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1. Introduction

Identification of multi-input/multi-output systems from mea-
sured power spectrum is a problem arising in many applications.
For example, in vehicle dynamics linear shape filters are designed
to model stochastic road disturbances experienced by a vehi-
cle moving forward (Tiirkay & Akcay, 2005). In active vibration
suppression, the spectral factor of the disturbance source plays an
important role in designing optimal feedback controller (Fraanje,
Verhaegen, Doelman, & Berkhoff, 2004).

Thus there is a need for algorithms to estimate minimum-
phase spectral factors directly on the basis of power spectrum
data in time or frequency domains. To tackle this problem,
frequency-domain subspace identification algorithms were
proposed in Akcay and Tiirkay (2004), Hinnen, Verhaegen, and
Doelman (2005) and Van Overschee et al. (1997). When the mea-
surements are noise-free, the algorithm in Van Overschee et al.
(1997)yields the unknown minimum-phase spectral factor exactly
from finite amounts of data. A key issue in Hinnen et al. (2005)
was to ensure positivity of the estimated spectrum when recorded
data are finite and corrupted by noise and unmodelled dynam-
ics. In Akcay and Tiirkay (2004), a subspace algorithm which uses
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power spectrum measurements with non-uniformly spaced fre-
quencies was developed. This algorithm is strongly consistent if the
noise process has bounded moments of order four and its covari-
ance function is known a priori.

A parametric or model-based approach to fitting a linear
discrete-time power spectrum to given measured power spectrum
samples uses a non-linear least-squares criterion, which is
optimized by an iterative non-linear search in the parameter space.
Discussion of parametric as well as non-parametric methods,
which mostly use time-domain data, can be found in Kay (1988).
Drawbacks of this approach are convergence problems and
difficulty of parameterizing multi-input/multi-output systems.

This paper studies the consistency problem for the identifica-
tion algorithm proposed in Van Overschee et al. (1997). Although
power spectrum estimates delivered by this algorithm are exact on
finite noise-free data sets, they are not consistent when the mea-
surements are corrupted by random noise as demonstrated in this
paper. However, we will show that a modified form of this algo-
rithm is strongly consistent when the noise covariance function is
bounded.

The paper is organized as follows. In Section 2, we formulate
the identification problem. In Section 3, we present our subspace-
based algorithm and show that this algorithm is not only strongly
consistent, but also recovers finite-dimensional rational spectra
given finite amounts of noise-free data. In Section 4, the properties
of the proposed algorithm and the algorithm in Van Overschee et al.
(1997) are studied by means of a numerical example. In particular,
failure of the identification algorithm presented in Van Overschee
et al. (1997) is demonstrated. Section 5 concludes the paper.
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1.1. Notation

We end this introduction with some remarks on notation. The
letters R and C denote the fields of real and complex numbers,
respectively. Let I, denote the n by n identity matrix. The k by [
matrix of zeros is denoted by Oy, Let X7, X, XH, ReX, ImX denote
respectively the transpose, the complex conjugate, the complex
conjugate transpose, the real and the imaginary parts of a given
complex matrix X. Let X ® Y denote the Kronecker product of two
given matrices X € C"™*" and Y € CP*7 defined as

XY XY
X ® y = . .
Xmly anY

The Moore-Penrose pseudo inverse of a given full-column rank
matrix X is denoted by X = (XTX)7!'XT. Let |X||f = [trace
xHx )]% denote the Frobenius norm of a given matrix X. For a given
complex measurable matrix G(z) on the unit circle, its Lo, norm is
defined by

IGllo = esssup{omax(G(2)) : |z] = 1}

€ CmPx,

where o, denotes the largest singular value. Let E(x) denote the
expected value of a given random variable x. Let §;; denote the
Kronecker delta, i.e., §;; = 1if k = [ and O otherwise.

2. Problem formulation

Consider a multi-input/multi-output, linear-time-invariant,
square, discrete-time system represented by the state-space
equations:

x[t + 1] = Ax[t] + Bult],
y[t] = Cx[t] + Dult]

where x[t] € R" is the state, u[t] € R™, and y[t] € R™ are
respectively the input and the output of the system. The transfer
function of the system in Eq. (1) denoted by G(z) is calculated as

G(z) =D+ C(zd, —A)'B. (2)
We summarize the requirements on G(z) in the following:

(1)

Assumption 2.1. The system in Eq. (1) is stable and strictly
minimum phase: all eigenvalues of A and A — BD~IC lie strictly
inside the unit circle. The pairs {A, B} and {C, A} are controllable
and observable, respectively. All eigenvalues of A are nonzero and
distinct.

Thus, the system represented by Eq. (1) is a minimal stochastic
system. The assumption that all eigenvalues of A are nonzero and
distinct is technical and was also made in Ak¢ay and Tiirkay (2004)
and Van Overschee et al. (1997). The algorithms in this paper
and Akcay and Tiirkay (2004), Van Overschee et al. (1997) retrieve
A in Eq. (1) in the Jordan canonical form. See, Lemma 4 in Akcay
and Tiirkay (2004). This choice imposes certain block structures
on the estimated matrices. All such representations are internal
and yield the same spectrum estimate when the data are noise-
free. See, Lemma 5 in Akcay and Tiirkay (2004) and the preceding
calculations. Lemma 5 and these calculations make use of the fact
that matrices in Jordan canonical form with the same block sizes
and types commute with respect to matrix multiplication and are
also closed with respect to transposing and inversion operations.
This fact was established in Akcay and Tiirkay (2004) for the
distinct eigenvalues case, i.e., Lemma 4 in Ak¢ay and Tiirkay (2004).

It is possible to extend Lemma 4 to more general situations
than the distinct eigenvalues case. But, this is unnecessary since
the Jordan canonical form is not numerically stable and a slight
perturbation of A will lead to distinct eigenvalues if A has repeated
eigenvalues. Thus, small perturbations in A will lead to small

perturbations in the estimated spectrum. When the data sets
are finite and corrupted by unmodelled dynamics, the structural
relations mentioned above are likely to be destroyed and it will be
necessary to introduce a selection criterion. This problem is further
discussed in Hinnen et al. (2005) where robust procedures are
introduced. The consistency properties, however, do not change
since they are asymptotic in nature. See, Theorem 7 in Akcay and
Tiirkay (2004).

In this paper and Akgay and Tiirkay (2004), Hinnen et al. (2005)
and Van Overschee et al. (1997) it is assumed that G(z) is square.
There are situations in which the number of noise inputs is smaller
than the number of output channels. This subject warrants further
work.

Assuming that u[t] is zero-mean unity variance white-noise
process, the power spectrum associated with Eq. (1) denoted by
S(z) is defined as

S(iz) = G()G ™). (3)

The system in Eq. (1) is called the innovation form, unity
variance, minimum phase spectral factor associated with the
power spectrum S(z).

From Eq. (3) and Assumption 2.1, note that

S(e%) > 0, forall . (4)

This is the positive realness condition, and it imposes a constraint
on the given spectrum samples S, i.e., S, > 0 for each k, as well
as on the identified power spectrum denoted by Sy(z). Several
procedures to ensure the positivity of the estimated spectrum are
outlined in the works Hinnen et al. (2005) and Van Overschee
et al. (1997). Again, this problem is not pertinent to our consis-
tency analysis. The measurement noise assumption is rephrased
from McKelvey, Akcay, and Ljung (1996) and Van Overschee et al.
(1997) as follows:

Assumption 2.2. The noise sequence $; corrupting the spectrum
samples is a zero-mean complex white-noise process with a
covariance function satisfying

. Re
E [ﬁgi’;] [Re3! Im3/] = é R, | 8 (5)
2
and
sukp IRklloo < 0O. (6)

The problem studied in this paper is stated as follows:

Given: M + 1 noisy samples S, € C™*™ of the power spectrum S(z)
evaluated at M + 1 equidistantly spaced frequencies in the unit
circle:

Se=SE )45, k=1,...,M+1, 7

where 5 is a zero-mean complex white-noise process with a
covariance function satisfying Eqs. (5) and (6) and the minimum
phase spectral factor of S(z) satisfies Assumption 2.1,

Find: a quadruplet (Z,ﬁ, a 5) such that the estimated power
spectrum

Su(@) =G@)G6 ") 8)
is strongly consistent, i.e.,

lim |[Sy —Sllec =0, w.p.1 9)
M—o0
where
G(z) = C(zl, — A "B+ D. (10)

We also require the algorithm to produce the true model if the
noise is zero given a finite amount of data M, i.e.,, there exists an
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My < oo such that
”SM - S”oo =0,

An identification algorithm which satisfies Eq. (11) when noise is
zero is called interpolatory. In this paper, we present an algorithm
with the properties in Egs. (9) and (11).

forallM > M,. (11)

3. Subspace identification algorithm

As in Akcay and Tiirkay (2004), Hinnen et al. (2005) and Van
Overschee et al.(1997), we begin by splitting S(z) into the so-called
spectral summands as follows

SZ)=E+C@, —A) 'F+F ¢z ', —A)H)~'cT

with E = CPCT +DDT and F = APCT + BDT where P is the solution
of the discrete-time Lyapunov equation P = APAT + BB'. Thus, the
problem of identifying a spectral factor from spectrum samples is
reduced to identifying the spectral summands.

Next, since S(z) has a real-valued impulse response, its
restriction to [0, 7 ] can be extended to [, 277 ] from

Sz =5"@, lz|=1.
Hence, we let N = 2M and w;, = w Zy = e for k =
1,...,N.Let p and r be two fixed positive integers satisfying the
inequalities p > 2n,r <p,andp +r <N.
Let
1 .. 1
F ! : QI
r= = . . ms
Nk r
ZN e ZN

2o =[1--27] .

_~ 1
B = @) @S B es].
~ 1 = 3
B = = [2(@) @51 2p(n) ©5].
c  Fl@ah!
Op =
! F!

The following formula is obtained from the derivations in Akcay
(2010) by straightforward modifications

jg’\py:r = @pi)N,p,rAr + d%j:'r (12)
where
A — F . AT'F

r— (AT)T—lcT . CT ’

i} 0
Dy pr = |: 6\] (AT)Nprll'{l] ,
Iv =, —AH™,

In the derivation of this formula, Lemma 5.1 in Akcay (2010) or
equivalently Theorem 1 in Van Overschee et al. (1997) was used.
The following (incorrect) formula

gpfdr = Opch,rAr + <A7;J~fh'~r (13)
where
In 0}
@ =
P [0 1
was derived in Van Overschee et al. (1997). See, Eq. (5) in Van
Overschee et al. (1997). Eq. (13) captures the so-called main

theorem in Van Overschee et al. (1997), i.e., Theorem 2. It differs
from Eq. (12) by the factor (AT)" =P~ in the right-bottom block of
Dy p,r- The discrepancy between Eqgs. (12) and (13) stems from an
error in the derivation of Eq. (13) in Van Overschee et al. (1997).
See, Eq. (B.1) in Van Overschee et al. (1997).

Ifp > 2nandr > 2n, then O, and A, both have rank 2n.
Consequently, OpDn p r Ar hasrank 2nifand only if Dy p, , has rank
2n. The latter matrix has rank 2n since it is block diagonal and all
the eigenvalues of A lie inside the unit circle. This fact can be used
to extract the observability range space of a realization of S(z) from
the singular-value decomposition (SVD) of §, % (Ak¢ay & Tiirkay,
2004; Van Overschee et al., 1997).

For fixed p and r and as N — oo, (AT)N=P~" tends to zero
geometrically fast and Eq. (12) satisfies

C

Gy — Np) T — [F --- A'F]. (14)

CA?H

The right-hand side of Eq. (14) has rank n. This means that the
subspace algorithm in Van Overschee et al. (1997) is not strongly
consistent. This conclusion is reached by noting the facts that
the convergence rate in Eq. (14) is geometric in N, Theorem 2
in Van Overschee et al. (1997) assesses a constant rank of 2n to
the left-hand side of Eq. (14), and the consistency analysis in Van
Overschee et al. (1997) relies upon the latter rank being 2n. The
error in Eq. (B.1) does not destroy the interpolation property of
the algorithm in Van Overschee et al. (1997) since the error term
is trapped into a similarity transformation. If N — p — r remains
bounded for all N, the algorithm in Van Overschee et al. (1997)
is still interpolatory. But, consistency can be achieved only if the
noise covariance information is available (Akcay & Tiirkay, 2004;
McKelvey et al., 1996).

The convergence in Eq. (14) was also noted in Hinnen et al.
(2005) where it was suggested that the left-hand side could be
utilized to extract some initial estimates of A and C to be used in
iterations for searching optimal values of A and C while ensuring
positivity of the estimated spectrum.

A legitimate question is whether it is possible to derive a sub-
space algorithm which is both interpolatory and strongly consis-
tent. The algorithms in Hinnen et al. (2005) and Van Overschee
et al. (1997) have precisely either one of these properties. The an-
swer is surprisingly simple as we will see next.

A dual factorization formula to Eq. (12) is obtained from the
derivations in Akcay (2010) by straightforward modifications as

where
G, = %[Qp(an) ® 51+ 2y(wn) ® Syl
W, = %[QP(M) ®3; -+ 2p(wy) @3N,
0 - Iy
v | - € Rkmxkm.
I 0
Now, let
Y =§p?}+wpgp$}wf' (16)

Then, from Eqgs. (12), (15) and (16)

Y= (DpSN,p,rAr + ffvp% + ljppwp:’l:#r"pr (17)
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where

N—p—r
A O
gN,p,r = {IZn + |:O ATi| } cZ)p,h (]8)

Since the eigenvalues of A are inside the unit circle, &y p, , is always
nonsingular. Hence, the range spaces of @, and ¥ are equal when
the data are noise-free. Moreover, in this case Y — A4, as
N — oo.

It is easy to show (Akcay, 2010) that the entries of Y satisfy

ykl - §kJrl—l + gN—p—r+k+l—1 (]9)
for1 < k < pand1 < | < r where 5 is the N-point inverse
discrete Fourier transform of Sy:

~ 1 - {27 i
Sk = — enN Sj. (20)
N =

Eq. (17) with the left-hand side computed from Eq. (19) is the basic
relation which our subspace identification algorithm relies upon.
In the sequel, we will present a strongly consistent identification
algorithm. It should be noted that the parameters p and r can be
chosen freely subject to the inequalitiesp > 2n,r > 2n,p+r < N.
In particular, % does not have to be block square matrix as claimed
in Hinnen et al. (2005). Combining Eq. (17) with the stages of the
identification algorithm developed in Ak¢ay and Tiirkay (2004) we
propose:

Algorithm 1. (1) Given the spectrum samples S, expand the
data according to Sy+x = Sm—k+2, kK = 2,..., M to obtain
signals of lengths N = 2M.

(2)Fixpandrasp > 2n,r > 2n,and p +r < N and for
1<k<p+4+randN —p—r < k < N, compute the Fourier
coefficients in Eq. (20).

(3) Calculate the SVD of ¥ in Eq. (19)

Z‘211 0 V2n
[Usn U] [ } [ } 21
y 2n Er/l Vr; ( )
where X5, contains the 2n largest singular values.
(4) Determine the system order n by inspecting the singular
values.
(5) With U, defined by Eq. (21) and J, and J4 by
Ju = [O(p—l)mxm I(p—])m]v
Jd = [I(p—l)m O(p—l)mxmL

calculate A = (JaUsn) ' JuUsn.
(6) Put A into the following Jordan canonical form:

b))

~ 0 _
A= [Hc Hac] |: OC Eac] [Hc Hac] !

Where the eLgenvalues of X lie inside the unit circle.
(7) LetA = ]fU2n1'[ Where]f [Im Om><(p 1)]
(8) For E and F solve the least-squares problem

M+1
min > [R@)F +F'X" (z;") +E — Sill?

k=1

where ¥ (z) = C(zl, — ol
(9) Solve the Riccati equation for P:

P =APA’ +(F APCHE-CPCH™!
x(F—APC)

and calculate B and D from

B—(F APC )(E CPC)f
=(E—CPC)i.

(10) Calculate 6(2) and §M (z) from Eqgs. (10) and (8).

Table 1
The 4th and the 5th largest singular values of ggfg on noise-free data sets.
M 0y o5
16 2.363 1.76 x 107!
32 3.445 2.17 x 1072
64 3.155 1.03 x 1073
128 3.146 3.13 x 107
256 3.146 2.42 x 107"
512 3.146 6.53 x 1076

The main result of this paper is the following:

Theorem 1. Suppose that Assumption 2.1 holds. Then, Algorithm 1 is
interpolatory. If, in addition Assumption 2.2 holds, then Algorithm 1 s
strongly consistent.

Proof. We already established that the range space of Y equals the
range space of 9, when the spectrum samples are noise-free. But,
the range space of Y equals to the column space of U,,. Moreover,
Steps (4)-(10) of Algorithm 1 coincide with the same steps of
the subspace algorithm in Akcay and Tiirkay (2004). When the
spectrum samples are noise-free, the solution of the least-squares
problem in Step (8) does not depend on the distribution of the
frequencies as long as they are distinct. The first part then follows
from the fact that the subspace algorithm in Akcay and Tiirkay
(2004) s interpolatory. The proof of the second part is similar to the
consistency proofin McKelvey et al. (1996), hence it is omitted. O

4. Illustrative example

In this section, we use a simulation example to illustrate the
failure of the subspace algorithm in Van Overschee et al. (1997)
and the properties of the identification algorithm proposed in this
paper. Let the true system G(z) be a fourth-order system described
by the state-space model (Akcay & Tiirkay, 2004; McKelvey et al.,
1996):

0.8876  0.4494 0 0
A= —0.4494 0.7978 0 0
- 0 0 —0.6129 0.0645 |’
0 0 —6.4516 —0.7419

B = [0.2247 0.8989 0.0323 0.1290]",
C =10.47190.11249.6774 1.6129],
D = 0.9626.

Consider first the noise-free data case, i.e., assume that 5, = 0 for
all k in Eq. (7). With p and r fixed as p = 9 and r = 8, the fourth
and the fifth largest singular values of §,¥; are displayed versus
M in Table 1. From the table, we infer that the convergence in
Eq. (14) takes place very rapidly as expected, and the algorithm
in Van Overschee et al. (1997) is not consistent.

Now, assume that the noise in Eq. (7) are given as

- 0.2z7 — 0.0904z; + 0.1839
Sk=£E—— Vi

zi — 1.1111z, + 0.8520
where v, k = 1,..., M + 1 are zero-mean, unit-variance, inde-
pendent, and identically distributed complex normal random vari-
ables. The consistency properties of Algorithm 1 were examined by
performing Monte Carlo simulations where the quality of the mod-
els was assessed by computing the (measured) L, and L, norms of
the estimation errors defined by

> 1 M+1 %
1Sw = Slim2 = (M—H Z 1Su(zi) — S(@)| )

|5m(2k) —S@l,

1S — Slln,co = \Jnax.
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Table 2

The average values of ||§M — S|lm.2 and ||§M — S|lm.c from Monte Carlo simulations
over 100 noise realizations with p = r = 50, ¢ = 10> and using Algorithm 1.

M IS — Slim,2 1S —Sllm.c0
1,000 1.55 x 1074 8.18 x 1074
2,000 4.79 x 107> 2.53x 1074
4,000 3.11 x 1072 1.70 x 1074
8,000 1.87 x 107° 1.02x 1074

16,000 1.37 x 107> 7.50 x 107>

32,000 9.47 x 107 5.16 x 107>

and averaging them over 100 noise realizations. From Table 2,
consistency of Algorithm 1 is evident.

Next, on the same data sets used by Algorithm 1 to form Table 2
we tried the identification algorithm proposed in Van Overschee
etal. (1997) withp = r = 50 and ¢ = 107°. In all cases tried,
the latter algorithm failed without returning spectral factors. The
failures occurred in Step (6) of Algorithm 1. This step is also part
of the algorithm in Van Overschee et al. (1997). Such failures have
never been observed with Algorithm 1 when M is sufficiently large,
say larger than or equal to 8000.

5. Conclusion

In this paper, we revisited the identification problem studied
in Van Overschee et al. (1997) and demonstrated that the
algorithm presented there lacks consistency. Then, we proposed an
interpolatory identification algorithm which is strongly consistent
under the same noise assumptions in Van Overschee et al. (1997).
The performance of the proposed algorithm was demonstrated in
a simulation example.
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