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a b s t r a c t

In this paper, we revisit the problem of identifying multi-input/multi-output linear-time-invariant
discrete-time systems from measured power spectrum data on uniform grids of frequencies studied by
Van Overschee, De Moor, Dehandschutter, and Swevers (1997). We show that the algorithm proposed
by these authors is not consistent. Then, we propose an interpolatory identification algorithm which
is strongly consistent when the corruptions in the spectrum measurements have a bounded covariance
function. The performance of the proposed algorithm is demonstrated in a simulation example.
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1. Introduction

Identification of multi-input/multi-output systems from mea-
sured power spectrum is a problem arising in many applications.
For example, in vehicle dynamics linear shape filters are designed
to model stochastic road disturbances experienced by a vehi-
cle moving forward (Türkay & Akçay, 2005). In active vibration
suppression, the spectral factor of the disturbance source plays an
important role in designing optimal feedback controller (Fraanje,
Verhaegen, Doelman, & Berkhoff, 2004).

Thus there is a need for algorithms to estimate minimum-
phase spectral factors directly on the basis of power spectrum
data in time or frequency domains. To tackle this problem,
frequency-domain subspace identification algorithms were
proposed in Akçay and Türkay (2004), Hinnen, Verhaegen, and
Doelman (2005) and Van Overschee et al. (1997). When the mea-
surements are noise-free, the algorithm in Van Overschee et al.
(1997) yields the unknownminimum-phase spectral factor exactly
from finite amounts of data. A key issue in Hinnen et al. (2005)
was to ensure positivity of the estimated spectrumwhen recorded
data are finite and corrupted by noise and unmodelled dynam-
ics. In Akçay and Türkay (2004), a subspace algorithm which uses
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power spectrum measurements with non-uniformly spaced fre-
quencies was developed. This algorithm is strongly consistent if the
noise process has bounded moments of order four and its covari-
ance function is known a priori.

A parametric or model-based approach to fitting a linear
discrete-time power spectrum to givenmeasured power spectrum
samples uses a non-linear least-squares criterion, which is
optimized by an iterative non-linear search in the parameter space.
Discussion of parametric as well as non-parametric methods,
which mostly use time-domain data, can be found in Kay (1988).
Drawbacks of this approach are convergence problems and
difficulty of parameterizing multi-input/multi-output systems.

This paper studies the consistency problem for the identifica-
tion algorithm proposed in Van Overschee et al. (1997). Although
power spectrum estimates delivered by this algorithm are exact on
finite noise-free data sets, they are not consistent when the mea-
surements are corrupted by random noise as demonstrated in this
paper. However, we will show that a modified form of this algo-
rithm is strongly consistent when the noise covariance function is
bounded.

The paper is organized as follows. In Section 2, we formulate
the identification problem. In Section 3, we present our subspace-
based algorithm and show that this algorithm is not only strongly
consistent, but also recovers finite-dimensional rational spectra
given finite amounts of noise-free data. In Section 4, the properties
of the proposed algorithmand the algorithm inVanOverschee et al.
(1997) are studied by means of a numerical example. In particular,
failure of the identification algorithm presented in Van Overschee
et al. (1997) is demonstrated. Section 5 concludes the paper.
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1.1. Notation

We end this introduction with some remarks on notation. The
letters R and C denote the fields of real and complex numbers,
respectively. Let In denote the n by n identity matrix. The k by l
matrix of zeros is denoted by 0k×l. Let XT , X , XH , ReX , ImX denote
respectively the transpose, the complex conjugate, the complex
conjugate transpose, the real and the imaginary parts of a given
complex matrix X . Let X ⊗ Y denote the Kronecker product of two
given matrices X ∈ Cm×n and Y ∈ Cp×q defined as

X ⊗ Y =

X11Y · · · X1nY
...

. . .
...

Xm1Y · · · XmnY

 ∈ Cmp×nq.

The Moore–Penrose pseudo inverse of a given full-column rank
matrix X is denoted by XĎ

= (XTX)−1XT . Let ‖X‖F = [trace
(XHX)]

1
2 denote the Frobenius normof a givenmatrixX . For a given

complex measurable matrix G(z) on the unit circle, its L∞ norm is
defined by

‖G‖∞ = ess sup{σmax(G(z)) : |z| = 1}

where σmax denotes the largest singular value. Let E(x) denote the
expected value of a given random variable x. Let δkl denote the
Kronecker delta, i.e., δkl = 1 if k = l and 0 otherwise.

2. Problem formulation

Consider a multi-input/multi-output, linear-time-invariant,
square, discrete-time system represented by the state–space
equations:

x[t + 1] = Ax[t] + Bu[t],
y[t] = Cx[t] + Du[t]

(1)

where x[t] ∈ Rn is the state, u[t] ∈ Rm, and y[t] ∈ Rm are
respectively the input and the output of the system. The transfer
function of the system in Eq. (1) denoted by G(z) is calculated as

G(z) = D + C(zIn − A)−1B. (2)

We summarize the requirements on G(z) in the following:

Assumption 2.1. The system in Eq. (1) is stable and strictly
minimum phase: all eigenvalues of A and A − BD−1C lie strictly
inside the unit circle. The pairs {A, B} and {C, A} are controllable
and observable, respectively. All eigenvalues of A are nonzero and
distinct.

Thus, the system represented by Eq. (1) is a minimal stochastic
system. The assumption that all eigenvalues of A are nonzero and
distinct is technical andwas alsomade in Akçay and Türkay (2004)
and Van Overschee et al. (1997). The algorithms in this paper
and Akçay and Türkay (2004), Van Overschee et al. (1997) retrieve
A in Eq. (1) in the Jordan canonical form. See, Lemma 4 in Akçay
and Türkay (2004). This choice imposes certain block structures
on the estimated matrices. All such representations are internal
and yield the same spectrum estimate when the data are noise-
free. See, Lemma 5 in Akçay and Türkay (2004) and the preceding
calculations. Lemma 5 and these calculations make use of the fact
that matrices in Jordan canonical form with the same block sizes
and types commute with respect to matrix multiplication and are
also closed with respect to transposing and inversion operations.
This fact was established in Akçay and Türkay (2004) for the
distinct eigenvalues case, i.e., Lemma 4 in Akçay and Türkay (2004).

It is possible to extend Lemma 4 to more general situations
than the distinct eigenvalues case. But, this is unnecessary since
the Jordan canonical form is not numerically stable and a slight
perturbation of Awill lead to distinct eigenvalues if A has repeated
eigenvalues. Thus, small perturbations in A will lead to small
perturbations in the estimated spectrum. When the data sets
are finite and corrupted by unmodelled dynamics, the structural
relations mentioned above are likely to be destroyed and it will be
necessary to introduce a selection criterion. This problem is further
discussed in Hinnen et al. (2005) where robust procedures are
introduced. The consistency properties, however, do not change
since they are asymptotic in nature. See, Theorem 7 in Akçay and
Türkay (2004).

In this paper and Akçay and Türkay (2004), Hinnen et al. (2005)
and Van Overschee et al. (1997) it is assumed that G(z) is square.
There are situations in which the number of noise inputs is smaller
than the number of output channels. This subject warrants further
work.

Assuming that u[t] is zero-mean unity variance white-noise
process, the power spectrum associated with Eq. (1) denoted by
S(z) is defined as

S(z) = G(z)GT (z−1). (3)
The system in Eq. (1) is called the innovation form, unity
variance, minimum phase spectral factor associated with the
power spectrum S(z).

From Eq. (3) and Assumption 2.1, note that

S(eiθ ) > 0, forall θ. (4)
This is the positive realness condition, and it imposes a constraint
on the given spectrum samples Sk, i.e., Sk > 0 for each k, as well
as on the identified power spectrum denoted by SN(z). Several
procedures to ensure the positivity of the estimated spectrum are
outlined in the works Hinnen et al. (2005) and Van Overschee
et al. (1997). Again, this problem is not pertinent to our consis-
tency analysis. The measurement noise assumption is rephrased
from McKelvey, Akçay, and Ljung (1996) and Van Overschee et al.
(1997) as follows:

Assumption 2.2. The noise sequence s̃k corrupting the spectrum
samples is a zero-mean complex white-noise process with a
covariance function satisfying

E
[
Re s̃k
Im s̃k

]
[Re s̃Tl Im s̃Tl ] =

Rk

2
0

0
Rk

2

 δkl (5)

and

sup
k

‖Rk‖∞ < ∞. (6)

The problem studied in this paper is stated as follows:
Given: M +1 noisy samples Sk ∈ Cm×m of the power spectrum S(z)
evaluated at M + 1 equidistantly spaced frequencies in the unit
circle:

Sk = S(ei
π(k−1)

M ) + s̃k, k = 1, . . . ,M + 1, (7)
where s̃k is a zero-mean complex white-noise process with a
covariance function satisfying Eqs. (5) and (6) and the minimum
phase spectral factor of S(z) satisfies Assumption 2.1,
Find: a quadruplet (A,B,C,D) such that the estimated power
spectrumSM(z) =G(z)GT (z−1) (8)
is strongly consistent, i.e.,

lim
M→∞

‖SM − S‖∞ = 0, w.p.1 (9)

whereG(z) =C(zIn −A)−1B +D. (10)
We also require the algorithm to produce the true model if the
noise is zero given a finite amount of data M , i.e., there exists an
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M0 < ∞ such that

‖SM − S‖∞ = 0, for allM ≥ M0. (11)

An identification algorithm which satisfies Eq. (11) when noise is
zero is called interpolatory. In this paper, we present an algorithm
with the properties in Eqs. (9) and (11).

3. Subspace identification algorithm

As in Akçay and Türkay (2004), Hinnen et al. (2005) and Van
Overschee et al. (1997),we begin by splitting S(z) into the so-called
spectral summands as follows

S(z) = E + C(zIn − A)−1F + F T (z−1In − AT )−1CT

with E = CPCT
+DDT and F = APCT

+BDT where P is the solution
of the discrete-time Lyapunov equation P = APAT

+ BBT . Thus, the
problem of identifying a spectral factor from spectrum samples is
reduced to identifying the spectral summands.

Next, since S(z) has a real-valued impulse response, its
restriction to [0, π] can be extended to [π, 2π ] from

S(z−1) = SH(z), |z| = 1.

Hence, we let N = 2M and ωk =
2π(k−1)

N , zk = eiωk for k =

1, . . . ,N . Let p and r be two fixed positive integers satisfying the
inequalities p > 2n, r ≤ p, and p + r ≤ N .

Let

Fr =
1

√
N

 1 · · · 1
...

. . .
...

zN · · · zrN

⊗ Im,

Ωp(ωk) =


1 · · · zp−1

k

T
,

Gp =
1

√
N


Ωp(ω1) ⊗ S1 · · · Ωp(ωN) ⊗ SN


,

Np =
1

√
N


Ωp(ω1) ⊗ s̃1 · · · Ωp(ωN) ⊗ s̃N


,

Op =

 C F T (AT )p−1

...
...

CAp−1 F T

 .

The following formula is obtained from the derivations in Akçay
(2010) by straightforward modificationsGpFr = OpDN,p,r∆r + NpFr (12)

where

∆r =

[
F · · · Ar−1F

(AT )r−1CT
· · · CT

]
,

DN,p,r =

[
IN 0
0 (AT )N−p−rIT

N

]
,

IN = (In − AN)−1.

In the derivation of this formula, Lemma 5.1 in Akçay (2010) or
equivalently Theorem 1 in Van Overschee et al. (1997) was used.

The following (incorrect) formulaGpFr = OpDp,r∆r + NpFr (13)

where

Dp,r =

[
IN 0
0 IT

N

]
was derived in Van Overschee et al. (1997). See, Eq. (5) in Van
Overschee et al. (1997). Eq. (13) captures the so-called main
theorem in Van Overschee et al. (1997), i.e., Theorem 2. It differs
from Eq. (12) by the factor (AT )N−p−r in the right-bottom block of
DN,p,r . The discrepancy between Eqs. (12) and (13) stems from an
error in the derivation of Eq. (13) in Van Overschee et al. (1997).
See, Eq. (B.1) in Van Overschee et al. (1997).

If p ≥ 2n and r ≥ 2n, then Op and ∆r both have rank 2n.
Consequently,OpDN,p,r∆r has rank 2n if and only ifDN,p,r has rank
2n. The latter matrix has rank 2n since it is block diagonal and all
the eigenvalues of A lie inside the unit circle. This fact can be used
to extract the observability range space of a realization of S(z) from
the singular-value decomposition (SVD) ofGpFr (Akçay & Türkay,
2004; Van Overschee et al., 1997).

For fixed p and r and as N → ∞, (AT )N−p−r tends to zero
geometrically fast and Eq. (12) satisfies

(Gp − Np)Fr →

 C
...

CAp−1

 [F · · · Ar−1F ]. (14)

The right-hand side of Eq. (14) has rank n. This means that the
subspace algorithm in Van Overschee et al. (1997) is not strongly
consistent. This conclusion is reached by noting the facts that
the convergence rate in Eq. (14) is geometric in N , Theorem 2
in Van Overschee et al. (1997) assesses a constant rank of 2n to
the left-hand side of Eq. (14), and the consistency analysis in Van
Overschee et al. (1997) relies upon the latter rank being 2n. The
error in Eq. (B.1) does not destroy the interpolation property of
the algorithm in Van Overschee et al. (1997) since the error term
is trapped into a similarity transformation. If N − p − r remains
bounded for all N , the algorithm in Van Overschee et al. (1997)
is still interpolatory. But, consistency can be achieved only if the
noise covariance information is available (Akçay & Türkay, 2004;
McKelvey et al., 1996).

The convergence in Eq. (14) was also noted in Hinnen et al.
(2005) where it was suggested that the left-hand side could be
utilized to extract some initial estimates of A and C to be used in
iterations for searching optimal values of A and C while ensuring
positivity of the estimated spectrum.

A legitimate question is whether it is possible to derive a sub-
space algorithm which is both interpolatory and strongly consis-
tent. The algorithms in Hinnen et al. (2005) and Van Overschee
et al. (1997) have precisely either one of these properties. The an-
swer is surprisingly simple as we will see next.

A dual factorization formula to Eq. (12) is obtained from the
derivations in Akçay (2010) by straightforward modifications as

Ψp(Gp − N p)FrΨr = Op

[
AN−p−rIN 0

0 IT
N

]
∆r (15)

where

Gp =
1

√
N

[Ωp(ω1) ⊗ S1 · · · Ωp(ωN) ⊗ SN ],

N p =
1

√
N

[Ωp(ω1) ⊗ s̃1 · · · Ωp(ωN) ⊗ s̃N ],

Ψk =

 0 · · · Im
...

. . .
...

Im · · · 0

 ∈ Rkm×km.

Now, let

Y = GpFr + ΨpGpFrΨr . (16)

Then, from Eqs. (12), (15) and (16)

Y = OpEN,p,r∆r + NpFr + ΨpN pFrΨr (17)
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where

EN,p,r =


I2n +

[
A 0
0 AT

]N−p−r


Dp,r . (18)

Since the eigenvalues of A are inside the unit circle, EN,p,r is always
nonsingular. Hence, the range spaces of Op and Y are equal when
the data are noise-free. Moreover, in this case Y → Op∆r as
N → ∞.

It is easy to show (Akçay, 2010) that the entries of Y satisfy

Ykl = ŝk+l−1 + ŝN−p−r+k+l−1 (19)

for 1 ≤ k ≤ p and 1 ≤ l ≤ r where ŝk is the N-point inverse
discrete Fourier transform of Sk:

ŝk =
1
N

N−1−
j=0

ei
2π
N jkSj. (20)

Eq. (17) with the left-hand side computed from Eq. (19) is the basic
relation which our subspace identification algorithm relies upon.
In the sequel, we will present a strongly consistent identification
algorithm. It should be noted that the parameters p and r can be
chosen freely subject to the inequalities p > 2n, r ≥ 2n, p+ r ≤ N .
In particular, Y does not have to be block square matrix as claimed
in Hinnen et al. (2005). Combining Eq. (17) with the stages of the
identification algorithm developed in Akçay and Türkay (2004) we
propose:

Algorithm 1. (1) Given the spectrum samples Sk, expand the
data according to SM+k = SM−k+2, k = 2, . . . ,M to obtain
signals of lengths N = 2M .

(2) Fix p and r as p > 2n, r ≥ 2n, and p + r ≤ N and for
1 ≤ k < p + r and N − p − r < k < N , compute the Fourier
coefficients in Eq. (20).

(3) Calculate the SVD of Y in Eq. (19)

Y = [U2n U ′

n]

[
Σ2n 0
0 Σ ′

n

] [
V2n
V ′

n

]
(21)

where Σ2n contains the 2n largest singular values.
(4) Determine the system order n by inspecting the singular

values.
(5) With U2n defined by Eq. (21) and Ju and Jd by

Ju = [0(p−1)m×m I(p−1)m],

Jd = [I(p−1)m 0(p−1)m×m],

calculateA = (JdU2n)
ĎJuU2n.

(6) PutA into the following Jordan canonical form:

A = [Πc Πac]

[
Σc 0
0 Σac

]
[Πc Πac]

−1

where the eigenvalues of Σc lie inside the unit circle.
(7) LetA = Σc,C = JfU2nΠc where Jf = [Im 0m×(p−1)].
(8) ForE andF , solve the least-squares problem

minE,F
M+1−
k=1

‖χ(zk)F +F Tχ T (z−1
k ) +E − Sk‖2

F

whereχ(z) =C(zIn − Σc)
−1.

(9) Solve the Riccati equation forP:P = APAT
+ (F −APCT )(E −CPCT )−1

× (F −APCT )T

and calculateB andD fromB = (F −APCT )(E −CPCT )−
1
2 ,D = (E −CPCT )

1
2 .

(10) CalculateG(z) andSM(z) from Eqs. (10) and (8).
Table 1
The 4th and the 5th largest singular values ofG9F8 on noise-free data sets.

M σ4 σ5

16 2.363 1.76 × 10−1

32 3.445 2.17 × 10−2

64 3.155 1.03 × 10−3

128 3.146 3.13 × 10−6

256 3.146 2.42 × 10−11

512 3.146 6.53 × 10−16

The main result of this paper is the following:

Theorem 1. Suppose that Assumption 2.1 holds. Then, Algorithm 1 is
interpolatory. If, in addition Assumption 2.2 holds, then Algorithm 1 is
strongly consistent.

Proof. We already established that the range space ofY equals the
range space of Op when the spectrum samples are noise-free. But,
the range space of Y equals to the column space of U2n. Moreover,
Steps (4)–(10) of Algorithm 1 coincide with the same steps of
the subspace algorithm in Akçay and Türkay (2004). When the
spectrum samples are noise-free, the solution of the least-squares
problem in Step (8) does not depend on the distribution of the
frequencies as long as they are distinct. The first part then follows
from the fact that the subspace algorithm in Akçay and Türkay
(2004) is interpolatory. The proof of the secondpart is similar to the
consistency proof inMcKelvey et al. (1996), hence it is omitted. �

4. Illustrative example

In this section, we use a simulation example to illustrate the
failure of the subspace algorithm in Van Overschee et al. (1997)
and the properties of the identification algorithm proposed in this
paper. Let the true system G(z) be a fourth-order system described
by the state–space model (Akçay & Türkay, 2004; McKelvey et al.,
1996):

A =

 0.8876 0.4494 0 0
−0.4494 0.7978 0 0

0 0 −0.6129 0.0645
0 0 −6.4516 −0.7419

 ,

B = [0.2247 0.8989 0.0323 0.1290]T ,
C = [0.4719 0.1124 9.6774 1.6129],
D = 0.9626.

Consider first the noise-free data case, i.e., assume that s̃k = 0 for
all k in Eq. (7). With p and r fixed as p = 9 and r = 8, the fourth
and the fifth largest singular values of GpFr are displayed versus
M in Table 1. From the table, we infer that the convergence in
Eq. (14) takes place very rapidly as expected, and the algorithm
in Van Overschee et al. (1997) is not consistent.

Now, assume that the noise in Eq. (7) are given as

s̃k = ε
0.2z2k − 0.0904zk + 0.1839
z2k − 1.1111zk + 0.8520

νk

where νk, k = 1, . . . ,M + 1 are zero-mean, unit-variance, inde-
pendent, and identically distributed complex normal random vari-
ables. The consistency properties of Algorithm1were examined by
performingMonte Carlo simulationswhere the quality of themod-
els was assessed by computing the (measured) L2 and L∞ norms of
the estimation errors defined by

‖SM − S‖m,2 =


1

M + 1

M+1−
k=1

|SM(zk) − S(zk)|2
 1

2

‖SM − S‖m,∞ = max
1≤k≤M+1

|SM(zk) − S(zk)|,
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Table 2
The average values of ‖SM − S‖m,2 and ‖SM − S‖m,∞ fromMonte Carlo simulations
over 100 noise realizations with p = r = 50, ε = 10−3 and using Algorithm 1.

M ‖SM − S‖m,2 ‖SM−S‖m,∞

1,000 1.55 × 10−4 8.18× 10−4

2,000 4.79 × 10−5 2.53× 10−4

4,000 3.11 × 10−5 1.70× 10−4

8,000 1.87 × 10−5 1.02× 10−4

16,000 1.37 × 10−5 7.50× 10−5

32,000 9.47 × 10−6 5.16× 10−5

and averaging them over 100 noise realizations. From Table 2,
consistency of Algorithm 1 is evident.

Next, on the same data sets used by Algorithm 1 to form Table 2
we tried the identification algorithm proposed in Van Overschee
et al. (1997) with p = r = 50 and ε = 10−9. In all cases tried,
the latter algorithm failed without returning spectral factors. The
failures occurred in Step (6) of Algorithm 1. This step is also part
of the algorithm in Van Overschee et al. (1997). Such failures have
never been observedwith Algorithm1whenM is sufficiently large,
say larger than or equal to 8000.

5. Conclusion

In this paper, we revisited the identification problem studied
in Van Overschee et al. (1997) and demonstrated that the
algorithmpresented there lacks consistency. Then,we proposed an
interpolatory identification algorithmwhich is strongly consistent
under the same noise assumptions in Van Overschee et al. (1997).
The performance of the proposed algorithm was demonstrated in
a simulation example.
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