · · + bn−1u(k − n + 1) + bnu(k − n)(24)

can be expressed in state-space form as long as the longest time lag of u does
not exceed the longest time lag of y. Setting the external forcing, u(k) to zero
for all k, and substituting an assumed solution of the form y(n) = ȳeλk∆t,
and factoring out the eλk∆t, results in

( 1 + a1λ
−1 + a2λ

−2 + · · · + an−1λ
−n+1 + anλ−n ) ȳ = 0.

This equation is valid for ȳ = 0 (the trivial solution) and for (ao + a1λ
−1 +

· · · + λ−n) = 0, which is called the characteristic equation of this difference
equation. For n > 3 the n roots of this polynomial, (λ1, ..., λn) may be com-
puted numerically. In general, these roots are complex and are conventionally
expressed as

λi = σi ± iωi ,
(
i =

√
−1

)
.

Now considering harmonically forced steady state inputs and outputs, assume
a harmonic input of the form u(t) = ū(s)esk∆t ≡ ū(z)zk and a harmonic out-
put of the form y(t) = ȳ(s)esk∆t ≡ ȳ(z)zk. Allowing the Laplace variable
to be complex, s ∈ C, these assumed solutions can represent both harmonic
and exponential functions. Substituting the assumed solutions into the dif-
ference equation, and factoring out esk∆t from both sides, gives the difference
equation expressed in the z-domain.

( 1 + a1z
−1 + a2z

−2 + · · · + an−1z
−n+1 + anz−n ) ȳ(z)

= ( b0 + b1z
−1 + b2z

−2 + · · · + bn−1z
−n+1 + bnz−n ) ū(z)
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The ratio of the output ȳ(z) to the input ū(z) in the z-domain is called the
transfer function

H(z) ≡ ȳ(z)
ū(z) = b0 + b1z

−1 + b2z
−2 + · · · + bn−1z

−n+1 + bnz−n

1 + a1z−1 + a2z−2 + · · · + an−1z−n+1 + anz−n
(25)

To obtain a state space realization of this difference equation, we convert
the z-domain transfer function back to a time domain difference equation by
multiplying the numerator and the denominator of the transfer function by
the same z-domain variable v̄(z), which will be used to represent the states
of the system.

ȳ(z)
ū(z) = ( b0 + b1z

−1 + b2z
−2 + · · · + bn−1z

−n+1 + bnz−n ) v̄(z)
( 1 + a1z−1 + a2z−2 + · · · + an−1z−n+1 + anz−n ) v̄(z) (26)

Now defining

ȳ(z) ≡ ( b0 + b1z
−1 + b2z

−2 + · · · + bn−1z
−n+1 + bnz−n ) v̄(z) ,

ū(z) ≡ ( 1 + a1z
−1 + a2z

−2 + · · · + an−1z
−n+1 + anz−n ) v̄(z) ,

taking the inverse z-transform,

y(k) = b0v(k) + b1v(k − 1) + b2v(k − 2) + · · · + bn−1v(k − n + 1) + bnv(k − n) ,

u(k) = v(k) + a1v(k − 1) + a2v(k − 2) + · · · + an−1v(k − n + 1) + anv(k − n) ,

and defining states

x1(k) = v(k − n)
x2(k) = x1(k + 1) = v(k − n + 1) ,

x3(k) = x2(k + 1) = v(k − n + 2) ,
... ... ...

xn(k) = xn−1(k + 1) = v(k − 1) ,

xn(k + 1) = f(x1, ..., xn, u) = v(k) ,

we obtain expressions for y(k) and u(k) in terms of n states x1, ... , xn, and
xn(k + 1).

y(k) = b0xn(k + 1) + b1xn(k) + b2xn−1(k) + · · · + bn−1x2(k) + bnx1(k)
u(k) = xn(k + 1) + a1xn(k) + a2xn−1(k) + · · · + an−1x2(k) + anx1(k)
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Solving the second equation for xn(k+1) we obtain the highest state difference
as a function of the states and the input

xn(k + 1) = u(k) − a1xn(k) − a2xn−1(k) − · · · − an−1x2(k) − anx1(k) .

Inserting this equation into the equation for y(k), we obtain the output equa-
tion as a function of states and the input,

y(k) = b0 (u(k) − a1xn(k) − a2xn−1(k) − · · · − an−1x2(k) − anx1(k))
+ b1xn(k) + b2xn−1(k) + · · · + bn−1x2(k) + bnx1(k)

Combining terms with the same states

y(k) = (bn − anb0) x1(k) + (bn−1 − an−1b0) x2(k) + (bn−2 − an−2b0) x3(k) + · · ·
+ (b2 − a2b0) xn−1(k) + (b1 − a1b0) xn(k) + b0 u(k)

and combining with the definition of the states, leads to a system of first
order linear difference equations for the single n-th order ordinary difference
equation. 

x1(k + 1)
x2(k + 1)

...
xn−1(k + 1)
xn(k + 1)


=



0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . .

0 0 0 · · · 1
−an −an−1 −an−2 · · · −a1





x1(k)
x2(k)
x3(k)

...
xn(k)


+



0
0
...
0
1


u(k)

(27)

y(k) =
[

bn − anb0 bn−1 − an−1b0 bn−2 − an−2b0 · · · b1 − a1b0
]


x1(k)
x2(k)
x3(k)

...
xn(k)


+ [b0] u(k)

This is called the controllable canonical companion matrix state space real-
ization of the system described by differnce equation (24) or transfer function
(25). The coefficients a1, · · · , an or, equivalently, the roots λ1, · · · , λn, of the
characteristic equation, and the input coefficients b0, ..., bn fully specify the
system.

Note the similarities and differences between the continuous time differential
equation (17) and the discrete time difference equation (24), the Laplace do-
main transfer function (19) and the z-domain transfer function (24), and the
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continuous time state-space controllable canonical companion matrix realiza-
tion (21) and the discrete time state-space controllable canonicla companion
matrix realization (27)

Here is the observable canonical companion matrix realization of the discrete
time finite difference equation, presented without the cumbersome derivation.

x1(k + 1)
x2(k + 1)

...
xn−1(k + 1)
xn(k + 1)


=



−a1 1 0 · · · 0
−a2 0 1 · · · 0

... ... ... . . .
−an−1 0 0 · · · 1
−an 0 0 · · · 0





x1(k)
x2(k)
x3(k)

...
xn(k)


+



b1 − a1b0

b2 − a2b0
...

bn−2 − an−2b0

bn−1 − an−1b0


u(k)

(28)

y(k) =
[

1 0 0 · · · 0
]


x1(k)
x2(k)
x3(k)

...
xn(k)


+ [b0] u(k)

This section shows that any linear difference equation in which the order of
the transfer function’s numerator polynomial does not exceed the order of
the denominator polynomial may be expressed as a state space model.

Following sections show how linear time invariant state space models can be
analyzed and simulated.
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6 Free State Response

The free state response x(t) of ẋ(t) = Ax(t) to an initial state x(0) is

x(t) = eAtx(0) (29)

where eAt is called the matrix exponential.
In the matlab language, x(:,p)=expm(A*t(p))*xo;

The j-th column of the matrix of free state responses X(t) = eAtIn is the set
of responses of each states xi, i = 1, ..., n from an initial state xj(0) = 1 and
xk(0) = 0 for all k ̸= j.

The i-th row of the matrix of free state responses X(t) = eAtIn is the set of
responses of the i-th state, from each initial state xj(0) = 1 and xk(0) = 0
for all k ̸= j, and j = 1, ..., n. .

7 Free Output Response

The free output response y(t) of ẋ(t) = Ax(t) to an initial state x(0) is

y(t) = CeAtx(0) , (30)

In the matlab language, y(:,p)=C*expm(A*t(p))*xo;

The j-th column of the matrix of free output responses Y (t) = CeAtIn is
the set of responses of each output from an initial condition xj(0) = 1 and
xk(0) = 0 for all k ̸= j.

The i-th row of the matrix of free output responses Y (t) = CeAtIn is the
set of responses of the i-th output, from each initial condition xj(0) = 1 and
xk(0) = 0 for all k ̸= j, and j = 1, ..., n. .
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8 Unit Impulse Response Function

If the system is forced by a unit impulse δ(t) acting only on the j-th input
(u(t) = ejδ(t)) the solution to ẋ(t) = Ax(t) + Bu(t), x(0) = 0, for t ≥ 0 is

x(t) = eAtBej , (31)

and the corresponding output response is

y(t) = CeAtBej . (32)

The set of n × r unit impulse state responses, each corresponding to impulse
responses from each input individually, is

X(t) = eAtB , (33)

and the corresponding set of m × r output responses is called the system’s
unit impulse response function

H(t) = CeAtB . (34)

The i, j element of H(t) is the response of output i due to a unit impulse at
input j. Note that the impulse response is a special case of the free response.
In other words, if there is a vector v such that xo = Bv, the free response
and the impulse response are equivalent. In other words, the input matrix B

forms a basis for the initial condition that produces the same free response as
the unit impulse response. Note that there can be initial conditions xo which
do not equal Bv because B does not necessarily span Rn. The set of free
responses can therefore be much richer than the set of impulse responses.

In the matlab language, H(p,:,:)=C*expm(A*t(p))*B;
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9 The Dirac delta function

The unit impulse δ(t) is the symmetric unit Dirac delta function. Each Dirac
delta function is zero for t < ϵ and t > ϵ and has the following properties:∫ ϵ

−ϵ
δ(t) dt = 1∫ 0

−ϵ
δ(t) dt = 1

2∫ ϵ

0
δ(t) dt = 1

2
δ(0) = ∞∫ ϵ

−ϵ
δ(t − τ) f(τ) dτ = f(t)∫ 0

−ϵ
δ(t − τ) f(τ) dτ = 1

2f(t)∫ ϵ

0
δ(t − τ) f(τ) dτ = 1

2f(t)

10 Forced State and Output Response

The forced state response is the convolution of the inputs with the unit im-
pulse state response function

x(t) =
∫ t

0
eA(t−τ) Bu(τ) dτ . (35)

The output corresponding to this input is

y(t) = Cx(t) + Du(t)
= C

∫ t

0
eA(t−τ) Bu(τ) dτ + Du(t). (36)

The total response of a linear time invariant system from an arbitrary initial
condition is the sum of the free response and the forced response.

y(t) = CeAtxo + C
∫ t

0
eA(t−τ) Bu(τ) dτ + Du(t). (37)

An efficient method for computing y(t) for a arbitrary inputs u(t) is provided
in the last sections of this document.
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11 The Matrix Exponential

The matrix exponential is defined for A ∈ Rn×n as

eA ∆=
∞∑

k=0
Ak/k! = I + A + AA/2 + AAA/6 + AAAA/24 + · · · (38)

Properties of the matrix exponential:

• If A = AT then eA > 0.

• If A = −AT then [eA][eA]T = I

• eAt eBt = e(A+B)t

• [eA]T = eAT

• [eA]−1 = e−A

• eT −1AT = T −1eAT for any square invertible matrix T ∈ Rn×n.

eT −1AT = I + T −1AT + 1
2T −1AT T −1AT + 1

6T −1AT T −1AT T −1AT + · · ·

= T −1T + T −1AT + 1
2T −1AAT + 1

6T −1AAAT + · · ·

= T −1[I + A + AA/2 + AAA/6 + · · · ]T
eT −1AT = T −1eAT. (39)

• det(eAt) = etrace(At)

• eAtA−1 = A−1eAt

• rank(eAt) = n for any A ∈ Rn×n, regardless of the rank of A.

• d
dte

At = AeAt

eAt = I + At + 1
2AAt2 + 1

6AAAt3 + 1
24AAAAt4 + · · ·

d

dt
eAt = A + AA + 1

2AAAt2 + 1
6AAAAt3 + · · ·

= A[I + At + 1
2AAt2 + 1

6AAAt3 + 1
24AAAAt4 + · · · ]

d

dt
eAt = AeAt (40)
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• A
∫ t

0
eAτdτ = eAt − I

A
∫ t

0
eAτdτ =

∫ t

0

d

dτ
eAτdτ

= eAτ
∣∣∣t0

= eAt − eA0

= eAt − I

A
∫ t

0
eAτdτ = eAt − I (41)

−A
∫ t

0
e−Aτdτ = e−At − I (42)

•
∫ t

0
eA(t−τ)dτ = A−1(eAt − I)

∫ t

0
eA(t−τ)dτ =

∫ t

0
eAte−Aτdτ

= eAt
∫ t

0
e−Aτdτ

= eAt(−A−1)
(
e−At − I

)
= −eAtA−1e−At + eAtA−1

= −A−1AeAtA−1e−At + A−1AeAtA−1

= −A−1eAAA−1te−At + A−1eAAA−1t

= −A−1eAte−At + A−1eAt

= −A−1 + A−1eAt

= A−1 (eAt − I
)

(43)

=
∫ t

0
eAτdτ (44)

• for x(0) = 0n , u(t) = Ir ∀ t > 0 , lim
t→∞

eAt = 0n×n , and D = 0m×r

Y (t) = C
∫ t

0
eA(t−τ)dτ B

= CA−1(eAt − I)B

where Yij(t) is the unit step response of output i to a unit step input on
input j. The final value of outputs to unit step inputs is
Y (∞) = −CA−1B.
This is a result of the final value theorem.
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With definitions of the natural frequency, ωn
∆=
√

k/m, the damping ratio,
ζ

∆= c/(2
√

mk), and the damped natural frequency, ωd
∆= ωn

√
|ζ2 − 1|, let

A =
 0 1

−k/m −c/m

 =
 0 1

−ωn
2 −2ζωn

 . (45)

For this dynamics matrix, the matrix exponential depends on the damping
ratio, ζ, as follows:

damping damping ratio eAt

undamped ζ = 0 eAt =
[

cos ωnt 1
ωn

sin ωnt

−ωn sin ωnt cos ωnt

]

under-damped 0 < ζ < 1 eAt = e−ζωnt

 cos ωdt + ζ√
1−ζ2

sin ωdt 1
ωd

sin ωdt

− ωd√
1−ζ2

sin ωdt cos ωdt − ζ√
1−ζ2

sin ωdt



critically damped ζ = 1 eAt = e−ωnt

[
1 + ωnt t

−ωn
2t 1 − ωnt

]

over-damped ζ > 1 eAt = e−ζωnt

 cosh ωdt + ζ√
1−ζ2

sinh ωdt 1
ωd

sinh ωdt

− ωd√
ζ2−1

sinh ωdt cosh ωdt − ζ√
ζ2−1

sinh ωdt
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12 Transformation of state space realizations

The state vector x(t) in a LTI system

ẋ(t) = Ax(t) + Bu(t) , x(0) = xo

y(t) = Cx(t) + Du(t)

may be transformed via any square full rank transformation matrix T into a
transformed state vector x̄(t) such that x̄(t) = T −1x(t). Substituting x = T x̄,

T ˙̄x(t) = ATx̄(t) + Bu(t) , x(0) = T x̄(0) = T x̄o x̄o = T −1xo

y(t) = CTx̄(t) + Du(t)

premultiplying the differential equations, by T −1 and solving for ˙̄x(t) results
in a LTI system with the transformed state vector x̄(t)

˙̄x(t) = T −1ATx(t) + T −1Bu(t) = Āx̄(t) + B̄u(t) , x̄(0) = x̄o

y(t) = CTx̄(t) + Du(t) = C̄x̄(t) + Du(t)

where Ā = T −1AT , B̄ = T −1B, and C̄ = CT .

The product CB is invariant to the coordinate system. In other words,

C̄ B̄ = CT T −1B = CB .

And the product CAB is invariant to the coordinate system. In other words,

C̄ Ā B̄ = CT T −1AT T −1B = CAB .

And CAkB (k = 0, 1, 2, ...) is also invariant to the coordinates of the state
vector.
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13 Eigenvalues and Diagonalization

Consider the dynamics matrix A of a linear time invariant, (LTI) system.
If the input, u(t) is zero, then ẋ = Ax. Assuming a solution of the form
x(t) = x̄eλt, and substituting this solution into ẋ = Ax, results in:

x̄λeλt = Ax̄eλt

or
x̄λ = Ax̄ , (46)

which is a standard eigenvalue problem, in which x̄ is an eigenvector and λ

is the corresponding eigenvalue. If A is a n × n matrix, then there are n

(possibly non-unique) eigenvalues λ1, · · · , λn and n associated unique eigen-
vectors, x̄1, · · · , x̄n. For the dynamics matrix given in equation (9), there are
two eigenvalues.

λ1,2 = − c

2m
±
√√√√ c2

4m
− k

m
(47)

= −ζωn ± ωn
√

ζ2 − 1 (48)

The dynamics matrix contains all the information required to determine the
natural frequencies and damping ratios of the system.

The n eigenvectors can be assembled, column-by-column into a matrix,

X̄ = [x̄1 x̄2 · · · x̄n] .

Pre-multiplying the eigen-problem by X̄−1,

X̄−1AX̄ = X̄−1X̄Λ = diag(λi) =


λ1

. . .
λn

 (49)

This is called a diagonalization of the dynamics matrix A.

Now, consider the linear transformation of coordinates, x(t) = X̄q(t),
q(t) = X̄−1x(t). Substituting this change of coordinates into equation (3),

X̄q̇(t) = AX̄q(t) + Bu(t),
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and pre-multiplying by X̄−1

q̇ = X̄−1AX̄q + X̄−1Bu,

or

q̇ =


λ1

. . .
λn

 q + X̄−1Bu , q(0) = X̄−1xo

q̇ = Āq + B̄u , q(0) = X̄−1xo (50)
y = CX̄q + Du

y = C̄q + Du (51)

The n differential equations q̇i = λiqi + B̄iu are uncoupled. The state qi(t) is
independent of all the other states qj(t), j ̸= i. Note that if Λ is complex, so
are X̄, Ā, B̄, and C̄.

Consider one of the un-coupled equations from equation (50), for the unforced
case u = 0

q̇i(t) = λiqi(t) , qi(0) = 1 .

This equation has a solution

qi(t) = eλit ,

where λi is, in general, a complex value,

λi = σi ± iωi ,

and qi + q∗
i is real-valued.

qi(t) + q∗
i (t) = 1

2eλit + 1
2eλ∗

i t

= 1
2eσit(cos ωit + i sin ωit) + 1

2eσit(cos ωit − i sin ωit)

= eσit cos ωit ,
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14 Jordan Forms

If a square matrix A ∈ Rn×n has distinct eigenvalues, then it can be reduced
to a diagonal matrix through a similarity transformation

X̄−1 A X̄ = Λ =


λ1 · · · 0
... . . . ...
0 · · · λn

 (52)

where X̄ ∈ Rn×n is the matrix of linearly independent eigenvectors of A.

If A has repeated eigenvalues, the it can be reduced to a diagonal matrix only
if all n eigenvectors are linearly independent.

If A has repeated eigenvalues and two or more of the eigenvectors associated
with the repeated eigenvalues are not linearly independent, then it is not
similar to a diagonal matrix. It is, however, similar to a simpler matrix
called the Jordan form of A,

X̄−1 A X̄ =


J1 · · · 0
... . . . ...
0 · · · Jn

 (53)

where the square sub-matrices in

Ji =



λi 1 0 0 · · · 0
0 λi 1 0 · · · 0
0 0 λi 1 · · · 0
... · · · · · · . . . . . . ...
0 · · · · · · 0 λi 1
0 · · · · · · 0 0 λi


(54)

are called Jordan blocks. In a Jordan block, repeated eigenvalues are on the
diagonal and 1’s are just above the diagonal.

Consider an eigenvalue λi of matrix A ∈ Rn×n with multiplicity k. There
are k eigenvectors, x̄i, associated with the eigenvalue λi. If all pairs of these
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k eigenvectors are linearly dependent, (there exist real values αi such that
x̄1 = αix̄i i = 2, . . . , k), then this set of linearly dependent eigenvectors span
a one-dimensional subspace, and a single Jordan block of dimension k×k will
be associated with the eigenvalue λi. On the other hand, if the eigenvalue λi

has bi linearly independent eigenvectors, then there will be bi separate Jordan
blocks associated with λi.

The similarity transformation into Jordan form X̄−1 A X̄ = J may be written
A X̄ = X̄ J , in which the columns of X̄ are [x̄1 x̄2 · · · x̄n]. So

A[x̄1 x̄2 · · · x̄n] = [x̄1 x̄2 · · · x̄n]J (55)

Writing the columns of X̄ associated with a single Jordan block of λi,

A[u1 u2 u3 · · · uk] = [u1 u2 u3 · · · uk]



λi 1 0 0 · · · 0
0 λi 1 0 · · · 0
0 0 λi 1 · · · 0
... · · · · · · . . . . . . ...
0 · · · · · · 0 λi 1
0 · · · · · · 0 0 λi


k×k

[Au1 Au2 Au3 · · · Auk] = [u1λi u1 + u2λi u2 + u3λi · · · uk−1 + ukλi],

and associating columns of the left and right hand side of this equation,

Au1 = u1λi ⇔ [A − λiI]u1 = 0
Au2 = u1 + u2λi ⇔ [A − λiI]u2 = u1

Au3 = u2 + u3λi ⇔ [A − λiI]u3 = u2 ⇔ [A − λiI]2u3 = u1
... ...

Auk = uk−1 + ukλi ⇔ [A − λiI]uk = uk−1 ⇔ [A − λiI]k−1uk = u1

The size of the Jordan block is k × k where uk is not linearly independent of
uk+1. An equivalent criterion is

rank[A − λiI]k = rank[A − λiI]k+1. (56)

So, to find the vectors of the transformation matrix X̄ in a particular Jordan
block of λi, start first by finding k such that the above equation is satisfied.
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The next step is to find a vector in the null space of [A − λiI]k. start by
setting u1 equal to one of the eigenvectors of λi. Then iterate on

un = [A − λiI]−1un−1 (57)

until un and un−1 are not linearly independent. If there is more than one
Jordan block associated with the repeated eigenvalue λi, the transformation
vectors associated with the remaining Jordan blocks may be found by restart-
ing the iterations with the other eigenvectors associated with λi.

If A ∈ Rn×n and k is the multiplicity of the eigenvalue λi, then the size of
the largest Jordan block of eigenvalue λi is k such that

rank(A − λiI)k = rank(A − λiI)k+1. (58)

For a similar derivation of this see pages 42–49 of C-T Chen, Introduction to
Linear Systems Theory, Hold, Rinehart and Winston, 1970.

If Â ∈ Rn×n has the Jordan block form

λ1 1 0 0 · · · 0
0 λ1 1 0 · · · 0
0 0 λ1 1 · · · 0
... · · · · · · . . . . . . ...
0 · · · · · · 0 λ1 1
0 · · · · · · 0 0 λ1


n×n

(59)

then

eÂt =



eλ1t t eλ1t t2 eλ1t/2! t3 eλ1t/3! · · · tn−1 eλ1t/(n − 1)!
0 eλ1t t eλ1t t2 eλ1t/2! · · · tn−2 eλ1t/(n − 2)!
0 0 eλ1t t eλ1t · · · tn−3 eλ1t/(n − 3)!
... · · · · · · . . . . . . ...
0 · · · · · · 0 eλ1t t eλ1t

0 · · · · · · 0 0 eλ1t


n×n

(60)
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15 Transfer Function and Frequency Response Function

Taking the Laplace transform of equation (3), (and considering the particular
part of the solution, (i.e., ignoring the effects of initial conditions) gives

s x(s) = Ax(s) + Bu(s) , (61)
y(s) = Cx(s) + Du(s) , (62)

which can be written as y(s) in terms of u(s) as follows,

y(s) = H(s) u(s) = [ C[sI − A]−1B + D ] u(s) (63)

This transfer function relates the set of r inputs u to the m outputs y in the
Laplace domain; H(s) ∈ Cm×r.

Equation (63) may be used to determine the complex-valued frequency re-
sponse function of any dynamic system, by evaluating the transfer function
along the line s = iω.

y(ω) = H(ω) u(ω) = [C[iωI − A]−1B + D] u(ω) (64)

Assuming that the inputs u(t) are sinusoidal with frequency ω and unit am-
plitude, the magnitude of the frequency response function,

|H(ω)| =
√

[ReH(ω)]2 + [ImH(ω)]2

gives the amplitude of the responses y(t). The phase of H(ω),

∠H(ω) = arctan
 ImH(ω)

ReH(ω)


gives the phase angle between the input u(t) and the output y(t). So if
u(t) = cos(ωt), then y(t) = |H(ω)| cos(ωt + ∠H(ω)). A graph of |H(ω)|
and ∠H(ω) is called a Bode plot. In the matlab language, [mag,pha] =
bode(A,B,C,D); generates a Bode plot for a system defined by matrices A,
B, C, and D.

Transfer functions (and frequency response functions) are invariant to co-
ordinate transformation. Any transformed equation of state, Ā = T −1AT ,
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B̄ = T −1B, C̄ = CT (e.g., equations (50) and (51)), resulting in

y(s) = H(s) u(s) = [C̄[sI − Ā]−1B̄ + D] u(s).

If T = X̄, the eigenvector matrix of A (see equation (49)), then Ā = Λ =
diag(λi). Continuing with a realization in modal coordinates, in which B̄ =
X̄−1B and C̄ = CX̄,

H(s) =


− c̄1 −

...
− c̄m −




1
s−λ1 . . .

1
s−λn




| |
b̄1 · · · b̄r

| |

 + D.

in which c̄i is the ith row of C̄ and b̄i is the jth column of B̄. Since Λ is
diagonal, we can express the i, j element of the transfer function matrix H(s)
as

Hij(s) =
n∑

k=1

C̄ik B̄kj

s − λk
+ Dij (65)

Putting equation (66) over a common denominator, Hij(s) becomes

Hij(s) = gij

p∏
k=1

(s − z
(ij)
k )

n∏
k=1

(s − λk)
(66)

where the leading coefficient gij and the zeros of the numerator z
(ij)
k depend

algebraically upon c̄i, b̄j and (λ1, ..., λn). Now expanding the numerator and
denominator products, Hij(s) may be written in Prony series form,

Hij(s) ≡ ȳi(s)
ūj(s) =

b
(ij)
0 + b

(ij)
1 s + b

(ij)
2 s2 + · · · + b

(ij)
p−1s

n−1 + b(ij)
p sn

a
(ij)
0 + a

(ij)
1 s + a

(ij)
2 s2 + · · · + a

(ij)
n−1sn−1 + sn

(67)

where the numerator coefficients b
(ij)
k depend upon gij and the zeros z

(ij)
k ,

whereas the denominator coefficients ak depend only upon the eigenvalues
(λ1, ..., λn). For any LTI system, every element of a transfer function matrix
has the same denominator polynomial. Note that p ≤ n, and that Dij ̸= 0 ⇔
p = n. If and only if D = 0 (p < n), the LTI system is called strictly proper.
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16 Singular Value Spectra

In systems with multiple inputs and multiple outputs (MIMO), the strength
of the output depends upon the relative amplitudes and phases of the in-
puts. It is possible that the effect of two non-zero inputs properly scaled in
amplitude and phase, could have a relatively small effect on the responses,
while a different combination if inputs could have a very strong affect on the
system response. Further, for harmonic inputs (and outputs), the scaling and
phasing of the inputs to achieve a strong or weak response is dependent upon
the frequency.

The singular value decomposition of the frequency response function matrix

y(ω) = H(ω)(m×r) u(ω)
= UH(ω) ΣH(ω) V T

H (ω) u(ω)
=

∑
k

σHk(ω)[uHk(ω)vT
Hk(ω)] u(ω)

=
∑
k

σHk(ω)uHk(ω) (vT
Hk(ω) u(ω)) (68)

provides the means to assess how inputs can be scaled for maximal or minimal
effect. Here, columns of UH(ω) and VH(ω) are the left and right singular
vectors of H(ω). For complex-valued frequency responses, singular vectors
are complex-valued. (The singular values are always real (σH1 ≥ σH2 ≥ ... ≥
0)). For inputs u(ω) proportional to vH1(ω), ||y(ω)||2 is maximized and is
proportional to uH1(ω). If r < m and σHr > 0 then inputs proportional
to VHr(ω) have the weakest coupling to the outputs. On the other hand,
if r > m there is some linear combination of inputs that (at a particular
frequency ω) will result in no output at all. Right singular vectors spanning
this kernel of H(ω), [vH(m+1)(ω) , ... , vHr(ω)], is an orthogonal basis for
these inputs

Plots of σH1(ω) and σHr(ω) indicate the frequency-dependence of the largest
amplification and the smallest amplification for any linear combination (and
phasing) of inputs, in the context of steady-state harmonic response.

cbnd H.P. Gavin May 14, 2025

http://creativecommons.org/licenses/by-nc-nd/4.0/


32 CEE 629. – System Identification – Duke University – Spring 2019 – H.P. Gavin

17 Zeros and Poles of MIMO LTI Systems

In the Laplace domain, the dynamics equation is sx(s) = Ax(s) + Bu(s), or

[
sI − A , −B

]
n×(n+r)

 x(s)
u(s)

 = 0 .

If there is a value of s such that

rank([sI − A , B]) < n ,

then there is a non-zero u(s) for which x(s) can not be uniquely determined
(x(s) could be zero in one or more components).

Similarly, the output response in the Laplace domain is sx(s) = Ax(s), y(s) =
Cx(s), or  sI − A

C


(n+m)×n

x(s) =
 0

y(s)

 .

If there is a value of s such that

rank
 sI − A

C

 < n

then the non-trivial null space of this matrix, x(s), corresponds to y(s) = 0.
In other words, there is a subspace of the state-space that does not couple to
the output.

These rank conditions for controllability and observability are called the
Popov-Belevitch-Hautus (PBH) tests. Note that for any s ̸= λi (the eigen-
values of A), rank(sI − A) = n, and that rank(λiI − A) < n. If the columns
of B do not span the N (λiI −A), then u(s) does not couple to the i-th mode
of the system, and λi is an input-decoupling zero. If a system has one or more
input decoupling zeros, then there are inputs that can not affect a subspace
of the state space, and the system is called uncontrollable. Similarly, if the
rows of C do not span N (λiI − AT), then y(s) does not couple to the i-th
mode of the system, and λi is an output-decoupling zero. If a system has one
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or more output decoupling zeros, then there are states that do not affect the
output, and the system is called unobservable.

The matrix-valued MIMO transfer function may be represented as a system
of two sets of linear equations in the Laplace domain

x(s) = (sI − A)−1Bu(s)
y(s) = Cx(s) + Du(s) ,

(69)

which is equivalent to sI − A −B

C D

  x(s)
u(s)

 =
 0

y(s)

 . (70)

This is called the Rosenbrock System Matrix (RSM) formulation. For a
system with a zero output,  −A −B

C D

 + s

 In 0
0 0

   x(s)
u(s)

 =
 0

0

 (71)

which is a generalized eigenvalue problem when D is square. Note that in
this eigenvalue problem, the matrix multiplying the eigenvalue s is not in-
vertible, and requires a numerical method such as the QZ decomposition.1
Eigenvectors corresponding to finite values of s satisfying this generalized
eigenvalue problem, define the magnitudes and phases of inputs u(s) (and of
the corresponding states x(s)), such that the output y(s) is zero. In other
words, at values of s for which the rank of the Rosenbrock System Matrix is
less than (n + min(rankB, rankC)), there exists a set of non-zero inputs such
that the output is zero.

Values of s satisfying the generalized eigenvalue problem (71) are called in-
variant zeros.2

Eigenvalues of A that are not also zeros are called poles.

1C.B. Moler and G.W. Stewart, “An Algorithm for Generalized Matrix Eigenvalue Problems,” SIAM J.
Numer. Anal., 10(2) (1973), 241-256

2H.H. Rosenbrock, “The zeros of a system,” Int’l J. Control, 18(2) (1973): 297-299.
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18 Liapunov Stability

Consider autonomous dynamic systems which may be linear ẋ = Ax or non-
linear ẋ = f(x) evolving from an initial condition x(0) = xo. The equilibrium
solution xe(t) = 0 satisfies the linear system dynamics ẋ = Ax, and satisfies
the nonlinear system dynamics ẋ = f(x) if (and only if) f(0) = 0. Going
forward we will suppose that x(t) = 0 is a solution.

18.1 Classifications of the stability of equilibrium solutions xe(t) ≡ 0

The equilibrium solution xe(t) ≡ 0 is:

• Liapunov Stable (LS) if and only if

∀ ϵ > 0 , ∃ δ > 0 such that ∀ ||xo|| < δ ⇒ ||x(t)|| < ϵ ∀ t ≥ 0

• Globally Semi Stable (GSS) if and only if

lim
t→∞

x(t) exists ∀ xo

• Locally Semi Stable (LSS) if and only if

∃ ϵ > 0 such that ∀ ||xo|| < ϵ ⇒ lim
t→∞

x(t) exists

• Asymptotically Stable (AS) if and only if

∃ ϵ > 0 such that ∀ ||xo|| < ϵ ⇒ lim
t→∞

x(t) → 0

18.2 Liapunov functions of solutions x(t)

Define a scalar-valued function of the state V (x(t)), V : Rn → R, (where
ẋ = f(x)). Then, by the chain rule

V̇ = d

dt
V (x(t)) = V ′(x)ẋ(t) = V ′(x(t)f(x(t))

Now, let V (x) > 0 ∀ x ̸= 0, and V (0) = 0.
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Figure 1. Classifications of the stability of equilibrium solutions xe(t) ≡ 0, (AS) implies (SS) implies
(LS).

• If
V̇ (x) ≤ 0 ∀ x

then the system ẋ = f(x) is Liapunov Stable (LS).

• If
V̇ (x) ≤ 0 ∀ x and f(x) = 0 ∀x such thatV̇ (x) = 0

then the system ẋ = f(x) is Semi Stable (SS).
Note: In this case V̇ may be zero even if V ̸= 0.

• If
V̇ (x) < 0 ∀ x and V (x) → ∞ as ||x|| → ∞

then the system ẋ = f(x) is Asymptotically Stable (AS).
Note: In this case V̇ is always negative.

18.3 Stability of Linear Systems

Consider ẋ = Ax with x(0) = xo. The equilibrium solution xe(t) ≡ 0 is:

• Liapunov Stable (LS) if and only if

∃ ϵ such that||eAt|| < ϵ ∀ t ≥ 0

• Semi Stable (SS) if and only if

lim
t→∞

eAt exists

• Asymptotically Stable (AS) if and only if

lim
t→∞

eAt → 0 as t → ∞
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18.4 Examples

• (not LS) : rigid body motion

A =
 0 1

0 0

 , eAt =
 1 t

0 1

 , so ||eAt|| → ∞ as t → ∞

• (LS) : undamped

A =
 0 1

−ωn
2 0

 , ||eAt||F exists
(√

2 + ωn2 + ωn−2
)

• (AS) : damped

A =
 0 1

−ωn
2 −2ζωn

 , eAt → 0

For a general two state system, ẋ = Ax,

A =
 a11 a12

a21 a22


The dynamics A are:

• Liapunov Stable (LS) if and only if trace A ≤ 0, det A ≥ 0, and rank A =
rank A2

• Semi Stable (SS) if and only if (trace A < 0 and det A ≥ 0) or A = 0

• Asymptotically Stable (AS) if and only if trace A < 0 , det A > 0.

The stability classifications of general matrix second order systems have been
systematically addressed. 3 A matrix second order system is

Mr̈(t) + Cṙ(t) + Kr(t) = 0

where r ∈ Rn, M > 0, C ≥ 0, and K ≥ 0,
3Bernstein, D.S. and Bhat, S.P., Liapunov Stability, Semi Stability, and Asymptotic Stability of Matrix

Second Order Systems,” ASME Journal of Mechanical Design, 117 (1995): 145-153.
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• K > 0 ⇒ Liapunov Stable (LS)

• C > 0 ⇒ Semi Stable (SS)

• K > 0 and C > 0 ⇒ Asymptotically Stable (AS)

Furthermore, the system is:

• Liapunov Stable (LS) if and only if: C + K > 0

• Semi Stable (SS) if and only if:
rank [C, KM−1C, (KM−1)2C, · · · (KM−1)n−1C] = n

• Asymptotically Stable (AS) if and only if: K > 0 and the system is (SS).

18.5 Asymptotic Stability of LTI Systems

The dynamics matrix fully specifies the stability properties of LTI systems.
A Liapunov function of the system defined by V (x(t)) = x(t)TPx(t) where
P > 0, is an “energy-like function.” For example, for a spring-mass system
with states corresponding to positions p(t), and velocities v(t),

x(t) =
 p(t)

v(t)


A Liapunov function

V (x(t)) = 1
2

 p(t)
v(t)

T  K 0
0 M

  p(t)
v(t)

 = 1
2p(t)TKp(t) + 1

2v(t)TMv(t)

represents the sum of the potential energy and kinetic energy. If the stiff-
ness matrix K and the mass matrix M are both positive definite then P is
also positive definite and V (t) > 0 for any non-zero displacements p(t) and
velocities v(t). The rate of change of this Liapunov function is

V̇ (x(t)) = x(t)TPẋ(t) + ẋ(t)TPx(t).
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Substituting the free response dynamics, ẋ(t) = Ax(t), into V̇ , results in

V̇ (x(t)) = x(t)TATPx(t) + x(t)TPAx(t) = x(t)T[ATP + PA]x(t) .

So if ATP +PA is negative definite, V̇ (x(t)) decreases monotonically, for any
non-zero value of the state vector x(t). The condition 0 > ATP + PA is
equivalent to 0 = ATP + PA + R for a matrix R > 0.

The equation
ATP + PA + R = 0

is called a Liapunov equation.

The following statements are equivalent:

• A is asymptotically stable

• all eigenvalues of A have real parts that are negative

• ∃ R > 0 s.t. P > 0 satisfies the Liapunov equation ATP + PA + R = 0.

• ∃ R > 0 s.t. the integral

P =
∫ ∞

0
eATtReAt dt

converges and satisfies the Liapunov equation

ATP + PA + R = 0 .

Proof: Substituting the integral above into the Liapunov equation, and
with the presumption that A is asymptotically stable,∫ ∞

0
ATeATt R eAt dt +

∫ ∞

0
eATt R eAtA dt + R = 0∫ ∞

0

[
ATeATt R eAt + eATt R eAtA

]
dt + R = 0∫ ∞

0

d

dt

[
eATt R eAt

]
dt + R = 0[

eATt R eAt
]∞
0

+ R = 0
0 · R · 0 − I · R · I + R = 0
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19 Observability and Controllability

If the solution P to the left Liapunov equation

0 = ATP + PA + CTC (72)

is positive definite, then the system defined by A and C is called observable,
meaning that the initial state can be inferred from the time series of free
responses, y(t) = Cx(t)

The matrix of free output responses from independent initial conditions on
every state, x(0) = In is Y (t) = CeAt. This matrix of independent free
responses has m rows and n columns. The covariance of Y T(t) is called
observability gramian and solves the left Liapunov equation, above.

P =
∫ ∞

0
Y T(t)Y (t) dt =

∫ ∞

0
(eATtCT)(CeAt) dt (73)

If the solution Q to the right Liapunov equation

0 = AQ + QAT + BBT (74)

is positive definite, then the system defined by A and B is called controllable,
meaning that the controls u acting on the system ẋ = Ax + Bu can return
the system to x = 0 from any initial state x(0) in finite time.

The matrix of state response sequence from independent impulses on each
input, u(t) = Irδ(t) is X(t) = eAtB. This matrix of independent state impulse
responses has n rows and r columns. The covariance of X(t) is called the
controllability gramian. and solves the right Liapunov equation, above.

Q =
∫ ∞

0
X(t)XT(t) dt =

∫ ∞

0
(eAtB)(BTeATt) dt (75)

These Liapunov equations and gramians are useful in determining the norm
of LTI systems.
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20 H2 norms of Continuous-Time LTI systems

Consider a stable (Re(λ(A)) < 0), strictly proper (D = 0), MIMO LTI sys-
tem, equivalently described by a state space realization

ẋ(t) = Ax(t) + Bu(t) , y(t) = Cx(t) ,

and its unit impulse response function matrix, H(t) = CeAtB , or its fre-
quency response function matrix, H(ω) = C(iωI − A)−1B . The H2 norm
defines a scalar measure the of dynamic amplification of the dynamic system4.
There are three ways to view, motivate, define, or interpret the H2 norm.

20.1 The Frobeneus Norm

The H2 norm of a stable, strictly proper MIMO system is defined in terms of
the Frobeneus norm. The Frobeneus norm of a matrix is the square-root of
the sum of the squares of all the terms in the matrix.

||A||F =
n,m∑

i,j

A2
ij

1/2

= [A2
1,1 + A2

1,2 + · · · + A2
1,n +

A2
2,1 + A2

2,2 + · · · + A2
2,n +

. . .

A2
m,1 + A2

m,2 + · · · + A2
m,n]1/2

If a matrix A is real (A ∈ Rn×m) then the Frobeneus norm of A is

||A||F =
[
tr AAT]1/2

If a matrix A is complex (A ∈ Cn×m) then the Frobeneus norm of A is

||A||F = [tr AA∗]1/2

The Frobeneus norm of A is the same as the Frobeneus norm of AT.

||A||F = ||AT||F = [tr AAT]1/2 = [tr ATA]1/2

4The objective function for linear quadratic control synthesis is the H2 norm of the closed-loop system.
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20.2 The H2 norm of a system in terms of unit impulse response

The H2 norm of an LTI system is defined in terms of the Frobeneus norm of
its matrix of unit impulse response functions H(t), as the sum of the areas
under all the unit impulse response functions Hij(t)

||H||22 =
∫ ∞

0
||H(t)||2F dt (76)

=
∫ ∞

0
tr [HT(t)H(t)] dt

= tr
∫ ∞

0
(BTeATtCT)(CeAtB) dt

= tr BT
∫ ∞

0
(eATtCT)(CeAt) dt B

= tr BTPB (77)

where P is the observability gramian,

P =
∫ ∞

0
(eATtCT)(CeAt) dt

20.3 The H2 norm of a system in terms of frequency response

Another interpretation of the H2 norm is in the frequency domain. This
interpretation is an expression of Parseval’s Theorem,∫ ∞

0
||H(t)||2F dt = 1

2π

∫ ∞

−∞
||H(iω)||2F dω (78)

To prove that this identity is true, we first need to know four facts. First we
need to know that if A is asymptotically stable, then∫ ∞

0
eAt dt = −A−1.

Proof:∫ ∞

0
eAt dt = A−1

∫ ∞

0
AeAt dt = A−1

∫ ∞

0

(
d

dt
eAt

)
dt = A−1 eAt

]∞
0

= A−1
(

lim
t→∞

(
eAt
)

− I
)

Second we need to know that the Laplace transform of eAt is (sI − A)−1

L{eAt} =
∫ ∞

0
eAte−st dt =

∫ ∞

0
e(A−sI)t dt = (sI − A)−1
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Third we need to know that the Laplace transform of H(t) is C(sI − A)−1B

L{H(t)} = L{CeAtB} = CL{eAt}B = C(sI − A)−1B

Fourth, we need to know that if Q satisfies 0 = AQ + QAT + BBT, then Q

is given by
Q = 1

2π

∫ ∞

−∞
(iωI − A)−1BBT(iωI − A)−∗ dω

for the special case in which A has been diagonalized, and BBT = In.

Proof:

Q = 1
2π

∫ ∞

−∞
(iωI − A)−1BBT(iωI − A)−∗ dω

= 1
2π

∫ ∞

−∞
[(−iωI − A)(iωI − A)]−1 dω

= 1
2π

∫ ∞

−∞
[ω2I + A2]−1 dω

= 1
2π

∫ ∞

−∞
diag

 1
ω2 + A2

ii

 dω

= 1
2π

π(−A)−1

= −1
2A−1,

and plugging into AQ + QAT + BBT gives,

A

(
−1

2A−1
)

+
(
−1

2A−1
)

A + I = 0

Now, examining the left hand side of the Parseval equality,

tr
∫ ∞

0
H(t)HT(t)dt = tr

∫ ∞

0
CeAtBBTeATtCT dt = tr CQCT .

And examining the right hand side of this equality,
1

2π
tr

∫ ∞

−∞
H(ω)H∗(ω) dω

= 1
2π

tr
∫ ∞

−∞
C(ωI − A)−1BBT(ωI − A)−∗CT dω

= 1
2π

tr C
∫ ∞

−∞
(iωI − A)−1BBT(iωI − A)−∗ dω CT

= tr CQCT
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20.4 The H2 norm of a system in terms of unit white noise response

A third interpretation of the H2 norm of an LTI system is the sum of the
variances of system responses y(t) to uncorrelated unit white noise.

||H||22 = lim
t→∞

E tr [yT(t)y(t)] (79)

= lim
t→∞

E tr [y(t)yT(t)]
(
= lim

t→∞
E||y(t)yT(t)||2F

)
= lim

t→∞
E tr [Cx(t)xT(t)CT]

= lim
t→∞

tr C E [x(t)xT(t)]CT

= lim
t→∞

tr CQ(t)CT

where Q(t) = E [x(t)xT(t)] is the (non-negative definite) state covariance
matrix. Defining Q to be the limit of Q(t) as t approaches infinity,

||H||22 = tr CQCT (80)

An r dimensional uncorrelated unit white noise process u(t),

u(t) =


w1(t)

...
wm(t)


has scalar components wi(t) having the following properties:

E [wi(t)] = 0 ∀ t ... expected value
E [wi(t1)wi(t2)] = δ(t1 − t2) ∀ t1, t2 ... auto − correlation
E [wi(t1)wj(t2)] = 0 ∀ i, j, t1, t2 and i ̸= j ... cross − correlation

These properties, combined, result in facts that

E [u(t1)uT(t2)] = δ(t1 − t2)Ir

and that the power spectral density of unit white noise is 1 for all frequencies.
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Now, examining the time-evolution of the state covariance matrix, we will
see that the state covariance is the controllability gramian, in the limit as
t → ∞.

Q̇(t) = d

dt
E [x(t)xT(t)]

= E [ẋ(t)xT(t) + x(t)ẋT(t)]
= E [(Ax + Bu)xT(t) + x(t)(Ax + Bu)T]
= E [AxxT + xxTAT] + E [BuxT + xuTBT]
= AQ(t) + Q(t)AT +

E
[
Bu(t)

(
eAtxo +

∫ t

0
eA(t−τ)Bu(τ) dτ

)T
+
(

eAtxo +
∫ t

0
eA(t−τ)Bu(τ) dτ

)
uTBT

]
= AQ(t) + Q(t)AT +

E
[
B
∫ t

0
u(t)uT(τ)BTeAT(t−τ) dτ +

∫ t

0
eA(t−τ)Bu(τ)uT(t) dτBT

]
= AQ(t) + Q(t)AT +

B
∫ t

0
δ(t − τ)BTeAT(t−τ) dτ +

∫ t

0
eA(t−τ)Bδ(t − τ) dτBT

= AQ(t) + Q(t)AT + 1
2BBT + 1

2BBT

= AQ(t) + Q(t)AT + BBT (81)

the solution to this differential equation is

Q(t) = eAtQ(0)eATt +
∫ t

0
eAτBBTeATτ dτ

where the initial state covariance matrix Q(0), is

Q(0) = E [x(0)xT(0)]

For asymptotically stable systems, eAt approaches zero as t approaches infin-
ity, and the transient response eAtQ(0)eATt also approaches zero. Hence

lim
t→∞

Q(t) =
∫ t

0
eAτBBTeATτ dτ

which is the definition of the controllability gramian. Equivalently, for asymp-
totically stable systems,

lim
t→∞

Q̇(t) = 0 = AQ + QAT + BBT

and Q is the controllability gramian.

cbnd H.P. Gavin May 14, 2025

http://creativecommons.org/licenses/by-nc-nd/4.0/


Linear Time Invariant Dynamical Systems 45

Using the property of the Frobeneus norm that ||A||F = ||AT||F, the two
interpretations of the H2 norm of of an LTI system presented in the preceding
pages (the interpretation in terms of white noise and the interpretation in
terms of unit impulse responses) can be shown to be equivalent.

||H||22 = tr BTPB = tr CQCT ,

where

0 = ATP + PA + CTC and 0 = AQ + QAT + BBT

Proof 1:

||H||22 =
∫ ∞

0
||H(t)||2F dt = tr

∫ ∞

0
(CeAtB)T(CeAtB) dt

= tr BT
∫ ∞

0
eATtCTCeAt dt B = tr BTPB

= tr C
∫ ∞

0
eAtBBTeATt dt CT = tr CQCT

Proof 2:

tr(BTPB) = tr(BBTP )
= tr((−AQ − QAT)P )
= tr(−AQP − QATP )
= tr(−QPA − QATP )
= tr(QCTC)
= tr(CTQC)
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In summary, the H2 norm of a system can be equivalently interpreted as:

• the definite integral (from t = 0 to ∞) of the sum of the squares of the
unit impulse responses,

• the sum of the areas under the magnitude-squared frequency response
functions, and

• the expected value of the sum of the squares of the outputs responding
to uncorrelated unit white noise.

These norms can be calculated by solving Liapunov equations for the con-
trollability gramian and the observability gramian.

Note, finally, that the H2 norm of a continuous-time LTI system with D ̸= 0
does not exist.

Continuous-time LTI systems with D = 0 are called strictly proper.
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21 Feedback Control for Stabilization

If the inputs u(t) to a dynamic system ẋ = Ax + Bu are linearly related to
the states by a constant full state feedback gain matrix, u(t) = −Kx(t), then
the closed loop system ẋ = (A − BK)x is autonomous. If the the pair (A, B)
is controllable, then a full state feedback gain matrix K may be found that
places the eigenvalues of (A − BK) to any desired values.

22 Feedfoward Control for Tracking

If the inputs u(t) to a stable dynamic system ẋ = Ax + Bu are linearly
related to desired output values r(t) by a constant and square feedforward
gain matrix, u(t) = Fr(t), then the feedforward dynamics are ẋ = Ax+BFr.
and outputs y(t) = Cx(t) can be made to asymptotically approach r(t) by
setting R = Y (∞) = −CA−1BFR from which F = (−CA−1B)−1.

23 Feedback Control for Stabilization and Tracking

If certain outputs y(t) = Cx(t) are to track a set of inputs r(t), the rate of
the integrated tracking error is q̇(t) = y(t) − r(t). Augmenting the system
dynamics with the dynamics of the tracking error, ẋ

q̇

 =
 A 0

C 0

  x

q

 +
 0

−I

 r + Bu

Setting the controls u to be linear in the states and the tracking error,
u = −K[xT, qT]T, ẋ

q̇

 =
 A 0

C 0

 − BK

  x

q

 +
 0

−I

 r

the states and the tracking error can be selectively stabilized to zero by
appropriate selection of the feedback gain matrix K as long as the augmented
system is controllable through B. This approach does not require the number
of tracked outputs to equal the number of inputs.
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24 Transforming Continuous Time Systems to Discrete-Time Systems (ZOH)

Consider the evolution of the state response from a time t to a time t+∆t for
inputs u(τ) that equal u(t) for t ≤ τ ≤ t+∆t. This is a zero-order hold (ZOH)
on u(t) over the interval [t, t + ∆t]. The initial condition to this evolution is
x(t), and we wish to find the states x(t + ∆t). Shifting time to be 0 at time t

in equation (35) and defining x(k∆t) ≡ x(k), x((k + 1)∆t) ≡ x(k + 1), and,
u(τ) ≡ u(k∆t) ≡ u(k). for 0 ≤ τ ≤ ∆t, gives

x(k + 1) = eA∆tx(k) +
∫ ∆t

0
eA(∆t−τ) dτ Bu(k)

=
[
eA∆t

]
x(k) +

[
A−1 (eA∆t − I

)
B
]
u(k) ,

= [Ad] x(k) + [Bd] u(k) (82)

where Ad and Bd are the discrete-time dynamics matrix and the discrete-time
input matrix, Ad = eA∆t and Bd = A−1(Ad − I)B.

Note that Bd exists even though A may not be invertible. Consider the
diagonalization A = X̄−1ΛX̄. The inverse of A may be expressed A−1 =
X̄−1Λ−1X̄, where X̄X̄−1 = I. So,

A−1(eAt − I) = X̄−1Λ−1X̄X̄−1(eΛt − I)X̄ = X̄−1Λ−1(eΛt − I)X̄,

which contains diagonal terms (eλi − 1)/λi, and

lim
λi→0

eλi − 1
λi

= 1 .

To compute Bd without inverting A, note the following:

eA∆t − I = A∆t + ∆t2

2 AA + ∆t3

6 AAA + ∆t4

24 AAAA + · · ·

A−1(eA∆t − I) = ∆t + ∆t2

2 A + ∆t3

6 AA + ∆t4

24 AAA + · · ·

Bd = A−1(eA∆t − I)B = ∆tB + ∆t2

2 AB + ∆t3

6 AAB + ∆t4

24 AAAB + · · · ,

and, if

M =
 An×n Bn×r

0r×n 0r×r

 , (83)
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then,

eM∆t = I + ∆tM + ∆t2

2 MM + ∆t3

6 MMM + ∆t4

24 MMMM + · · ·

= I + ∆t

 A B

0 0

 + ∆t2

2

 AA AB

0 0

 + ∆t3

6

 AAA AAB

0 0

 + · · ·

=
 In + ∆tA + ∆t2

2 AA + · · · ∆tB + ∆t2

2 AB + ∆t3

6 AAB + · · ·
0 Ir

 ,

so
eM∆t =

 Ad Bd

0 Ir

 , (84)

and the discrete-time dynamics matrix Ad and input matrix Bd may be com-
puted using a single matrix exponential computation.

In Matlab:

[n,r] = size(B);
M = [ A B ; zeros(r,n+r) ];
eMdt = expm(M*dt);
Ad = eMdt(1:n,1:n);
Bd = eMdt(1:n,n+1:n+r);

With the matrices Ad and Bd, the transient response may be computed dig-
itally using equation (82).

x(:,1) = x0;
for p=1:points-1

x(:,p+1) = Ad * x(:,p) + Bd * u(:,p);
end
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25 Transforming Continuous Time Systems to Discrete-Time Systems (FOH)

Using the same time-shifting as in the previous ZOH derivation, but now
specifying that the input changes linearly over a time increment, ∆t,

u(τ) = u(k)+ 1
∆t

(u(k +1)−u(k)) τ ≡ u(k)+u′(k) τ for 0 ≤ τ ≤ ∆t , (85)

This is a first order hold (FOH) on the inputs over [t, t + ∆t]. Defining
x(k∆t) ≡ x(k), u(k∆t) = u(k) gives

x(k + 1) = eA∆tx(k) +
∫ ∆t

0
eA(∆t−τ) B u(τ) dτ

= eA∆tx(k) +
∫ ∆t

0
eA(∆t−τ) dτ B u(k) +

∫ ∆t

0
eA(∆t−τ) B u′(k) τ dτ

= eA∆tx(k) + A−1
(
eA∆t − I

)
B u(k) + A−2

(
eA∆t − I − A∆t

)
B u′(k)

=
[
eA∆t

]
x(k) +

[
A−1

(
eA∆t − I

)
B
]

u(k) +
[
A−2

(
eA∆t − I − A∆t

)
B
]

u′(k) ,

= [Ad] x(k) + [Bd] u(k) + [B′
d] u′(k) (86)

where Ad, Bd, and B′
d are the discrete-time dynamics matrix and the discrete-

time input matrices.

The input matrices Bd and B′
d exist even though A may not be invertible.

To compute Bd without inverting A, note the following:

eA∆t − I = A∆t + ∆t2

2 AA + ∆t3

6 AAA + ∆t4

24 AAAA + · · ·

A−1(eA∆t − I) = ∆t + ∆t2

2 A + ∆t3

6 AA + ∆t4

24 AAA + · · ·

Bd = A−1(eA∆t − I)B = ∆tB + ∆t2

2 AB + ∆t3

6 AAB + ∆t4

24 AAAB + · · · ,

and,

eA∆t − I − A∆t = ∆t2

2 AA + ∆t3

6 AAA + ∆t4

24 AAAA + · · ·

A−2(eA∆t − I − A∆t) = ∆t2

2 + ∆t3

6 A + ∆t4

24 AA + · · ·

B′
d = A−2(eA∆t − I − A∆t)B = ∆t2

2 B + ∆t3

6 AB + ∆t4

24 AAB + · · · ,
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If

M
∆=


An×n Bn×r 0n×r

0r×n 0r×r Ir×r

0r×n 0r×r 0r×r


(n+2r)×(n+2r)

, (87)

then,

eM∆t = I + ∆tM + ∆t2

2 MM + ∆t3

6 MMM + ∆t4

24 MMMM + · · ·

= I + ∆t

 A B 0
0 0 I

0 0 0

+ ∆t2

2

 AA AB B

0 0 0
0 0 0

+ ∆t3

6

 AAA AAB AB

0 0 0
0 0 0

+ · · ·

=

 In + ∆tA + ∆t2

2 AA + · · · ∆tB + ∆t2

2 AB + ∆t3

6 AAB + · · · ∆t2

2 B + ∆t3

6 AB + · · ·
0 Ir ∆t Ir

0 0 Ir

 ,

so,

eM∆t =


Ad Bd B′

d
0 Ir ∆t Ir

0 0 Ir

 , (88)

and the discrete-time dynamics matrix Ad and input matrices Bd and B′
d may

be computed using a single matrix exponential computation.

The discrete-time system with ramp inputs between sample points is then

x(k + 1) = Ad x(k) + [Bd − B′
d/(∆t)] u(k) + [B′

d/(∆t)] u(k + 1)
= Ad x(k) + Bd0 u(k) − Bd1 u(k + 1) (89)

y(k) = C x(k) + D u(k) (90)

In this system, y(k+1) depends on x(k+1), which in turn depends on u(k+1).
So even if D = 0, u(k+1) feeds through to y(k+1). This discrete-time system
can be expressed in a new state, x̄(k) = x(k) − Bd1u(k), giving

x̄(k + 1) = Ad x̄(k) + B̄d u(k)
y(k) = C x̄(k) + D̄ u(k)

(91)

where B̄d = Bd0 + AdBd1 = Bd + (Ad − In)B′
d/(∆t) and D̄ = D + CB′

d/(∆t).

cbnd H.P. Gavin May 14, 2025

http://creativecommons.org/licenses/by-nc-nd/4.0/


52 CEE 629. – System Identification – Duke University – Spring 2019 – H.P. Gavin

25.1 Examples of numerical integrators

The continuous time integrator from acceleration a(t) to velocity v(t)

v̇(t) = 0 v(t) + 1 a(t)
v(t) = 1 v(t) + 0 a(t)

and the corresponding discrete time system (with first-order holds in a(t))

x(k + 1) = x(k) + (∆t)a(k)

v(k) = x(k) +
(∆t

2

)
a(k)

is equivalent to

v(k + 1) = v(k) +
(∆t

2

)
(a(k) + a(k + 1)).

The continuous time double integrator system

d

dt

 d(t)
v(t)

 =
 0 1

0 0

  d(t)
v(t)

 +
 0

1

 a(t)
 d(t)

v(t)

 =
 1 0

0 1

  d(t)
v(t)

 + 0 a(t)

and the corresponding discrete time system (with first-order holds in a(t)) x1(k + 1)
x2(k + 1)

 =
 1 ∆t

0 1

  x1(k)
x2(k)

 +
 (∆t)2

∆t

 a(k)
 d(k)

v(k)

 =
 1 0

0 1

  x1(k)
x2(k)

 +
 (∆t)2/6

(∆t)/2

 a(k)

is equivalent to the linear acceleration method

d(k + 1) = d(k) + (∆t)v(k) +
(∆t)2

6

 (2a(k) + a(k + 1))

v(k + 1) = v(k) +
(∆t

2

)
(a(k) + a(k + 1))
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26 Discrete-Time Linear Time Invariant Systems

The transformation from continuous-time to discrete-time models provides a
convenient method for digital simulation of transient system responses. In
addition, the dynamics of discrete-time systems may be investigated ana-
lytically. This section summarizes analytical solutions to discrete-time LTI
systems described by

x(k + 1) = A x(k) + B u(k)
y(k) = C x(k) + D u(k)

(92)

Discrete-time models imply that the frequencies of harmonic components of
dynamic variables are limited to the Nyquist interval, ω ∈ [−π/(∆t), +π/(∆t)].
Harmonic components with frequencies outside this range are aliased into the
Nyquist interval, when they are sampled. Frequency components of analog
signals outside the Nyquist range should be filtered-out with so-called (low-
pass) anti-alias filters prior to sampling.

Hereinafter, the discrete-time dynamics matrix and input matrix are denoted
A and B. Expressions in this section involving the continuous-time dynamics
and input matrices will have a subscript c, as in Ac, Bc, and λc.

27 Band limited signals and aliasing

The frequencies contained in continuous time signals can be arbitrarily high.
(Electromagnetic waves are in the GHz range.) Frequencies present in discrete-
time signals are limited to within the Nyquist frequency range. Consider a
continuous time signal of duration T sampled at N points uniformly spaced
at an interval ∆t, T = N(∆t). The longest period (lowest frequency) fully
contained in a signal of duration T has a period of T and a frequency of
1/T . (The lowest (non-zero) frequency f1 contained in a signal of duration
T is 1/T .) This lowest frequency value is the frequency increment ∆f of the
sampled signal’s discrete Fourier transform. The highest frequency fmax in
the discrete Fourier transform is (N/2)(∆f). So, substituting,

fmax = N

2 (∆f) = N

2
1
T

= N

2
1

N(∆t) = 1
2(∆t) ≡ fN (93)
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The frequency content of discrete time signals are limited to the Nyquist
frequency range, −fN < f ≤ +fN.

In continuous time, unit white noise has a power spectral density of 1 for all
frequencies, and an auto-correlation function of R(τ) = δ(τ). In discrete time,
unit white noise has a power spectral density of 1 over the Nyquist frequency
band, and an auto-correlation function equivalent to the sinc function.

S(f) =
 1 −fN < f < fN

0 f < −fN, fN < f
(94)

R(τ) = 1
πfNτ

sin(2πfNτ) (95)

According to Parseval’s Theorem, the mean square of unit white noise in
discrete time is σ2 = 2fN = 2/(2(∆t)) = 1/(∆t) and the root mean square of
a unit white noise process is 1/

√
(∆t).

If a continuous time signal is sampled at a sampling rate (1/(∆t)) which is
lower than twice the highest frequency components present in the continuous
time signal, the sampled signal will appear in the discrete time sequence as
an aliased component, that is, at a frequency less than the Nyquist frequency,
as shown in Figure 2.

0 1 2 3 4 5 6 7 8 9

0

time, s

Figure 2. A 1 Hz continuous time sinusoid (blue) sampled at (∆t) = 0.75 s (red points) appears as
a signal with a three-second period (1/3 Hz) (red line).

A relation between the continuous time frequency and its aliased frequency
may be derived by thinking of a frequency value as the sum of an integer
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component and a fractional component. This derivation makes use of two
trigonometric identities. For an integer n, n ∈ 0, 1, 2, ... and a rational number
r, 0 < r < 1,

cos(2π(n + r) + ϕ) = cos(2πr + ϕ) (96)
and for any values of r and ϕ,

cos(2πr + ϕ) = cos(−2πr − ϕ + 2π) = cos(2π(1 − r) − ϕ) (97)

With these identities,

y(k) = cos(2πfk(∆t) + ϕ) = cos(2πk((f∆t)n + (f∆t)r) + ϕ) (98)

where (f∆t)n is an integer and (f∆t)r is a rational (remainder) between 0
and 1. So,

y(k) = cos(2πfk∆t + ϕ) = cos(2πk(f∆t)r + ϕ) (99)
= cos(2πk(1 − (f∆t)r) − ϕ) (100)
= cos(2πkfa∆t − ϕ) (101)

and the frequency of the aliased signal, fa is

fa =
 (f∆t)r/(∆t) if (f∆t)r < 1/2

(1 − (f∆t)r)/(∆t) if (f∆t)r > 1/2
(102)

The power spectral density of an aliased signal Sa(f) is related to its continuous-
time power spectral density S(f) as

Sa(f) = S(f) +
∞∑

k=1
S (k/(∆t) − f) + S (k/(∆t) + f) (103)

where 0 ≤ f∆t ≤ 1/2. Figure 3 shows how the power spectral density of an
aliased signal involves an accordion-like wrapping of the frequency compo-
nents outside of the Nyquist frequency range into the Nyquist bandwidth.

Once higher frequency components have been aliased into the Nyquist band,
it is impossible to determine if a peak in the power spectral density has been
aliased from a higher frequency or not. For this reason, signals should be
sampled at a frequency that is ten or more times the highest frequency of
interest, and should be anti-alias filtered at the Nyquist frequency, or at a
frequency slightly lower than the Nyquist frequency. Note that:
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f = 1.2 Hz, f
a
 = 0.8 s

f = 1.8 Hz, f
a
 = 0.2 s

f = 2.2 Hz, f
a
 = 0.2 s
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Figure 3. The power spectral density of a continuous time signal with a spectral peak at 2.2 Hz
(blue). The signal sampled at ∆t = 0.5 s is aliased to a signal with a spectral peak at 0.2 Hz (red).

• Sampling a continuous time signal without anti-alias filtering, concen-
trates all of the signal energy into the Nyquist frequency range. The
mean square of a signal sampled without filtering equals the mean square
of the continuous time signal.

• The mean square of a sampled low-pass filtered signal is always less than
the mean square of the continuous time signal.

• Anti-alias filtering introduces delays and potentially phase distortion in
the signal. Matched linear-phase anti-alias filters are generally preferred
for this purpose. “Sigma-Delta” analog-to-digital converters inherently
incorporate anti-alias filtering.
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28 State Response Sequence

Applying the dynamics equation of (92) recursively from a known initial state
x(0) and with a known input sequence,

x(1) = Ax(0) + Bu(0)
x(2) = A2x(0) + ABu(0) + Bu(1)
x(3) = A3x(0) + A2Bu(0) + ABu(1) + Bu(2)

...
x(k) = Akx(0) + Ak−1Bu(0) + · · · + ABu(k − 2) + Bu(k − 1)

(104)

or, starting at any particular time step, j > 0 and advancing by k time steps,

x(j + k) = Akx(j) +
k∑

i=1
Ai−1Bu(k + j − i) (105)

y(j + k) = CAkx(j) +
k∑

i=1
CAi−1Bu(j + k − i) + Du(j + k) (106)

The first terms in (105) and (106) are the free state responses of the state
and the output (the homogeneous solution) to the difference equations; the
second terms are the forced responses (the particular solution).

29 Eigenvalues and Diagonalization in Discrete-Time

The discrete-time system may be diagonalized with the eigenvector matrix
of the dynamics matrix.

X̄−1AX̄ = Λ =


λ1

. . .
λn


where Λ is the diagonal matrix of discrete-time eigenvalues and the eigenvalue
problem is

AX̄ = X̄Λ .

Note that the continuous-time dynamics matrix Ac and the discrete-time
dynamics matrix A have the same eigenvectors X̄, and that the eigenvalues
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of the discrete-time dynamics matrix are related to the eigenvalues of the
continuous-time dynamics matrix through the scalar exponential

exp[λci∆t] = λi.

The diagonalized system (in modal coordinates) is

q(k + 1) = Λ q(k) + X̄−1B u(k)
y(k) = CX̄ q(k) + D u(k)

(107)

and the modal response sequence from time step j to time step j + k is

q(j + k) = Λkq(j) +
k∑

i=1
Λi−1X̄−1B u(j + k − i) (108)

The stability of a mode of a discrete-time system is determined from the mag-
nitude of the eigenvalue. Considering the free responses of (107) or (108), if
|λi| > 1 then qi(k) will grow exponentially with k.

mode i is stable: ⇔ |λi| < 1 ⇔ Re(λci) < 0
mode i is unstable: ⇔ |λi| > 1 ⇔ Re(λci) > 0

A system is stable if and only if all of its modes are stable.

Note that the elements of the modal sequence vector q(k+j) may be evaluated
individually, since Λj is diagonal. For systems with under-damped dynamics
the continuous-time and discrete-time eigenvalues are complex-valued. The
eigenvalues and modal coordinates appear in complex-conjugate pairs. The
sum of the complex conjugate modal coordinates q(k) + q∗(k) is real valued
and equals twice the real part of q(k).
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30 Discrete-time convolution and Unit Impulse Response Sequence
(Markov Parameters and Hankel Matrices)

Applying equations (92) and (104) to derive the output sequence y(k) from
x(0) = 0 and u(k) = 0 ∀ k < 0,

y(0) = Du(0)
y(1) = CBu(0) + Du(1)
y(2) = CABu(0) + CBu(1) + Du(2)
y(3) = CA2Bu(0) + CABu(1) + CBu(2) + Du(3)

...

y(k) =
k∑

i=1
CAi−1B u(k − i) + Du(k)

(109)

This is a discrete-time convolution, and it may be re-expressed as either

y(k) =
k∑

i=0
Y (i) u(k − i) (110)

or, by substituting k − i = j and noting i = 0 ⇔ j = k and i = k ⇔ j = 0,

y(k) =
k∑

j=0
Y (k − j) u(j) (111)

where the kernel terms of this convolution are called Markov parameters:

Y =
[

D , CB , CAB , CA2B , · · · , CAk−1B
]
m×r(k+1)

Y (0) = D , Y (i) = CAi−1B ∀ i > 0 , Y (i) ∈ Rm×r (112)

The first Markov parameter, Y (0), is the feed-through matrix, D. The output
evolving from a zero initial state and a unit impulse input (u(0) = Ir, u(k) = 0
for k ̸= 0) is the sequence of Markov parameters.

The scalar-valued sequence of the (p, q) terms of the sequence of matrix-
valued Markov parameters,

1
∆t

[Y (0)]p,q ,
1

∆t
[Y (1)]p,q ,

1
∆t

[Y (2)]p,q , · · ·

is the unit impulse response of element p from a unit impulse on element q.
The unit impulse sequence is [1/(∆t), 0, · · · , 0]
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For asymptotically stable (AS) discrete-time LTI systems, free responses de-
cay asymptotically to zero. So, in principle, the sequence of Markov param-
eters is infinitely long. But, note that for x(0) = 0 and u(i) = 0 ∀ i < 0,

y(k) =
∞∑

i=0
Y (i) u(k − i) =

k∑
i=0

Y (i) u(k − i) (113)

A forced response sequence evolving from x(0) = 0 with u(i) = 0 ∀ i < 0, is
linear in the Markov parameters.

[
y(0) y(1) y(2) y(3) · · · y(j)

]
m×(j+1) =

[
D CB CAB CA2B · · · CAj−1B

]
m×r(j+1) ·



u(0) u(1) u(2) u(3) · · · u(j)
u(0) u(1) u(2) · · · u(j − 1)

u(0) u(1) · · · u(j − 2)
u(0) · · · u(j − 3)

. . . ...
u(0)


r(j+1)×(j+1)

(114)

The forced response sequence of a system evolving from x(0) = 0 with an
(assumed) finite sequence of p + 1 Markov parameters is

y(k) =
p∑

i=0
Y (i) u(k − i)
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or [
y(p) y(p + 1) y(p + 2) y(p + 3) · · · y(p + j)

]
m×(j+1) =

[
CAp−1B CAp−2B · · · CA2B CAB CB D

]
m×r(p+1) ·



u(0) u(1) u(2) u(3) · · · u(j)
u(1) u(2) u(3) u(4) · · · u(j + 1)

... ... ... ... ...
u(p − 3) u(p − 2) u(p − 1) u(p) · · · u(p + j − 3)
u(p − 2) u(p − 1) u(p) u(p + 1) · · · u(p + j − 2)
u(p − 1) u(p) u(p + 1) u(p + 2) · · · u(p + j − 1)

u(p) u(p + 1) u(p + 2) u(p + 3) · · · u(p + j)


r(p+1)×(j+1)

(115)

The matrix built of the input sequence [u(0), · · · , u(p + j)] is called a block
Hankel matrix of the input seqence. The output sequence [y(p), · · · , y(p + j)]
is a linear combination of the rows of the input sequence Hankel matrix. In
other words, the rows of the Hankel matrix form a linear basis for the output
sequence [y(p), · · · , y(p + j)].[

y(p) y(p + 1) y(p + 2) y(p + 3) · · · y(p + j)
]
m×(j+1) =

Y (p)
[

u(0) u(1) u(2) u(3) · · · u(j)
]
r×(j+1) +

Y (p − 1)
[

u(1) u(2) u(3) u(4) · · · u(j + 1)
]
r×(j+1) +

...
Y (3)

[
u(p − 3) u(p − 2) u(p − 1) u(p) · · · u(p + j − 3)

]
+

Y (2)
[

u(p − 2) u(p − 1) u(p) u(p + 1) · · · u(p + j − 2)
]
+

Y (1)
[

u(p − 1) u(p) u(p + 1) u(p + 2) · · · u(p + j − 1)
]
+

Y (0)
[

u(p) u(p + 1) u(p + 2) u(p + 3) · · · u(p + j)
]
r×(j+1)

Note that in equation (115) the sequence of Markov parameters is given in
reverse order. Given an assumption for the impulse response duration p and
input/output sequences [u(0), · · · , u(p + j)] and [y(p), · · · y(p + j)], equation
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(115) provides a linear model for the sequence of p + 1 Markov parameters,
Y (i), i = p, · · · , 0. In this estimation problem there are m× (j +1) equations
and m × r(p + 1) unknown model coefficients. So the length of the data
sequence, j, should be much larger than the number of inputs r times the
impulse response duration p. The estimation of Markov parameters is a time-
domain approach to Wiener filtering and is the first step in the Eigensystem
Realization Algorithm (ERA) for identification of state-space models.

If we “know” the MIMO system to be strictly proper (D = 0(m×r)) then the
model may be expressed without the feedthrough matrix (Y (0)) by removing
D from the set of Markov parameters and removing the first r rows from the
matrix of input data.
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31 An example of a discrete time system: the running average

Consider a sequence of numbers as the input to a discrete-time LTI system,

u(0), u(1), u(2), u(3), u(4), . . .

A running average of this sequence can be defined as the weighted arithmetic
average of the previous running average, ū(k), and the current data value,
u(k + 1).

ū(k + 1) = (1 − ϕ) ū(k) + ϕ u(k + 1) (116)
where ϕ is called the forgetting factor and 0 < ϕ < 1.

Working out the sequence of running averages from u(0) = 0, and ū(0) = 0:

ū(1) = (1 − ϕ) ū(0) + ϕ u(1) = ϕ u(1)
ū(2) = (1 − ϕ) ū(1) + ϕ u(2) = (1 − ϕ)ϕ u(1) + ϕ u(2)
ū(3) = (1 − ϕ) ū(2) + ϕ u(3) = (1 − ϕ)2ϕ u(1) + (1 − ϕ)ϕ u(2) + ϕ u(3)

...
ū(k) = (1 − ϕ)k−1ϕ u(1) + (1 − ϕ)k−2ϕ u(2) + · · · + (1 − ϕ)ϕ u(k − 1) + ϕ u(k)

ū(k) =
k−1∑
j=0

Y (j) u(k − j) where Y (j) = (1 − ϕ)jϕ ∀ j ≥ 0 (117)

The most recent data point u(k) is wighted by Y (0) and the oldest data point
u(1) is weighted by Y (k − 1). Since j ≥ 0 and 0 < ϕ < 1:

• 0 < Y (j) ≤ ϕ ∀ j ≥ 0;

• the weights Y (j) decrease exponentially with j;

• the largest weight, Y (0) = ϕ, is on the most recent data;

• the smallest weight, Y (k), is on the oldest data; and

• as k increases, the running average approaches the true weighted average

lim
k→∞

k∑
j=0

Y (j) = 1

as shown in Figures 4 and 5.
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Figure 4. Weights of a running average for various values of the forgetting factor ϕ.
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Note that the running average at the k-th time step, ū(k), involves the entire
sequence of inputs, from u(1) and up to and including u(k), but older data
contributes less and less to the running average. As a rule of thumb, the most
recent (5/ϕ) points of data contribute significantly to the running average.
For example, for ϕ = 0.01, the most recent 500 points of data contribute
significantly to the running average, and for ϕ = 0.1, only the last 50 points
contribute significantly to the running average.

Defining the state to be the running average, x(k) = ū(k), the discrete
time LTI system, found by inspection by by comparing the weights in (117),
Y (j) = (1 − ϕ)jϕ, to the Markov parameters in terms of state space matrices
in (112), Y (j) = CAj−1B, is

A = (1 − ϕ), B = ϕ, C = (1 − ϕ), D = Y (0) = ϕ.

Figure 6 shows the running averages of a step input (u(0) = 0, u(k) = 1 ∀ k > 0)
and the running averages of sinusoids, u(k) = sin(k/5)+sin(k/50) for 0 < k ≤ 500.
Note that running averages with larger forgetting factors respond more rapidly
and running averages with smaller forgetting factors are smoother.

A continuous time state-space realization of a running average is Ac Bc

Cc Dc

 =
 α 1 − ϕ

−α ϕ


Its frequency response function is

H(ω) = −α(1 − ϕ)
iω − α

+ ϕ = iωϕ − α

iω − α

with a phase of
θ(ω) = αω(1 − ϕ)

α2 + ω2ϕ

for which θ(0) = 0. The time lag at frequency ∆ω is

τ(∆ω) = θ(∆ω)
∆ω

= α(1 − ϕ)
α2 + (∆ω)2ϕ

For ϕ = 1/2 and linear phase out to a frequency of fLP, α ≈ −2πfLP, giving
a time shift of τ ≈ −1/(6πfLP) .
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32 Frequency Response in Discrete-Time

Consider the steady-state harmonic response of a discrete-time LTI system
to harmonic inputs. The real-valued harmonic input, state, and output are
represented as the sum of complex conjugates at a single frequency ω.

u(t) = u(ω)eiωt + u∗(ω)e−iωt (118)
x(t) = x(ω)eiωt + x∗(ω)e−iωt (119)
y(t) = y(ω)eiωt + y∗(ω)e−iωt (120)

At discrete points in time tk = k∆t, the states at tk+1 are

x(k + 1) = x(ω)eiω(k+1)∆t + x∗(ω)e−iω(k+1)∆t (121)

Substituting equations (118) - (121) into the discrete-time state-space equa-
tions, (92), and recognizing that the complex conjugate parts of the response
(x(ω)eiωk∆t and x∗(ω)e−iωk∆t) are linearly independent, we obtain

x(ω)eiω(k+1)∆t = Ax(ω)eiωk∆t + Bu(ω)eiωk∆t (122)
y(ω)eiωk∆t = Cx(ω)eiωk∆t + Du(ω)eiωk∆t (123)

Now, factoring-out the eiωk∆t from each term,

x(ω) eiω∆t = Ax(ω) + Bu(ω) (124)
y(ω) = Cx(ω) + Du(ω) (125)

Solving for the outputs in terms of the inputs gives the frequency response
function in terms of a state-space LTI model in the discrete-time domain,

y(ω) =
[

C[eiω∆tI − A]−1B + D
]

u(ω) (126)
H(z) = C[zI − A]−1B + D (127)

where z = eiω∆t. Equation (127) is analogous to the transfer function in
terms of continuous-time state-space models, equation (63).
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33 Laplace transform and z-transform

The Laplace transform of a continuous-time function y(t) is given by

y(s) = L[y(t)] =
∫ ∞

0
y(t)e−st dt, s ∈ C (128)

This one-sided Laplace transform applies to causal functions for which
y(t) = 0 ∀ t < 0.

Now, if we sample y(t) at discrete points in time spaced with interval ∆t,
y(k∆t) = y(k) = y(t)δ(t − k∆t), and take the Laplace transform of the
sampled signal,

y(s) =
∫ ∞

0

∞∑
k=0

y(t)δ(t − k∆t) e−st dt . (129)

Recall the property of the delta function,∫ ∞

0
f(t)δ(t − τ) dt = f(τ) (∀ τ > 0), (130)

so,
y(s) =

∞∑
k=0

y(k∆t)e−sk∆t dt =
∞∑

k=0
y(k)

(
es∆t

)−k
. (131)

Defining z = es∆t, we arrive at the discrete-time version of the Laplace trans-
form . . . the z-transform:

y(z) =
∞∑

k=0
y(k)z−k = Z[y(k)]. (132)

Now, we can apply the z-transform to the discrete-time convolution

y(z) = Z
 k∑

i=0
Y (i)u(k − i)

 =
∞∑

k=0
z−k

k∑
i=0

Y (i)u(k − i) (133)

If u(k) = 0 ∀ k < 0, then ∑k
i=0 Y (i)u(k − i) = ∑∞

i=0 Y (i)u(k − i) , so

y(z) =
∞∑

k=0
z−k

∞∑
i=0

Y (i)u(k − i) (134)

=
 ∞∑

i=0
Y (i)z−i

  ∞∑
k=0

z−(k−i)u(k − i)
 (135)

= H(z) u(z) (136)
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So, convolution in the discrete-time domain is equivalent to multiplication in
the z-domain, and the frequency-response is related to the Markov parameters
via

H(z) =
∞∑

i=0
Y (i)z−i (137)

The discrete-time state-space equations (92), the sequence of Markov pa-
rameters (112), and the frequency response function (127) are equivalent
descriptions for discrete-time linear time-invariant systems.

Now consider the steady-state response to a sinusoidal input sequence

u(k) = cos(ωk∆t) = 1
2
(
eiωk∆t + e−iωk∆t

)
y(k) =

∞∑
i=0

Y (i)u(k − i)

=
∞∑

i=0
Y (i) cos(ω(k − i)∆t)

=
∞∑

i=0
Y (i)1

2
(
eiω(k−i)∆t + e−iω(k−i)∆t

)

= 1
2eiωk∆t

∞∑
i=0

Y (i)z−i + 1
2e−iωk∆t

∞∑
i=0

Y (i)zi

= 1
2eiωk∆tH(z) + 1

2e−iωk∆tH∗(z)
= |H(z)| cos(ωk∆t + ϕ)

where the frequency-dependent phase angle of the sinusoidal response is given
by

tan ϕ(z) = Im(H(z))
Re(H(z))

A graph of |H(ω)| and ∠H(ω) is called a Bode plot.
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Figure 6. Time responses of the running average ū(k) defined in system (116) to a step input and to a
sinusoidal input. With u(0) = 0 and u(1) to u(500) = 1, the arithmetic average is 500/501 ≈ 0.998.
With ϕ = 0.10, the running average at k = 500 has effectively forgotten that u(0) = 0. With
ϕ = 0.01, the running average at k = 500 clearly remembers that u(0) = 0. The forgetting factor
ϕ and the frequency of sinusoidal components affect the time lag and the attenuation of those
components, as shown in the right figure above and in Figure 7 below.
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Figure 7. The Bode plot of the running average system (116) (assuming ∆t = 0.01s) shows how
the frequencies of sinusoidal components of an input time series affect the attenuation and the phase
lag of corresponding components of the output time series. With ∆t = 0.01s, the frequencies of
the components shown in Figure 6 are 0.32 Hz and 3.2 Hz. Compare the magnitude |ū(f)| and
phase θ(f) shown above to the amplitude of ū(t) and the time delay τ(f) = θ(f)/(2πf) shown in
Figure 6.
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34 Liapunov Equations for Discrete-Time Systems

In discrete-time, the free response is

x(k + 1) = Ax(k), x(0) = xo ̸= 0 (138)

Defining a Liapunov function as the energy in the system at time k as,

V (k) = xT(k)Px(k), P > 0 (139)

If the energy in free response decays monotonically, that is, if V (k + 1) −
V (k) < 0 ∀ x(k) and then the system is asymptotically stable.

V (k + 1) − V (k) = xT(k + 1)Px(k + 1) − xT(k)Px(k)
= xT(k)ATPAx(k) − xT(k)Px(k)
= xT(k) [ATPA − P ] x(k) (140)

So, [ATPA − P ] < 0 ⇔ V (k + 1) − V (k) < 0 ∀ x(k), and the system
x(k + 1) = Ax(k) is asymptotically stable (AS) if and only if there exist
positive definite matrices P and Z that solve the left discrete-time Liapunov
equation,

ATPA − P + Z = 0 (141)
The following statements are equivalent:

• A is asymptotically stable
• all eigenvalues λi of A have magnitudes less than 1
• ∃Z > 0 s.t. P > 0 is a solution to ATPA − P + Z = 0
• the series ∑∞

k=0 AkTZAk converges .

The series P = ∑∞
k=0 AkTZAk solves ATPA − P + Z = 0.

P = Z + ATPA
∞∑

k=0
AkTZAk = Z + AT

∞∑
k=0

AkTZAkA

= Z + AT
∞∑

k=1
AT(k−1)ZAk−1A

Z +
∞∑

k=1
AkTZAk = Z +

∞∑
k=1

AkTZAk (since A0 = I).
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35 Controllability of Discrete-Time Systems

A discrete-time system with n states, r inputs, and dynamics matrix A is said
to be controllable by inputs coming through input matrix B if there exists
a sequence of inputs, [u(0), u(1), . . . , u(n − 2), u(n − 1), u(n)] that can bring
the equilibrium state x(0) = 0 to any arbitrary state x(n) within n steps.

Let’s consider the sequence of states arising from an input sequence u(k),
. . . (k = 0, . . . , n − 1) starting from an initial state x(0) = 0.

x(1) = Bu(0)
x(2) = Ax(1) + Bu(1) = ABu(0) + Bu(1)
x(3) = Ax(2) + Bu(2) = A2Bu(0) + ABu(1) + Bu(2)

... ...
x(n) = A(n−1)Bu(0) + · · · + A2Bu(n − 3) + ABu(n − 2) + Bu(n − 1)

x(n) =
[
B , AB , A2B , · · · , A(n−2)B , A(n−1)B

]



u(n − 1)
u(n − 2)
u(n − 3)

...
u(1)
u(0)


(142)

Think of this last equation as a simple matrix-vector multiplication.

x(n) = Cnun (143)

The matrix Cn has n rows and nr columns and is called the controllability
matrix. The column-vector un is the sequence of inputs, all stacked up on
top of each other, into one long vector.

If the n rows of the controllability matrix Cn are linearly-independent, then
any final state x(n) can be reached through an appropriate selection of the
control input sequence, un. If the rank of Cn equals n then there is at least
one sequence of inputs un that can take the state from x(0) = 0 to any state
x(n) within n steps. So, if rank(Cn) = n then the pair (A, B) is controllable.

cbnd H.P. Gavin May 14, 2025

http://creativecommons.org/licenses/by-nc-nd/4.0/


72 CEE 629. – System Identification – Duke University – Spring 2019 – H.P. Gavin

If r > 1 then the system is under-determined and the input sequence un to
arrive at state x(n) (in n steps), is computed using the right Moore-Penrose
pseudo inverse, which minimizes ||un||22.

The covariance of an infinitely long sequence of state responses to independent
impulses (u(0) = Ir) is the controllability gramian,

C∞CT
∞ = Q =

∞∑
k=0

AkBBTAkT (144)

The element Q(i,j) is the covariance of the the inner product of the i-th state
unit impulse responses with the j-th state unit impulse response, with unit
impulses at each input. In other words, if xiq(k) is the response of the i-th
state to a unit impulse at input q, then

Q(i,j) =
∞∑

k=0

r∑
q=1

xiq(k)xjq(k). (145)

The controllability gramian solves the right Liapunov equation

0 = AQAT − Q + BBT (146)
These expressions are analogous to equations (74) and (75) in continuous-
time. The following statements are equivalent:

• The pair (A, B) is controllable.
• The rank of C∞ is n.
• The rank of Q is n.
• A matrix Q > 0 solves the right Liapunov equation

0 = AQAT − Q + BBT

The singular-value decomposition of the controllability matrix equation

x(n) =
∑
i

σCi uCi (vT
Ci un) (147)

shows that the sequence of inputs proportional to vC1 couples most strongly
to the states. Input sequences that lie entirely in the kernel of Cn have no
effect on the state. Likewise, state vectors proportional to the eigenvector of
Q with the largest eigenvalue are most strongly affected by inputs un And
state vectors proportional to an eigenvector of Q with an eigenvalue of zero
(if there is one) can not be attained by the control input Bu(k).
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36 Observability of Discrete-Time Systems

A system with n states, m outputs, and dynamics matrix A is said to be
observable by outputs coming out through output matrix C if there exists a
sequence of outputs [y(0), y(1), . . . , y(n−3), y(n−2), y(n−1)] from which
the initial state x(0) can be uniquely determined.

Let’s consider the sequence of outputs arising from a sequence of states, in
free response from some initial condition x(0). (The initial condition is not
equal to zero.)

y(0) = Cx(0)
y(1) = Cx(1) = CAx(0)
y(2) = Cx(2) = CAx(1) = CA2x(0)

... ...
y(n − 1) = Cx(n − 1) = CA(n−1)x(0)

y(0)
y(1)
y(2)

...
y(n − 1)


=



C

CA

CA2

...
CA(n−1)


x(0) (148)

Think of this last equation as a simple matrix-vector multiplication.

yn = Onx(0) (149)

The matrix On has nm rows and n columns and is called the observability
matrix. The column-vector yn is the sequence of outputs, all stacked up on
top of each other, into a long vector.

If the n columns of the observability matrix, On, are linearly-independent,
then any initial state x(0) can be determined from the associated sequence
of n free-responses. If On has rank n then the set of all vectors yn can be
transformed into a set of vectors x0 that fill an n-dimensional vector space,
via the matrix inverse (or pseudo-inverse) of On.
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If m > 1 then the matrix equation is over determined, and the initial state
x(0) associated with the free response outputs yn is computed with the left
Moore-Penrose pseudo inverse, which minimizes ||yn − Onx(0)||22.

The covariance of an infinitely long sequence of output responses to n inde-
pendent unity initial conditions (x(0) = In) is the observability gramian,

OT
∞O∞ = P =

∞∑
k=0

AkTCTCAk (150)

The element P (i, j) is the covariance of the inner product of the two free
output responses one evolving from xi(0) = 1 and the other from xj(0) = 1
(with xk(0) = 0, ∀k ̸= i, j). In other words, if ypi(k) is the free response of
the p-th output to the initial state xi(0) = 1, xj(0) = 0, ∀ i ̸= j, then

P(i,j) =
∞∑

k=0

m∑
p=1

ypi(k)ypj(k). (151)

The observability gramian solves the left Liapunov equation

0 = ATPA − P + CTC (152)
These expressions are analogous to equations (72) and (73) in continuous-
time. The following statements are equivalent:

• The pair (A, C) is observable.
• The rank of O∞ is n.
• The rank of P is n.
• A matrix P > 0 solves the left Liapunov equation

0 = ATPA − P + CTC

The singular-value decomposition of the observability matrix equation

y(n) =
∑
i

σOi uOi (vT
Oi x(0)) (153)

shows that an initial state x(0) proportional to vO1 couples most strongly to
the outputs. Initial states that lie entirely in the kernel of On (if it exists)
have no output through y = Cx. Likewise, initial states proportional to the
eigenvector of P with the largest associated eigenvalue contribute most to the
output covariance. And initial states proportional to an eigenvector of P with
an eigenvalue of zero (if there are any) do not affect the output covariance.
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37 H2 norms of discrete-time LTI systems

The H2 norm of asymptotically-stable discrete-time models with D = 0 is
expressed in terms of the controllability gramian and observability gramian
satisfying the right and left discrete-time Liapunov equations (146) and (152)
and equations (77) and (80).

Because the frequency content of signals in discrete-time is limited to the
Nyquist interval, the H2 norm in terms of the frequency response of discrete-
time systems involves integration around the unit circle, ||z|| = 1

||H||22 = 1
2π

∫ +π

−π
tr
[
H(eiω∆t)TH(eiω∆t)

]
dω (154)

where H(eiω∆t) = H(z) as defined for discrete-time systems in equation (127).

In terms of unit impulse responses (Markov parameters), the H2 norm of a
discrete time system is

||H||22 =
∞∑

k=0
||Y (k)||2F (155)

where Y (0) = D and Y (k) = CAk−1B for k > 0.

Note that in continuous-time systems, limω→∞[H(ω)] = D. Referring to the
frequency-domain interpretation of the H2 norm, equation (78), we see that
for systems with D ̸= 0, the integral of ||H(ω)||F over −∞ < ω < ∞ is not
finite, and so the H2 norm can not be defined in this case. In the time domain,
the unit impulse ui(t) = Irδ(t) has responses H(t) = CeAtB + Dδ(t). In this
case the integral of ||H(t)||F over 0 < t < ∞ involves the integral of δ2(t),
which is not finite, and so the H2 norm can not be defined in this case either.
The facts that H2 norms of exactly proper continuous-time systems are not
finite, and that they are for discrete-time systems is a consequence of the
facts that Dirac delta is defined only in terms of convolution integrals, and
that u(0) = 1 in discrete time is a perfectly reasonable statement. A low-pass
filtered Dirac-delta is a sinc function, which is square integrable. So, a norm-
equivalency of discrete-time systems derived from continuous-time systems
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necessarily implies that continuous-time inputs have no power outside of the
Nyquist interval.
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38 .m-functions

abcddim.m http://www.duke.edu/∼hpgavin/abcddim.m

1 function [n, r, m] = abcddim (A, B, C, D)
2 % Usage : [ n , r , m] = abcddim (A, B, C, D)
3 %
4 % Check f o r c o m p a t i b i l i t y o f the dimensions o f the matr ices d e f i n i n g
5 % the l i n e a r system (A, B, C, D) .
6 %
7 % Returns n = number o f system s t a t e s ,
8 % r = number o f system inputs ,
9 % m = number o f system outputs .

10 %
11 % Returns n = r = m = −1 i f the system i s not compat ib le .
12

13 % A. S . Hodel <scotte@eng . auburn . edu>

14

15 i f (nargin ˜= 4)
16 error (’usage : abcddim (A, B, C, D)’);
17 end
18

19 n = -1; r = -1; m = -1;
20

21 [an , am] = s ize (A);
22 i f (an ˜= am), error (’abcddim : A is not square ’); end
23

24 [bn , br] = s ize (B);
25 i f (bn ˜= an)
26 error ( sprintf (’abcddim : A and B are not compatible , A:(% dx%d) B:(% dx%d)’,am ,an ,bn ,br ))
27 end
28

29 [cm , cn] = s ize (C);
30 i f (cn ˜= an)
31 error ( sprintf (’abcddim : A and C are not compatible , A:(% dx%d) C:(% dx%d)’,am ,an ,cm ,cn ))
32 end
33

34 [dm , dr] = s ize (D);
35 i f (cm ˜= dm)
36 error ( sprintf (’abcddim : C and D are not compatible , C:(% dx%d) D:(% dx%d)’,cm ,cn ,dm ,dr ))
37 end
38 i f (br ˜= dr)
39 error ( sprintf (’abcddim : B and D are not compatible , B:(% dx%d) D:(% dx%d)’,bn ,br ,dm ,dr ))
40 end
41

42 n = an;
43 r = br;
44 m = cm;
45

46 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− abcddim .m
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lsym.m http://www.duke.edu/∼hpgavin/lsym.m

1 function y = lsym(A,B,C,D,u,t,x0 , ntrp)
2 % y = lsym ( A, B, C, D, u , t , x0 , ntrp )
3 % t r a n s i e n t response o f a continuous−time l i n e a r system to a r b i t r a r y inpu t s .
4 % dx/ dt = Ax + Bu
5 % y = Cx + Du
6 %
7 % A : dynamics matrix (n by n)
8 % B : input matrix (n by r )
9 % C : output matrix (m by n)

10 % D : feed through matrix (m by r )
11 % u : matrix o f sampled inpu t s ( r by p )
12 % t : v e c to r o f uni formly spaced p o i n t s in time (1 by p )
13 % x0 : v e c t o r o f s t a t e s at the f i r s t po in t in time (n by 1)
14 % ntrp : ’ zoh ’ zero order hold , ’ foh ’ f i r s t order ho ld ( d e f a u l t )
15 % y : matrix o f the system outputs (m by p )
16

17 i f (nargin < 8) , ntrp = ’foh ’; end
18

19 [n,r,m] = abcddim (A,B,C,D); % matrix dimensions and c o m p a t a b i l i t y check
20

21 points = s ize (u ,2); % number o f data p o i n t s
22

23 dt = t(2) - t(1); % uniform time−s t e p va lue
24

25 % continuous−time to d i s c r t e −time convers ion . . .
26 i f strcmp(lower(ntrp),’zoh ’) % zero−order ho ld on inpu t s
27 M = [ A B ; zeros(r,n+r) ];
28 else % f i r s t −order ho ld on inpu t s
29 M = [ A B zeros(n,r) ; zeros(r,n+r) eye(r) ; zeros(r,n+2*r) ];
30 end
31 eMdt = expm(M*dt ); % matrix e x p o n e n t i a l
32 Ad = eMdt (1:n ,1:n); % d i s c r e t e −time dynamics matrix
33 Bd = eMdt (1:n,n+1:n+r); % d i s c r e t e −time input matrix
34 i f strcmp(lower(ntrp),’zoh ’)
35 Bd0 = Bd;
36 Bd1 = zeros(n,r);
37 else
38 Bd_ = eMdt (1:n,n+r+1:n+2*r); % d i s c r e t e −time input matrix
39 Bd0 = Bd - Bd_ / dt; % d i s c r e t e −time input matrix f o r time p
40 Bd1 = Bd_ / dt; % d i s c r e t e −time input matrix f o r time p+1
41 end
42

43 % B and D f o r d i s c r e t e time system
44 % Bd bar = Bd0 + Ad∗Bd1 ;
45 % D bar = D + C∗Bd1 ;
46

47 % Markov parameters f o r the d i s c r e t e time system with ZOH
48 % Y0 = D bar
49 % Y1 = C ∗ Bd bar
50 % Y2 = C ∗ Ad ∗ Bd bar
51 % Y3 = C ∗ Adˆ2 ∗ Bd bar
52

53 % i n i t i a l c o n d i t i o n s are zero u n l e s s s p e c i f i e d
54

55 i f ( nargin < 7 )
56 x0 = zeros(n ,1); % i n i t i a l c o n d i t i o n s are zero
57 end
58

59 y = zeros(m, points ); % memory a l l o c a t i o n f o r the output
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dlsym.m http://www.duke.edu/∼hpgavin/dlsym.m

1 function y = dlsym (A,B,C,D,u,t,x0)
2 % y = dlsym (A,B,C,D, u , t , x0 )
3 % sim u la t e s the response o f a d i s c r e t e −time l i n e a r system to a r b i t r a r y inpu t s
4 %
5 % x ( k+1) = A x ( k ) + B u( k )
6 % y ( k ) = C x ( k ) + D u( k )
7 %
8 % A : n by n dynamics matrix
9 % B : n by m input matrix

10 % C : l by n output matrix
11 % D : l by m feed through matrix
12 % u : l by p matrix o f sampled inpu t s
13 % t : 1 by p v e c to r o f uni formly spaced p o i n t s in time , not used
14 % x0 : n by 1 v e c t o r o f i n i t i a l s t a t e s , d e f a u l t s to zero
15 % y : m by p matrix o f the system outputs
16 %
17

18 [n,m,l] = abcddim (A,B,C,D);
19

20 points = s ize (u ,2); % number o f data p o i n t s
21

22 %i f ( nargin < 6 )
23 % t = [ 1 : p o i n t s ] ;
24 %end
25

26 i f ( nargin == 7 )
27 x = x0; % i n i t i a l c o n d i t i o n s f o r the s t a t e
28 else
29 x = zeros(n ,1); % i n i t i a l c o n d i t i o n s are zero
30 end
31

32 y = NaN(l, points ); % memory a l l o c a t i o n f o r the output
33

34 y(: ,1) = C * x + D * u(: ,1);
35

36 for p = 2: points
37

38 y(:,p) = C * x + D * u(:,p);
39

40 x = A * x + B * u(:,p);
41

42 i f (any(abs(x) > 1e2)), break; end
43

44 end
45

46 end % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− dlsym .m
47 % 2021−07−19 . . .
48 % rep laced . . . x = A ∗ x + B ∗ u ( : , p ) ;
49 % . . . wi th . . . x = A ∗ x + B ∗ u ( : , p −1);
50 % 2023−10−01
51 % . . . sw i t ch order o f dynamics and output eqn ca lc ’ s
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damp.m http://www.duke.edu/∼hpgavin/damp.m

1 function [wn ,z] = damp(a, delta_t )
2 % [ wn, z ] = damp(A, d e l t a t )
3 % DAMP Natural f requency and damping f a c t o r f o r cont inuous or d i s c r e t e systems .
4 %
5 % damp(A) d i s p l a y s a t a b l e o f the na tura l f r e q u e n c i e s and
6 % damping r a t i o s f o r the continuous−time dynamics matrix .
7 %
8 % damp(A, d e l t a t ) d i s p l a y s a t a b l e o f the na tura l f r e q u e n c i e s
9 % damping r a t i o s f o r the d i s c r e t e −time dynamics matrix .

10 % with a sample time s t e p o f d e l t a t
11 %
12 % [ wn, z ] = damp(A) or [ wn, z ] = damp(A, d e l t a t ) re turns the v e c t o r s
13 % wn and z o f the na tura l f r e q u e n c i e s and damping r a t i o s , wi thout
14 % d i s p l a y i n g the t a b l e o f v a l u e s .
15 %
16 % The v a r i a b l e A can be in one o f s e v e r a l formats :
17 %
18 % (1) I f A i s square , i t i s assumed to be the s t a t e −space dynamics matrix .
19 %
20 % (2) I f A i s a row vector , i t i s assumed to be a v e c t or o f the
21 % polynomial c o e f f i c i e n t s from a t r a n s f e r func t i on .
22 %
23 % (3) I f A i s a column vector , i t i s assumed to contain root l o c a t i o n s .
24 %
25

26 [m,n] = s ize (a);
27

28 i f (n <1 || m <1) , wn =0; z=0; return; end
29

30 i f (m == n)
31 r = eig (a);
32 e l s e i f (m == 1)
33 r = (roots(a));
34 e l s e i f (n == 1)
35 r = a;
36 else
37 error(’The variable A must be a vector or a square matrix .’);
38 end
39

40 i f ( nargin == 2 ), r = log(r)/ delta_t ; end % d i s c r e t e time system
41

42 for k = 1:n
43 wn(k) = abs(r(k));
44 z(k) = - ( real (r(k)) - 2*eps) / (wn(k) + 2*eps);
45 end
46

47 [wns ,idx] = sort (abs(wn )); % s o r t by i n c r e a s i n g na tura l f requency
48 wn = wn(idx );
49 z = z(idx );
50 r = r(idx );
51 wd = wn .* sqrt ( abs ( z.ˆ2 - 1 ) );
52

53 i f nargout == 0 % Disp lay r e s u l t s on the screen .
54 fpr intf (’ \n’);
55 fpr intf (’ Natural Damped \n’);
56 fpr intf (’ Frequency Frequency Eigenvalue \n’);
57 fpr intf (’ (cyc/sec) Damping (cyc/sec) real imag \n’);
58 fpr intf (’ -----------------------------------------------------\n’);
59
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60 for idx = 1:1:n
61 fpr intf (’ %10.5 f %10.5 f %10.5 f %10.5 f %10.5 f \n’, wn(idx )/(2* pi) , z(idx), wd(idx )/(2* pi), real (r(idx )), imag(r(idx )) );
62 end
63

64 return % Suppress output
65 end
66

67 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− DAMP

mimoBode.m http://www.duke.edu/∼hpgavin/mimoBode.m

1 function [mag ,pha ,G] = mimoBode (A,B,C,D,w,dt ,figno ,ax ,leg ,tol)
2 % [ mag , pha ,G] = mimoBode(A,B,C,D,w, dt , f i gno , ax , l eg , t o l )
3 % p l o t s the magnitude and phase o f the
4 % steady−s t a t e harmonic reponse o f a MIMO l i n e a r dynamic system .
5 % where :
6 % A,B,C,D are the standard s t a t e −space matr ices o f a dynamic system
7 % w i s a v e c t o r o f f r e q u e n c i e s ( d e f a u l t : w = logspace ( −2 ,2 ,200)∗2∗ p i
8 % dt i s the sample per iod ( d e f a u l t : d t = [ ] f o r cont inuous time )
9 % ax i s e i t h e r x , y , n , or b to i n d i d a t e wich ax shou ld be log −s c a l e d . . .

10 % x , y , ne i ther , or both . The d e f a u l t i s both . The y−a x i s f o r the phase p l o t
11 % i s always l i n e a r l y −s c a l e d .
12 % mag and pha are the magnitude and phase o f the frequency response f c t n matrix
13 % mag and pha have dimension ( l e n g t h (w) x m x r )
14

15 % Henri Gavin , Dept . C i v i l Engineering , Duke Univers i ty , henr i . gavin@duke . edu
16

17 % Krajnik , Eduard , ’A simple and r e l i a b l e phase unwrapping algori thm , ’
18 % h t t p ://www. mathnet . or . kr /mathnet/ p a p e r f i l e /Czech/Eduard/ phase . ps
19

20 i f (nargin < 10) tol = 1e -18; end % d e f a u l t rcond l e v e l
21 i f (nargin < 9) leg = []; end
22 i f (nargin < 8) ax = ’n’; end % d e f a u l t p l o t format t ing
23 i f (nargin < 7) figno = 100; end % d e f a u l t p l o t format t ing
24 i f (nargin < 6) dt = []; end % d e f a u l t to cont inuous time
25 i f (nargin < 5) w = logspace ( -2 ,2 ,200)*2* pi; end % d e f a u l t f requency a x i s
26

27 [n,r,m] = abcddim (A,B,C,D); % check f o r c o m p a t i b i l e dimensions
28 nw = length(w);
29

30 lw = 3; % l i n e width
31

32 %warning o f f
33

34 In = eye(n);
35

36 % continuous time or d i s c r e t e time . . .
37 i f ( length(dt) == 0) sz = 1i*w; else sz = exp(1i*w*dt ); end
38

39 G = zeros(nw ,m,r); % a l l o c a t e memory f o r the frequency response funct ion , g
40 mag = NaN(nw ,m,r);
41 pha = NaN(nw ,m,r);
42

43 for ii =1: nw % compute the frequency response funct ion , G
44 % G( i i , : , : ) = C ∗ ( ( s z ( i i )∗ eye (n)−A) \ B) + D; % ( sI−A) i s i l l −cond i t ioned
45 [u,s,v] = svd( sz(ii )*eye(n) - A ); % SVD of ( sI−A)
46 idx = max( find ( diag(s) > s(1 ,1)* tol ) );
47 char_eq_inv = v(: ,1: idx) * inv(s(1: idx ,1: idx )) * u(: ,1: idx )’;
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48 G(ii ,: ,:) = C * char_eq_inv * B + D;
49 end
50

51 mag = abs(G);
52 pha1 = atan2(imag(G(1 ,: ,:)) , real (G(1 ,: ,:)));
53 pha (1 ,: ,:) = pha1;
54 pha1 = repmat ( pha1 , [nw -1 ,1 ,1] );
55 pha (2:nw ,: ,:) = pha1 + cumtrapz (angle(G(2:nw ,: ,:)./G(1:nw -1 ,: ,:)));
56

57 i f length(dt) == 1 % remove out−of−Nyquest range v a l u e s in DT systems
58 w_out = find (w>pi/dt ); % f r e q u e n c i e s o u t s i d e o f the Nyquist range
59 mag( w_out ) = NaN;
60 pha( w_out ) = NaN;
61 end
62

63 i f ( figno > 0) % PLOTS ===================================================
64

65 figure ( figno );
66 c l f
67 for k=1:r
68 subplot(2,r,k)
69 i f (ax == ’x’)
70 semilogx(w/2/ pi , mag (:,:,k), ’LineWidth ’, lw ); % p l o t the magnitude resp
71 e l s e i f (ax == ’y’)
72 semilogy(w/2/ pi , mag (:,:,k), ’LineWidth ’, lw ); % p l o t the magnitude resp
73 e l s e i f (ax == ’n’)
74 plot (w/2/ pi , mag (:,:,k), ’LineWidth ’, lw ); % p l o t the magnitude resp
75 else
76 loglog (w/2/ pi , mag (:,:,k), ’LineWidth ’,lw ); % p l o t the magnitude resp
77 end
78 i f (nargin > 8), legend(leg ); end
79

80 axis ([ min(w)/2/ pi , max(w)/2/ pi , min(min(min(mag ))) , 1.2*max(max(max(mag ))) ]);
81 i f k == 1, ylabel (’magnitude ’); end
82 grid on
83

84 pi180_w = w ’; % l a g in seconds
85 pi180_w = pi /180; % phase in degrees
86 pha = pha ./ pi180_w ;
87 subplot(2,r,k+r)
88 i f (ax == ’n’ || ax == ’y’)
89 plot (w/(2* pi), pha (:,:,k), ’LineWidth ’, lw ) % p l o t the phase
90 else
91 semilogx(w/(2* pi), pha (:,:,k), ’LineWidth ’, lw ); % p l o t the phase
92 end
93 % i f ( nargin > 9) , l egend ( l e g ) ; end
94 pha_min = f loor (min(min(min(pha ))/90))*90;
95 pha_max = c e i l (max(max(max(pha ))/90))*90;
96 set (gca, ’ytick ’, [ pha_min : 90 : pha_max ])
97 axis ([ min(w)/2/ pi max(w)/2/ pi pha_min pha_max ]);
98 xlabel (’frequency ( Hertz )’)
99 i f k == 1, ylabel (’phase ( degrees )’); end

100 grid on
101

102 end
103 end
104

105 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− MIMOBODE
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dliap.m http://www.duke.edu/∼hpgavin/dliap.m

1 function P = dliap (A,X)
2 % func t ion P = d l i a p (A,X)
3 % So lve s the Liapunov equat ion A’∗P∗A − P + X = 0 f o r P by trans forming
4 % the A & X matr ices to complex Schur form , computes the s o l u t i o n o f
5 % the r e s u l t i n g t r i a n g u l a r system , and transforms t h i s s o l u t i o n back .
6 % A and X are square matr ices .
7

8 % h t t p ://www. mathworks . com/ ma t l abc en t ra l / newsreader / v iew thread /16018
9 % From : daly32569@my−deja . com

10 % Date : 12 Apr , 2000 23:02:27
11 % Downloaded : 2015−08−04
12

13 % Transform the matrix A to complex Schur form
14 % A = U ∗ T ∗ U’ . . . T i s upper−t r i a n g u l a r , U∗U’ = I
15 [U,T] = schur( complex (A)); % f o r c e complex schur form s ince A i s o f t e n r e a l
16

17 % Now . . . P − (U∗T’∗U’ ) ∗P∗(U∗T∗U’ ) = X . . . which means . . .
18 % U’∗P∗U − (T’∗U’ ) ∗P∗(U∗T) = U’∗X∗U
19 % Let Q = U’∗P∗U y i e l d s , Q − T’∗Q∗T = U’∗X∗U = Y
20

21 % Solve f o r Q = U’∗P∗U by trans forming X to Y = U’∗X∗U
22 % Therefore , s o l v e : Q − T∗Q∗T’ = Y . . . f o r Q
23 % Save memory by us ing ”P” f o r Q.
24 dim = s ize (A ,1);
25 Y = U’ * X * U;
26 T1 = T;
27 T2 = T ’;
28 P = Y; % I n i t i a l i z e P . . . t h a t i s , i n i t i a l i z e Q
29 for col = dim : -1:1 ,
30 for row = dim : -1:1 ,
31 P(row ,col) = P(row ,col) + T1(row ,row +1: dim )*(P(row +1: dim ,col +1: dim )* T2(col +1: dim ,col ));
32 P(row ,col) = P(row ,col) + T1(row ,row )*(P(row ,col +1: dim )* T2(col +1: dim ,col ));
33 P(row ,col) = P(row ,col) + T2(col ,col )*( T1(row ,row +1: dim )*P(row +1: dim ,col ));
34 P(row ,col) = P(row ,col) / (1 - T1(row ,row )* T2(col ,col ));
35 end
36 end
37 % U∗P∗U’ − U∗T1∗P∗T1’∗U’ − X
38 % Convert Q to P by P = U’∗Q∗U.
39 P = U*P*U ’;
40 % A∗P∗A’ − P + X % check t h a t t h i s i s zero , or c l o s e to i t .
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invzero.m http://www.duke.edu/∼hpgavin/invzero.m

1 function zz = invzero (A,B,C,D,tol)
2 % zeros = invzero (A,B,C,D, t o l )
3 % i n v a r i a n t and decoup l ing zeros o f a continuous−time LTI system
4 % the cond i t i on f o r an i n v a r i a n t zero i s t h a t the p e n c i l [ zI−A, −B; C D ] i s
5 % rank d e f i c i e n t . For zeros t h a t are not p o l e s ( i . e . , f o r minimal r e a l i z a i t o n s )
6 % i n v a r i a n t zeros , z , make H( z ) rank−d e f i c i e n t .
7 % method : use QZ decomposit ion to f i n d the genera l e i g e n v a l u e s o f the
8 % Rosenbrock system matrix , padded with zero or randn to make i t square .
9 % t o l : t o l e r a n c e va lue f o r rank determination , d e f a u l t = 1e−4

10

11 [nn ,rr ,mm] = abcddim (A,B,C,D);
12

13 i f nargin < 5, tol = 1e -6; end
14

15 % make the system square by padding with zeros or randn , as needed ( c l u g e ?)
16 re = mm -rr;
17 me = rr -mm;
18 rm = max(mm ,rr );
19

20 zi = [];
21 for iter = 1:4
22

23 Bx = B; Cx = C; Dx = D;
24 i f iter == 1 % zero padding f o r decoup l ing zeros
25 i f mm > rr , Bx = [ B , zeros(nn ,re) ]; Dx = [ D , zeros(mm ,re) ]; end
26 i f mm < rr , Cx = [ C ; zeros(me ,nn) ]; Dx = [ D ; zeros(me ,rr) ]; end
27 else % randn padding f o r i n v a r i a n t zeros
28 i f mm > rr , Bx = [ B , randn(nn ,re) ]; Dx = [ D , randn(mm ,re) ]; end
29 i f mm < rr , Cx = [ C ; randn(me ,nn) ]; Dx = [ D ; randn(me ,rr) ]; end
30 end
31

32 abcd = [ -A , -Bx ; Cx , Dx ]; % Rosenbrock System Matrix
33 ii = [ eye(nn) , zeros(nn ,rm) ; zeros(rm ,nn+rm) ];
34 zz = -eig ( abcd , ii , ’qz ’ );
35 zz = zz( isfinite (zz ));
36 i f iter == 1
37 z1 = zz;
38 else
39 zi = [ zi , zz ];
40 end
41 end
42

43 zz = [ z1 ; intersecttol (zi , tol) ];
44

45 idxR = find (abs(imag(zz )) < 1e -10 ); zz(idxR) = real (zz(idxR )); % r e a l zeros
46 idxC = find (abs(imag(zz )) > 1e -10 ); % complex zeros
47

48 zz = [ zz(idxR) ; zz(idxC) ; conj(zz(idxC )) ]; % complex conj p a i r s
49

50 nz = length(zz );
51

52 % Are both the p e n c i l o f the Rosenbrock System Matrix and
53 % the t r a n s f e r func t i on matrix rank d e f i c i e n t ??
54 % confirm t h a t a l l the zeros are i n v a r i a n t zeros
55

56 nrcABCD = min( s ize ([A B;C D]));
57 min_mr = min( s ize (D));
58 pp = eig (A);
59
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60 good_zero_index = [];
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39 Numerical Example 1: a spring-mass-damper oscillator

For the single degree of freedom oscillator of Section 2, let’s say m = 2 ton,
c = 1.4 N/mm/s, k = 6.8 N/mm, do = 5.5 mm and vo = 2.1 mm/s. Note
that these units are consistent. (1 N)=(1 kg)(1 m/s2)=(1 ton)(1 mm/s2)

For these values, the linear time invariant system description of equations (9)
and (10) become

ẋ(t) =
 0 1

−3.4 −0.7

x(t) +
 0

0.5

u(t) , x(0) =
 5.5

2.1

 (156)

y(t) =
 6.8 1.4

−3.4 −0.7

x(t) +
 0

0.5

u(t) (157)

1. What are the natural frequencies and damping ratios of this system?

>> A = [ 0 1 ; -3.4 -0.7 ] % the dynamics matrix

A = 0.00000 1.00000
-3.40000 -0.70000

>> eig(A) % eigenvalues of the dynamics matrix

ans = -0.3500 + 1.8104i
-0.3500 - 1.8104i

>> wn = abs(eig(A)) % absolute values of the eig’s of A are omega_n

wn = 1.8439
1.8439

>> z = -real(eig(A)) ./ wn % ratio of real eig(A) to omega_n is damping ratio

z = 0.18981
0.18981

>> wd = imag(eig(A)) % imaginary parts of the eig’s of A are omega_d

wd = 1.8104
-1.8104
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So, the natural frequency is 1.84 rad/s (the same as
√

k/m), the damping
ratios is 19% (the same as c/

√
4mk), and the damped natural frequency

is 1.81 rad/s (the same as ωn
√

|ζ2 − 1|).
These calculations can be done in one step with the m-file damp.m

>> damp(A)

Natural Damped
Frequency Frequency Eigenvalue
(cyc/sec) Damping (cyc/sec) real imag
----------------------------------------------------------
0.29347 0.18981 0.28813 -0.35000 1.81039
0.29347 0.18981 0.28813 -0.35000 -1.81039

2. What is the discrete-time system realization for ∆t = 0.01 s?

>> dt = 0.01; % time step, s
>> Ad = expm(A*dt); Bd = A\(Ad-eye(2))*B; % continuous-to-discrete-time

Ad = 0.9998304 0.0099645
-0.0338794 0.9928552

Bd = 2.4941e-05
4.9823e-03

>> damp(Ad,dt) % check the dynamics of discrete-time system

Natural Damped
Frequency Frequency Eigenvalue
(cyc/sec) Damping (cyc/sec) real imag
----------------------------------------------------------
0.29347 0.18981 0.28813 -0.35000 1.81039
0.29347 0.18981 0.28813 -0.35000 -1.81039

The following analyses are carried out for the continuous-time system
model and can also be equivalently carried out for the discrete-time
system model.
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3. What is the free response of this system to the specified initial conditions
xo?

>> dt = 0.01; % time step value, sec
>> n = 1000; % number of time steps
>> t = [0:n-1]*dt; % time values, starting at t=0
>> xo = [ 5.5 ; 2.1]; % initial state (mm, mm/s)
>> C = [ 6.8 1.4 ; -3.4 -0.7 ]; % output matrix
>> y = zeros(2,n); % initialize outputs
>> for k=1:n
> y(:,k) = C*expm(A*t(k))*xo;
> end
>> plot(t,y)
>> legend(’foundation force, N’, ’mass acceleration, mm/sˆ2’)
>> xlabel(’time, s’)
>> ylabel(’outputs, y_1 and y_2’)

The free response is plotted in figure 8.
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Figure 8. Free response of the linear time invariant system given in equations (156) and (157).
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4. What is the response of this system to a unit impulse, u(t) = δ(t)?

>> B = [ 0 ; 0.5 ]; % input matrix
>> h = zeros(2,n); % initialize unit impulse responses
>> for k=1:n
> h(:,k) = C*expm(A*t(k))*B;
> end
>> plot(t,h)
>> legend(’foundation force, N’, ’mass acceleration, mm/sˆ2’)
>> xlabel(’time, s’)
>> ylabel(’unit impulse responses, h_1(t) and y_2(t)’)

The unit impulse response is plotted in figure 9. Note that at h(0) = CB,
which is not necessarily zero. .
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Figure 9. Unit impulse response of the linear time invariant system given in equations (156) and
(157).
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5. What is the response of this system to external forcing u(t) = 50 cos(πt)?

>> D = [ 0 ; 0.5 ]; % feedthrough matrix
>> u = 50 * cos(pi*t); % external forcing
>> y = lsym(A,B,C,D,u,t,xo); % use the "lsym" command
>> plot(t,y)
>> legend(’foundation force, N’, ’mass acceleration, mm/sˆ2’)
>> xlabel(’time, s’)
>> ylabel(’forced harmonic responses, y_1(t) and y_2(t)’)

The forced harmonic response is plotted in figure 10.
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Figure 10. Forced response of the linear time invariant system given in equations (156) and (157).
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6. What is the frequency response function from u(t) to y(t) for this sys-
tem?

>> w = 2*pi*logspace(-1,0,100); % frequency axis data
>> bode(A,B,C,D,1,w);

The magnitude and phase of the steady-state forced harmonic response is
plotted in figure 11. Note how the magnitude and phase of the frequency
response shown in figure 11 can be used to predict the steady state
response of the system to a forcing of u = 10 cos(πt). (The forcing
frequency is 0.5 Hertz).
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Figure 11. Frequency response of the linear time invariant system given in equations (156) and
(157).

The Laplace-domain transfer functions of the system are plotted in figure
12.

This is a fairly simple example. Nevertheless, by simply changing the def-
initions of the system matrices, A, B, C, and D, and of the input forcing
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Figure 12. Laplace-domain transfer function of the linear time invariant system given in equations
(156) and (157). Poles are marked with ”x” on the Laplace plane (s = σ + iω). The frequency
response is shown as the red curve along the iω axis, at σ = 0. The real parts of the poles are all
negative, meaning that the system is asymptotically stable.
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u(t), any linear time invariant system may be analyzed using the same sets
of matlab commands.
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40 Numerical Example 2: Butterworth Filters

The low-pass Butterworth filter of order n with cutoff frequency ωc is defined
by its transfer function magnitude

|H(s)|2 = H(s)H(s∗) = b2
0

1 + (s/ωc)2n

The n poles of H(s), at s = pk, (k = 1, 2, . . . , n) are the n stable poles of the
2n roots of 1 + (pk/ωc)2n = 0. Rearranging the characteristic equation,

pk

ωc
= (−1)1/(2n) , k ∈ {1, 2, . . . , n} s.t. Re(pk) < 0

The 2n roots of (−1) are found from (exp(iθk))2n = −1, which gives

exp(2n i θk) = −1 and 2nθk ∈ {π, 3π, 5π, . . . , (4n − 1)π} + qπ .

where q is an integer. Solving for θk,

θk = π

(2k − 1
2n

+ q

2n

)
, k ∈ {1, 2, . . . 2n} .

The n stable poles correspond to q = n.

pk = ωc [exp(2n i θk)]1/(2n)

pk = ωc exp
[
iπ
(1

2 + 2k − 1
2n

)]
, k ∈ {1, 2, . . . , n} (158)

The characteristic equation 1 + (s/ωc)2n (of order 2n) may be approximated
as an n-th order polynomial a0 + a1s + ... + an−1s

n−1 + sn, that contains only
the stable complex roots of 1 + (s/ωc)2n. At s = 0, H(s) = b0/a0. So setting
b0 = a0 provides unity gain at s = 0. These coefficient values can be used in
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a companion matrix realization of a low-pass Butterworth filter.

d

dt



x1

x2
...

xn−1

xn


=



0 1 0 · · · 0
0 0 1 · · · 0
... ... ... . . .
0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1





x1

x2

x3
...

xn


+



0
0
...
0
1


u

(159)

y =
[

a0 0 · · · 0 0
]


x1

x2

x3
...

xn


in which the coefficients a0, ..., an−1 are computed from the stable poles,
p1, ..., pn.

The transfer function of the corresponding high-pass filter enforces H(s) → 0
as s → 0 by placing n zeros at s = 0.

H(s) = sn

a0 + a1s + a2s2 + ... + an−1sn−1 + sn
,

from which a companion matrix realization of a high-pass Butterworth filter
is found to be

d

dt



x1

x2
...

xn−1

xn


=



0 1 0 · · · 0
0 0 1 · · · 0
... ... ... . . .
0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1





x1

x2

x3
...

xn


+



0
0
...
0
1


u

(160)

y =
[

−a0 −a1 −a2 · · · −an−1
]


x1

x2

x3
...

xn


+ [1]u
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in which the coefficients a0, ..., an−1 are found from the same set of stable
poles, p1, ..., pn, as used in the low pass filter. These continuous time real-
izations may be transformed to discrete time realizations with a first order
hold. A state space implementation of Butterworth filters that incorporate
the matrix exponential are significantly more stable than those based on the
(approximate) bi-linear transformation.
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