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1 Linearity and Time Invariance

A system G that maps an input u(t) to an output y(t) is a linear system if
and only if

(191 (t) + caya(t)) = Glonua(t) 4 azus(t)] (1)
where y; = Glus|, yo = Glus| and oy and ay are scalar constants. If (1) holds
only for ay + ay = 1 the system is called affine. The function G(u) = Au+b
is affine, but not linear.

A system G that maps an input u(f) to an output y(t) is a time-invariant
system if and only if

y(t —to) = Glu(t —t,)] . (2)

Systems described by
©(t) = Ax(t)+ Bu(t), x(0)=x, (3)
y(t) = Cx(t) + Du(t) (4)

are linear and time-invariant.

variable description dimension
x state vector n by 1

u input vector r by 1

Y output vector m by 1

A dynamics matrix n by n

B input matrix n by r

C output matrix m by n

D feedthrough matrix m by r
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2 Example: a spring-mass-damper oscillator

An externally-forced spring-mass-damper oscillator is described by
mi(t) + cr(t) + kr(t) = f(t) , r(0) =d,, 7(0)=wv,. (5)

Setting the external forcing to zero, substituting an assumed solution of the

At

form r(t) = reM, and factoring out the e, results in

(MA2+cA+Ek)iF=0.

This equation is valid for 7 = 0 (the trivial solution) and for (mA? + cA +
k) = 0, which is called the characteristic equation of this differential equa-
tion. The roots of this polynomial are given by the quadratic formula,

2
Ne_ S L€ _k

2m 4dm m

Defining the natural frequency w? = k/m and the damping ratio ¢ = ¢/(2v/mk),
we find ¢/(2m) = Cwy, so,

A = —(wy +/(Pw? — w?

= —Cw, w2 -1 (6)

and if ¢ < 1, the root may be written

A = —Cwn & iwny/1 = ¢? (i=v-1).

Complex values of A are written A = o +iw. Note that (( > 0) < (¢ > 0) &
(0 < 0) & the simple oscillator is stable.

Now presuming that the external forcing f(¢) and the position response r(t)
are harmonic, f(t) = f(s)e* and r(t) = 7(s)e** (s € C), substituting the
presumed solution into the differential equation and factoring out e*

(ms* + cs + k) 7(s) = f(s) or  7(s)=f(s) /] (ms*+cs+k).

Now, considering inputs u(t) = f(t) and outputs yi(t) = 7(t) and yo(t) =

kr(t) + ci(t) and their Laplace transforms, y1(t) = 71(s)e® = s*7(s)e®! and
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Y2 (t) = ya(s)e® = kr(s)e® + csr(s)e® we can derive transfer functions from
u(s) to gi(s) and ga(s).
) ___ = )
u(s) ms*+cs+k

and
Yo (s) k+cs

u(s) T ms?+cs+ k

(8)

The second-order ordinary differential equation (5) may be written as two

first-order ordinary differential equations, by defining a state vector of the

position and velocity, z = [r 7]T.

SRR [ BRI R IR

In terms of a desired response from this system, we may be interested in the
force on the foundation, fr, and the acceleration of the mass, both of which
can be computed directly through a linear combination of the states and the

=l L]0

A single degree of freedom oscillator and all other linear dynamical systems

input.

may be described in a general sense using a state variable realization,

(t) = Ax(t)+ Bu(t), x(0)=x,
y(t) = Cux(t) + Du(t) .

The next section shows the equivalence of differential equations, transfer
functions, and state variable realizations, and shows how the state variable
realizations (9) and (10) can be obtained directly from the transfer functions
(7) and (8) without considering the differential equations.
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3 System Interconnections: parallel, cascade, and feedback

The facility with which models of interconnected subsystems can be derived is
one of the powerful benefits of state-space modeling. This section describes
the three fundamental types of system interconnections: parallel, cascade,
and feedback. The individual interconnected subsystems are described by:

T = Az + Biug y1 = Cix1 + Dy

T9 = Asxo + Boug , y2 = Cozy + Douy

3.1 Parallel interconnections

In the parallel interconnection of two subsystems, the same output drives both
subsystems, u; = us = u, and the output is the sum of the two subsytem

outputs, y = y1 + y2. S0,
Yy = Clﬁlfl + D1u + CQ.IQ + D2u

alnl = 1o alln] [a]r a
y = [ G C2][i;]+[D1+D2}u (12)

3.2 Cascade interconnections

In the cascade interconnection of two subsystems, the output of subsystem 1
provides the input to subsystem 2, us = y;. So,

Tg = Aswg + Bo(Crx1 + Diwy)  yo = Coxa + Do(Chay + Diuy)
jf? = BQCliL’l + AQZCQ + B2D1U1 Yo = DQClxl + CQIUQ + D2D1u1

d T Al 0 1 Bl
- — 13
dt { I9 ] [ BQCl AQ [ I9 ] + { Bl + B2D1 “ ( )
X
Ya = [ DQCl CQ } [ :Ul ] + [ Dle }ul (14)
2

@®®G H.P. Gavin May 14, 2025


http://creativecommons.org/licenses/by-nc-nd/4.0/

Linear Time Invariant Dynamical Systems )

3.3 Feedback interconnections

In the feedback interconnection of two subsystems, the output of subsystem
1 provides the input to subsystem 2, and the input to subsystem 1 is the sum
of the output of subsystem 2 and the overall system input, u. The overall
system output is the output of subsystem 1.

Us = Y1 and uy=u+1y and y=1

So,
i) = Aoy + Bi(u+1y2)  y=Ciry+ Di(u+y0)

Ty = Agwy + Ba(Crv1 + Di(u+12))  y2 = Cowz + Da(Crzy + Di(u + y2))
yy = (I — D) 'DyCizy + (I — Dy) 'Cyzo + (I — Dy) ' Dyu
i1 = Az, + B1(I — D) "' DoCray 4+ Bi(I — Dy) "' Coxo 4+ B1(I — Dy) ' Dyu + Byu
i1 = (Ay + By(I — D1) ' DyC1)zy + Bi(I — Dy) 'Coxy + B1((I — Dy) " 'Dy + Iu
&9 = BoCia1 + Asxo + BaD1ys + BoDyu
&9 = BoCra1 + Asxy + BoD1((I — Dy) ' DoChaxy + (I — Dy) ' Coxg + (I — Dy) "' Dyu) + BaDyu
iy = (BoC1 + ByD1(I — Dy) tDyCy)xy 4 (Ag + BaDy (I — D1) " 1Co)xa 4+ Bo Dy (I — D) Dy + D
y = Ciz1 + D1((I — D) ' DyChxy + (I — D)1 Chzy + (I — Dy) " Dyu) + Dyu
y = (C1+ Di(I — D1)"*DyC1)z1 + D1(I — D1)"*Cozo 4+ D1((I — Dy) "L + I)Dyu

A1+ B1(I = D1)"'D2Cq Bi(I — D1)71Cy z1 Bi((I-D1)"'D1+1)
BQCl+BQD1(IfD1)71D201 AQ+B2D1([*D1)7102 o Ble((IfD1)71D1+I)

<
I

[ Ch +D1(I—D1)71D201 Dl(I—D1)7102 ] |: i;

+[ DI =D+ DDy Ju

In the special case where Dy = 0 and Dy = 0,

1S Rl | A R A R
y:[clo]{illﬂo]u (16)
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4 Differential Equations, Transfer Functions, and Continuous Time State Space
Realizations

In general, any linear ordinary differential equation with constant coefficients

aoy(t) + ar(t) + azf(t) + -+ an-ay" V() + 5" (1)
= bou(t) + bya(t) + boti(t) + - - - + bn_lu(”—l)(t) 4+ bnu(n)(t) (17)

can be expressed in state-space form as long as the highest order of the
derivitives of u do not exceed the highest order of the derivitives of y. Setting
the external forcing, u(t) and all its derivitives, to zero and substituting an
assumed solution of the form y(t) = ye, and factoring out the e, results in

(ap+a A+ a4+ +a, A"+ A" ) g =0.
This equation is valid for y = 0 (the trivial solution) and for
Ao+ A+ a4+ a, AT HN =0, (18)

which is the characteristic equation of the differential equation (17). Forn > 3
the n roots of this polynomial, (Aq, ..., A,) may be computed numerically. In
general, these roots are complex and are conventionally expressed as

)\,':O'i:tiwi, (1:\/—_1>

Now considering harmonically forced steady state inputs and outputs, as-
sume a harmonic input of the form u(t) = u(s)e® and a harmonic output of
the form y(t) = y(s)e®. Allowing the Laplace variable to be complex, s € C,
these assumed solutions can represent both harmonic and exponential func-
tions. Substituting the assumed solutions into the differential equation, and
factoring out e from both sides, gives the differential equation expressed in
the Laplace domain.

(aop+ a8+ ags® + -+ ap_15"" + 5" ) y(s)
= (by+bys+bys® + -+ by 15"+ b,s" ) iu(s)
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The ratio of the output %(s) to the input @(s) in the Laplace domain is called
the transfer function

y(s)  bo+bis+bas®+ -+ by18" 4 bys”
u(s) T Gy s+ arst A+ a5 8

The frequency response function is the transfer function evaluated along the

H(s)

(19)

imaginary (frequency) axis of the complex Lapace domain s = ¢ + iw. The
frequency response function is complex valued and is most commonly de-
picted as a plot of its magnitude |H(w)| = /[ReH(w)]? + [ImH (w)]? and
phase Z/H (w) = arctan(Im[H (w)]/Re[H (w)]). This plot is known as the Bode
plot. The time shift of a frequency component is 7 = (£LH (w))/w.

To obtain a state space realization of this differential equation, we convert the
Laplace domain transfer function back to a time domain differential equation
by multiplying the numerator and the denominator of the transfer function
by the same Laplace domain variable v(s), which will be used to represent
the states of the system.

y(s)  (bo+bis+bas® + -+ by18" 4 bys™ ) U(s) (20)
u(s)  (a+ais+ags®>+ -+ ap_15"1 4+ 57 ) v(s)

Now defining

y(s) = (bo+bis+bas®+ -+ by18" " +b,s" ) 0(s)
u(s) = (ag+ars+ags®+---+a, 18" +5") 0(s),
taking the inverse Laplace transform,
y(t) = bpv(t) + byo(t) + bair(t) + - 4 by 10" V(1) + bu™(t) |
u(t) = agv(t) + aro(t) + agv(t) + - - + an 0"V (@) + 0 (1) |

and defining states

ry = v(t)

332 — j}'l = U(t) 3
xr3 = T9 = (),
T, = L1 = v(”_l)(t) ,
Tn = flxr,.mxn,u) = o),
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we obtain expressions for y(¢) and u(t) in terms of n states xi, ... , x,, and
T

y(t) = boxi(t) + biwa(t) + bows(t) 4 - - + byo12, () + byt (t)

u(t) = CLQZL‘l(t) -+ &1:132(t) + CL2$3(t) + -+ Clnflilfn(t) + ZUn(t)

Solving the second equation for &, () we obtain the highest state derivitive
as a function of the states and the input

T (t) = u(t) — apx1(t) — a1x2(t) — agxs(t) — -+ — ap_12,(1) .

Inserting this equation into the equation for y(t), we obtain the output equa-
tion as a function of states and the input,

y(t) — boxl(t) + blxg(ﬁ) + le‘g(t) + -+ bn_lxn(t)
+ b u(t) — apri(t) — arza(t) — asxs(t) — - -+ — ap_q2,(t) ) .
Combining terms with the same states
y(t) = (byg — agbyn) x1(t) + (by — arby) xo(t) + (by — asby,) x3(t) + - -
+ (bp1 — an_1by) x,(t) + bpu(t)

and combining with the definition of the states, leads to a system of first
order linear differential equations for the single n-th order ordinary differential

equation.
o] [0 1 0 - 0 1[m@®] [0
q xo(t) o o 1 - 0 xo(t) 0
7 E =| E S w3(t) |+ | ¢ | u(t)
o1 (t) 0 0 0 - 1 : 0
Coz,(t) | | —ag —ar —ag o0 —apq | | T(t) | [ 1)
(21)
Co(t) ]
(1)
y(t) = [ bo — agb, b1 —aib, by —asb, -+ by —a,_1b, } z3(t) | + [bn] u(t)
[ zn(t) |
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This is called the controllable canonical companion matrix state space realiza-
tion of the system described by differential equation (17) or transfer function
(19). The coefficients aq, - - - ,a,_1 or, equivalently, the roots Ay, -, \,, of
the characteristic equation, and the input coefficients by, ..., b, fully specify
the system.

The dynamics matrix A of the canonical controlable companion matrix re-
alization, can be recovered by its n eigenvalues Ai, Ao, ..., \,, provided the
eigenvalues are distinct, by noting that for any eigenvalue A;,

o 1 0 - 0 ][ 1 ] 1

o o0 1 - 0 Aj Aj

: z S A=

o o0 0 --- 1 : PV
| —Qp —ap —az -+ —ap—1 | | )\?_1 i i )\?_1 ]

in which the last row is the characteristic equation (18). The Vandermonde
matrix built from columns

1 1 1

)\1 )\2 )\n

V=] M A ... X
AT AT e AT

contain the eigenvectors of the dynamics matrix of the conrollable canon-
ical companion matrix realization, so AV = VA and A = VAV™! where
A = diag(\,...)\,) and provided V is full rank.

A somewhat more cumbersome approach leads to the observable canonical
companion matriz state space realization of a differential equation or transfer
function. To do so, we solve the differential equation (17) for y™(¢) and
integrate this equation (n — 1) times to get an expression for ¢(t), and then
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collect terms with common orders of integration or differentiation,

y(n)(t) = —agy(t) — a1y(t) — agy(t) — -~ - — an-1y(”_1)(t)
+ bgu(t) + blu(t) + b27j(t) 4+ 4 bn—lu(n_l)(t) + bnu(")(t)
y(t) = —Q /n—l y(t)dt”—l — ay /71_2 y(t)dt”‘Q — ao /n_3 y<t>dtn—3 .
- an—ly(t)
+ bo /n_l u(t)dtn—l + by /71_2 u(t)dt”_2 1 by /n_g u(t)dt”_?’ T

§t) = bait) = [ boult) = aoy()de" ™ + [ brut) - ay(t)de"

+ [, boult) — asy()dt" P 4 - 4 by qut) — an1y(t)

In these equations [, f(t)dt? is shorthand for integrating f(¢) p times. Now
we define the first state to be the integral of the left hand side of the last
expression and the second state to be all the integrals on the right hand side

z1(t) = y(t) — bau(?)
vo(t) = [ bou(t) —agy()dt" + [ bru(t) — ary(t)de"
+ /n_3 bQU(t) — agy(t)dtn—i% S /bn_Qu(t) _ @n_zy(t)dt

giving us the first state equation
T = @T9+ bn—lu(t) - an—ly(t)
= —ap_171(t) + x2 + by_qu(t) — ap_1byul(t)
The derivitive of x5 is
ia(t) = [ bou(t) = aoy()dt" + | bru(t) — ary(t)de"?
+ [ boult) — asy()dt" - 4 by ou(t) — @y ay(t)
Defining the terms with integrals in the expression above as x3(t)

r3(t) = /n—2 bou(t) — aoy(£)dt"™ + /n_g biu(t) — ary(t)dt"
+ [ bou(t) — asy(®)dt" ™ -+ [ by gu(t) — a,sy(t)dt

n—

(22)
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gives us the second state equation
o = x3+ by_ou(t) — an_oy(t)
= —ap—271(t) + x5 + by_2u(t) — an—_2byu(t)

One more time — the derivitive of x3 is

t(t) = / 3 bou(t) — aoy(t)dt" > + - bru(t) — ayy(t)dt"

+ - bou(t) — asy(t)dt" ™ + -+ - + by_su(t) — an_3y(t)

n—

Defining the terms with integrals in the expression above as x4(?)
wa(t) = [ bou(t) —agy()dt" + | bru(t) — ary(t)de"
+ [ boult) = asy(8)dt" " + - 4 by_gu(t) — an_sy(t)
gives us the third state equation

T3 = x4+ bp_su(t) — an_3y(t)
= —ay_321(t) + 24 + bp_3u(t) — an_sbyu(t)

Repeating the pattern, we obtain the observable canonical companion matrix

realization.
[ xq(t) ] [ —a,1 10 -+ 0] [ ] [bo1—an1b,
p xo(t) —apo 01 -+ 0 xo(t) by—2 — Ap_ob,,
7 : = : Pl z3(t) | + : u(t)
Ty_1(t) —a; 00 --- 1 : by — aib,
L z(t) ] L —ap 0 0 -+ O] |xu(®) | | bo—agby
(23)
Cn(t) ]
(1)
y(t) = [1 0 0 - 0] @s(t) |+ [by] w(t)
| zn(t) |
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Notes:

« State space realizations for a given differential equation or transfer func-
tion are not unique.

o The observable canonical realization is the flipped transpose of the con-
trollable canonical realization. By reversing the order of the states, the
A matrix for the observable canonical realization is the transpose of A
for the controllable canonical realization; B for the observable canonical
realization is the transpose of C' for the controllable canonical realiza-
tion; and transpose of C for the observable canonical realization is B
for the controllable canonical realization. The feedthrough matrix D is
realization independent, as it should be.

o The roots of a characteristic equations of an ordinary differential equa-
tion with real valued coefficients are real or occur in complex conjugate
pairs. In the matlab language, the vector [ag, a1, ag, -+, a1, 1] is

encoded in reverse (“fliped”) order as as [1, a,_1, a2, ---, a1, agl.
So computations can be carried out as,

a = flip(real(poly(lambda))); % coeff’s from eigenvalues
A = [ zeros(N-1,1) , eye(N-1) ; -a(1:N) 1; % dynamics matrix
lambda = roots(flip(a)); % eigenvalues from coeff’s
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5 Difference Equations, Transfer Functions, and Discrete Time State Space
Realizations

In discrete time where variables are sampled at uniform time increments (At),
y(k) is shorthand for y(kAt), and w(k) is shorthand for u(kAt). Any linear
ordinary difference equation with constant coefficients

y(k) +ay(k — 1) +ay(k —2)+ -+ ap1y(k —n+1) + a,y(k — n)
= bou(k) + bru(k — 1) + bou(k — 2) + - - - + by_u(k — n + 1) + byu(k {24)

can be expressed in state-space form as long as the longest time lag of u does
not exceed the longest time lag of y. Setting the external forcing, u(k) to zero

for all k, and substituting an assumed solution of the form y(n) = ye**a!,

AkAt

and factoring out the e**2*, results in

(T+a X +a X2+ +a, A" +a,A") y=0.

This equation is valid for § = 0 (the trivial solution) and for (a, + a;A™! +
<-4+ A7) = 0, which is called the characteristic equation of this difference
equation. For n > 3 the n roots of this polynomial, (A, ..., \,,) may be com-
puted numerically. In general, these roots are complex and are conventionally
expressed as

/\i:ai:i:iwi, (1:\/—_1>

Now considering harmonically forced steady state inputs and outputs, assume
eskAt

= y(2)2"

to be complex, s € C, these assumed solutions can represent both harmonic

a harmonic input of the form u(t) = u(s) = u(2)z* and a harmonic out-

esk‘At

put of the form y(t) = y(s) Allowing the Laplace variable

and exponential functions. Substituting the assumed solutions into the dif-
ference equation, and factoring out e**2* from both sides, gives the difference
equation expressed in the z-domain.

(1 +arz " Haz 2+ +ap 12" +az") y(2)
= (b + b1z P by 24 by T b ) u(2)
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The ratio of the output y(z) to the input %(z) in the z-domain is called the

transfer function

y(z)  bo+biz T boz P4 by T bz

H(z) = =
(2) w(z) 1 4@zt +az24--+a, 127" a2

(25)

To obtain a state space realization of this difference equation, we convert
the z-domain transfer function back to a time domain difference equation by
multiplying the numerator and the denominator of the transfer function by
the same z-domain variable v(z), which will be used to represent the states
of the system.

y<2) L ( b() + blz_l + 622_2 4+ 4 bn_lz—n—i—l + an_” ) @(Z)

— 26
u(z) (1 Farz7t+az 24 +ap 127" +a,27" ) 9(2) (26)

Now defining

§(2) = (bo+brz ! +boz 2+ bz " b2 ) 0(2)

u(z) = (1 +az ' +az 24 +a 127" a2 ) 0(z)
taking the inverse z-transform,

y(k) = bov(k)+bovk—1)+bw(k—2)+- - +bv(k—n+1)+byu(k—n),
u(k) = vk)+avk—1)+awk—2)+ - +a,19(k—n+1)+ a0k —n),

and defining states

xi(k) = wv(k—n)
zo(k) = x(k+1) = v(lk—n+1),
x3(k) = w(k+1) = vk—n+2),
zo(k) = xpa(k+1) = wk-1),
ro(k+1) = f(x1,...,zp,u) = v(k) ,
we obtain expressions for y(k) and u(k) in terms of n states 1, ... , z,, and

x,(k+1).

wk) = xp(k+1) 4+ arz,(k) + agwp1(k) + -+ + an_122(k) + apz1(k)
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Solving the second equation for z,(k+1) we obtain the highest state difference
as a function of the states and the input

ok + 1) =u(k) — ey, (k) — agxp_1(k) — -+ — ap_122(k) — apz1(k) .

Inserting this equation into the equation for y(k), we obtain the output equa-

tion as a function of states and the input,

y(k) = by (u(k) — a1z, (k) — aswy_1(k) — -+ — ap_129(k) — apx1(k))
+ blxn(k) + bQZEn,l(lﬁ) + -+ bn,lxg(k:) + bnxl(k)

Combining terms with the same states

y(k) = (bn — CLnb()) xl(k) + (bn—l — an_lbo) 332(]{3) + (bn_g — an_gbo) Ig(k) + .-

+ (bg — Clgbo) l“n_l(k) + (bl — albo) :L‘n(k’) + by u(kz)

and combining with the definition of the states, leads to a system of first
order linear difference equations for the single n-th order ordinary difference
equation.

[ xk+1) ] [ o0 1 0 - 0 J[x=@®& ] [o]
2ok +1) 0 0 1 0 o (k) 0
: =] : S z3(k) | 4+ | 1 | (k)
Zn_1(k+1) 0 0 0 1 :
| zp(k+1) | | —Gn —Gn_1 —Gp2 - —ay | | Tu(k) | | 1]
(27)
(k) ]
z2(k)
y(k) = [ bn —anby bn—1 —an—1by bp—2 —apn—2bp --- b1 —aibo ] z3(k) | + [bo] u(k)

L zn(k) |

This is called the controllable canonical companion matriz state space real-

ization of the system described by differnce equation (24) or transfer function
(25). The coefficients ay, - - - , a, or, equivalently, the roots Ay, - -+, \,, of the
characteristic equation, and the input coefficients by, ..., b, fully specify the
system.

Note the similarities and differences between the continuous time differential
equation (17) and the discrete time difference equation (24), the Laplace do-
main transfer function (19) and the z-domain transfer function (24), and the
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continuous time state-space controllable canonical companion matrix realiza-
tion (21) and the discrete time state-space controllable canonicla companion
matrix realization (27)

Here is the observable canonical companion matrix realization of the discrete
time finite difference equation, presented without the cumbersome derivation.

ri(k+1) ] [ —ap 10 - O] [mk)] | b1—aibo
zo(k + 1) —ay 01 --- 0 xo (k) by — asby
: = E SRS z3(k) | + : u(k)
Tp-1(k +1) —Qp—1 00 -+ 1 : bp—2 — Gn_2by
zo(k+1) —a, 00 -+ 0] | zu(k)| | buo1—an_1bo |
(28)
1 (k)
2 (k)

y(k) = [1 0 0 -+ 0] zs(k) | + [bo] u(k)

This section shows that any linear difference equation in which the order of
the transfer function’s numerator polynomial does not exceed the order of
the denominator polynomial may be expressed as a state space model.

Following sections show how linear time invariant state space models can be

analyzed and simulated.
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6 Free State Response

The free state response x(t) of @(t) = Ax(t) to an initial state z(0) is

z(t) = e'z(0) (29)

A

where e is called the matriz exponential.

In the matlab language, x(:,p)=expm(A*t (p))*xo0;

The j-th column of the matrix of free state responses X (t) = e4'I,, is the set

of responses of each states z;, ¢ = 1,...,n from an initial state z;(0) = 1 and
z(0) = 0 for all k # j.

The i-th row of the matrix of free state responses X (t) = e/'I,, is the set of
responses of the i-th state, from each initial state ;(0) = 1 and z4(0) = 0
forall k #j,and j=1,...n. .

7 Free Output Response

The free output response y(t) of (t) = Ax(t) to an initial state z(0) is
y(t) = Cea(0) (30)
In the matlab language, y(:,p)=C*expm(A*t (p))*xo0;

The j-th column of the matrix of free output responses Y (t) = Ce/I, is
the set of responses of each output from an initial condition z;(0) = 1 and
z,(0) = 0 for all k # j.

The i-th row of the matrix of free output responses Y (t) = CeA'l, is the
set of responses of the i-th output, from each initial condition x;(0) = 1 and
r(0)=0forall k # j,and j=1,...,n. .

@®®G H.P. Gavin May 14, 2025


http://creativecommons.org/licenses/by-nc-nd/4.0/

18 CEE 629. — System Identification — Duke University — Spring 2019 — H.P. Gavin

8 Unit Impulse Response Function

If the system is forced by a unit impulse §(¢) acting only on the j-th input
(u(t) = e;0(t)) the solution to #(t) = Ax(t) + Bu(t), x(0) =0, for t > 0 is

x(t) = e* Be; | (31)
and the corresponding output response is
y(t) = Ce Be; . (32)

The set of n X r unit impulse state responses, each corresponding to impulse
responses from each input individually, is

X(t)=eMB, (33)

and the corresponding set of m X r output responses is called the system’s
unit impulse response function

H(t)=CeB . (34)

The i, j element of H(t) is the response of output i due to a unit impulse at
input j. Note that the impulse response is a special case of the free response.
In other words, if there is a vector v such that z, = Bwv, the free response
and the impulse response are equivalent. In other words, the input matrix B
forms a basis for the initial condition that produces the same free response as
the unit impulse response. Note that there can be initial conditions x, which
do not equal Bv because B does not necessarily span R". The set of free
responses can therefore be much richer than the set of impulse responses.

In the matlab language, H(p, :, : )=C*expm(A*t (p) ) *B;
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9 The Dirac delta function

The unit impulse 6(¢) is the symmetric unit Dirac delta function. Each Dirac
delta function is zero for ¢ < € and t > € and has the following properties:

[ oty dt =1

" o) ar = ;

/OE(S(t) dt = ;

d(0) = oo
[ ot=7) f(r)dr = f(t)
[ 5 —m) frydr = Sf)
[ ot =) fr) dr = Sf()

10 Forced State and Output Response

The forced state response is the convolution of the inputs with the unit im-
pulse state response function

t
x(t) :/ A7) Bu(r) dr . (35)
0
The output corresponding to this input is

y(t) = Cx(t) + Du(?)
:0/ At=7) Bu(7) dr + Dul(t). (36)

The total response of a linear time invariant system from an arbitrary initial
condition is the sum of the free response and the forced response.

y(t) = Cetla, + C/Ot eA=7) Bu(r) dr + Dul(t). (37)

An efficient method for computing y(t) for a arbitrary inputs u(t) is provided
in the last sections of this document.
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11  The Matrix Exponential

The matrix exponential is defined for A € R™*" as

AL AR = T4 A4 AAJ2 + AAAJ6+ AAAA/24 + - (38)
k=0

Properties of the matrix exponential:
o If A= AT then et > 0.
o If A= —AT then [ed][ed]T =1

At Bt _ o(A+B)t

o e

. [eA]T _ 6AT

. [ =e A

o AT — T-16AT for any square invertible matrix 7' € R™".

. 1 1
AT — T T AT & §T_1AT T AT + 6T—lAT TYAT T7'AT + - -

= T'T+T'AT + ;T—lAAT + éT‘lAAAT 4
= T I+ A+AA/2+AAAJ6 +---|T
AT — AT,
o det(edt) = efrace(4t)
o At Al — A-1pAt

o tank(e?’) = n for any A € R"*", regardless of the rank of A.

d At _ ALAt
7€ = Ae

el = T At ;AAtQ + éAAAﬁ + 214AAAA1€4 4+ .-
1 1
jtef“ — A+ AA+ 5AAAt? + 6AAAAt3 SR

1 1 1
= A[l + At + 51414?52 + 6AAAt3 + ﬂAAM‘* + -]

d At At
" € = (& ( 0)
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. A/OteATdT:eAt—I

A/OteATdT = /Ot ieATdT

dr
. eATg
LAt _ A
— eAt -1
t
A/O eATdr = M1 (41)
t
—A/O e Ndr = e M1 (42)

. /Ot eA(t_T)dT _ A—1<€At o ])

/Ot A" dr = /Ot eMe AT dr
= M /Ot e ATdr
_ eAt(_A—l) (e—At o I)
— _eAtA—le—At 4+ eAtA—l
_ _A—lAeAtA—le—At + A—lAeAtA—l

_ _A—leAAAflte—At_|_A—16AAA*1t

— _A—leAte—At+A—1eAt

= —At4 At
= A7 (M —1T) (43)
= [ear (44)

o for x(0) =0, ,u(t)=1Vt>0, tli}rgloeAt = Opxn , and D = 0y,

Y(t) = C/Ot eAt=dr B
= CA (M- 1)B

where Y;;(t) is the unit step response of output ¢ to a unit step input on

input 5. The final value of outputs to unit step inputs is
Y(c0) = -CA™'B.
This is a result of the final value theorem.
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With definitions of the natural frequency, w 2 k/m, the damping ratio,
¢ 2 c/(2v/mk), and the damped natural frequency, wqy £ 0, 1C? — 1], let

1= i e | = |t 2] )

For this dynamics matrix, the matrix exponential depends on the damping
ratio, ¢, as follows:

damping ‘ damping ratio ‘ eAt
coswnt L sinwyt
undamped (=0 eAt = o Wn "
—wnp Sinwpt CcOS wnt
r ¢ . 1 .
coswqt + sin wqt — sin wgqt
under-damped 0<(<1 At = g—Cuwnt o 17,42 ; twd ¢ ) "
i Jiee sin wq COS Wq \/T? sin wq
(1 t t
critically damped (=1 eAt = g wnt + wzn
| —wnt 1—wnt
[ coshwqgt + —— sinh wqt L sinh wqt
over-damped ¢>1 eAt = g~ Cwnt ‘ Vi-¢t ‘ o ‘
_\/% sinh wgqt cosh wqt — \/% sinh wqt
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12 Transformation of state space realizations

The state vector z(t) in a LTI system

©(t) = Ax(t)+ Bu(t), x(0)==x,
y(t) = Cx(t) + Du(t)

may be transformed via any square full rank transformation matrix 7" into a
transformed state vector Z(t) such that z(t) = T~ 'z(¢). Substituting x = Tz,

TZ(t) = ATZ(t) + Bu(t), z(0)=T%(0)=Tz, z,=1T 'x,
y(t) = CTx(t) + Du(t)

premultiplying the differential equations, by 7! and solving for z(t) results
in a LTI system with the transformed state vector z(t)

z(t) = T 'ATx(t)+ T 'Bu(t) = Az(t)+ Bu(t), z(0) =2z,
(t) = CTz(t) + Du(t) = Cz(t) + Duf(t)

<

where A =T AT, B=T"'B, and C = CT.
The product C'B is invariant to the coordinate system. In other words,

CB=CTT'B=CB.

And the product C'AB is invariant to the coordinate system. In other words,

CAB=CTT AT T7'B=CAB .

And CA*B (k = 0,1,2,...) is also invariant to the coordinates of the state

vector.
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13 Eigenvalues and Diagonalization

Consider the dynamics matrix A of a linear time invariant, (LTI) system.
If the input, u(t) is zero, then & = Az. Assuming a solution of the form
x(t) = zeM, and substituting this solution into & = Az, results in:

zheM = AzeM
or
A = Ax | (46)

which is a standard eigenvalue problem, in which x is an eigenvector and A
is the corresponding eigenvalue. If A is a n X n matrix, then there are n
(possibly non-unique) eigenvalues A, - -+ , A, and n associated unique eigen-
vectors, Ty, -+, T,. For the dynamics matrix given in equation (9), there are
two eigenvalues.

c c? k
A = ——— 4\ — - — 47
1,2 2m 4dm m ( )

= —Cwn EwyyC?—1 (48)

The dynamics matrix contains all the information required to determine the
natural frequencies and damping ratios of the system.

The n eigenvectors can be assembled, column-by-column into a matrix,

XZ [fl 3_32 an] .
Pre-multiplying the eigen-problem by X!,

A
T UAX = X LKA = diag(\) = | - (49)
A,

This is called a diagonalization of the dynamics matrix A.

Now, consider the linear transformation of coordinates, z(t) = Xq(t),
q(t) = X~'a(t). Substituting this change of coordinates into equation (3),

Xq(t) = AXq(t) + Bu(t),
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and pre-multiplying by X

¢=X"'AXq+ X 'Bu,

or
A1
g = q+X 'Bu, ¢0)=X"z,
An
¢ = Aq+Bu, q(0)=X"z, (50)
= CXq+ Du
y = Cq+ Du (51)

The n differential equations ¢; = \;q; + B;u are uncoupled. The state ¢ (t) is
independent of all the other states g;(¢),j # i. Note that if A is complex, so
are X, A, B, and C.

Consider one of the un-coupled equations from equation (50), for the unforced
case u = 0

Gi(t) = Nigi(?) ¢;(0)=1.
This equation has a solution
qi(t) = e,
where \; is, in general, a complex value,
A\ = 0; £iw;

and g; + ¢; is real-valued.

. 1,, 1,
a(t) + ¢ (t) = EeM + ie%f

1 1
= 5e”it(cos wit +isinw;t) + iea”t(cos wit — isinw;t)

= %" coswt ,
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14 Jordan Forms

If a square matrix A € R™*" has distinct eigenvalues, then it can be reduced
to a diagonal matrix through a similarity transformation

A - 0
X1TAX=A=]|: - : (52)
0 - A\

where X € R™" is the matrix of linearly independent eigenvectors of A.

If A has repeated eigenvalues, the it can be reduced to a diagonal matrix only
if all n eigenvectors are linearly independent.

If A has repeated eigenvalues and two or more of the eigenvectors associated
with the repeated eigenvalues are not linearly independent, then it is not
similar to a diagonal matrix. It is, however, similar to a simpler matrix

called the Jordan form of A,

J oo 0
XtTAX=1]: - (53)
0 JIn
where the square sub-matrices in
(A 1 0 0 0
0O XN 1 0 0
o 0 XN 1 --- 0
Ji=1 L (54)
0 - -+ 0 N 1
0 - e 0 A |

are called Jordan blocks. In a Jordan block, repeated eigenvalues are on the
diagonal and 1’s are just above the diagonal.

Consider an eigenvalue ); of matrix A € R™" with multiplicity k. There
are k eigenvectors, ;, associated with the eigenvalue \;. If all pairs of these
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k eigenvectors are linearly dependent, (there exist real values a; such that
Ty = a;x; 1 =2,...,k), then this set of linearly dependent eigenvectors span
a one-dimensional subspace, and a single Jordan block of dimension k x k£ will
be associated with the eigenvalue A;. On the other hand, if the eigenvalue A,
has b; linearly independent eigenvectors, then there will be b; separate Jordan
blocks associated with \;.

The similarity transformation into Jordan form X ' A X = J may be written
A X = X J, in which the columns of X are [Z; Zo ---Z,]. So

AlTy &g - Tp) = [T1 Tg -+ Tn]J (55)

Writing the columns of X associated with a single Jordan block of \;,

‘N, 1 0 0 - 0]
o XN 1 0 --- 0
o o0 XN 1 --- 0
Alug ug ug «-+ ur] = [ug ug ug -+ uyl L
0 -+ - 0 N 1
0 0 0 )‘i-kxk
[Au1 Aug Aug - -- Auk] = [ul)\z Uy + usA; U + usN; - - uk,1+uk)\i],

and associating columns of the left and right hand side of this equation,
Au1 — U1>\Z’ = [A — )\Zl]ul =0
Aus = u1 + us); & [A — )\ZI]UQ = U
Aus = ug + ug); & [A — /\ZI]Ug = Uy & [A — )\Z‘I]2U3 = U
Auk = U1+ uk)\l ~ [A — /\Zl]uk = Up_1 [A — )\il]k_luk = Ui

The size of the Jordan block is k& X k where uy, is not linearly independent of
ug+1.- An equivalent criterion is

rank[A — N\ I]F = rank[A — N\ I]FFL. (56)

So, to find the vectors of the transformation matrix X in a particular Jordan
block of )\;, start first by finding & such that the above equation is satisfied.
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The next step is to find a vector in the null space of [A — \;I]*. start by
setting u; equal to one of the eigenvectors of \;. Then iterate on
Uy = [A - /\il]_lun_l (57)

until u, and wu,_; are not linearly independent. If there is more than one
Jordan block associated with the repeated eigenvalue J\;, the transformation
vectors associated with the remaining Jordan blocks may be found by restart-
ing the iterations with the other eigenvectors associated with \;.

If A € R"™" and k is the multiplicity of the eigenvalue J);, then the size of
the largest Jordan block of eigenvalue \; is k such that

rank(A — \I)* = rank(A — N1, (58)

For a similar derivation of this see pages 4249 of C-T Chen, Introduction to
Linear Systems Theory, Hold, Rinehart and Winston, 1970.

If A€ R"™™ has the Jordan block form

(A1 0 0 - 0]
0O A 1 0 --- 0
0 0 X 1 0
. L (59)
0 0 A 1
0 0 0 X\
dnXxXn
then
MMt g2 Mt/ g3 M3l L g et /(g — 1) ]
0 eMt Mt gZeMtal L g2 oMt /(g - 2)!
At _ 0 0 eMt teMt ..o 73 eAlt/(n —3)! (60)
O . o . o 0 eAlt t e/\lt
o .- . 0 0 eMit |
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15 Transfer Function and Frequency Response Function

Taking the Laplace transform of equation (3), (and considering the particular
part of the solution, (i.e., ignoring the effects of initial conditions) gives

sx(s) = Ax(s)+ Bu(s) , (61)
y(s) = Cu(s) + Du(s) , (62)
which can be written as y(s) in terms of u(s) as follows,

(
y(s) = H(s) u(s) = [ C[sI — A]""B+ D ] u(s) (63)

This transfer function relates the set of r inputs u to the m outputs y in the
Laplace domain; H(s) € C™*".

Equation (63) may be used to determine the complex-valued frequency re-
sponse function of any dynamic system, by evaluating the transfer function
along the line s = iw.

y(w) = H(w) u(w) = [Cliwl — A]"'B + D] u(w) (64)

Assuming that the inputs u(t) are sinusoidal with frequency w and unit am-
plitude, the magnitude of the frequency response function,

[H(w)| = V[ReH ()] + [mH (w)]?

gives the amplitude of the responses y(t). The phase of H(w),

/H(w) = arctan ('ng EZ;)

gives the phase angle between the input u(¢) and the output y(t). So if
u(t) = cos(wt), then y(t) = |H(w)|cos(wt + ZH(w)). A graph of |H(w)|
and /H(w) is called a Bode plot. In the matlab language, [mag,pha] =
bode(A,B,C,D); generates a Bode plot for a system defined by matrices A,
B, C,and D.

Transfer functions (and frequency response functions) are invariant to co-
ordinate transformation. Any transformed equation of state, A = T 1AT,
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B=T7"1B,C=CT (e.g., equations (50) and (51)), resulting in
y(s) = H(s) u(s) = [C[sI — A] "' B + D] u(s).

If T = X, the eigenvector matrix of A (see equation (49)), then A = A =
diag()\;). Continuing with a realization in modal coordinates, in which B =
X'Band C = CX,

_ 1
- Cl - S*)\l | |

Cm s—Ap,

in which ¢ is the i row of C' and b; is the j™ column of B. Since A is
diagonal, we can express the 7, j element of the transfer function matrix H(s)
as

Hij(s) = Eni

k=1 S — )\k-

-+ Dy (65)
Putting equation (66) over a common denominator, H;;(s) becomes
p
[1(s — =)
Hij(s) = gi"
[1(s =)

=1

(66)

o

where the leading coefficient g;; and the zeros of the numerator z,(fj ) depend
algebraically upon ¢;, l_)j and (A, ..., A,). Now expanding the numerator and
denominator products, H;;(s) may be written in Prony series form,
b () = B0) _ 057 + b5 + 05752 4 - b s 4 ) s o)
t o uj(s) ag]) + CL%ZJ)S + agij)SQ 4+ .4 a/7(17)15n 1 + gn

(i)

where the numerator coefficients b,

depend upon g;; and the zeros z,(jj ),
whereas the denominator coefficients a; depend only upon the eigenvalues
(A1, ...y Ap). For any LTI system, every element of a transfer function matrix
has the same denominator polynomial. Note that p <n, and that D;; # 0 <

p=mn. If and only if D =0 (p < n), the LTI system is called strictly proper.
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16 Singular Value Spectra

In systems with multiple inputs and multiple outputs (MIMO), the strength
of the output depends upon the relative amplitudes and phases of the in-
puts. It is possible that the effect of two non-zero inputs properly scaled in
amplitude and phase, could have a relatively small effect on the responses,
while a different combination if inputs could have a very strong affect on the
system response. Further, for harmonic inputs (and outputs), the scaling and
phasing of the inputs to achieve a strong or weak response is dependent upon
the frequency.

The singular value decomposition of the frequency response function matrix

y(w) - H(w)(mxr) u(w)
Un(w) Bp(w) Vg (w) u(w)

- Zk: ok (W) [upr(w) v (w)] w(w)

= Ekjaﬂk(w)qu(w) (Vi (w) u(w)) (68)

provides the means to assess how inputs can be scaled for maximal or minimal
effect. Here, columns of Uy(w) and Vy(w) are the left and right singular
vectors of H(w). For complex-valued frequency responses, singular vectors
are complex-valued. (The singular values are always real (og1 > oo > ... >
0)). For inputs u(w) proportional to vgi(w), ||y(w)||2 is maximized and is
proportional to ugi(w). If r < m and oy, > 0 then inputs proportional
to Vpg,(w) have the weakest coupling to the outputs. On the other hand,
if » > m there is some linear combination of inputs that (at a particular
frequency w) will result in no output at all. Right singular vectors spanning
this kernel of H(w), [vgm+1)(w) , .. , vge(w)], is an orthogonal basis for

these inputs

Plots of o1 (w) and op,(w) indicate the frequency-dependence of the largest
amplification and the smallest amplification for any linear combination (and
phasing) of inputs, in the context of steady-state harmonic response.
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17 Zeros and Poles of MIMO LTI Systems

In the Laplace domain, the dynamics equation is sz(s) = Az(s) + Bu(s), or

I(S)]:o.

[ sl —A , =B }nx(n—H‘) [U(S)

If there is a value of s such that
rank([sI — A, B]) <n,

then there is a non-zero u(s) for which z(s) can not be uniquely determined
(x(s) could be zero in one or more components).

Similarly, the output response in the Laplace domain is sz(s) = Ax(s), y(s) =
Cx(s), or
0 = Lo
¢ (n+m)xn y(S)

If there is a value of s such that
) “n

I—-A
rank ([ °
then the non-trivial null space of this matrix, x(s), corresponds to y(s) = 0.

C

In other words, there is a subspace of the state-space that does not couple to
the output.

These rank conditions for controllability and observability are called the
Popov-Belevitch-Hautus (PBH) tests. Note that for any s # \; (the eigen-
values of A), rank(s] — A) = n, and that rank(\;/ — A) < n. If the columns
of B do not span the N'(A\;I — A), then u(s) does not couple to the i-th mode
of the system, and \; is an input-decoupling zero. If a system has one or more
input decoupling zeros, then there are inputs that can not affect a subspace
of the state space, and the system is called uncontrollable. Similarly, if the
rows of C' do not span N'(M\I — AT), then y(s) does not couple to the i-th
mode of the system, and \; is an output-decoupling zero. If a system has one
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or more output decoupling zeros, then there are states that do not affect the
output, and the system is called unobservable.

The matrix-valued MIMO transfer function may be represented as a system
of two sets of linear equations in the Laplace domain

x(s) = (sI — A)"'Bu(s)

y(s) = Cx(s)+ Du(s) , (69)

which is equivalent to
[ 0 } | (70)

sl —A =B || z(s)
C D ] | u(s) y(s)
This is called the Rosenbrock System Matrix (RSM) formulation. For a
system with a zero output,
[0] (71)

e e le o] 1)
+ s
C D 0 0 u(s) 0

which is a generalized eigenvalue problem when D is square. Note that in
this eigenvalue problem, the matrix multiplying the eigenvalue s is not in-
vertible, and requires a numerical method such as the QZ decomposition.!
Eigenvectors corresponding to finite values of s satisfying this generalized
eigenvalue problem, define the magnitudes and phases of inputs u(s) (and of
the corresponding states z(s)), such that the output y(s) is zero. In other
words, at values of s for which the rank of the Rosenbrock System Matrix is
less than (n 4+ min(rank B, rank(')), there exists a set of non-zero inputs such
that the output is zero.

Values of s satisfying the generalized eigenvalue problem (71) are called in-

variant zeros.?

Eigenvalues of A that are not also zeros are called poles.

1C.B. Moler and G.W. Stewart, “An Algorithm for Generalized Matrix Eigenvalue Problems,” SIAM J.
Numer. Anal., 10(2) (1973), 241-256
2H.H. Rosenbrock, “The zeros of a system,” Int’l J. Control, 18(2) (1973): 297-299.
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18 Liapunov Stability

Consider autonomous dynamic systems which may be linear © = Ax or non-
linear & = f(x) evolving from an initial condition 2(0) = x,. The equilibrium
solution z.(t) = 0 satisfies the linear system dynamics & = Az, and satisfies
the nonlinear system dynamics & = f(x) if (and only if) f(0) = 0. Going
forward we will suppose that z(t) = 0 is a solution.

18.1 Classifications of the stability of equilibrium solutions x(t) = 0

The equilibrium solution z.(t) = 0 is:

Liapunov Stable (LS) if and only if

Ve>0, 36§>0 suchthat V|z,||<d=|lz(t)||<eVt>0

Globally Semi Stable (GSS) if and only if

Jim x(t) exists V x,

Locally Semi Stable (LSS) if and only if

Je >0 such that V ||z,|| <e = lim z(t) exists
t—00

Asymptotically Stable (AS) if and only if

e > 0 such that V ||z,|| <e = tli)m:c(t)—)O

18.2 Liapunov functions of solutions z(t)

Define a scalar-valued function of the state V(z(t)), V : R* — R, (where

& = f(x)). Then, by the chain rule
V= jtV(x(t)) = Vi(@)a(t) = V'(x(t) f(x(t))

Now, let V(z) >0V z # 0, and V(0) = 0.
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SS AS

Figure 1. Classifications of the stability of equilibrium solutions z¢(t) = 0, (AS) implies (SS) implies
(LS).

o If

V() <0Vx
then the system @ = f(z) is Liapunov Stable (LS).
o If
V(z) <0V xand f(xr) =0 Vo such thatV (z) =0
then the system @ = f(z) is Semi Stable (SS).
Note: In this case V' may be zero even if V # 0.

o If

V(z) <0V xand V(z) — oo as ||z|| = o

then the system & = f(z) is Asymptotically Stable (AS).
Note: In this case V is always negative.

18.3 Stability of Linear Systems

Consider & = Ax with z(0) = x,. The equilibrium solution z.(t) = 0 is:

o Liapunov Stable (LS) if and only if

3 € such that|[e¥|| <€ V>0

o Semi Stable (SS) if and only if

At

lim e exists

t—00

o Asymptotically Stable (AS) if and only if

lim e — 0 as t — oo
t—o0
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18.4 Examples

 (not LS) : rigid body motion

A:[() 1] a1

00 01

] , so |lett]| = oo ast — oo

e (LS) : undamped

A= [—EHQ (1)] , HeAtHF exists (\/2_;_%2_,_%_2)
i (AS) : damped

0 1

A= A0
[—wHQ —QCwn} 0 €

For a general two state system, & = Ax,

The dynamics A are:

o Liapunov Stable (LS) if and only if trace A < 0, det A > 0, and rank A =
rank A2

o Semi Stable (SS) if and only if (trace A <0 and det A > 0) or A =0

o Asymptotically Stable (AS) if and only if trace A < 0, det A > 0.

The stability classifications of general matrix second order systems have been
systematically addressed. > A matrix second order system is

Mi(t) + Cr(t) + Kr(t) = 0

where r e R, M >0, C' >0, and K >0,

3Bernstein, D.S. and Bhat, S.P., Liapunov Stability, Semi Stability, and Asymptotic Stability of Matrix
Second Order Systems,” ASME Journal of Mechanical Design, 117 (1995): 145-153.
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« K >0 = Liapunov Stable (LS)
e C' >0 = Semi Stable (SS)

e K>0and C >0 = Asymptotically Stable (AS)
Furthermore, the system is:

o Liapunov Stable (LS) if and only if: C'+ K > 0

o Semi Stable (SS) if and only if:
rank [C, KM-'C, (KM YC, --- (KM H)"'Cl=n

o Asymptotically Stable (AS) if and only if: K > 0 and the system is (SS).

18.5 Asymptotic Stability of LTI Systems

The dynamics matrix fully specifies the stability properties of LTI systems.
A Liapunov function of the system defined by V(z(t)) = z(¢t)" Px(t) where
P > 0, is an “energy-like function.” For example, for a spring-mass system
with states corresponding to positions p(t), and velocities v(t),

A Liapunov function

Ve = | " ] || = T+ gty

represents the sum of the potential energy and kinetic energy. If the stiff-
ness matrix K and the mass matrix M are both positive definite then P is
also positive definite and V' (¢) > 0 for any non-zero displacements p(t) and
velocities v(t). The rate of change of this Liapunov function is

V(x(t) = 2(t)T Pi(t) + i(t) Pa(t).
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Substituting the free response dynamics, i(t) = Az(t), into V, results in
V(x(t) = 2(t)TATPx(t) + 2(t)"PAx(t) = 2(t) ' [ATP 4+ PAJx(t) .

So if ATP + PA is negative definite, V (z(t)) decreases monotonically, for any
non-zero value of the state vector x(t). The condition 0 > ATP + PA is
equivalent to 0 = ATP + PA + R for a matrix R > 0.

The equation
ATP+PA+R=0

is called a Liapunov equation.

The following statements are equivalent:

A is asymptotically stable

all eigenvalues of A have real parts that are negative

3 R > 0s.t. P> 0 satisfies the Liapunov equation ATP + PA+ R = 0.

3 R > 0 s.t. the integral
P = / ~ AT ReA gt
0
converges and satisfies the Liapunov equation
ATP+PA+R=0.

Proof: Substituting the integral above into the Liapunov equation, and
with the presumption that A is asymptotically stable,

[T AT Rttt [T e ReMAdt+ R = 0
[T AT Rt 4 e R eMAdE+ R = 0
L e Rt dir R = 0

[eATtReAt]ZO +R =0

0-R-0—I-R-I+R = 0
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19 Observability and Controllability

If the solution P to the left Liapunov equation
0=A"P+PA+C'C (72)

is positive definite, then the system defined by A and C' is called observable,
meaning that the initial state can be inferred from the time series of free
responses, y(t) = Cx(t)

The matrix of free output responses from independent initial conditions on
every state, x(0) = I, is Y(t) = Ce?. This matrix of independent free
responses has m rows and n columns. The covariance of YT (¢) is called
observability gramian and solves the left Liapunov equation, above.

P=[TYTR)Y () dt = [~ (eMCT)(CeM) dt (73)

If the solution @) to the right Liapunov equation
0=AQ+ QA" + BB' (74)

is positive definite, then the system defined by A and B is called controllable,
meaning that the controls u acting on the system © = Ax + Bu can return
the system to # = 0 from any initial state 2(0) in finite time.

The matrix of state response sequence from independent impulses on each
input, u(t) = 1,6(t) is X (t) = e B. This matrix of independent state impulse
responses has n rows and r columns. The covariance of X () is called the
controllability gramian. and solves the right Liapunov equation, above.

Q= [ X@W)XT(t)dt= [ (eB)(BTe!) dt (75)

These Liapunov equations and gramians are useful in determining the norm
of LTT systems.
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20 Hj, norms of Continuous-Time LTI systems

Consider a stable (Re(A(A)) < 0), strictly proper (D = 0), MIMO LTI sys-
tem, equivalently described by a state space realization

t(t) = Ax(t) + Bu(t) ,  y(t) = Cx(t)

and its unit impulse response function matrix, H(t) = Ce'B , or its fre-

quency response function matrix, H(w) = C(iwl — A)™'B . The H, norm

defines a scalar measure the of dynamic amplification of the dynamic system®.

There are three ways to view, motivate, define, or interpret the Hs norm.

20.1 The Frobeneus Norm

The Hy norm of a stable, strictly proper MIMO system is defined in terms of
the Frobeneus norm. The Frobeneus norm of a matrix is the square-root of
the sum of the squares of all the terms in the matrix.

nm 1/2
Il = [543
Z?]
= (Al + Al +- o+ AL+
A%,l ‘l‘ A%Q + ct ‘l_ A%m +

ALt ALyt ALY
If a matrix A is real (A € R"*") then the Frobeneus norm of A is
1A]lp = [tr AAT]?
If a matrix A is complex (A € C"*™) then the Frobeneus norm of A is
[[Al[r = [tr AAT]Y
The Frobeneus norm of A is the same as the Frobeneus norm of AT.

[Alle = [|AT]r = [tr AAT)2 = [tr ATAJ/

4The objective function for linear quadratic control synthesis is the Hy norm of the closed-loop system.
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20.2 The H; norm of a system in terms of unit impulse response

The Hy norm of an LTT system is defined in terms of the Frobeneus norm of
its matrix of unit impulse response functions H(t), as the sum of the areas
under all the unit impulse response functions H;;(t)

1= = [T IH @)} dt (76)
= [T [HT()H(t)] dt
= tr [ (BTeACTY(CeM B) dt
= tr B' /OOO(eATtCT)(CeAt) dt B
— tr B'PB (77)
where P is the observability gramian,

.
P = / AT (CeM) dt
20.3 The Hy norm of a system in terms of frequency response

Another interpretation of the Hs norm is in the frequency domain. This
interpretation is an expression of Parseval’s Theorem,

[ENH@IE dt= = [~ [[Hw)]E do (78)
0 21 J—o0

To prove that this identity is true, we first need to know four facts. First we
need to know that if A is asymptotically stable, then

/OO eMdt =—A""
0
Proof:
XAt g a1 [ oA o [ A1 A a-t (s At
/0 et dt=A /o Ae™ dt = A /0 (dte dt =A"¢ }0 =A (tliglo(e )—I)
Second we need to know that the Laplace transform of e’ is (s — A)~!

L{eM) = /OOO eMe ™t dt = /OOO eA=sDt gt = (sT — A)7!
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Third we need to know that the Laplace transform of H(t) is C(sI — A)"'B

L{H()} = L{CeMBY = CL{e"}B=C(s] — A)'B

Fourth, we need to know that if () satisfies 0 = AQ + QA" + BBT, then Q

is given by

for the special case in which A has been diagonalized, and BBT = I,,.

Proof:

_i 0 /. . -1 Ty: . —
Q_QW/—OO(MI A7 BB (iwl — A)™" dw

_ 21 7wl = A) BB (iwl — A)* du
T J—00
1 oo
= 5 [ [(—iwl = A)(iwl = A)] ™ duw
T J—00
1 oo
= 2/ [W?I + AY 7! dw
T J—00
1 oo . 1
1
= —q(=A)""!
5-T(—A)
= _1,4—1
2 Y

and plugging into AQ + QAT + BBT gives,

1 1
A —A_1> (—A‘1>A I =
() o (b aer=o

Now, examining the left hand side of the Parseval equality,

tr [TH@H ()t =tr [~ CeMBBTMCT dt = tr CQCT .

And examining the right hand side of this equality,

itr /_0:0 H(w)H*(w) dw

27

1 0 -1 T —* ~T
St | CwI = A BBT (Wl = A)~*CT dw
1 SIS 1 ppT/: — T
%tr C/_Oo(lw] —A)""BB'(iwl — A) " dw C

tr CQCT
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20.4 The H, norm of a system in terms of unit white noise response

A third interpretation of the Hy norm of an LTI system is the sum of the
variances of system responses y(t) to uncorrelated unit white noise.

t)] (79)
= Jim E or [y(t)y"(8) (= Jinm Elly(t)y" ()]}

= lim E tr [Ca(t )z (t)CT]

= limtr CE [z(t)2" (1)]CT

= lim tr cQ)CT

2 . T
1HI3 = Jim E tr [y ()
(

where Q(t) = E [z(t)z"(t)] is the (non-negative definite) state covariance
matrix. Defining @) to be the limit of )(¢) as ¢t approaches infinity,

1H]]3 = tr CQC" (80)
An r dimensional uncorrelated unit white noise process u(t),

w1 (t)
u(t) = :
Wiy (t)

has scalar components w;(t) having the following properties:

Elwi(t) = 0Vt ... expected value
E [w;(t))w;(ta)] = 6(t1 —t2) V t1,19 ... auto — correlation
E [wi(t)w;(t2)] = 0 V 4,7, t1,t2 and ¢#j ... cross — correlation

These properties, combined, result in facts that
E [u(tl)uT(tg)] = 5(t1 — tg)[r

and that the power spectral density of unit white noise is 1 for all frequencies.
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Now, examining the time-evolution of the state covariance matrix, we will
see that the state covariance is the controllability gramian, in the limit as
t — 00.

Q) = E ()T (0)
= E[2(t)z"(t) +z(t)2"(t)]
E [(Az + Bu)x" (t) + 2(t)(Az 4+ Bu)]
— E[Aza" + 22" A" 4+ E [Buz" + zu"BT]
— AQM)+ QAT +

T t
E |Bu(t) (e :co+/ AW=T) By (7 )dT) + (eAt:L'o—l—/ A=) Bu(T) dr) uTBT]
0

= AQU)+ @()
EB/ BTA(tTdT—I—/ A By(r)u ()dTBT]
= AQ(t) + Q(t)AT
B/ BTA”>dT+/ AT BS(t — 1) dr BT
= AQ(t)+Q(t)AT + ;BBT+ ;BBT
— Q(t)+Q(t)AT+BBT (81)

the solution to this differential equation is
Q( ) _ BAtQ( ATt / ATBBT ATr dr
where the initial state covariance matrix @(0), is

Q(0) = E [(0)"(0))

For asymptotically stable systems, e4! approaches zero as t approaches infin-
ity, and the transient response eAtQ(O)eATt also approaches zero. Hence

lim Q(t) / ATBBTeAT dr

t—00

which is the definition of the controllability gramian. Equivalently, for asymp-
totically stable systems,

lim Q(t) =0 = AQ + QA" + BBT

t—o0

and @ is the controllability gramian.
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Using the property of the Frobeneus norm that ||A|lr = ||AT||r, the two
interpretations of the Hs norm of of an LTI system presented in the preceding
pages (the interpretation in terms of white noise and the interpretation in
terms of unit impulse responses) can be shown to be equivalent.

I|H||3=tr BTPB =tr CQC"

where
0=A"P+PA+C'C and 0=AQ+ QA" +BB'
Proof 1:
1 = [TNHOIE =0 [T(CetB)T(CeVB) di
- B[ T eACTCA 4t B = tr BTPB
=t T eMBB A gt 07 = tr CQCT
Proof 2:

tr(B'PB) = tr(BB'P)
tr((—AQ — QAT)P)
tr(—AQP — QAT P)
tr(—QPA — QAT P)

tr(QCTO)

= tr(CTQO)
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In summary, the Hy norm of a system can be equivalently interpreted as:

o the definite integral (from ¢ = 0 to co) of the sum of the squares of the
unit impulse responses,

o the sum of the areas under the magnitude-squared frequency response
functions, and

« the expected value of the sum of the squares of the outputs responding
to uncorrelated unit white noise.

These norms can be calculated by solving Liapunov equations for the con-
trollability gramian and the observability gramian.

Note, finally, that the Hy norm of a continuous-time LTI system with D # 0
does not exist.

Continuous-time LTT systems with D = 0 are called strictly proper.
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21 Feedback Control for Stabilization

If the inputs u(t) to a dynamic system & = Ax + Bu are linearly related to
the states by a constant full state feedback gain matriz, u(t) = —Kz(t), then
the closed loop system & = (A — BK)x is autonomous. If the the pair (A, B)
is controllable, then a full state feedback gain matrix K may be found that
places the eigenvalues of (A — BK) to any desired values.

22  Feedfoward Control for Tracking

If the inputs u(t) to a stable dynamic system & = Ax 4+ Bu are linearly
related to desired output values r(¢) by a constant and square feedforward
gain matriz, u(t) = Fr(t), then the feedforward dynamics are & = Az + BF'r.
and outputs y(t) = Cz(t) can be made to asymptotically approach r(t) by
setting R =Y (00) = —CA™'BFR from which F' = (-CA™'B)~.

23 Feedback Control for Stabilization and Tracking
If certain outputs y(t) = Cx(t) are to track a set of inputs r(t), the rate of

the integrated tracking error is ¢(t) = y(t) — r(t). Augmenting the system
dynamics with the dynamics of the tracking error,

il loal[a] 5] eme

Setting the controls u to be linear in the states and the tracking error,

BT PRI

the states and the tracking error can be selectively stabilized to zero by

appropriate selection of the feedback gain matrix K as long as the augmented
system is controllable through B. This approach does not require the number
of tracked outputs to equal the number of inputs.
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24 Transforming Continuous Time Systems to Discrete-Time Systems (ZOH)

Consider the evolution of the state response from a time ¢ to a time t 4+ At for
inputs u(7) that equal u(t) for t < 7 < t+At. This is a zero-order hold (ZOH)
on u(t) over the interval [¢t,t + At]. The initial condition to this evolution is
x(t), and we wish to find the states x(t + At). Shifting time to be 0 at time ¢
in equation (35) and defining z(kAt) = x(k), x((k + 1)At) = z(k + 1), and,
u(1) = u(kAt) = u(k). for 0 < 7 < At, gives

a(k+1) = eMg(k)+ / A7) qr Bu(k)
_ [ AAt] .1’( ) { ( AAL I) B] u(k) ’
= [Ad] z(k) + [Bd] u(k) (82)

where Ay and By are the discrete-time dynamics matrix and the discrete-time
input matrix, Aqg = 42" and By = A~ (Aq — I)B.

Note that By exists even though A may not be invertible. Consider the
diagonalization A = X 'AX. The inverse of A may be expressed A~! =
X TA'X, where XX ' = 1. So,

AN eA ) = XTIATLX X (M - DX = XTIAN M - D)X,

which contains diagonal terms (e* —1)/);, and

To compute By without inverting A, note the following:

2 3 4
AM T — AAt+ A—tAA + AgAAA A—tAAAA
2 3 4
AN (A™ 1) = At+ A; A+ At AA+ A—tAAA + -

2 3 4
By= A4 —I)B = AtB + A—tAB - A—tAAB - A—tAAAB

and, if

M:

4o Bor] 3

OT'X’I’L O’I“X’I“
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then,
At? At? At?
eMA — T4 AtM + 7MM + ?MMM + ﬂMMMM + .-
A B A2 [ AA AB A3 [ AAA AAB
= [+ At — + —
0 0 2 0 0 6 0 0
[ LA+ AtA+AEAA ¢ AtB4+ACAB 4+ ACAAB + -
- 0 I, ’
SO
Ay B
MAt d d
€ O Ir,« ] Y ( )

and the discrete-time dynamics matrix Ay and input matrix By may be com-
puted using a single matrix exponential computation.

In MATLAB:

[n,r] = size(B);

M=1[AB ; zeros(r,n+r) 1;
eMdt = expm(M*dt);

Ad = eMdt(1:n,1:n);

Bd = eMdt(1:n,n+1:n+r);

With the matrices Aq and By, the transient response may be computed dig-
itally using equation (82).

x(:,1) = x0;
for p=1:points-1

x(:,pt1l) = Ad * x(:,p) + Bd * u(:,p);
end
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25 Transforming Continuous Time Systems to Discrete-Time Systems (FOH)

Using the same time-shifting as in the previous ZOH derivation, but now
specifying that the input changes linearly over a time increment, At,

1
u(t) = u(k)+E(u(k+l) —u(k)) T =ulk)+u' (k) 7 for 0 <7 < At, (85)
This is a first order hold (FOH) on the inputs over [t,t + At]. Defining
r(kAt) = x(k), u(kAt) = u(k) gives
At
sk +1) = eMa(k) + / AT B () dr

0
= k) + [  ABED 4 B (k) + / N ABED B (k)
= MMa(k)+ A7 (M = 1) Bu(k)+ A7 (e — 1 — AAL) B u/(k)
=[] a(k)+ [A7 (e = 1) B u(k)+ [A72 (e =T — AAt) B] (k)
= [Ag] 2(k) + [Bd] u(k) + [B4] v'(k) (86)
where Ay, By, and B} are the discrete-time dynamics matrix and the discrete-
time input matrices.

The input matrices By and By exist even though A may not be invertible.
To compute By without inverting A, note the following:

At? At At
AM [ AAL+ ;AA + gAAA + QQAAAA e
2 3 4
AN —T) = At+ Azt A+ Ag AA+A22AAA+---
2 3 4
By= A4 —I)'B = AtB + A;AB - A615,4143 - AQfLAAAB o
and,
2 3 4
AT — ANt = A;AA + AgAAA + AZfLAAAA + -
A2 AP Att
A2 T —AANt) = —— 4+ = A+ —AA+ ...
(e t) 5 T 5 + 5 +
2 3 4
B, =A% - T — AAt)B = A;B - AGtAB - A;lAAB 4
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It
Anxn BTLXT OTLXT
M é Orxn Orxr Irxr ) (87)
O?“Xn 07“)(7“ O’I“X?” (n+2r)><(n+27“)
then,

At At? !

A B0 , [ AA AB B , [ AAA AAB AB
At At
= T+AL[0 0 T |+=| 0 0 0+ | 0 0 0 |+
0 0 0 0 0 0 0o 0 0
i+ AA+ A2 AN+ AB+ACAB+ 22 AAB ... ACB AP AR ...
= 0 I, At I,
0 0 I,
80,
A4 By B,
eMA— |0 I, AtI |, (88)
0 O I,

and the discrete-time dynamics matrix Ay and input matrices By and B may
be computed using a single matrix exponential computation.

The discrete-time system with ramp inputs between sample points is then

r(k+1) = Aq x(k) + [Bg — By/(AD)] u(k) + [By/(A)] u(k + 1)
= Ay :L’(k) + Byo u(kz) — By u(k + 1) (89)
y(k) = C x(k)+ D u(k) (90)

In this system, y(k+1) depends on x(k+1), which in turn depends on u(k+1).
So even if D = 0, u(k+1) feeds through to y(k+1). This discrete-time system
can be expressed in a new state, (k) = x(k) — Bqru(k), giving

T(k+1) = Aq z(k)+ Bg u(k)

y(k) = C z(k)+ D u(k) (91)

where By = Bgo + AqBaq1 = By + (Ag — I,)BYy/(At) and D = D + CB}/(At).
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25.1 Examples of numerical integrators

The continuous time integrator from acceleration a(t) to velocity v(t)

v(t) = 0wv(t)+1a(t)
v(t) = 1o(t)+0a(t)

and the corresponding discrete time system (with first-order holds in a(t))

z(k+1) = x(k)+ (At)a(k)
o) = o)+ (5] alh)

is equivalent to

At

v(k+1):z)(/<:)+<2

)m@y+qk+ny

The continuous time double integrator system

dde)] [0 1][d@)] 0

ai | o) ~ oo _mw_+[1]“”
dt)] 1 0][d@)]
o] T Lo 1] e | TOW

and the corresponding discrete time system (with first-order holds in a(t))

Bt I e v B el P
o] = [ V][ [y e

is equivalent to the linear acceleration method

d(k+1) = am+4Aﬂmm+(“§V)@Mm+aw+1»
At

vk+1) = v(k:)—|—<2

)m@y+qk+n)
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26 Discrete-Time Linear Time Invariant Systems

The transformation from continuous-time to discrete-time models provides a

convenient method for digital simulation of transient system responses. In

addition, the dynamics of discrete-time systems may be investigated ana-

lytically. This section summarizes analytical solutions to discrete-time LTI
systems described by

z(k+1) = Axz(k)+ B u(k)

y(k) = Caz(k)+ D u(k)

Discrete-time models imply that the frequencies of harmonic components of

dynamic variables are limited to the Nyquist interval, w € [—n/(At), +7/(At)].

Harmonic components with frequencies outside this range are aliased into the

(92)

Nyquist interval, when they are sampled. Frequency components of analog
signals outside the Nyquist range should be filtered-out with so-called (low-
pass) anti-alias filters prior to sampling.

Hereinafter, the discrete-time dynamics matrix and input matrix are denoted
A and B. Expressions in this section involving the continuous-time dynamics
and input matrices will have a subscript c, as in A, B, and A..

27 Band limited signals and aliasing

The frequencies contained in continuous time signals can be arbitrarily high.

(Electromagnetic waves are in the GHz range.) Frequencies present in discrete
time signals are limited to within the Nyquist frequency range. Consider a
continuous time signal of duration 7" sampled at N points uniformly spaced
at an interval At, T = N(At). The longest period (lowest frequency) fully
contained in a signal of duration 7" has a period of T" and a frequency of
1/T. (The lowest (non-zero) frequency fi contained in a signal of duration
T is 1/T.) This lowest frequency value is the frequency increment Af of the
sampled signal’s discrete Fourier transform. The highest frequency fi.x in
the discrete Fourier transform is (N/2)(Af). So, substituting,
N N1 N 1 1
fmax = -

BN =57 = o nan T aan =N (93)
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The frequency content of discrete time signals are limited to the Nyquist
frequency range, — fx < f < +fn.

In continuous time, unit white noise has a power spectral density of 1 for all
frequencies, and an auto-correlation function of R(7) = &(7). In discrete time,
unit white noise has a power spectral density of 1 over the Nyquist frequency
band, and an auto-correlation function equivalent to the sinc function.

I —fN<f<[x
st = { g e (94
R(T) = W;NT sin (27 fNT) (95)

According to Parseval’s Theorem, the mean square of unit white noise in
discrete time is 02 = 2fx = 2/(2(At)) = 1/(At) and the root mean square of
a unit white noise process is 1/,/(At).

If a continuous time signal is sampled at a sampling rate (1/(At)) which is
lower than twice the highest frequency components present in the continuous
time signal, the sampled signal will appear in the discrete time sequence as
an aliased component, that is, at a frequency less than the Nyquist frequency,
as shown in Figure 2.

time, s

Figure 2. A 1 Hz continuous time sinusoid (blue) sampled at (At) = 0.75 s (red points) appears as
a signal with a three-second period (1/3 Hz) (red line).

A relation between the continuous time frequency and its aliased frequency
may be derived by thinking of a frequency value as the sum of an integer
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component and a fractional component. This derivation makes use of two
trigonometric identities. For an integer n, n € 0,1, 2, ... and a rational number
r,0<r<l,

cos(2m(n + 1) + ¢) = cos(27r + @) (96)

and for any values of 7 and ¢,
cos(2mr + ¢) = cos(—2mr — ¢+ 271) = cos(2n(1 — 1) — @) (97)

With these identities,
y(k) = cos(2m fk(At) + ¢) = cos(2mk((fAL)n + (fAL),) + @) (98)

where (fAt), is an integer and (fAt), is a rational (remainder) between 0
and 1. So,

y(k) = cos(2m fkAt + ¢) = cos(2mk(fAL), + ¢) (99)
= cos(2mk(1 — (fAt),) — ¢) (100)
= cos(2mkf. At — @) (101)

and the frequency of the aliased signal, f, is

[ (ADAY i (FAL, <172
fa_{ (1= (FA,)/(AL) i (fAL), > 1/2 (102)

The power spectral density of an aliased signal S, ( f) is related to its continuous-
time power spectral density S(f) as

S.(f) = S(f) + i S(k/(A) = )+ S(R/(A)+ f)  (103)

where 0 < fAt < 1/2. Figure 3 shows how the power spectral density of an
aliased signal involves an accordion-like wrapping of the frequency compo-
nents outside of the Nyquist frequency range into the Nyquist bandwidth.

Once higher frequency components have been aliased into the Nyquist band,
it is impossible to determine if a peak in the power spectral density has been
aliased from a higher frequency or not. For this reason, signals should be
sampled at a frequency that is ten or more times the highest frequency of
interest, and should be anti-alias filtered at the Nyquist frequency, or at a
frequency slightly lower than the Nyquist frequency. Note that:
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At=05s

f=12Hzf a=OBs
f=1.8Hzf a=02$
f=22Hzf a:ozs

f=2.8Hz, f a=085

sM. s M

Figure 3. The power spectral density of a continuous time signal with a spectral peak at 2.2 Hz
(blue). The signal sampled at At = 0.5 s is aliased to a signal with a spectral peak at 0.2 Hz (red).

o Sampling a continuous time signal without anti-alias filtering, concen-
trates all of the signal energy into the Nyquist frequency range. The
mean square of a signal sampled without filtering equals the mean square
of the continuous time signal.

o The mean square of a sampled low-pass filtered signal is always less than
the mean square of the continuous time signal.

o Anti-alias filtering introduces delays and potentially phase distortion in
the signal. Matched linear-phase anti-alias filters are generally preferred
for this purpose. “Sigma-Delta” analog-to-digital converters inherently
incorporate anti-alias filtering.
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28 State Response Sequence

Applying the dynamics equation of (92) recursively from a known initial state
z(0) and with a known input sequence,

(1) = <>+Bu<>
x(2) = A%x(0) + ABu(0) + Bu(1)
x(3) = A3 (0) + A2Bu(0) + ABu(1) + Bu(2) (104)

z(k) : AFz(0) + A¥1Bu(0) + - - - + ABu(k — 2) + Bu(k — 1)

or, starting at any particular time step, 7 > 0 and advancing by k time steps,

z(j+k) = A’fx(j)+iA“Bu(k+j—z') (105)
y(j+k) = CA*x ()+ZCAZ 'Bu(j +k — i)+ Du(j + k) (106)

The first terms in (105) and (106) are the free state responses of the state
and the output (the homogeneous solution) to the difference equations; the
second terms are the forced responses (the particular solution).

29 Eigenvalues and Diagonalization in Discrete-Time

The discrete-time system may be diagonalized with the eigenvector matrix
of the dynamics matrix.

where A is the diagonal matrix of discrete-time eigenvalues and the eigenvalue
problem is

AX = XA .
Note that the continuous-time dynamics matrix A. and the discrete-time
dynamics matrix A have the same eigenvectors X, and that the eigenvalues
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of the discrete-time dynamics matrix are related to the eigenvalues of the
continuous-time dynamics matrix through the scalar exponential

exp P\czAt] = /\z .

The diagonalized system (in modal coordinates) is

qk+1) = Aq(k) + X 'Bu(k)

y(k) = OX q(k)+ D u(k) (107)

and the modal response sequence from time step j to time step j + k is

q(G + k) = AFq(5) + éAHX‘lB u(j 4k — 1) (108)

The stability of a mode of a discrete-time system is determined from the mag-
nitude of the eigenvalue. Considering the free responses of (107) or (108), if
|Ai| > 1 then ¢;(k) will grow exponentially with k.

0
0

mode ¢ is stable: < |\ <1 < Re(\y) <
mode 7 is unstable: < |\ >1 < Re(\y) >
A system is stable if and only if all of its modes are stable.

Note that the elements of the modal sequence vector ¢(k+j) may be evaluated
individually, since A7 is diagonal. For systems with under-damped dynamics
the continuous-time and discrete-time eigenvalues are complex-valued. The
eigenvalues and modal coordinates appear in complex-conjugate pairs. The
sum of the complex conjugate modal coordinates q(k) + ¢*(k) is real valued
and equals twice the real part of q(k).
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30 Discrete-time convolution and Unit Impulse Response Sequence
(Markov Parameters and Hankel Matrices)

Applying equations (92) and (104) to derive the output sequence y(k) from
z(0) =0and u(k) =0V k <0,

y(0) = Du(0)

(1) C'Bu(0) + Du(1)

(2) = CABu(0)+ CBu(l) + Du(2)

(3) = CA’Bu(0) + CABu(1) + CBu(2) + Du(3) (109)

S S~

y(k) = i CA'B u(k — 1) + Du(k)

1=1

This is a discrete-time convolution, and it may be re-expressed as either

y(k) = z V(i) ulk — i) (110)

or, by substituting kK —7 =j and notingi =0« j=kandi =k & j =0,

k
y(k) = ZOY(k‘ —J) u(j) (111)
j=
where the kernel terms of this convolution are called Markov parameters:
_ 2 k—1
Y = |D, CB, CAB, CA’B, ---, CA B}W(M
Y0) = D, Yi)=CA™'B V i>0, Y(i)cR™" (112)

The first Markov parameter, Y (0), is the feed-through matrix, D. The output
evolving from a zero initial state and a unit impulse input (u(0) = I, u(k) =0
for k # 0) is the sequence of Markov parameters.

The scalar-valued sequence of the (p,q) terms of the sequence of matrix-
valued Markov parameters,

1 1 1
A Ohy s Wl - ¥ @l

is the unit impulse response of element p from a unit impulse on element g.
The unit impulse sequence is [1/(At), 0,---, 0]
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For asymptotically stable (AS) discrete-time LTT systems, free responses de-
cay asymptotically to zero. So, in principle, the sequence of Markov param-
eters is infinitely long. But, note that for x(0) =0 and u(i) =0V i <0,

y(k) = i Y (i) u(k — i) = é) Y (i) ulk — 1) (113)

A forced response sequence evolving from z(0) = 0 with u(i) =0V i < 0, is
linear in the Markov parameters.

y(0) y(1) y(2) ¥B) - yG) |, =
D CB CAB CA’B - CA'B] .
u(0) w(l) wu(2) w(3) - u(j)
u(0) w(l) u@) -+ u(G -
0 ) - ”
O

The forced response sequence of a system evolving from z(0) = 0 with an
(assumed) finite sequence of p + 1 Markov parameters is
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or

[y(p) y(p+1) ylp+2) ylp+3) -

| CAP'B CAP’B ... CA’B CAB
u(0) u(1) u(2) u(3)
u(1) u(2) u(3) u(4)
up—3) up-2) up-1) ulp)
ulp—2) u(p—1) ulp) ulp+1)
up—1)  ulp) ulp+1) ulp+2)
u(p)  ulp+1) ulp+2) ulp+3)

61

¢B D Lnxr(p—i—l) '
u(j)
u(j+1)
u(p+j—3) (115)
u(p+j —2)
u(p+j—1)
up+3) Ly

The matrix built of the input sequence [u(0),--- ,u(p + j)| is called a block

Hankel matriz of the input seqence. The output sequence [y(p), -+ ,y(p+7)]

is a linear combination of the rows of the input sequence Hankel matrix. In

other words, the rows of the Hankel matrix form a linear basis for the output

sequence [y(p), - ,y(p+ Jj)|-

Ly(p) yp+1) yp+2) y(p+3)

Y(3)  |ulp—3) ulp—2) up—1) ulp) - ulp+j—3)]+
V(2 [up—=2) ulp—1) ulp) ulp+1) - ulp+j-—2) |+
V(1)  [ul(p-1) ulp) u(p+1) ulp+2) - up+i—1)]+
Y(0)  [up) wp+1) ulp+2) ulp+3) - ulp+i) ],

Note that in equation (115) the sequence of Markov parameters is given in

reverse order. Given an assumption for the impulse response duration p and

input /output sequences [u(0),- - ,u(p+ j)] and [y(p),---y(p + )], equation
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(115) provides a linear model for the sequence of p + 1 Markov parameters,
Y (i),i=p,---,0. In this estimation problem there are m x (j+ 1) equations
and m X r(p + 1) unknown model coefficients. So the length of the data
sequence, j, should be much larger than the number of inputs r times the
impulse response duration p. The estimation of Markov parameters is a time-
domain approach to Wiener filtering and is the first step in the Eigensystem
Realization Algorithm (ERA) for identification of state-space models.

If we “know” the MIMO system to be strictly proper (D = O,x,) then the
model may be expressed without the feedthrough matrix (Y(0)) by removing
D from the set of Markov parameters and removing the first r rows from the
matrix of input data.
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31 An example of a discrete time system: the running average

Consider a sequence of numbers as the input to a discrete-time LTI system,
u(0), uw(l), w(2), u(3), u(4), ...

A running average of this sequence can be defined as the weighted arithmetic
average of the previous running average, u(k), and the current data value,

u(k +1).
uk+1)=(1—9¢) ulk)+ ¢ u(k+1) (116)
where ¢ is called the forgetting factor and 0 < ¢ < 1.

Working out the sequence of running averages from «(0) = 0, and u(0) = 0:

u(l) = (1—¢)a(0)+ ¢ u(l) = ¢ u(l)
uw?2) = 1—=9¢)u(l)+ou2)=01-9¢)¢ul)+¢u2)
a3) = (L=¢) a2)+ ¢ ud)=(1-9¢)¢u(l)+ (1 - )¢ u(2) + ¢ u(3)

ak) = (1=0)""pul) + (1 =0)" PP u@)+-+ (1 - )¢ ulk — 1)+ u(k)
k—1

u(k) = Z Y(j)u(k—j)  where Y(j)=(1-¢Y¢ V j=0 (117)

The most recent data point u(k) is wighted by Y (0) and the oldest data point
u(1) is weighted by Y (k —1). Since j > 0 and 0 < ¢ < 1:

0 <Y(y) <oVyj>0;

o the weights Y (j) decrease exponentially with j;

o the largest weight, Y'(0) = ¢, is on the most recent data;
o the smallest weight, Y (k), is on the oldest data; and

e as k increases, the running average approaches the true weighted average

lim ZY() 1

k—o00 ; j=

as shown in Figures 4 and 5.
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o
w

o
(V)

weight, Y(j)

o
[ERN

103 10*
index, (j+1)

Figure 4. Weights of a running average for various values of the forgetting factor ¢.

cumulative sum of Y (j)

10° 10t 102 103 10*
index, (j+1)

Figure 5. Cumulative sum of weights of a running average for various values of the forgetting factor

o.
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Note that the running average at the k-th time step, u(k), involves the entire
sequence of inputs, from «(1) and up to and including u(k), but older data
contributes less and less to the running average. As a rule of thumb, the most
recent (5/¢) points of data contribute significantly to the running average.
For example, for ¢ = 0.01, the most recent 500 points of data contribute
significantly to the running average, and for ¢ = 0.1, only the last 50 points
contribute significantly to the running average.

Defining the state to be the running average, z(k) = u(k), the discrete
time LTI system, found by inspection by by comparing the weights in (117),
Y(j) = (1 —¢) ¢, to the Markov parameters in terms of state space matrices
in (112), Y(j) = CA1B, is

A=(1-¢), B=¢, C=(1-9), D=Y(0)=2¢
Figure 6 shows the running averages of a step input (u(0) = 0, u(k) = 1VEk > 0)
and the running averages of sinusoids, u(k) = sin(k/5)+sin(k/50) for 0 < k& < 500.

Note that running averages with larger forgetting factors respond more rapidly
and running averages with smaller forgetting factors are smoother.

A continuous time state-space realization of a running average is

Ac ‘ B.| | «a ‘ 1—9¢
C(c Dc N —w ‘ ¢
Its frequency response function is
—all — b —
H(w) = —oll=9) b= wo—a
iw—« iw—«
with a phase of
aw(l - 9)
O(w) = -\ 7/
@) a? + w?o

for which 6(0) = 0. The time lag at frequency Aw is
0(Aw) ol —9)
Aw a? 4+ (Aw)?¢p
For ¢ = 1/2 and linear phase out to a frequency of fip, @ ~ =27 f|p, giving
a time shift of 7 &~ —1/(67fLp) .

T(Aw) =
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32 Frequency Response in Discrete-Time

Consider the steady-state harmonic response of a discrete-time LTI system
to harmonic inputs. The real-valued harmonic input, state, and output are
represented as the sum of complex conjugates at a single frequency w.

u(t) = u(w)e* + u*(w)e ! (118)
z(t) = z(w)e* + r*(w)e ! (119)
y(t) = yw)e™ +y (w)e ™ (120)

At discrete points in time t; = kAt, the states at ¢, are
x(k + 1) _ x(w)eiw(kJrl)At + x*(w)e—iw(kJrl)At (121)

Substituting equations (118) - (121) into the discrete-time state-space equa-
tions, (92), and recognizing that the complex conjugate parts of the response
(z(w)e“ 8 and x*(w)e “FA!) are linearly independent, we obtain

x(w)eiw(k—&—l)At _ Al‘(w)eiWkAt 4+ Bu(w)eikat (122)
y(w)eikat _ Cl‘(w)eiWkAt + Du(w)eikat (123)

Now, factoring-out the e“*2! from each term,
WA = Az(w) + Bu(w) (124)
y(w) = Cx(w)+ Du(w) (125)

z(w)

Solving for the outputs in terms of the inputs gives the frequency response
function in terms of a state-space LTI model in the discrete-time domain,

y(w) = [ Cle“™T — A]'B+ D ] u(w) (126)
H(z) = ClzI —A"'B+D (127)

where z = €2, Equation (127) is analogous to the transfer function in

terms of continuous-time state-space models, equation (63).
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33 Laplace transform and z-transform

The Laplace transform of a continuous-time function y(t) is given by

y(s) = Lly(0)] = [ y()e ™ dt, s eC (128)

This one-sided Laplace transform applies to causal functions for which
y(t) =0V t<O.

Now, if we sample y(¢) at discrete points in time spaced with interval At,
y(kAt) = y(k) = y(t)o(t — kAt), and take the Laplace transform of the
sampled signal,

y(s) = [ 3 y(t)s(t - kAL e dt . (129)

R

Recall the property of the delta function,

/Ooof(t)5(t_7> dt = f(r) (V7>0), (130)
- Esai - S

A

Defining z = %2, we arrive at the discrete-time version of the Laplace trans-

form ...the z-transform:

vz) = 3 ulk)= = Zly()] (132)

Now, we can apply the z-transform to the discrete-time convolution
y(z) = Z [é Y (i)u(k — 7;)] _ ki':o z_k;; Yk —i)  (133)

If u(k) =0V k <0, then 8 Y(i)u(k — i) = X, Y ()u(k — i) , so
y(z) = Ig o i) Y (i)u(k — i) (134)
= [f Y(z')z—i] [f 7 Dy — i) (135)
C HG) ) (136)
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So, convolution in the discrete-time domain is equivalent to multiplication in
the z-domain, and the frequency-response is related to the Markov parameters
via -
H(z) =Y Y()z" (137)
i=0

The discrete-time state-space equations (92), the sequence of Markov pa-
rameters (112), and the frequency response function (127) are equivalent
descriptions for discrete-time linear time-invariant systems.

Now consider the steady-state response to a sinusoidal input sequence
u(k) = cos(wkAt) = ; (eiwmt + e_i”kN)
y(k) = gY(i)u(k — )
= i)Y(i) cos(w(k —i)At)

_ io: Y(z); (eiw(k:—i)At n e—iw(k—i)At)
i=0

1 . o) _ 1 . 00 _
_ 7€1wk:At Z (i)Z_Z + *G_MkAt Z (Z)ZZ
2 i=0 2 i=0
1. 1 .
_ §elkatH(z) + EG_IWkAtH* (Z)

= |H(2)| cos(wkAt + ¢)

where the frequency-dependent phase angle of the sinusoidal response is given

by

tan ¢(z) = Im(g(z))

Re(H(2))

A graph of |H(w)| and ZH (w) is called a Bode plot.
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Figure 6. Time responses of the running average (k) defined in system (116) to a step input and to a
sinusoidal input. With «(0) = 0 and u(1) to u(500) = 1, the arithmetic average is 500/501 =~ 0.998.
With ¢ = 0.10, the running average at k = 500 has effectively forgotten that «(0) = 0. With
¢ = 0.01, the running average at k = 500 clearly remembers that u(0) = 0. The forgetting factor
¢ and the frequency of sinusoidal components affect the time lag and the attenuation of those
components, as shown in the right figure above and in Figure 7 below.

o 1
So8F
‘06
D
I3 L
g 04
02rF

10 10° 10t
~ 90 T
§ / "
)
(]
S
?
©
s

0

10t 10° 10t

frequency (Hertz)

Figure 7. The Bode plot of the running average system (116) (assuming At = 0.01s) shows how
the frequencies of sinusoidal components of an input time series affect the attenuation and the phase
lag of corresponding components of the output time series. With At = 0.01s, the frequencies of
the components shown in Figure 6 are 0.32 Hz and 3.2 Hz. Compare the magnitude |u(f)| and
phase 6(f) shown above to the amplitude of u(t) and the time delay 7(f) = 6(f)/(27f) shown in
Figure 6.
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34 Liapunov Equations for Discrete-Time Systems

In discrete-time, the free response is
x(k+1)=Ax(k), 2(0)=z,#0 (138)
Defining a Liapunov function as the energy in the system at time k as,
V(k)=2"(k)Pz(k), P >0 (139)

If the energy in free response decays monotonically, that is, if V(k 4+ 1) —
V(k) <0 V z(k) and then the system is asymptotically stable.

Vik+1)-V(k) = 2"(k+1)Px(k+1) — 2" (k)Px(k)

= 2"(k)ATPAz(k) — 2" (k)Px(k)

= 2'(k) [ATPA — P] x(k) (140)
So, [ATPA-P] <0 & V(k+1)—V(k)<0 V z(k), and the system
z(k + 1) = Ax(k) is asymptotically stable (AS) if and only if there exist
positive definite matrices P and Z that solve the left discrete-time Liapunov
equation,

ATPA—P+7Z=0 (141)

The following statements are equivalent:

e A is asymptotically stable
e all eigenvalues \; of A have magnitudes less than 1
e3Z > 0s.t. P> 0is asolution to ATPA—P+27=0

e the series 3¢, A¥TZ A* converges .

The series P = 222, AFTZ A¥ solves ATPA— P+ Z = 0.

P = Z+ATPA
S AT ZAR = 74+ ATS AFTZARA

k=0 k=0
— Z4ATY AT gk
k=1
Z4+ S AT ZzAY = 243 AFTZAF (since A = TI).
k=1 k=1
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35 Controllability of Discrete-Time Systems

A discrete-time system with n states, r inputs, and dynamics matrix A is said
to be controllable by inputs coming through input matrix B if there exists
a sequence of inputs, [u(0),u(1),...,u(n —2),u(n —1),u(n)] that can bring
the equilibrium state x(0) = 0 to any arbitrary state x(n) within n steps.

Let’s consider the sequence of states arising from an input sequence u(k),
..(k=0,...,n—1) starting from an initial state z(0) = 0.
z(1) = Bu(0)
z(2) = Az(l)+ Bu(l) = ABu(0) + Bu(1)
z(3) = Ax(2) + Bu(2) = A*Bu(0) + ABu(1) + Bu(2)

z(n) = AP VBu(0)+ .-+ A2Bu(n — 3) + ABu(n — 2) + Bu(n — 1)

u(n—1)
u(n — 2)
2 (n—2) (n—1) 1 | w(n—3)
z(n) = |B, AB, A’°B, --- , A"?B A" VB] _ (142)
u(1)
| u(0)
Think of this last equation as a simple matrix-vector multiplication.
z(n) = Cyhuy, (143)

The matrix C, has n rows and nr columns and is called the controllability
matrix. The column-vector wu,, is the sequence of inputs, all stacked up on

top of each other, into one long vector.

If the n rows of the controllability matrix C,, are linearly-independent, then
any final state x(n) can be reached through an appropriate selection of the
control input sequence, u,,. If the rank of C, equals n then there is at least
one sequence of inputs u,, that can take the state from x(0) = 0 to any state
x(n) within n steps. So, if rank(C,,) = n then the pair (A, B) is controllable.
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If r > 1 then the system is under-determined and the input sequence u,, to
arrive at state x(n) (in n steps), is computed using the right Moore-Penrose

pseudo inverse, which minimizes ||u,||3.

The covariance of an infinitely long sequence of state responses to independent
impulses (u(0) = I,) is the controllability gramian,
o0
CooCl =Q=> A*BBTAM (144)
k=0
The element Q(; ;) is the covariance of the the inner product of the i-th state
unit impulse responses with the j-th state unit impulse response, with unit
impulses at each input. In other words, if z;,(k) is the response of the i-th
state to a unit impulse at input ¢, then
Quj) = 2 2 Tig(k)zjq(k). (145)
k=0 q=1
The controllability gramian solves the right Liapunov equation

0=AQA" —Q+ BB' (146)

These expressions are analogous to equations (74) and (75) in continuous-
time. The following statements are equivalent:

e The pair (A, B) is controllable.
e The rank of C, is n.
e The rank of Q) is n.

e A matrix () > 0 solves the right Liapunov equation

0=AQAT —Q + BBT

The singular-value decomposition of the controllability matrix equation

z(n) =Y ac; uci (vg; un) (147)

7

shows that the sequence of inputs proportional to ve; couples most strongly
to the states. Input sequences that lie entirely in the kernel of C, have no
effect on the state. Likewise, state vectors proportional to the eigenvector of
() with the largest eigenvalue are most strongly affected by inputs u, And
state vectors proportional to an eigenvector of () with an eigenvalue of zero
(if there is one) can not be attained by the control input Bu(k).
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36 Observability of Discrete-Time Systems

A system with n states, m outputs, and dynamics matrix A is said to be
observable by outputs coming out through output matrix C' if there exists a
sequence of outputs [y(0), y(1), ..., y(n—3), y(n—2), y(n—1)] from which
the initial state 2(0) can be uniquely determined.

Let’s consider the sequence of outputs arising from a sequence of states, in
free response from some initial condition x(0). (The initial condition is not
equal to zero.)

y(0) ¢

y(1) CA

y(2) = CA* | z(0) (148)
| y(n - ] A _

Think of this last equation as a simple matrix-vector multiplication.
Yn = Opz(0) (149)

The matrix O, has nm rows and n columns and is called the observability
matrix. The column-vector y, is the sequence of outputs, all stacked up on
top of each other, into a long vector.

If the n columns of the observability matrix, O,,, are linearly-independent,
then any initial state x(0) can be determined from the associated sequence
of n free-responses. If O, has rank n then the set of all vectors y, can be
transformed into a set of vectors x( that fill an n-dimensional vector space,
via the matrix inverse (or pseudo-inverse) of O,.
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If m > 1 then the matrix equation is over determined, and the initial state
x(0) associated with the free response outputs ¥, is computed with the left
Moore-Penrose pseudo inverse, which minimizes ||y, — O,z(0)][3.

The covariance of an infinitely long sequence of output responses to n inde-
pendent unity initial conditions (z(0) = I,,) is the observability gramian,

Olo,=pP=3 ATCcTCAF (150)

k=0
The element P(i,j) is the covariance of the inner product of the two free
output responses one evolving from z;(0) = 1 and the other from z;(0) =1
(with 2;(0) = 0,Vk # 4,7). In other words, if y,;(k) is the free response of
the p-th output to the initial state x;(0) = 1, z;(0) = 0,V ¢ # j, then
Fligy = 22 2 ypi(k)yp; (k). (151)
k=0p=1

The observability gramian solves the left Liapunov equation

0=ATPA-P+C'C (152)

These expressions are analogous to equations (72) and (73) in continuous-
time. The following statements are equivalent:

e The pair (A, C) is observable.
e The rank of O is n.
e The rank of P is n.

e A matrix P > 0 solves the left Liapunov equation
0=ATPA-P+C'C

The singular-value decomposition of the observability matrix equation

y(n) = ooi uo;i (v; ©(0)) (153)

shows that an initial state x(0) proportional to vo; couples most strongly to
the outputs. Initial states that lie entirely in the kernel of O, (if it exists)
have no output through y = Cz. Likewise, initial states proportional to the
eigenvector of P with the largest associated eigenvalue contribute most to the
output covariance. And initial states proportional to an eigenvector of P with
an eigenvalue of zero (if there are any) do not affect the output covariance.
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37 H, norms of discrete-time LTI systems

The H; norm of asymptotically-stable discrete-time models with D = 0 is
expressed in terms of the controllability gramian and observability gramian
satisfying the right and left discrete-time Liapunov equations (146) and (152)
and equations (77) and (80).

Because the frequency content of signals in discrete-time is limited to the
Nyquist interval, the Hy norm in terms of the frequency response of discrete-

time systems involves integration around the unit circle, ||z|| =1
g L gim WANT 77 iwAt
|H||5 = o | tr [H(e“)"H(e“*)] dw (154)

where H(e“?") = H(z) as defined for discrete-time systems in equation (127).

In terms of unit impulse responses (Markov parameters), the Hy norm of a
discrete time system is

1H]]; = kZO 1Y (k)7 (155)
where Y (0) = D and Y (k) = CA* 1B for k > 0.

Note that in continuous-time systems, lim,_,[H (w)] = D. Referring to the
frequency-domain interpretation of the Hs norm, equation (78), we see that
for systems with D # 0, the integral of ||H (w)||r over —oco < w < oo is not
finite, and so the Hy norm can not be defined in this case. In the time domain,
the unit impulse u;(t) = I.6(t) has responses H(t) = CeA'B + D§(t). In this
case the integral of ||H (t)||r over 0 < t < oo involves the integral of §%(t),
which is not finite, and so the H norm can not be defined in this case either.
The facts that Hs norms of exactly proper continuous-time systems are not
finite, and that they are for discrete-time systems is a consequence of the
facts that Dirac delta is defined only in terms of convolution integrals, and
that u(0) = 1 in discrete time is a perfectly reasonable statement. A low-pass
filtered Dirac-delta is a sinc function, which is square integrable. So, a norm-
equivalency of discrete-time systems derived from continuous-time systems
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necessarily implies that continuous-time inputs have no power outside of the
Nyquist interval.
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38 .m-functions

abcddim.m http://www.duke.edu/~hpgavin/abcddim.m

7

function [n, r, m] = abcddim (A, B, C, D)
% Usage: [n, 7, m] = abcddim (A, B, C, D)
%
% Check for compatibility of the dimensions of the matrices
% the linear system (A, B, C, D).
%
% Returns n = number of system states ,
% r = number of system inputs,
% m = number of system outputs.
%
% Returns m = r =m = —1 if the system is not compatible.
% A.S. Hodel <scotte@eng.auburn.edu>

if (nargin = 4)

error (’usage: abcddim (A, B, C, D)’);

end

n=-1; r = -1; m = -1;

[an, am] = size(A);

if (an "= am), error (’abcddim: A is not square’); end

[bn, br] = size(B);
if (bn ~“= an)

error (sprintf(’abcddim: A and B are not compatible, A
end
[cm, cn] = size(C);
if (cn "= an)

error (sprintf(’abcddim: A and C are not compatible, A
end
[dm, dr] = size(D);
if (cm ~= dm)

error (sprintf(’abcddim: C and D are not compatible, C
end
if (br ~= dr)

error (sprintf(’abcddim: B and D are not compatible, B
end
n = an;
r = br;

= cm;
%

defining

: (%dx%d) B

: (%hdx%d) C

: (%dx%d) D

: (%dx%d) D

:(%dx%d)’,am,an,bn,br))

:(%dx%d)’,am,an,cm,cn))

:(%dx%d)’ ,cm,cn,dm,dr))

: (%dx%d)’ ,bn,br ,dm,dr))

abcddim.m
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Isym.m http://www.duke.edu/~hpgavin/lsym.m

© 00 N O U e W N

U Ol Ot Ot Ot Ol O OT OU s R R s R s s R s W W W W W W W W W W NN NNNNNNNN R R e e
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ot

©

function y = 1lsym(A,B,C,D,u,t,x0, ntrp)
% vy =lsym (A, B, C, D, u, t, z0, ntrp )
% transient response of a continuous—time linear system to arbitrary inputs.

% dz/dt = Az + Bu

% y = Cz + Du

%

% A dynamics matrizc (n by n)
% B input matrizc (n by r)
% o} output matrizc (m by n)
% D feedthrough matriz (m by 1)
% U matriz of sampled inputs (r by p)
% t vector of wuniformly spaced points in time (1 by p)
% z0 : vector of states at the first point in time (n by 1)
% ntrp ‘zoh’ zero order hold, ’foh’ first order hold (default)
% y : matriz of the system outputs (m by p)
if (nargin < 8) , ntrp = ’foh’; end

[n,r,m] = abcddim(A,B,C,D); % matriz dimensions and compatability check
points = size(u,2); % number of data points

dt = t(2) - t(1); % uniform time—step wvalue

% continuous—time to discrte—time conversion

if strcmp(lower (ntrp),’zoh’) % zero—order hold on inputs
M = [ A B ; zeros(r,n+r) ];
else % first —order hold on inputs
M = [ A B zeros(n,r) ; zeros(r,n+r) eye(r) ; zeros(r,n+2*r) ];
end
eMdt = expm(Mx*dt); % matriz exponential
Ad = eMdt(1:n,1:n); % discrete—time dynamics matric
Bd = eMdt(1:n,n+l:n+r); % discrete—time input matriz
if strcmp(lower(ntrp),’zoh’)
Bd0O = Bd;
Bdli = zeros(n,r);
else
Bd_ = eMdt(il:n,n+r+1:n+2%r); % discrete—time input matriz
BdO = Bd - Bd_ / dt; % discrete—time input matriz for time p
Bdli = Bd_ / dt; % discrete—time input matriz for time p+1
end
% B and D for discrete time system
% Bd_bar = Bd0 + Ad+Bd1;
% D_bar =D + CxBdl;
% Markov parameters for the discrete time system with ZOH
% Y0 = D_bar
% Y1 = C % Bd_bar
% Y2 = C x Ad * Bd_bar
% Y3 = C x Ad"2 % Bd_bar

% initial conditions are zero unless specified
if ( nargin < 7 )
x0 = zeros(n,1); % initial conditions are zero

end

y = zeros(m,points); % memory allocation for the output
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dlsym.m http://www.duke.edu/~hpgavin/dlsym.m

function y = dlsym(A,B,C,D,u,t,x0)
% y = dlsym (A,B,C,D,u,t,z0)
% simulates the response of a discrete—time linear system to arbitrary inputs

%

% z(k+1) = A z(k) + B u(k)

% y(k) =Cz(k) + D u(k)

%

% A n by n dynamics matrizc

% B n by m input matriz

% C I by n output matriz

% D I by m feedthrough matriz

% U I by p matriz of sampled inputs

% t 1 by p wector of uniformly spaced points in time, not used
% z0 n by 1 wector of initial states, defaults to zero
% y m by p matriz of the system outputs

%

[n,m,1] = abcddim(A,B,C,D);
points = size(u,2); % number of data points

%if ( margin < 6 )
% t = [1:points];

Y%end
if ( nargin == 7 )
x = x0; % initial conditions for the state
else
x = zeros(n,1); % initial conditions are zero
end
y = NaN(1,points); % memory allocation for the output

y(:,1) = C * x + D * u(:,1);
for p = 2:points
y(:,p) = C * x + D * u(:,p);
x = A *x + B x u(:,p);

if (any(abs(x) > 1e2)), break; end

end

end % dlsym .m
% 2021—07—19 ...

% replaced ... x =A* x + B * u(:,p);

% ... with ... z=Ax*az + B * u(:,p—1);

% 20253—10—01

% ... switch order of dynamics and output eqn calc ’s
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damp.m http://www.duke.edu/~hpgavin/damp.m

© W N O Uk W N
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ot

©

function [wn,z] = damp(a,delta_t)

% [wn,z] = damp(A, delta_t)

% DAMP Natural frequency and damping factor for continuous or discrete systems.
%

% damp(A) displays a table of the natural frequencies and

% damping ratios for the continuous—time dynamics matric.

% damp (A, delta_-t) displays a table of the natural frequencies

% damping ratios for the discrete—time dynamics matriz.

% with a sample time step of delta_t

% [wn,z] = damp(A) or [wn,z] = damp(A, delta_t) returns the vectors
% wn and z of the mnatural frequencies and damping ratios, without
% displaying the table of values.

% The variable A can be in one of several formats:

% (1) If A is square, it is assumed to be the state—space dynamics matrizc.

% (2) If A is a row wector, it is assumed to be a wvector of the
% polynomial coefficients from a transfer function.

% (8) If A is a column vector, it is assumed to contain root locations.

[m,n] = size(a);
if (n<1 || m<1), wn=0; z=0; return; end
if (m == n)
r = eig(a);
elseif (m == 1)
r = (roots(a));
elseif (n == 1)
r = a;
else
error (’The variable A must be a vector or a square matrix.’);
end
if ( nargin == 2 ), r = log(r)/delta_t; end % discrete time system

for k = 1:n

wn(k) = abs(r(k));
z (k) = - (real(r(k)) - 2*xeps) / (wn(k) + 2xeps);
end
[wns,idx] = sort(abs(wn)); % sort by increasing natural frequency
wn = wn(idx);
= z(idx);
= r(idx);

wd = wn .* sqrt( abs ( z.72 - 1) );

if nargout == % Display results on the screen.
fprintf(’> \n’);
fprintf(’ Natural Damped \n’);
fprintf(’ Frequency Frequency Eigenvalue \n’);
fprintf(’ (cyc/sec) Damping (cyc/sec) real imag \n’);
fprintf(> - ----------"--"-"-""-"-"-"""""""""— - \n’);

@®®® H.P. Gavin May 14, 2025



http://www.duke.edu/~hpgavin/damp.m
http://creativecommons.org/licenses/by-nc-nd/4.0/

60
61
62
63
64
65
66
67

© 0 N O U A W N

R R A A R R N W W W W W W W W W NNNDNNNNDNNRBE R 2 B B B o2 o
N O O W N E O O 00O U W N HE O YN U R WNHE O YW oUW N = O

Linear Time Invariant Dynamical Systems 81

for idx = 1:1:n
fprintf(’ %10.5f %10.5f %10.5f %10.5f %10.5f \n’, wn(idx)/(2*xpi) , z(idx), wd
end

return % Suppress output
end

% DAMP

mimoBode.m http://www.duke.edu/~hpgavin/mimoBode.m

function [mag,pha,G] = mimoBode(A,B,C,D,w,dt,figno,ax,leg,tol)
[mag, pha ,G] = mimoBode(A,B,C,D,w, dt, figno ,az,leg, tol)

plots the magnitude and phase of the

steady—state harmonic reponse of a MIMO linear dynamic system.

S

)

where :

A,B,C,D are the standard state—space matrices of a dynamic system

w is a vector of frequencies (default: w = logspace(—2,2,200)*2xpi
dt is the sample period (default: dt = [] for continuous time)

ar is either x,y,n, or b to indidate wich ax should be log—scaled

z, y, neither, or both. The default is both. The y—axis for the phase plot
is always linearly—scaled.

mag and pha are the magnitude and phase of the frequency response fctn matric
mag and pha have dimension ( length(w) z m z r )

N N N X RN KNNKN KKK

xR

Henrit Gavin, Dept. Civil Engineering, Duke University, henri.gavin@duke.edu

s

% Krajnik, Eduard, ’A simple and reliable phase unwrapping algorithm ,
% http://www. mathnet. or. kr/mathnet/paper_file/Czech/Eduard/phase.ps

if (nargin < 10) tol = 1le-18; end % default rcond level

if (nargin < 9) leg = []; end

if (nargin < 8) ax = ’n’; end % default plot formatting

if (nargin < 7) figno = 100; end % default plot formatting

if (nargin < 6) dt = []; end % default to continuous time

if (nargin < 5) w = logspace(-2,2,200)*2xpi; end % default frequency azis
[n,r,m] = abcddim(A,B,C,D); % check for compatibile dimensions

nw = length(w);

lw = 3; % line width

Fwarning off
In = eye(n);

% continuous time or discrete time

if (length(dt) == 0) sz = 1li*w; else sz = exp(li*w*xdt); end

G = zeros(nw,m,r); % allocate memory for the frequency response function, g
mag = NaN(nw,m,r);

pha = NaN(nw,m,r);

for ii=1:nw % compute the frequency response function, G
% G(ii,:,:) =C % ((sz(ii)xeye(n)—A) \ B) + D; % (sI-A) is ill —conditioned

[u,s,v] = svd( sz(ii)*eye(n) - A ); % SVD of (sI-A)
idx = max( find ( diag(s) > s(1,1)*tol ) );
char_eq_inv = v(:,1:idx) * inv(s(1l:idx,1:idx)) * u(:,1:idx)’;
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G
end

mag
pha
pha
pha
pha

if
w
m

P
end

if

CEE 629. — System ldentification — Duke University — Spring 2019 — H.P. Gavin

(ii,:,:) = C * char_eq_inv * B + D;
= abs(G);
1 = atan2(imag(G(1,:,:)),real(G(1,:,:)));
(1,:,:) = phail;
1 = repmat( phal, [nw-1,1,1] );
(2:nw,:,:) = phal + cumtrapz(angle(G(2:nw,:,:)./G(l:nw-1,:,:)));
length (dt) == 1 % remove out—of—Nyquest range values in DT systems
_out = find(w>pi/dt); % frequencies outside of the Nyquist range

ag(w_out) = NalN;
ha(w_out) = NalN;

(figno > 0) % PLOTS

figure (figno);
clf
for k=1:r

subplot (2,r,k)
if (ax == ’x7)
semilogx (w/2/pi, mag(:,:,k), ’LineWidth’, 1lw); % plot the magnitude Tesp
elseif (ax == ’y’)
semilogy (w/2/pi, mag(:,:,k), ’LineWidth’, 1lw); % plot the magnitude resp
elseif (ax == ’n?’)

plot(w/2/pi, mag(:,:,k), ’LineWidth’, 1lw ); % plot the magnitude resp
else

loglog(w/2/pi, mag(:,:,k), ’LineWidth’,lw ); % plot the magnitude resp
end

if (nargin > 8), legend(leg); end

axis ([ min(w)/2/pi , max(w)/2/pi , min(min(min(mag))) , 1.2*max(max(max(mag))) 1);

if x == 1, ylabel(’magnitude’); end
grid on
pil80_w = w’; % lag in seconds
pil80_w = pi/180; % phase in degrees

pha = pha./pil80_w;
subplot (2,r,k+r)

if (ax == ’n’ || ax == ’y’)
plot (w/(2xpi), pha(:,:,k), ’LineWidth’, 1w ) % plot the phase
else

semilogx (w/(2*pi), pha(:,:,k), ’LineWidth’, 1w ); % plot the phase
end

% if (nargin > 9), legend(leg); end
pha_min = floor (min(min(min(pha))/90))*90;
pha_max = ceil (max(max(max(pha))/90))*90;
set (gca, ’ytick’, [pha_min : 90 : pha_max ])
axis ([ min(w)/2/pi max(w)/2/pi pha_min pha_max ]);
xlabel (’frequency (Hertz)?’)
if k == 1, ylabel(’phase (degrees)’); end
grid on
end
end
% MIMOBODE
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dliap.m http://www.duke.edu/~hpgavin/dliap.m

function P = dliap(A,X)

% function P = dliap (A,X)

% Solves the Liapunov equation A’*PxA — P + X = 0 for P by transforming
% the A & X matrices to complexr Schur form, computes the solution of

% the resulting triangular system, and transforms this solution back.
% A and X are square matrices.

% http://www. mathworks.com/matlabcentral/newsreader/view_thread /16018
% From: daly32569@my—deja.com

% Date: 12 Apr, 2000 28:02:27

% Downloaded: 2015—08—04

% Transform the matriz A to complex Schur form

%A=U=xTxx U ... T is upper—triangular, UsU =1
[U,T] = schur(complex(A)); % force complex schur form since A is often real
% Now ... P — (UsT’+U’)*Px(UxT+xU’) = X ... which means

% U’ xPxU — (T’%U’)«Px(UxT) = U +XxU
% Let Q = U'xP+U yields, Q — T'+Q+xT = U'xX+«U = Y

% Solve for Q = U’sPxU by transforming X to Y = U’'xXxU
% Therefore, solve: Q — T+Q+xT’ =Y ... for Q

% Save memory by using “P” for Q.

dim = size(A,1);

Y = U’ % X % U3

TL = T;
T2 = T7;
P =1Y; % Initialize P ... that is, initialize Q
for col = dim:-1:1,
for row = dim:-1:1,
P(row,col) = P(row,col) + Ti(row,row+1:dim)*(P(row+1:dim,col+1:dim)*T2(col+1:dim,col));
P(row,col) = P(row,col) + Ti(row,row)*(P(row,col+1:dim)*T2(col+1:dim,col));
P(row,col) = P(row,col) + T2(col,col)*(T1(row,row+1:dim)*P(row+1:dim,col));
P(row,col) = P(row,col) / (1 - Ti(row,row)*T2(col,col));
end
end

% UxP+U’ — UxT1+PxT1’xU" — X

% Convert Q to P by P = U’xQxU.

P = UxP*U’;

% A¥P+A’ — P + X % check that this is zero, or close to it.
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function zz = invzero(A,B,C,D,tol)
zeros = invzero (A,B,C,D, tol)

invartant and decoupling zeros
the condition for an invariant zero is
rank deficient. For zeros that are not poles
invariant zeros, z, make H(z) rank—deficient.
method: use QZ decomposition to find the general eigenvalues of the
Rosenbrock system matriz, padded with zero or randn to make it
tol tolerance wvalue for rank determination, default = le—4

of a continuous—time LTI system

(i.

N XN XN KXN K

[nn,rr ,mm] = abcddim(A,B,C,D);

if nargin < 5, tol = 1le-6; end

square .

that the pencil [ zI-A, —B; C D | s
e., for minimal realizaitons)

% make the system square by padding with zeros or randn, as needed (cluge?)
re = mm-rr;
me = rr-mm;
rm = max(mm,rr);
zi = [1;

for iter = 1:4

Bx = B; Cx = C; Dx = D;
if iter == 1 % zero padding for decoupling zeros
if mm > rr, Bx = [ B , zeros(nn,re) ]; Dx = [ D , zeros(mm,re) 1];
if mm < rr, Cx = [ C ; zeros(me,nn) ]; Dx = [ D ; zeros(me,rr) 1J;
else % randn padding for invariant zeros
if mm > rr, Bx = [ B , randn(nn,re) ]; Dx = [ D , randn(mm,re) 1];
if mm < rr, Cx = [ C ; randn(me,nn) ]; Dx = [ D ; randn(me,rr) ];
end
abcd = [ -A , -Bx ; Cx , Dx 1; % Rosenbrock System Matriz
ii = [ eye(nn) , zeros(nn,rm) ; zeros(rm,nn+rm) J;
zz = -eig ( abecd , ii, ’qz’ );
zz = zz(isfinite(zz));
if iter == 1
zl = zz;
else
zi = [ zi , zz 1;
end
end
zz = [ z1 ; intersecttol(zi, tol) 1];
idxR = find (abs(imag(zz)) < 1e-10 ); zz(idxR) = real(zz(idxR)); % real
idxC = find (abs(imag(zz)) > 1le-10 ); % complex zeros
zz = [ zz(idxR) ; zz(idxC) ; conj(zz(idxC)) 1]; % complex conj pairs
nz = length(zz);

% Are both the pencil of the Rosenbrock System Matriz _and_
% the transfer function matric rank deficient??
% confirm that all

the zeros are invariant zeros

nrcABCD = min(size ([A B;C D]));
min_mr = min(size(D));
pp = eig(A);

end
end

end
end

ZEeros
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good_zero_index = [];
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39 Numerical Example 1: a spring-mass-damper oscillator

For the single degree of freedom oscillator of Section 2, let’s say m = 2 ton,
¢ =14 N/mm/s, k = 6.8 N/mm, d, = 5.5 mm and v, = 2.1 mm/s. Note
that these units are consistent. (1 N)=(1 kg)(1 m/s?*)=(1 ton)(1 mm/s?)

For these values, the linear time invariant system description of equations (9)

and (10) become

0 1

.

H) = 34 o7
68 1.4

t pr—

v =1 54 o7

] [0 ] 5.5
x(t) + 05 u(t), x(0)= { 51 ] (156)
o]
05 u(t) (157)

1. What are the natural frequencies and damping ratios of this system?

>A=[01; -3.4-0.7]

A = 0.00000 1.00000
-3.40000 -0.70000

>> eig(A)

ans = -0.3500 + 1.81041i
-0.3500 - 1.81041i

>> wn = abs(eig(A))
wn = 1.8439
1.8439
>> z = -real(eig(A)) ./ wn
z = 0.18981
0.18981

>> wd = imag(eig(A))

wd = 1.8104
-1.8104

YA

b

YA

b

YA

the dynamics matrix

eigenvalues of the dynamics matrix

absolute values of the eig’s of A are omega_n

ratio of real eig(A) to omega_n is damping ratio

imaginary parts of the eig’s of A are omega_d
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So, the natural frequency is 1.84 rad /s (the same as \/k/m), the damping
ratios is 19% (the same as ¢/v/4mk), and the damped natural frequency

is 1.81 rad/s (the same as wy/|(? — 1]).

These calculations can be done in one step with the m-file damp.m

>> damp(A)
Natural Damped
Frequency Frequency Eigenvalue
(cyc/sec) Damping (cyc/sec) real imag
0.29347 0.18981 0.28813 -0.35000 1.81039
0.29347 0.18981 0.28813 -0.35000 -1.81039

2. What is the discrete-time system realization for At = 0.01 s?

>> dt = 0.01; % time step, s
>> Ad = expm(A*dt); Bd = A\(Ad-eye(2))*B; % continuous-to-discrete-time
Ad = 0.9998304  0.0099645
-0.0338794  0.9928552
Bd = 2.4941e-05
4.9823e-03
>> damp(Ad,dt) % check the dynamics of discrete-time system
Natural Damped
Frequency Frequency Eigenvalue
(cyc/sec) Damping (cyc/sec) real imag
0.29347 0.18981 0.28813 -0.35000 1.81039
0.29347 0.18981 0.28813 -0.35000 -1.81039

The following analyses are carried out for the continuous-time system
model and can also be equivalently carried out for the discrete-time
system model.

@®®G H.P. Gavin May 14, 2025


http://creativecommons.org/licenses/by-nc-nd/4.0/

88 CEE 629. — System Identification — Duke University — Spring 2019 — H.P. Gavin

3. What is the free response of this system to the specified initial conditions

To?!

>> dt = 0.01; % time step value, sec

>> n = 1000; % number of time steps

>> t = [0:n-1]*dt; % time values, starting at t=0
>> xo0 = [ 5.5 ; 2.1]; % initial state (mm, mm/s)

> C=[06.81.4; -3.4-0.71]; % output matrix

>> y = zeros(2,n); % initialize outputs

>> for k=1:n
y(:,k) = Cxexpm(A*xt(k))*x0;
end
>> plot(t,y)
>> legend(’foundation force, N’, ’mass acceleration, mm/s"2’)
>> xlabel(’time, s’)
>> ylabel(’outputs, y_1 and y_27)

The free response is plotted in figure 8.

—_— foundation force, N
40 — mass acceleration, mm/s

30

outputs, y; and y,
-t N
o o

o

-10

time, s

Figure 8. Free response of the linear time invariant system given in equations (156) and (157).
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4. What is the response of this system to a unit impulse, u(t) = 6(¢)?

>>
>>
>>

>>
>>
>>
>>

B
h
for

end

[0; 0.51;
zeros(2,n) ;
k=1:n
h(:,k) = Cxexpm(Axt(k))*B;

plot(t,h)
legend(’foundation force, N’, ’mass acceleration, mm/s"2’)
xlabel (’time, s’)

ylabel(’unit impulse responses, h_1(t) and y_2(t)’)

% input matrix

% initialize unit impulse responses

The unit impulse response is plotted in figure 9. Note that at h(0) = C'B,
which is not necessarily zero.

unit impuse responses, hy(t) and hy(t)

1.5 |

foundation force, N |
mass acceleration, mm/s

time, s

Figure 9. Unit impulse response of the linear time invariant system given in equations (156) and

(157).
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5. What is the response of this system to external forcing u(t) = 50 cos(7t)?

>D=[0; 0.57; % feedthrough matrix
>> u = 50 * cos(pix*t); % external forcing
>> y = lsym(A,B,C,D,u,t,x0); % use the "lsym" command

>> plot(t,y)

>>  legend(’foundation force, N’, ’mass acceleration, mm/s"2’)
>>  xlabel(’time, s’)

>>  ylabel(’forced harmonic responses, y_1(t) and y_2(t)’)

The forced harmonic response is plotted in figure 10.

input forcing

time, s

responses, y,(t) and y,(t)

60 F —_— foundation force, N
-80 . ] — . mass acceleration, mm/s
0 2 4 6 8 10
time, s

Figure 10. Forced response of the linear time invariant system given in equations (156) and (157).

@®®G H.P. Gavin May 14, 2025


http://creativecommons.org/licenses/by-nc-nd/4.0/

Linear

6.

Time Invariant Dynamical Systems 91

What is the frequency response function from u(t) to y(t) for this sys-
tem?

>> w = 2xpixlogspace(-1,0,100); % frequency axis data
>> bode(A,B,C,D,1,w);

The magnitude and phase of the steady-state forced harmonic response is
plotted in figure 11. Note how the magnitude and phase of the frequency
response shown in figure 11 can be used to predict the steady state
response of the system to a forcing of u = 10cos(nt). (The forcing
frequency is 0.5 Hertz).

magnitude

phase (degrees)

-180

10°
frequency (Hertz)

Figure 11. Frequency response of the linear time invariant system given in equations (156) and

(157).

This

The Laplace-domain transfer functions of the system are plotted in figure
12.

is a fairly simple example. Nevertheless, by simply changing the def-

initions of the system matrices, A, B, C', and D, and of the input forcing
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6 —_—
5 - y
4 -
D
< 3 -
T
2 —
1 —
08 ~
0.7
20

Figure 12. Laplace-domain transfer function of the linear time invariant system given in equations
(156) and (157). Poles are marked with "x” on the Laplace plane (s = ¢ + iw). The frequency
response is shown as the red curve along the iw axis, at ¢ = 0. The real parts of the poles are all

negative, meaning that the system is asymptotically stable.
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u(t), any linear time invariant system may be analyzed using the same sets
of matlab commands.
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40 Numerical Example 2: Butterworth Filters

The low-pass Butterworth filter of order n with cutoff frequency w. is defined
by its transfer function magnitude

_ b
T 1+ (sfwe)n

The n poles of H(s), at s = pi, (k= 1,2,...,n) are the n stable poles of the
2n roots of 1+ (pr/we)*" = 0. Rearranging the characteristic equation,

Pk _ (_1)1/(2”) , ke{l,2,....n} st. Re(px) <0

We

The 2n roots of (—1) are found from (exp(if))** = —1, which gives
exp(2nify) =—-1 and  2n6; € {m,3m,5m,...,(4n — )7} +qm .

where ¢ is an integer. Solving for 6y,

2k — 1 q

The n stable poles correspond to g = n.

e = we [exp(2n i Hk)]l/@n)
1 2k — 1
PE = We €XP [iw (2—|— 5 )1 , ke{l,2,...,n} (158)

The characteristic equation 1 + (s/w.)?" (of order 2n) may be approximated
as an n-th order polynomial ag + ais + ... + a,_15" ' + 5", that contains only
the stable complex roots of 1+ (s/w.)*". At s =0, H(s) = by/ag. So setting
by = ag provides unity gain at s = 0. These coefficient values can be used in
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a companion matrix realization of a low-pass Butterworth filter.

x| 0 1 0o - 0 J[az] [O]
P 0 0 r .- 0 T2 0
a : = : : T T3 |+ | |u
Tp—1 0 0 0 1 0
Ty | | —ay —a1 —az -+ —Qup1 | | Tp| | 1]
(159)
]
)

yz[aoo---OO T3

L Tn |

in which the coefficients ay, ..., a,—1 are computed from the stable poles,
P1, - Pn-

The transfer function of the corresponding high-pass filter enforces H(s) — 0

as s — 0 by placing n zeros at s = 0.
STL
H(S) - 2 n—1 n’
ap + a1S + ass° + ... + ap_18 + s

from which a companion matrix realization of a high-pass Butterworth filter

is found to be

Ty | 0 1 o --- 0 |[x1] [O]
g To 0 0 | 0 To 0
ar : = E : : T3 |+ |1 |u
Tp—1 0 0 0 1 0
Ty ] | —ay —a1 —az - —Qp-1 | | Tpn| | 1]
(160)
T
)
y = | —a —ay —ay -+ —ap || w3 |+ [1u
L Tn
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in which the coefficients ay, ..., a,—1 are found from the same set of stable
poles, p1, ..., pn, as used in the low pass filter. These continuous time real-
izations may be transformed to discrete time realizations with a first order
hold. A state space implementation of Butterworth filters that incorporate
the matrix exponential are significantly more stable than those based on the
(approximate) bi-linear transformation.
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