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Abstract

The objective of this study is to examine three problems that arise in experimen-
tal mechanics where Kalman filter (KF) theory is used. The first is estimating the
steady state KF gain from measurements in the absence of process and measurement
noise statistics. In an off-line setting the estimation of noise covariance matrices, and
the associated filter gain from measurements is theoretically feasible but lead to an
ill-conditioned linear least square problem. In this work the merit of Tikhonov’s reg-
ularization is examined in order to improve the poor estimates of the noise covariance
matrices and steady state Kalman gain.

The second problem is on state estimation using a nominal model that represents
the actual system. In this work the errors in the nominal model are approximated by
fictitious noise and covariance of the fictitious noise is calculated using stored data on the
premise that the norm of discrepancy between correlation functions of the measurements
and their estimates from the nominal model is minimum. Additionally, the problem of
state estimation using a nominal model in on-line operating conditions is addressed
and feasibility of extended KF (EKF) based combined state and parameter estimation
method is examined. This method takes the uncertain parameters as part of the state
vector and a combined parameter and state estimation problem is solved as a nonlinear
estimation using EKF.

The last problem is the issue of using the filter as a damage detector when the
process and measurement noise statistics vary during the monitoring. The basic idea
used to implement the filter as a detector is the fact that the innovation process is
white. When the system changes due to damage the innovations are no longer white
and correlation can be used to detect it. A difficulty arises, however, when the process
and/or measurement noise covariance fluctuate because the filter detects these changes
also and it becomes necessary to differentiate what comes from damage and what does
not. In this work a modified whiteness test for innovations process is examined. The
test uses correlation functions of the innovations evaluated at higher lags in order to
increase the relative sensitivity of damage over noise fluctuations.
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Chapter 1

Introduction

1.1 Background and Motivation

In many modern structural engineering applications such as structural health monitor-

ing, control, model validation and damage detection, reconstructing the response of an

existing structure subjected to partially unknown excitations is often required. If the

structure is not instrumented, the best that can be done is to estimate the unknown

loads and applying these together with the known loading to a model of the structure

and obtaining the response. In this approach the accuracy of the estimations depends

entirely on how accurate the model and predicted loading represent the physical system.

Nevertheless, if the structure is instrumented and measurements of the response at some

locations are available, the accuracy of the estimation can be improved by combining

the measurements and the model in some consistent way.

The idea of response reconstruction for partially instrumented systems has been

studied in the area of control and state estimation since the 1950s, and new contributions

continue to appear. This work focuses on some applications of Kalman filter (KF)

theory. The formulation of KF involves a blend of a model with measurements. The
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2 Chapter 1: Introduction

improvements in the predictions of the response, in comparison to the open loop, result

from incorporating the measured data into the estimation process. The “open loop” is

a system that does not contain any feedback terms from the outputs, as opposed to a

“closed loop” system in which part of the excitation depends on the feedback from the

response.

Kalman filter theory has received serious attention in many fields such as electrical

engineering, robotics, navigation and economics since the 1960’s. The problems and

applications that originated the development of KF theory as it stands today are not

problems related to structural engineering. However, the use of the KF theory may

become more prominent because the types of problems that utilize it are more common

than before, and there is significant merit and potential in incorporating KF theory into

a variety of problems concerning existing structural systems. As new challenges arise

regarding critical existing infrastructure, blending finite element models and measured

data has a potential of becoming a more and more important part of modern structural

engineering problems.

1.2 Objectives

The objective of this work is to approach three problems that arise in experimental

mechanics where the Kalman filter is used:

The first problem consists of estimating the steady state Kalman filter gain from

measurements. In the classical formulation of Kalman filter, one can calculate the filter

gain given the information of a model and the covariance of unknown disturbances and

measurement noise. If the noise covariance matrices are not available, it has been shown

that the Kalman filter gain can be extracted from the data. Several methods have been
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proposed, however, all ultimately exploit the fact that the discrepancy between measured

and predicted output signal, which is called innovations, is white when the filter gain

is optimal. Examination of the literature shows that the problem is ill-conditioned. In

this work we examine the merit of Tikhonov’s regularization technique in the issue of

calculating the Kalman gain from data.

The second problem is on state estimation using a nominal model that has uncer-

tainty. In the classical Kalman filter theory, one of the key assumptions is that a priori

knowledge of the system model, which represents the actual system, is known without

error. In this work our objective is to examine the feasibility and merit of an approach

that takes the effects of the uncertain parameters of the nominal model into account in

state estimation using KF without estimating the uncertain parameters themselves. In

this approach, the model errors are approximated by fictitious noise and the covariance

of the fictitious noise is calculated on the premise that the norm of discrepancy between

covariance functions of measurements and their estimates from the nominal model is

minimum. Additionally, we aim to address the problem of state estimation using a nom-

inal model in on-line operating conditions and examine the use of EKF-based combined

state and parameter estimation method. This method takes the uncertain parameters

as part of the state vector and a combined parameter and state estimation problem is

solved as a nonlinear estimation using extended KF (EKF).

The last problem is related to the use of Kalman filter as a fault detector. It is well

known that the innovations process of the Kalman filter is white. When the system

changes due to damage the innovations are no longer white and correlations of the inno-

vations can be used to detect damage. A difficulty arises, however, when the statistics

of unknown excitations and/or measurement noise fluctuate because the filter detects

these changes also and it becomes necessary to differentiate what comes from damage

and what does not. In this work we investigate if the correlation functions of the innova-
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tions evaluated at higher lags can be used to increase the relative sensitivity of damage

over noise fluctuations.

1.3 Outline

The chapters in the dissertation are organized as follows:

Chapter 2 presents background information that is frequently used throughout the

dissertation on dynamic systems, state estimation and Kalman filter theory.

Chapter 3 is devoted to estimation of Kalman filter gain from measurements. An

overview of correlation based procedures to estimate the Kalman filter gain from mea-

surements is presented and the use of Tikhonov’s regularization technique is examined

to solve the poorly conditioned least square problem that involves the parameters of the

noise covariance matrices and Kalman filter gain.

Chapter 4 addresses the issue of the KF with model uncertainty. The model errors

are approximated by fictitious noise and the actual system is approximated with an

equivalent Kalman filter model. Extended KF based combined state and parameter

estimation method is examined.

Chapter 5 examines the use of Kalman filter as a fault detector. The fault detector

is formulated based on the whiteness property of the Kalman filter innovations process.

The use of the fault detector is examined to detect the changes in the system under

changing noise covariances.

Chapter 6 presents a brief summary and conclusions.



Chapter 2

Kalman Filter Theory For the User

2.1 Introduction

The state of a dynamical system are variables that provide a complete representation of

the internal condition or status of the system at a given instant of time. When the state

is known, the evolution of the system can be predicted if the excitations are known.

Another way to say the same is that the state consists of variables that prescribe the

initial condition. When a model of the structure is available, its dynamic behavior can be

estimated for a given input by solving the equations of motion. However if the structure

is subjected to unknown disturbances and is partially instrumented, the response at the

unmeasured degrees of freedom is obtained using state estimation.

The basic idea in state estimation theory is to obtain approximations of the state of

a system which is not directly observable by using information from a model and from

any available measurements. There are three estimation problems, namely:

• Estimate the current state, xn given all the data including yn; this is called filtering.

5



6 Chapter 2: Kalman Filter Theory For the User

• Estimate some past value of xk, k < n given all the data including yn; this is called

smoothing.

• Estimate some future value of xk, k > n given all the data including yn; this is

called prediction.

State estimation can be viewed as a blend of information from the analytical model of

the system and measurements to make predictions about present and future states of

the system. Uncertainty in estimating the state of a dynamical system arises from three

sources: (1) Stochastic disturbances, (2) Discrepancies between the real system and the

model used to represent it (model uncertainty), (3) Unknown initial conditions.

The theory of state estimation originated with least squares method essentially es-

tablished by the early 1800s with the work of Gauss [1]. The mathematical framework of

modern theory of state estimation originated with the work of Wiener in the late 1940s,

[2]. The field began to mature in the 1960’s and 1970’s after a milestone contribution

was offered by R. E. Kalman in 1960 [3], which is very well-known as the Kalman filter

(KF). The KF is a recursive data processing algorithm, which gives the optimal state es-

timate of the systems that are subjected stationary stochastic disturbances with known

covariances.

2.2 State Space Representations

2.2.1 Continuous-Time State-Space Representation

A linear finite dimensional structural system subjected to a time varying excitation

u(t), can be described by the following ordinary linear differential equation
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Mq̈(t) + Cξ q̇(t) +Kq(t) = b2u(t) (2.2.1)

where the dots represent differentiation with respect to time, q εRηx1 is the displacement

vector at the degrees of freedom, M , Cξ and K are the mass, damping and stiffness

matrices respectively and b2 ε Rnxr is a vector describing the spatial distribution of the

excitation u(t) ε Rrx1 and η and r are the number of degrees of freedom and input

excitations respectively. Defining

 x1(t)

x2(t)

 def
=

 q(t)

q̇(t)

 (2.2.2)

and substituting Eq.2.2.2 into Eq.2.2.1 one gets

 I 0

0 M


 ẋ1(t)

ẋ2(t)

 =

 0 I

−K −Cξ


 x1(t)

x2(t)

+

 0

b2

u(t) (2.2.3)

In this dissertation, we limit examination to cases where the matrix M is non-singular.

In this case, Eq.2.2.3 can be written as

 ẋ1(t)

ẋ2(t)

 =

 0 I

−M−1K −M−1Cξ


 x1(t)

x2(t)

+

 0

M−1b2

u(t) (2.2.4)

Taking x(t) =
[
xT1 (t) xT2 (t)

]T
ε Rnx1 is the state vector and integer n = 2η is the

order of the system, it yields

ẋ(t) = Acx(t) +Bcu(t) (2.2.5)
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where Ac ε Rnxn is known as the continuous-time system matrix and Bc ε Rnxn as the

continuous-time state-to-input matrix. Assuming that the available measurements are

linear combinations of the state and a direct transmission term one can write:

y(t) = Ccx(t) +Dcu(t) (2.2.6)

where Cc ε Rmxn is the state to output matrix and integer m is the number of mea-

surements. The structure and entries of the matrix Cc depends on the specific quantity

being measured. For displacement or velocity measurement;

Cdis =
[
c2 0

]
(2.2.7)

Cvel =
[

0 c2

]
(2.2.8)

(2.2.9)

where c2 is a matrix with each row having a one at the column corresponding to the

degree of freedom being measured and zeros elsewhere. For acceleration measurements

Cacc =
[
−M−1K −M−1Cξ

]
(2.2.10)

The matrix Dc ε Rmxr is constructed by taking rows of M−1b2 corresponding to the

degree of freedom being load applied. Dc is zero, unless acceleration is measured at

a collocated coordinate. The expressions given in Eqs.2.2.5 and 2.2.6 constitute the

continuous-time state-space description of a linear time invariant system. The solution

to Eq.2.2.5 at any time t is given by the well known convolution integral

x(t) = eActx(0) +

tˆ

0

eActBcu(τ)dτ +Dcu(t) (2.2.11)
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where x(0) is the initial state.

Transfer Matrix in Continuous-time Systems

The transfer matrix is a mathematical representation of the linear mapping be-

tween inputs and outputs of a linear time-invariant system. The transfer matrix of

the continuous-time state-space system in Eq.2.2.5 can be obtained by taking a Laplace

transform, as follows

sx(s)− x0 = Acx(s) +Bcu(s) (2.2.12)

Solving for the state, one gets

x(s) = (I.s−Ac)−1x0 + (I.s−Ac)−1Bcu(s) (2.2.13)

Taking a Laplace transform of the output equation Eq.2.2.6 gives

y(s) = Ccx(s) +Dcu(s) (2.2.14)

Combining Eq.2.2.13 and Eq.2.2.14, one obtains

y(s) = Cc(I.s−Ac)−1x0 +
(
Cc(I.s−Ac)−1Bc +Dc

)
u(s) (2.2.15)

The transfer function matrix is defined for zero initial condition (or after steady state is

realized) as

H(s) =
y(s)

u(s)
= C(I.s−Ac)−1Bc +Dc (2.2.16)
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2.2.2 Discrete-Time State-Space Representation

The experimental data is obtained in digital form in practice, so a discrete time

solution of the Eq.2.2.11 is required. Defining a time step ∆t, and assuming that the

state at time t = k∆t is known, the step k + 1 is given by,

xk+1 = eActxk +

(k+1)∆tˆ

k∆t

eAc((k+1)∆t−τ)Bcu(τ)dτ (2.2.17)

By defining A = eAc∆t, the Eq.2.2.17 can be written as

xk+1 = Axk +

(k+1)∆tˆ

k∆t

eAc((k+1)∆t−τ)Bcu(τ)dτ (2.2.18)

The integration in Eq.2.2.18 depends on the inter-sample behavior of the input u(t); this

is often unknown in practice and an assumption needs to be made. A finite dimensional

input is one that can be expressed in the inter-sample as [4]

u(τ) = f0(τ)uk + f1(τ)uk+1 (2.2.19)

where f0 and f1 are signed-valued functions with the constraints of f0(0) = 1, f0(∆t) = 0

and f1(0) = 0, f1(∆t) = 1. These constrains are imposed in order to match the values of

the uk and uk+1, which are known. Substituting Eq.2.2.19 into the integral in Eq.2.2.18

one can get a generic form of discrete-time state space equation

zk+1 = Azk +Buk (2.2.20)

xk = zk +B1uk+1 (2.2.21)

yk = Czk +Duk (2.2.22)
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Table 2.1: Closed form discrete input to state matrices
Inter-sample Assumption B0 B1

Zero Order Hold (A− I)A−1
c Bc 0

First Order Hold (A− I)A−1
c Bc −B1 (A−Ac∆t− I)A−2

c Bc/∆t

where

B = B0 +AB1 (2.2.23)

C = Cc (2.2.24)

D = CcB1 +Dc (2.2.25)

The B0 and B1 depend on the inter-sample assumption and obtained from the following

integrals

B0 =

(k+1)∆tˆ

k∆t

eAc((k+1)∆t−τ)Bcfo(τ)dτ (2.2.26)

B1 =

(k+1)∆tˆ

k∆t

eAc((k+1)∆t−τ)Bcf1(τ)dτ (2.2.27)

The most common assumptions for the inter-sample behavior are zero order hold (ZOH)

and first order hold (FOH). The input inter-sample function for ZOH and FOH in the

form of Eq.2.2.19 are (f0 = 1, f1 = 0) and (f0 = 1 − τ/∆t, f1 = τ/∆t), respectively.

The closed form solutions of B0 and B1 for ZOH and FOH are presented in Table.2.1.

The reader is referred to [4] for other discrete to continuous transfer relationships

such as half-step forward shift of zero-order-hold and band limited hold where the input

is assumed to be sampled as modulated train of Dirac impulses.
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Transfer Matrix in Discrete-time Systems

The transfer matrix in discrete-time systems is derived by using the z-transform,

which converts a discrete time signal, into a complex frequency-domain representation.

The z-transform, X(z) of a sequence x(n) is defined as

X(z) =
∞∑

n=−∞
x(n)z−n (2.2.28)

where z is a complex variable. The connection between the z-transform and the discrete

Fourier transform can be demonstrated by taking the complex variable z in Eq.2.2.28 as

z = reiω, which gives

X(reiω) =
∞∑

n=−∞
x(n)r−ne−iωn (2.2.29)

Eq.2.2.29 shows that the z-transform of x(n) is equal to the discrete Fourier transform

of x(n)r−n. Therefore, for |z| = 1 (on the unit circle), the z-transform is identical to

the discrete Fourier transform. The shift property of the z-transform is used in the

derivation of the transfer matrix, namely

Z [y(n+ n0)] = zn0Y (z) (2.2.30)

The transfer matrix is derived by taking the z-transform of the discrete time state

space equations given in Eqs.2.2.20-2.2.22 as follows

zx(z) = Ax(z) +Bu(z) (2.2.31)

y(z) = Cx(z) +Du(z) (2.2.32)
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Combining Eq.2.2.31 and Eq.2.2.32, one obtains the following relationship between the

z transforms of the input and output

y(z) = C(I.z −A)−1Bx0 +
(
C(I.z −A)−1B +D

)
u(z) (2.2.33)

The transfer function matrix in discrete-time system is defined for zero initial condition

(or after steady state is realized) as

H(z) =
y(z)

u(z)
= C(I.z −A)−1B +D (2.2.34)

2.2.3 Controllability and Observability

The concepts of controllability and observability are fundamental to state estimation

theory, which were introduced by Kalman [5]. The following definitions of these concepts

are adapted from the texts that cover the material [6].

A continuous-time system is controllable if for any initial state x(0) and any final

time t > 0 there exists a control force that transfers the state to any desired value at

time t. A discrete-time system is controllable if for any initial state x0 and some final

time step k there exists a control force that transfers the state to any desired value at

time k. A simple test of controllability for linear systems in the both the continuous-time

and discrete time cases involves using the controllability matrix, namely

S =
[
B AB A2B · · · An−1B

]
(2.2.35)

where n is order of the state. The system is controllable if and only if rank of S is equal

to the n.

A continuous-time system is observable if for any initial state x(0) and any final time
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T > 0 the initial state x(0) can be uniquely determined by information of the input u(t)

and output y(t) for all up to time t ε [0, T ]. A discrete-time system is observable if

for any initial state x0 and some final time step k the initial state x0 can be uniquely

determined by knowledge of the input uj and output yj for all j ε [0, k]. A simple test of

observability for linear systems in the both the continuous-time and discrete time cases

involves using the observability matrix, namely

O =



C

CA

CA2

...

CAn−1


(2.2.36)

The system is observable if and only if rank of O is equal to the n.

The concepts of stabilizability and detectability are also closely related to the control-

lability, observability and modes of the system. A system is stabilizable if its unstable

modes are controllable. A system is detectable if its unstable modes are observable.

2.3 The Principles of Kalman Filtering

2.3.1 The Dynamical System of Interest

Consider a time invariant linear system where the model is known without uncer-

tainty and it is subjected to deterministic input u(t), unmeasured disturbances w(t)

and the available measurements y(t) that are linearly related to the state vector x(t).
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Assuming the input in the system has the following description in sampled time:

xk+1 = Axk +Buk +Gwk (2.3.1)

yk = Cxk + vk (2.3.2)

where A ε Rnxn, B ε Rnxr and C ε Rmxn are the transition, input to state, and state to

output matrices, yk ε Rmx1 is the measurement vector and xk ε Rnx1 is the state. The

sequence wk ε Rrx1 is the disturbance known as the process noise and vk ε Rmx1 is the

measurement noise. G ε Rnxs is process noise to state matrix. In the treatment here,

it is assumed that these are Gaussian stationary white noise sequences with zero mean

and known covariance matrices, namely

E(wk) = 0 (2.3.3)

E(vk) = 0 (2.3.4)

and

E(wkwTj ) = Qδkj (2.3.5)

E(vkvTj ) = Rδkj (2.3.6)

E(wkvTj ) = 0 (2.3.7)

where δkj denotes the Kronecker delta function; that is, δkj = 1 if k = j, and δkj = 0 if

k 6= j. E(·) denotes expectation. Q and R are covariance matrices of the process and

measurement noise, respectively. We assume also that the state is uncorrelated with the

process and measurement noise, namely
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E(xkvTk ) = 0 (2.3.8)

E(xkwTk ) = 0 (2.3.9)

We note that the (A,C) pair is detectable, i.e. there is no unstable and unobservable

eigenvalue in the system. Eq.2.3.7 expresses the stochastic independence of noises wk

and vk. A formulation taking into account correlation between process noise and mea-

surement noise is presented in Section 2.3.7. Since the model is linear and wk and vk are

zero mean Gaussian white noise signals, the state xk and the output yk are also Gaus-

sian signals and are therefore entirely characterized by their first and second moments

as follows:

Mean state vector: Taking expectation of the Eq.2.3.1, one gets

x̄k+1 = E(xk+1) = Ax̄k +Buk (2.3.10)

State Covariance Matrix: By definition

Σk = E[(xk − x̄k)(xk − x̄k)T ] (2.3.11)

We can use Eq.2.3.1 and Eq.2.3.10 to obtain

xk − x̄k = A(xk−1 − x̄k−1) +Gwk−1 (2.3.12)

Post-multiplying Eq.2.3.12 with its transpose and taking expectations gives
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Σ = AΣAT +GQGT (2.3.13)

which is a discrete Lyapunov equation. The steady-state covariance can be calculated

from Eq.2.3.13. The conditions for uniqueness of solution of the Eq.2.3.13 briefly are; A

is stable (must have all the eigenvalues inside the unit circle), and GQGT ≥ 0.

2.3.2 The State Estimator

We will drive the KF from the perspective of a general state estimator. Consider a

linear state estimator of the form of

x̂k+1 = Hkx̂k + Zkuk + Lkyk (2.3.14)

where x̂k is the estimate of xk and Lk is the observer gain. The objective is to select

the matrices Hk, Zk and Lk to maximize the accuracy of the estimate of the state. The

error in the estimated state is

εk = xk − x̂k (2.3.15)

Substituting Eqs.2.3.1 and 2.3.14 in Eq.2.3.17, one obtains the error in the estimated

state at station k + 1 as follows

εk+1 = Axk +Buk +Gwk −Hkx̂k − Zkuk − Lkyk (2.3.16)

Substituting Eq.2.3.2 into Eq.2.3.16, it gives

εk+1 = (A− LkC)xk + (B − Zk)uk +Gwk −Hkx̂k − Lkvk (2.3.17)

We now express the true state as the estimate plus the error and get
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εk+1 = (A− LkC)(x̂k + εk) + (B − Zk)uk +Gwk −Hkx̂k − Lkvk (2.3.18)

which reduces to

εk+1 = (A− LkC)εk + (B − Zk)uk +Hkx̂k +Gwk − Lkvk (2.3.19)

Taking the expected value of Eq.2.3.19 one has

E(εk+1) = (A− LkC)E(εk) + (B − Zk)E(uk) + (A− LkC −Hk)E(x̂) (2.3.20)

where the last two terms cancel due to assumptions that the process and the measure-

ment noise are zero mean vectors. Now, if the estimation error is to be zero mean then

the second and third terms on the right hand side of Eq.2.3.20 must vanish because the

expectations of the state and the input are not necessarily zero. Specifically, we require

that

Zk = B (2.3.21)

Hk = A− LkC (2.3.22)

Substituting Eqs.2.3.21 and 2.3.22 into Eq.2.3.19 gives

εk+1 = (A− LkC)εk +Gwk − Lkvk (2.3.23)

which shows that the error in the estimated state at step k + 1 depends on the error at
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step k and on the process and measurement noise at step k also. As noises wk and vk are

Gaussian and as the system is linear, one can state that εk is a Gaussian random signal.

We note that, since wk and vk are assumed white, the error at step k is not correlated

with the process and measurement noise at step k, namely

E(εkwk) = 0 (2.3.24)

E(εkvk) = 0 (2.3.25)

Taking Sk and Hk as indicated by Eqs.2.3.21 and 2.3.22, Eq.2.3.20 becomes;

E(εk+1) = (A− LkC)E(εk) (2.3.26)

Inspection of Eq.2.3.26 shows that the expected value of the error at step k+ 1 depends

on the expected value at step k, so, if the expectation of the estimate is zero at the start

(k = 0) then the expected value of the error will be zero throughout. Moreover even if

the expected value of ε0 is not zero the expected value will decay

limk→∞E(εk+1) = 0 (2.3.27)

if the eigenvalues of the matrix (A − LkC) are inside the unit circle i.e. the complex

plane. Taking Zk and Hk as indicated by Eqs.2.3.21and 2.3.22, the observer model in

Eq.2.3.14 becomes

x̂k+1 = (A− LkC)x̂k +Buk + Lkyk (2.3.28)

which can be re-organized as
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x̂k+1 = Ax̂k +Buk + Lk(yk − Cx̂k) (2.3.29)

The state estimator in Eq.2.3.29 ensures that the estimation is unbiased whatever

the matrices A, B, C of the system and the gain Lk provided that (A− LkC) is stable.

A crucial result given in [7] shows that if pair(A, C) is observable then the eigenvalues

of (A − LkC) can be arbitrarily placed by a suitable choice of Lk. The pair (A, C) is

observable if the observability matrix

O =



C

CA

CA2

...

CAn−1


(2.3.30)

is full rank. The proof can be found in many references e.g.[6]. We present an eigenvalue

assignment algorithm for state observer design in the following.

Observer Design with Eigenvalue Assignment

A state observer is designed by calculating an observer gain matrix, Lk, with as-

signing eigenvalues of (A − LkC) in the predetermined locations. Several eigenvalue

assignment approaches are presented in the literature. A polynomial approach to eigen-

value assignment commonly used in observer design, in which a symbolic characteristic

polynomial of observer, (A − LkC), is formed and observer gain parameters are calcu-

lated to achieve the desired eigenvalues as roots of the characteristic polynomial, [8].

The polynomial approach is generally applicable to single-input single-output systems.

A general treatment of the eigenvalue assignment problem for multi-input multi-

output systems using time invariant observer gain (Lk = L) is presented in the following,
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initially proposed by Moore, [9]. We begin with noting that spectral decomposition of a

matrix and and its transpose is same, namely,

(A− LC) = ΦΛΦ−1 (2.3.31)

(AT − CTLT ) = ΦΛΦ−1 (2.3.32)

where Λ is a diagonal matrix formed from the eigenvalues of (A−LC), and the columns

of Φ are the corresponding eigenvectors of (A− LC). The classical eigenvalue problem

is defined as the solution of the following equation

(AT − CTLT )φj − λjφj = 0 j = 1, 2, · · · , n (2.3.33)

where φj is the corresponding eigenvector to the eigenvalue, λj . One can organize

Eq.2.3.33 as follows

Tjqj = 0 (2.3.34)

where

Tj =
[

(AT − Iλj) −CT
]

(2.3.35)

and

qj =

 φj

Lφj

 (2.3.36)

After the location of the eigenvalue, λj has been decided, Tj can be calculated from

Eq.2.3.35 and an arbitrary vector for qj can be chosen from null space of Tj . One can
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collect all the qj ’s in matrix Q and partition it as follows,

Q =
[
q1 q2 · · · qn

]
=

 QU

QL

 (2.3.37)

where QU ε Cnxn and QL ε Cmxn. Noting from Eq.2.3.36 that,

QU =
[
φ1 φ2 · · · φn

]
(2.3.38)

and

QL = LTQU (2.3.39)

An expression for LT is written from Eq.2.3.39 as follows,

LT = QLQ−1
U (2.3.40)

It’s important to note that this method allows us to place only m eigenvalues in the

same location. This is due to the fact that C ε Rmxn and Null(T j) has dimension of m

and therefore one can only obtain m independent qj vectors for same eigenvalue. The

reader is referred to [10] and [11] for two other eigenvalue assignment approaches.

2.3.3 Selecting Lk

We recall that εk = xk− x̂k is a multivariate, centered (unbiased), Gaussian random

signal. The Gaussian feature of this centered signal allows one to state that if the trace

covariance of the estimation error (Pk = E(εkεTk )) is minimized then, x̂k is the best

estimate of xk. Therefore we seek Lk minimizing

Jk = trace(E(εkεTk )) (2.3.41)
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Post-multiplying Eq.2.3.23 with transpose of itself and taking expectations on both sides,

we find that the covariance of the error at step k + 1 is

Pk+1 = E(((A− LkC)εk+1 +Gwk − Lkvk)((A− LkC)εk+1 +Gwk − Lkvk)T ) (2.3.42)

by introducing Eqs.2.3.5, 2.3.6, 2.3.24 and 2.3.25, Eq.2.3.42 reduces to

Pk+1 = (A− LkC)Pk(A− LkC)T +GQGT + LkRL
T
k (2.3.43)

To minimize trace of (Pk+1), we have

∂(trace(Pk+1))
∂Lk

= 0 (2.3.44)

The derivative of the trace of the product of two matrices is given by

∂(trace(XY ))
∂X

= Y T (2.3.45)

and for a triple product we have

∂(trace(XYXT ))
∂X

= XY T +XY (2.3.46)

Expanding the first term in Eq.2.3.43 and taking into account the fact that Pk is sym-

metric, from Eq.2.3.44 after some simple algebra one gets

Kk = APkC
T (CPkCT +R)−1 (2.3.47)

where we denoted the solution of Eq.2.3.44 as Lk = Kk that is the Kalman gain matrix of

the minimal error variance state observer namely Kalman filter. We update the observer
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model in Eq.2.3.29 using the Kalman gain matrix Kk as observer gain, namely

x̂k+1 = Ax̂k +Buk +Kk(yk − Cx̂k) (2.3.48)

Substituting Eq.2.3.47 into 2.3.43 leads to following version of the error covariance re-

currence

Pk+1 = APkA
T −APkCT (CPkCT +R)−1CPkA

T +GQGT (2.3.49)

Equations 2.3.47, 2.3.48 and 2.3.49 constitute the discrete-time Kalman filter. The

Kalman filtering estimation of the state is as follows:

1. At k = 0 the covariance of the initial state (P0) is (assumed) known so Eq.2.3.47

can be used to compute the Kalman gain at k = 0.

2. Use Eq.2.3.48 to compute the estimate of the state at k + 1 (in the first step the

expected value of the initial state (x̂0) is used).

3. Use Eq.2.3.49 to update the covariance of the error.

4. Use Eq.2.3.48 to update the Kalman gain.

5. Go back to step 2.

Inspection of the Eqs.2.3.47 and 2.3.49 shows that the computation of Kk and Pk does

not depend on the measurements but depends only on the system (A, C, G) and noise

covariance matrices (Q and R). That means that the Kk and Pk can be calculated

off-line before the filter is actually implemented. Then when operating the system in

real time, only the state estimation in Eq.2.3.48 need to be implemented.
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2.3.4 Steady State Kalman Filter

The underlying system of interest and the process and measurement-noise covariances

in Eqs.2.3.1-2.3.2 are time-invariant (in our limited scope). Therefore once the transient

response due to error in the initial state estimate x̂0 and covariance of the error in the

initial state estimate P0 is finished, the state estimation error εk becomes a stationary

random signal and the covariance of the error Pk reaches a steady state value. When

Pk converges to a steady state value then Pk = Pk+1 for large k. We will denote this

steady state value as P , which means that from Eq.2.3.49 we can write

P = APAT −APCT (CPCT +R)−1CPAT +GQGT (2.3.50)

which is called a discrete algebraic Riccati equation. The reader will find methods to

compute the solution of a Riccati equation in [12, 13]. The conditions for uniqueness of

solution of the Eq.2.3.50 briefly are; A is stable (must have all the eigenvalues inside the

unit circle), the pair A, C is observable, the pair A, GQGT is controllable, R > 0 and

GQGT ≥ 0. From a practical point of view, such solvers are available in most software

like Matlab or Scilab. Once we have P , we can substitute it to Eq.2.3.47 in order obtain

the steady-state Kalman gain K, that is

K = APCT (CPCT +R)−1 (2.3.51)

The steady state Kalman filter often performs nearly as well as the time-varying Kalman

filter provided that Q is stationary.

2.3.5 Innovations Form Kalman Filter

The filter derived in the previous section is called one step predicting form Kalman

filter, which is based on the assumption that the best estimate of the state vector at time
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k is a function of the output measurements up to k−1 but not of the measurements at k.

In this section we drive the innovations form Kalman filter in which the measurements

at time k are used to improve the estimate of the state. We start with postulating the

updated estimate of the state in two steps as follows

x̂−k = Ax̂+
k−1 +Buk−1 (2.3.52)

x̂+
k = x̂−k +Kk(yk − Cx̂−k ) (2.3.53)

where is x̂+
k the estimate after the information from the measurement at time k is taken

into consideration and x̂−k is the estimate before. In first step presented in Eq.2.3.52,

the open loop prediction of the state is calculated, which is called prediction step of the

Kalman filter. In the second step presented in Eq.2.3.53, the open loop prediction is

corrected (updated) with the difference between the measurement yk and the prediction

of the measurement ŷk = Cx̂−k through the Kalman gain Kk, which is called update step.

We define the error in the state before and after the update as

ε−k = xk − x̂−k (2.3.54)

ε+
k = xk − x̂+

k (2.3.55)

We define the covariance of the estimation error before and after the update as

P−k = E((xk − x̂−k )(xk − x̂−k )T ) (2.3.56)

P+
k = E((xk − x̂+

k )(xk − x̂+
k )T ) (2.3.57)
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We follow a similar approach presented in the previous section to derive the Kalman

filter gain as a function of the covariance prior to the update P−k and after the update

P+
k . The estimation error before the update is obtained by substituting Eqs.2.3.1 and

2.3.52 into Eq.2.3.54 as follows

ε−k = Axk−1 +Buk−1 +Gwk−1 −Ax̂+
k−1 +Buk−1 (2.3.58)

which reduces to

ε−k = Aε+
k−1 +Gwk−1 (2.3.59)

Post-multiplying Eq.2.3.59 with its transpose and taking expectations on both sides, we

find that the covariance of the estimation error before the update is given by

P−k = AP+
k−1A

T +GQGT (2.3.60)

Substituting Eq.2.3.2 into Eq.2.3.53 gives

x̂+
k = x̂−k +Kk(Cxk + vk − Cx̂−k ) (2.3.61)

Substituting Eqs.2.3.54 and 2.3.55 into Eq.2.3.61 gives

xk − ε+
k = xk − ε−k +Kk(Cxk + vk − Cx̂−k ) (2.3.62)

and it can be organized as
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ε+
k = ε−k −Kk(Cε−k + vk) (2.3.63)

Post-multiplying Eq.2.3.63 with its transpose and taking expectations on both sides, we

find that the covariance of the estimation error after the update is given by

P+
k = E(ε+

k ε
+T
k ) = E((ε−k −Kk(Cε−k + vk))(ε−k −Kk(Cε−k + vk)T ) (2.3.64)

by introducing Eqs.2.3.56 and Eq.2.3.6, Eq.2.3.64 reduces to

P+
k = P−k − P

−
k C

TKk +KkRK
T
k −KkCP

−
k +KkCP

−
k C

TKT
k (2.3.65)

We seek Kk that minimizes the trace of P+
k . Therefore, we take the derivative of the

trace of Eq.2.3.65 and equate it to zero, which gives

Kk = P−k C
T (CP−k C

T +R)−1 (2.3.66)

Substituting Eq.2.3.66 into 2.3.65, we can find that the estimation error covariance after

the update simplifies to

P+
k = (I −KkC)P−k (2.3.67)

Equations 2.3.52, 2.3.53, 2.3.60, 2.3.66 and 2.3.67 constitute the innovations form Kalman

filter framework and estimation of the state is as follows
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1. At k = 0 the error covariance of the initial state (P−0 ) is (assumed) known so

Eq.2.3.47 can be used to compute the Kalman gain at k = 0.

2. Use Eq.2.3.52 to compute the priori estimate of the state at k.

3. Use Eq.2.3.60 to calculate the covariance of the error before the update at k.

4. Use Eq.2.3.66 to update the Kalman gain.

5. Use Eq.2.3.53 to compute updated estimate of the state at k (in the first step the

expected value of the initial state x̂−0 = E(x̂0) is used).

6. Use Eq.2.3.67 to calculate the covariance of the error after the update at k.

7. Go back to step 2.

The steady state state error covariance in the innovations form Kalman filter is the

solution of the Riccati equation

P = APAT −APCT (CPC +R)−1CPAT +GQGT (2.3.68)

and the steady state Kalman gain, K is

K = PCT (CPCT +R)−1 (2.3.69)

2.3.6 Colored Process and Measurement Noise

Derivation of the Kalman filter in previous sections assumed that the process and

measurement noise were both white. In this section, we illustrate how to deal with
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colored process and measurement noise. We assume that spectrum of the colored noise

is the spectrum of the response of a linear system subjected to white noise and that

this spectrum is known. Therefore, in the time domain, we assume that a state-space

stochastic representation for the colored process and measurement noise are given as

follows

wk+1 = Φwk + Ψξk (2.3.70)

vk+1 = ∆vk + Υρk (2.3.71)

where ξk and ρk are zero-mean white noise signals with covariance matrices

E(ξkξTk ) = Q (2.3.72)

E(ρkρTk ) = R (2.3.73)

E(ξkρTk ) = 0 (2.3.74)

We assume that ξk and ρk are uncorrelated with wk and vk, respectively. The system

matrices Φ, Ψ, ∆ Υ and noise covariance matrices Q and R are assumed to be known.

Post-multiplying Eq.2.3.70 with wTk and taking expectations on both sides, we find that

E(wk+1w
T
k ) = ΦE(wkwTk ) (2.3.75)

E(vk+1v
T
k ) = ∆E(vkvTk ) (2.3.76)

The key for the colored noise case is to comprise a new state space model by combining

Eqs.2.3.1, 2.3.70 and 2.3.71 as follows
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zk+1 = Āzk + B̄uk + Ḡw̄k (2.3.77)

yk = C̄zk (2.3.78)

where

Ā =


A G 0

0 Φ 0

0 0 ∆

 (2.3.79)

B̄ =
[
B 0 0

]T
(2.3.80)

Ḡ =


0 0

Ψ 0

0 Υ

 (2.3.81)

C̄ =
[
C 0 I

]
(2.3.82)

and

zk =
[
xk wk vk

]T
(2.3.83)

w̄k =

 ξk

ρk

 (2.3.84)

This is an augmented state space model with a new state zk, new system matrices

Ā, B̄, C̄, Ḡ, and a new process noise vector w̄k whose covariance is given as follows
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Q̄ =

 E(ξkξTk ) 0

0 E(ρkρTk )

 =

 Q 0

0 R

 (2.3.85)

We note that, the measurement noise in the augmented state space model in Eq.2.3.77

and 2.3.78 is zero. The augmented model satisfies all the assumptions of the system

given in Eqs.2.3.1 and 2.3.2, therefore, the Kalman filter can be applied as presented in

the previous sections.

2.3.7 Correlated Process and Measurement Noise

Our derivation of the Kalman filter in previous sections assumed that the process

and measurement noise were uncorrelated. In this section, we will present recurrent

equations of the Kalman filter when the wk and vk are mutually correlated. We start

with recalling noise covariance matrices as follows

E


 wk

vk

[ wTk vTk

] =

 Q S

ST R

 δkj (2.3.86)

where S is the cross-covariance between process and measurement noise. We consider

one step predicting form Kalman filter first and follow from the state error recurrence in

Eq.2.3.23. We re-derive the state error covariance recurrence by introducing Eqs.2.3.24,

2.3.25 and 2.3.86 into Eq.2.3.42 as follows

Pk+1 = (A−KkC)Pk(A−KkC)T +GQGT +KkRL
T
k −GSKT

k −KkSG
T (2.3.87)

Kalman filter gain Kk that minimizes the trace of Pk can be obtained by taking the
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derivative of the trace of Eq.2.3.87 and equating it to zero, which gives

Kk = (APkCT +GS)(CPCT +R)−1 (2.3.88)

Substituting Eq.2.3.88 into Eq,2.3.87 leads to following version of the error covariance

recurrence

Pk+1 = APkA
T − (APkCT +GS)(CPkCT +R)−1(APCT +GS)T +GQGT (2.3.89)

The steady state state error covariance in the one step prediction form Kalman filter is

the solution of the Riccati equation

P = APAT − (APCT +GS)(CPCT +R)−1(APCT +GS)T +GQGT (2.3.90)

and the steady state Kalman gain, K is

K = (APCT +GS)(CPCT +R)−1 (2.3.91)

The innovation form steady state Kalman filter when wk and vk are mutually correlated

is

x̂−k = Ax̂+
k−1 +Buk−1 +Gẑk−1 (2.3.92)

x̂+
k = x̂−k +Kx(yk − Cx̂−k ) (2.3.93)

ẑk = Kz(yk − Cx̂−k ) (2.3.94)

where ẑk is an auxiliary variable. Eq. 2.3.92 is the prediction step of the filter and

Eqs.2.3.93 and 2.3.94 constitute update step. The filter gains Kx and Kz are calculated
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from

Kx = PCT (CPCT +R)−1 (2.3.95)

Kz = S(CPCT +R)−1 (2.3.96)

where P , the steady state covariance of the state error, is the solution of the Riccati

equation in Eq.2.3.90.

2.3.8 Biased Noise

The mean of a random signal, which is also called a bias, is considered to be deter-

ministic. As seen in Eqs.2.3.3-2.3.4, derivation of the Kalman filter in previous sections

assumed that the process and measurement noise were unbiased (centered). In this sec-

tion, we present how to deal with biased process and measurement noise and we assume

that E(wk) and E(vk) are known. The key is adding the terms GE(wk) − GE(wk)

and E(vk) − E(vk) to the right hand side of the Eqs.2.3.1 and 2.3.2 respectively and

re-organizing them as follows

xk+1 = Axk +
[
B G

] uk

E(wk)

+Gw̄k (2.3.97)

yk = Cxk + E(vk) + v̄k (2.3.98)

where w̄k and v̄k are new centered process noise and measurement noise, namely
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w̄k = wk − E(wk) (2.3.99)

v̄k = vk − E(vk) (2.3.100)

The state space model in Eqs. 2.3.97-2.3.98 satisfies all the assumptions of the system

given in Eqs.2.3.1 and 2.3.2, therefore, the Kalman filter can be applied as presented in

the previous sections.

2.3.9 Properties of the Innovations Process

The difference between measured and estimated output is called the innovation,

namely

ek = yk − Cx̂k (2.3.101)

This is the part of the measurement that contains new information about the state,

hence it’s called innovations and they are uncorrelated with the previous measurements,

namely

E(ekyTk−j) = 0, j = 1 (2.3.102)

Substituting Eq.2.3.2 into Eq.2.3.101 and using the state error definition in Eq.2.3.15,

we rewrite the innovation sequence as follows

ek = Cεk + vk (2.3.103)

Post-multiplying Eq.2.3.103 with its transpose and taking expectations on both sides,
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we find that the covariance of the innovations in steady state is given by

E(ekeTk ) = F = CPCT +R (2.3.104)

The properties of the sequence of ek was first discussed by Kailath [14]. The most

important characteristic of the sequence is that during optimal filtering, the innovation

sequence will be white, namely

E(ekeTk+j) = F, j = 0 (2.3.105)

E(ekeTk+j) = 0, j 6= 0 (2.3.106)

In fact, Kailath derived the Kalman filter as a whitening filter which whitens mea-

surements and generates a white innovations process; hence it extracts the maximum

possible amount of information from the measurements. Consider one step predicting

form steady Kalman filter model in Eq.2.3.48 is re-organized as follows.

x̂k+1 = (A−KC)x̂k +Buk +Kyk (2.3.107)

ek = −Cx̂k + yk (2.3.108)

In this form, the measurement yk is the input to the filter and the innovations process

ek is the output of the filter. The filter works as “whitening filter” for the output that

the white noise innovations process is generated. The Kalman filter innovations process

is a Gaussian white noise random signal which has the characteristic properties in the

following:
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1. The innovations process is white.

2. The innovations process a is stationary signal with a constant covariance of F .

3. The innovations process is zero mean.

The covariance of innovations process, F , has significant importance for validation of the

optimality of the Kalman gain, K. The consistency between theoretical covariance of

innovations process, F , and its experimental estimate demonstrates that the filter gain

is optimal.

Auto-correlation Functions of Innovations

In this subsection, we demonstrate that the Kalman filter gain makes the innovations

process uncorrelated. We suppose that an arbitrary filter is used to generate innovations

process, which is correlated. Here we use auto-correlations functions of the correlated in-

novations process and show that when the arbitrary filter gain equal to the Kalman filter

gain, the correlations functions are equal to zero, namely innovations are uncorrelated.

The derivations of auto-correlation functions the innovations generated from an ar-

bitrary filter are described in the following. These derivations yield explicit expressions

that relate the system and noise covariance matrices to the sample auto-correlation func-

tions of innovations. The derivation of auto-correlation functions of innovations from an

arbitrary filter is a result initially presented by Mehra, [15] and we re-derive it for mu-

tually correlated process and measurement noise. We consider the stochastic dynamical

system presented in Eqs.2.3.1-2.3.2 and one step predicting form Kalman filter model in

Eq.2.3.48 with an arbitrary stable gain K0, whose state estimates we denote as xk and

the innovations process as ek = yk − Cxk. The arbitrary stable filter gain K0, which
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can be obtained by placing the eigenvalues of A −K0C inside the unit circle. Another

option to calculate K0 might be using classical Kalman filter formulations for some Q,

R and S from whatever a priori knowledge there may be. The correlation function of

the innovations from the presented filter model is,

Lj
def
= E(ekek−j) (2.3.109)

We recall the estimation error definition,

εk
def
= xk − xk (2.3.110)

and the innovation sequence recurrence from Eq.2.3.103 as function of estimation error

and measurement noise as follows

ek = Cεk + vk (2.3.111)

Post-multiplying Eq.2.3.111 with its transpose and taking expectations on both sides

and introducing the definition in Eq.2.3.109, we write the auto-correlation function of

the innovations as follows

Lj = CE(εkεTk−j)C
T + CE(εkvTk−j) (2.3.112)

To obtain the terms E(εkεTk−j) and E(εkvTk−j) in Eq.2.3.112, we recall the state error

recurrence from Eq.2.3.25 and introduce to the arbitrary gain K0 into it

εk = (A−K0C)εk−1 −K0vk−1 +Gwk−1 (2.3.113)

An equation for the state error covariance, P̄ follows from Eq.2.3.113 and the assumption

of stationarity. Post-multiplying Eq.2.3.113 by its transpose and taking expectations one
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gets

P̄ = ĀP̄ Ā+K0RK
T
0 +GQGT −K0SG

T −GSTKT
0 (2.3.114)

where

Ā = A−K0C (2.3.115)

To get E(εkεTk−j) we follow the recurrence in Eq.2.3.113 and carrying it j steps back one

finds that

εk = Ājεk−j−
j∑
t=1

Āj−1K0vk−t +
j∑
t=1

Āj−1Bwk−t (2.3.116)

Post-multiplying Eq.2.3.116 by εTk−j and taking expectation

E(εkεTk−j) = ĀjP̄ (2.3.117)

where P̄ is the steady state error covariance which is the solution of the Riccati equation

given in Eq.2.3.114. Post-multiplying Eq.2.3.116 by vTk−j and taking expectation

E(εkvTk−j) = Āj−1GS − Āj−1K0R (2.3.118)

Substituting Eqs.2.3.117 and 2.3.118 into 2.3.112 one finally finds

Lj = CĀjP̄CT + CĀj−1GS − CĀj−1K0R j > 0 (2.3.119)

Post-multiplying Eq.2.3.111 by its transpose and taking expectations gives zero lag cor-

relation, namely
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Lj = CP̄CT +R j = 0 (2.3.120)

Eqs.2.3.119 and 2.3.120 constitute the correlations of the innovations from an arbitrary

gain, K0. Inspection of 2.3.120 show that the correlations decrease with lag if the

eigenvalues of the matrix Ā are inside the unit circle. As previously noted, Kalman

filter generates uncorrelated innovations and this property can be shown by equating

Eq.2.3.119 to zero and solving the gain that leads to zero covariance at all lags (other

than zero), which gives

K0 = (APCT +GS)(CPCT +R)−1 (2.3.121)

which, of course, is the steady-state Kalman gain as given in Eq.2.3.91.

Another version of auto-correlation functions of innovations from an arbitrary filter

can be derived using error definition between optimal and suboptimal estimates, namely,

[16]

ε̃k
def
= x̂k − xk (2.3.122)

where x̂k is the state estimate from optimal filter gain, K and xk is the estimate from

suboptimal filter gain K0. Following similar steps as shown previously, the functions

can be obtained as

Lj = CP̃CT + F j = 0 (2.3.123)

Lj = CĀjP̃CT + Āj−1KF − Āj−1K0F j > 0 (2.3.124)

where F is the covariance of innovations from optimal gain K. P̃ is the state error
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covariance in line with the state error definition given in Eq.2.3.122, namely

P̃ = E
[
(x̂k − xk)(x̂k − xk)T

]
(2.3.125)

which is the solution of following Lyapunov equation,

P̃ = ĀP̃ Ā+ (K −K0)F (K −K0)T (2.3.126)

2.3.10 Invariance Property of Kalman Gain

We provide some insights on uniqueness of the Kalman gain, K and covariance

of innovation process F with respect to noise covariance matrices, which is initially

introduced by Son and Anderson, [17]. Consider the output correlation function of the

stochastic system in Eq2.3.1-2.3.2 presented system is given

Λj
def
= E(ykyTk−j) (2.3.127)

We suppose that there is no deterministic input acting on the system, namely uk = 0.

Substituting Eq.2.3.2 into Eq.2.3.127 one gets

Λj = CE(xkxTk−j)C
T + E(xkvTk−j)C

T (2.3.128)

From Eq.2.3.1 one can show that

xk = Ajxk−j +Aj−1Bwk−j +Aj−2Bwk−j+1 + .......+Bwk−1 (2.3.129)

Post-multiplying xTk and taking expectations on both sides of Eq.2.3.129 gives

E(xkxTk−j) = AjΣ (2.3.130)
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where Σ is the state covariance in steady state, namely

Σ
def
= E(xkxTk ) (2.3.131)

One gets a Lyapunov equation for Σ by post-multiplying Eq.?? with transpose of itself

and taking expectations on both sides which gives

Σ = AΣAT +GQGT (2.3.132)

Post-multiplying Eq.2.3.129 with vTk and taking expectations on both sides gives

E(xkvTk−j) = Aj−1GS (2.3.133)

Substituting Eqs.2.3.131 and 2.3.133 into Eq.2.3.128 gives the auto-correlation functions

of output as follows

Λj = CΣCT +R j = 0 (2.3.134)

Λj = CAjΣCT + CAj−1GS j > 0 (2.3.135)

Defining,

M
def
= E(xkyk−1) (2.3.136)

substituting Eqs.2.3.1-2.3.2 into Eq.2.3.136 and imposing the assumptions in Eqs.2.3.8-

2.3.9 one gets

M = AΣCT +GS (2.3.137)
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The function of output correlations in Eq.2.3.135 can be reorganized as and using the

definition of Eq.2.3.137 it yields,

Λj = CAj−1M j > 0 (2.3.138)

The main observation from Eq.2.3.138 is that the output correlations are function of

A, C and M and although it involves the Q and S implicitly, different noise covariance

matrices can lead to same output correlations. To illustrate, consider a stochastic state

space model, in which the system matrices are given as follows,

A =

 0.1 0.1

0 0.2

 , G =

 1 0

0 1

 , C =
[

1 0

]

Assuming process and measurement noise are uncorrelated, S = 0, let us define two

scenarios for noise statistics as follows,

Q1 =

 1 0

0 1

 R1 = 1

Q2 =

 1.0103 0.0206

0.0206 0.0110

 R2 = 1

For these two scenarios of noise statistics, one can obtain the state error covariance, P ,

Kalman gain, K and covariance of innovations process, F using Eqs.2.3.50, 2.3.51 and

2.3.104, respectively, which are
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P1 =

 1.0157 0.0210

0.0210 1.0417

 K1 =

 0.0514

0.0021

 F1 = 2.0157

P2 =

 1.0157 0.0210

0.0210 0.0114

 K2 =

 0.5014

0.0021

 F2 = 2.0157

As seen, different Q matrices lead the same K and F even though the state error

covariance matrices, P1 and P2 are different. In fact there are many Q for the given

stochastic model that have same K, and there is one common property of these noise

covariance matrices that is they give different realization of output with same output

statistics. Consequently, it is not the Q but the K that is uniquely related to the output

statistics.

There is one particular Q and R duplet among the all possible Q and R solution set

that has an important relation with the K. Consider the innovation form of the Kalman

filter model given in Eq.2.3.48, which is

x̂k+1 = Ax̂k +Kek (2.3.139)

yk = Cx̂k + ek (2.3.140)

where ek is the innovation sequence as defined in Eq.2.3.101. In this form, the Kek can

be considered as an input to the filter and ek is a direct noise added to the measure-

ments. One can easily realize the relationship between system and filter models given in

Eqs.2.3.1-2.3.2 and Eqs.2.3.139-2.3.140, respectively. The covariance of the input (Kek)

and innovations process (ek) in the filter model can be calculated from E(KekeTkK
T ) and

E(ekeTk ), respectively. Moreover, these covariance matrices lead to same output statis-
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tics as the others, therefore, they also are in the set of all possible Q and R. However, it

is important to note that in this case process and measurement noise are mutually cor-

related and cross-covariance, S, can be calculated from E(KekeTk ). The noise covariance

matrices from this analogy are calculated as

Q =

 0.0053 0.0002

0.0002 0.000008

 R = 2.0157 S =

 0.1037

0.0042


which lead to a Kalman gain that is equal to K1 and innovations covariance that is equal

to F1.

The invariance property of K and F with respect to noise covariance matrices con-

stitutes the fundamental idea of direct estimation of K and F from measurements in

the absence of noise covariance matrices, which is explored in Chapter 3.

2.4 Continuous Time Kalman Filter

Kalman and Bucy presented continuous-time version of the Kalman filter [18] one

year after Kalman’s work on the optimal filtering. For this reason, the continuous-

time filter is sometimes called the Kalman-Bucy filter. The Kalman filter applications

are implemented in digital computers, therefore, the continuous time Kalman filter has

been used more for theory than practice. Consider a linear system in which the state

x(t) and measurements y(t) satisfy

ẋ(t) = Acx(t) +Bcu(t) +Gcw(t) (2.4.1)

y(t) = Ccx(t) + v(t) (2.4.2)
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with notations defined in Section 2.3, subscript c denotes continuous-time. ẋ(t) denotes

the derivative of the state x(t). We assume that process noise w(t) and measurement

noise v(t) are uncorrelated Gaussian stationary white noise with zero mean, namely

E(w(t)) = 0 (2.4.3)

E(v(t)) = 0 (2.4.4)

and

E(w(t)w(τ)T ) = Qcδ(t− τ) (2.4.5)

E(v(t)v(τ)T ) = Rcδ(t− τ) (2.4.6)

δ(t − τ) is the delta dirac function, which has a value of ∞ at t = τ , a value of 0

everywhere else. We note that, discrete-time white noise with covariance Q in a system

with a sample period of4t , is equivalent to continuous-time white noise with covariance

Qc = Q/4t, [12]. The continuous-time Kalman filter has the form:

˙̂x(t) = Acx̂(t) +Bcu(t) +Kc(t)(y(t)− Ccx̂(t)) (2.4.7)

where the Kalman gain Kc(t) is

Kc(t) = Pc(t)CTc R
−1
c (2.4.8)

and the state error covariance matrix Pc(t) satisfies
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Ṗc(t) = AcPc(t) + Pc(t)ATc − Pc(t)CTc R−1
c CcPc(t) +GcQcG

T
c (2.4.9)

which is called a differential algebraic Riccati equation. By letting t → ∞ such that

Ṗc(t) = 0, a steady state solution for Pc(t), which we denote as Pc, is obtained from

0 = AcPc + PcA
T
c − PcCTc R−1

c CcPc +GcQcG
T
c (2.4.10)

The conditions for uniqueness of solution of the equation Eq.2.4.10 are; Ac is stable (must

have all the eigenvalues on the left half complex plane), the pair (Ac, Cc) is observable,

the pair (Ac, GcQcGTc ) is controllable, Rc > 0 and GcQcGTc ≥ 0.

The expressions given in Eqs.2.4.7, 2.4.8 and 2.4.9 constitute the continuous-time

Kalman filter. The distinction between the prediction and update steps of discrete-time

Kalman filtering does not exist in continuous time and the covariance of the innovation

process (e(t) = y(t)−Ccx̂(t)) is equal to the covariance of measurement noise Rc, namely

E(e(t)e(τ)T ) = Rcδ(t− τ) (2.4.11)

Integrating Eq.2.4.9 and 2.4.7 numerically, the solution is advanced one time step to

obtain x̂(t+ 1). Pc(t+ 1).

2.5 Extended Kalman Filter

The extended Kalman filter (EKF) is an extension of the Kalman filter to the case

of nonlinear dynamical systems. Consider a nonlinear system that it is subjected to



48 Chapter 2: Kalman Filter Theory For the User

deterministic input u(t), unmeasured zero mean white Gaussian disturbances w(t) with

a covariance Qc described by

ẋ(t) = f(x, u, w, t) (2.5.1)

where f ε Rnxn is an arbitrary vector valued function. Measurements are assumed to

be linearly related to the state vector x(t) and available at discrete time steps and

contaminated by a realization of white noise vk with a covariance R, namely

yk = Cxk + vk (2.5.2)

In the treatment here, we assumed that unmeasured stochastic disturbance and mea-

surement noise are mutually uncorrelated. Given the nonlinear equations of motion and

measurement data, the EKF is used to calculate the minimum variance estimate of x(t).

The main idea of the extended Kalman filter is the linearization of the nonlinear equa-

tions of motion using Taylor series expansion around the Kalman filter estimate, and

calculation of the Kalman filter estimate based on the linearized system. The recursive

algorithm for the EKF is in essence the same as in linear Kalman filter, and consists of

two distinct steps: Prediction and Update.

Prediction Step:

In the prediction step, the state is propagated using a linear approximation of non-

linear system. Consider expanding the vector valued function f in Eq.2.5.1 in a Taylor

series about a nominal state x0, namely
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ẋ(t) = f(x0, u0, w0) +
∂f

∂x

∣∣∣∣
x0

(x(t)− x0) +
∂f

∂u

∣∣∣∣
u0

(u(t)− u0)+

+
∂f

∂w

∣∣∣∣
w0

(w(t)− w0) +H.O.T. (2.5.3)

We suppose that the mean state at time t, x̂(t) is known, and we want to propagate

the state x(t) at nominal state x0 = x̂(t), u0(t) = u(t) and w0(t) = 0. Introducing these

into Eq.2.5.4 and ignoring high order terms (H.O.T.) gives

ẋ(t) = f(x̂(t), u(t)) +
∂f

∂x

∣∣∣∣
x̂

(x(t)− x̂(t)) +
∂f

∂w

∣∣∣∣
w0

w(t) (2.5.4)

Taking the expectation of both sides gives

˙̂x(t) = f̂(x̂(t), u(t)) (2.5.5)

Thus a first order Taylor series approximation of the evolution equations of the state

and the state estimate are obtained. A differential equation for the estimation error

covariance matrix

P (t) = E((x(t)− x̂(t))(x(t)− x̂(t))T ) (2.5.6)

is derived by using Eqs.2.5.1 and 2.5.5
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Ṗ (t) = E(x(t)fT )− x̂(t)f̂T + E(fx(t)T )− x̂(t)f̂T (2.5.7)

Although the Eq.2.5.7 is exact, an approximation is needed to obtain the termsE(x(t)fT )

and E(fx(t)T ) since they cannot be computed in general [19]. Substituting the expansion

of the state evolution in Eq.2.5.4 and carrying out the indicated expectation operations

gives

Ṗ (t) = ∆(t)P (t) + P (t)∆(t)T +GcQG
T
c (2.5.8)

where ∆(t) and Gc are given by

∆(t) =
∂f(x, u, w, t)

∂x

∣∣∣∣
x(t)=x̂(t)

(2.5.9)

Gc =
∂f(x, u, w, t)

∂w

∣∣∣∣
w(t)=0

(2.5.10)

∆(t) is the Jacobian of the nonlinear function f(x, u, w, t) around current state x̂(t). The

Eqs.2.5.5 and 2.5.8 constitute the prediction step of the EKF. Integrating numerically

these equations, the solution for state estimate and state error covariance are advanced

one time step to obtain x̂(t+ 1) = x̂−k+1 and P (t+ 1) = P−k+1, respectively.

Update Step:

In the update step of the EKF, we suppose that the measurement at step k + 1 has

just been processed. The linearized system in Eq.2.5.4 changes based upon the predicted

state estimate but remains constant during the measurement step, therefore, the state



2.5: Extended Kalman Filter 51

estimate is updated as in the linear Kalman filter. In this step, the updated estimate of

the state x̂+
k+1 is obtained from

x̂+
k+1 = x̂−k+1 +Kk+1(yk+1 − Cx̂−k+1) (2.5.11)

The Kalman gain Kk+1 and the updated state error covariance P+
k+1 are calculated from

Kk+1 = P−k+1C
T (CP−k+1C

T +R)−1 (2.5.12)

P+
k+1 = (I −Kk+1C)P−k+1(I −Kk+1C)T +Kk+1RK

T
k+1 (2.5.13)

where R is the covariance of the measurement noise as discrete process. The filter is

initialized by using initial state estimate and state error covariance, namely

x̂0 = E(x̂0) (2.5.14)

P0 = E((x0 − x̂0)(x0 − x̂0)T ) (2.5.15)

For the linear Kalman filter, P is equal to the covariance of the estimation error.

This is not true in the extended Kalman filter since only first order terms are used in

linearization of Eq.2.5.1. However, if the linearization errors are small then P should

be approximately equal to the covariance of the estimation error. The main difference

between EKF and linear Kalman filter in the implementation is that the state error

covariance and the Kalman gain cannot be computed as closed form in the EKF. The

difficulty in EKF approach is need to solve Eq. 2.5.8 at each time step since the Jaco-

bian of the nonlinear function ∆(t) is updated using current state. For long-duration
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simulations and large size models this is computationally demanding.



Chapter 3

Steady State Kalman Gain

Estimation

3.1 Background and Motivation

In the classical presentation of the Kalman filter, the filter gain, K, is computed given

the state space model parameters (A, G, C) and noise covariance matrices (Q, R and S,

which are referred to as covariance of unknown excitations, covariance of measurement

noise, and cross-covariance between these two, respectively). Q, R and S are seldom

known a priori and work to determine how to estimate these matrices, and K from

the measured data began soon after introduction of the filter. Methods to estimate the

Kalman gain from measurements can be classified into two groups: (1) Direct Kalman

gain approaches, (2) Indirect noise covariance approaches.

The direct approaches identify the K directly from measured data. The indirect

approaches estimate the Q, R and S first, and then use them to obtain K. The state

error covariance matrix, P , provides an estimate of the uncertainty in estimates of the

53
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state. Therefore one can require P to evaluate the performance of the state estimation

as well as K. If all that is of interest is K, one can take the direct approach, i.e., from

the data to K, or the indirect one that estimates Q, R and S first. Nevertheless, if in

addition to estimating the state one is interested in the covariance of the state error,

then the computation of Q, R and S becomes necessary since there is no way to go from

the data to the state error covariance, P .

Another classification of the methods to estimate Kalman filter and noise covariance

matrices from data, which is initially presented by Mehra [20], has four categories : (1)

Bayesian estimation, (2) Maximum likelihood estimation, (3) Covariance matching and

(4) Correlation approaches. In the first two categories the problem is posed as parame-

ter estimation. The Bayesian estimation appraoch involves numerical integrations over

a candidate parameter space, which is reported being time consuming and impractical

in applications, [21]. In the maximum likelihood estimation, the parameters of noise co-

variance matrices or the Kalman gain are calculated by solving a nonlinear optimization

problem in which the convergence is not guaranteed, [22]. In the covariance matching

technique, noise covariance matrices are calculated on the premise that the sample co-

variance of the innovations is consistent with its theoretical value. The convergence of

the covariance matching technique has not been proved [23]. Among the methods that

have been developed to estimate Kalman gain and noise covariance matrices from data,

the correlation methods have received most attention. Since the output statistics have

the information of Q, R, S and K, the correlations are used to extract this information

from the measurements or the innovations from an arbitrary filter gain. The correlation

methods are mainly applicable to time invariant systems and estimate the K and noise

covariance matrices in an off-line setting.

In the innovations approach, one begins by postulating an arbitrary stable filter and

calculates the optimal gain, the K, from analysis of the resulting innovations. The basic
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idea is to derive a set of equations relating the system matrices to the sample auto-

correlation functions of innovations or measurements, and these equations are solved

simultaneously for the noise covariance matrices or the steady state Kalman gain. The

output correlation approach can be viewed as a special case of the innovations where the

initial gain is taken as zero. In practice, however, the output correlation alternative has

been discussed as a separate approach (probably) because the mathematical arrange-

ments that are possible in this special case cannot be easily extended to the case where

K 6= 0. The correlation approach requires the system to be stable and the output to

be stationary. The innovations correlation approach, however, is applicable to unstable

systems. Both methods require the system to be completely controllable and observ-

able. Output and innovations correlation approaches are considered for both direct and

indirect Kalman gain estimation.

The study in this chapter examines the correlation approaches. A fundamental

contribution on the innovations correlations approach is the paper by Heffes [24], who

derived an expression for the covariance of the state error of any suboptimal filter as a

function of Q, R, assuming process and measurement noise are mutually uncorrelated,

namely S = 0. The use of correlations of measurements and innovations from an arbi-

trary filter gain to estimate the noise covariance matrices first was considered by Mehra

[20, 15], who built on Heffes’s expression. Given Mehra’s algorithm, it may appear that

the Q and R problem had been solved, but interest lingered because the solution is

sensitive to the inevitable errors in the estimation of the covariance of the innovations.

Some modifications to Mehra’s algorithm that could lead to improved performance were

noted by Neethling and Young [25], namely: 1) solving a single least square problem by

combining the parameters of Q and R in a vector, 2) enforcement of semi-definitiveness

in the covariance matrices and 3) formulation of the problem as an over-determined

weighted least squares one.
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In the innovations approach results used for Q and R depend on the initial estimation

of noise covariance matrices to obtain a suboptimal filter gain and a question that arises

is whether the answer is sensitive to this selection or not. In this regard, Mehra [15]

suggested that the estimation of Q and R could be repeated by starting with the gain

obtained in the first attempt, but this expectation was challenged by Carew and Belanger

[16], who noted that if the exact gain is used as the initial guess the approximations in

the approach are such that the correctness will not be confirmed. Recently, some other

contributions to the Mehra’s approach on the estimation of noise covariance matrices

are presented. Odelson, Rajamani, and Rawlings applied the suggestions of Neethling

and Young’s on Mehra’s approach and used the vector operator solution for state error

covariance Riccatti equation of suboptimal filter, [26]. Akesson et al. extended their

work for mutually correlated process and measurement noise case i.e., S 6= 0, [27]. Bulut,

Vines-Cavanaugh and Bernal compared the performance of the output and innovations

correlations approaches to estimate noise covariance matrices, [28]. Dunik, Simandl,

and Straka compared the method presented by Odelson, Rajamani, and Rawlings to a

combined state and parameter estimation approach [29].

The most widely quoted strategies to carry out the direct estimation of K are due

to Mehra [15] and the subsequent paper by Carew and Belanger [16]. The techniques

are both iterative in nature and use correlations of innovations from an arbitrary gain.

Mehra’s approach has disadvantage of solving another Lyapunov equation in each iter-

ation. Moreover, examination show that the accuracy of the estimates highly depends

on the initial gain. The method requires the initial gain being close to the correct one,

otherwise, the Kalman gain estimates are converging to wrong values even though exact

correlation functions of innovations are used. Carew and Bellanger’s strategy to calculate

K is based on the estimation error that is defined as discrepancy between optimal state

estimates obtained from Kalman gain, and state estimates obtained form an arbitrary
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gain. The main advantages of this method are solving Lyapunov equation for state error

covariance and updating the estimate of K in the same recursion as opposed to Mehra’s

approach. Carew and Bellanger’s technique is robust to initial gain. Output correlation

approach for direct estimation of Kalman gain is presented by Mehra in 1972 [20] and

one year later the same approach has been shown by Son and Anderson in more detail,

[17]. The most important difference of the output correlation approach compared to the

innovations correlation approach is its being non-recursive. The drawback of the output

correlations approach is that poor estimates of sample output correlations functions can

lead to an ill-conditioned Riccati equation.

In an off-line setting the estimation of noise statistics and the associated optimal

gain lead to a problem of the form;

HX = L (3.1.1)

where H is a tall matrix formed by using system matrices and the arbitrary filter gain,

X is a column vector contains the entries in noise covariance matrices as unknowns and

L is a vector valued function of correlation functions calculated from

Λj
def
= E(ykyTk−j) =

1
N − j

N−j∑
k=1

yky
T
k−j (3.1.2)

Lj
def
= E(ekeTk−j) =

1
N − j

N−j∑
k=1

eke
T
k−j (3.1.3)

where Λj is the correlation functions of measurements yk, Lj is the correlation functions

of innovations ēk from an arbitrary filter, and N is the number of time steps. In theory,

when N → ∞, exact values of Λj and Lj can be calculated from Eqs.3.1.2-3.1.3, from

which an exact L is formed. When H is full rank and L is exact, a unique and exact
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solution for X is obtained from Eq.3.1.1. However in practical applications, only an

estimate of Λj and Lj can be calculated since a finite duration of observed data is

available, namely N � ∞. Therefore, the error in L is an inevitable problem in the

correlations approaches. Let L̂ be an estimate of L with error ε, namely L = L̂ + ε.

Substituting it in Eq.3.1.1 gives

HX = L̂+ ε (3.1.4)

A minimum error norm approximation of X, which we denote as X̂ can be calculated

from Eq.3.1.4, however, the estimates rely heavily on the accuracy of the L̂, which, in

general, requires a large amount of data. An illustration to this point by quantifying

the size of the variance in inflation associated with correlation methods is depicted in

Fig.3.1, in which a three-degree-of-freedom shear frame subjected to unmeasured Gaus-

sian disturbance with a unit covariance at the first story is considered. Covariance of

unmeasured disturbance is estimated from correlation of innovation process generated

an arbitrary gain, The results are obtained from 100 simulations for three cases with

durations of measurements as {100, 200, 500} seconds. The probability distribution

functions of estimates of Q are estimated from 100 simulations by fitting a generalized

extreme value density function. As can be seen, the increase in the durations of mea-

surements is resulting in better estimates of Q. However, although 500 seconds of data

(sampled at 200Hz) is used, the estimates of Q has a standard deviation of 0.465, and

in some some cases the estimates are negative which is unphysical.

The approximate solution of noise covariance matrices and the K calculated from

Eq.3.1.4 is very sensitive to the changes in the right hand side due to the fact that

coefficient matrix, H is in general ill-conditioned. This implies that the possibility exists

for the small error in L which leads to very large changes on the calculated solution of X.

Therefore, correlation approaches lead to very poor estimates of covariance matrices and
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Kalman gain, not to mention that in some cases they are simply wrong. The study in

this chapter is aimed to investigate the merit of Tikhonov’s regularization technique in

the estimation of the noise covariance matrices and optimal gain. Part of the objective

of the chapter is to offer a detailed review of the classical correlation based approaches

that may prove useful in structural engineering.

Figure 3.1: Experimental PDFs of process noise covariance estimates from 100 simula-
tions.

3.2 Indirect Noise Covariance Approaches

3.2.1 The Output Correlations Approach

Output correlations approach to estimate noise covariance matrices has two main

steps. In first step estimates of Q and S are obtained using sample correlation functions

of measurement. In the second step R is calculated by using sample zero lag correlation

and state covariance, Σ.
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Estimation of Q and S

Applying the vec operator to Eqs.2.3.135 and 2.3.132 one obtains

vec(Λj) = (C ⊗ CAj)vec(Σ) + (I ⊗ CAj−1G)vec(S) (3.2.1)

and

vec(Σ) = (I − (A⊗A))−1(G⊗G)vec(Q) (3.2.2)

where ⊗ denotes the Kronecker product. Substituting Eq.3.2.2 into Eq.3.2.1 and orga-

nizing one gets

lj =
[
hQj hSj

] vec(Q)

vec(S)

 (3.2.3)

where

lj = vec(Λj) (3.2.4)

hQj =
[
C ⊗ CAj)(I − (A⊗A))−1(G⊗G)

]
(3.2.5)

hSj =
[
(I ⊗ CAj−1G)

]
(3.2.6)

Listing explicitly the correlation functions in Eq.3.2.3 for lags j = 1, 2 , ..p, and writing

in matrix form one has

HX = L (3.2.7)

where
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H =



hQ1 hS1

hQ2 hS2
...

...

hQp hSp


, L =



l1

l2
...

lp


, X =

 vec(Q)

vec(S)

 (3.2.8)

Estimates of Q and S can be obtained from Eq.3.2.7. Examination of Eq.3.2.7 shows

that H has dimensions m2px(r2 + mr) where we recall that m and r represent the

numbers of outputs and independent disturbances, respectively.

The sufficient condition for the uniqueness of the solution of Eq.3.2.7 is defined as

follows in the general case: the number of unknown parameters in Q and S have to be

smaller than the product of number of measurements and the state. The error in solving

Eq.3.2.7 for X is entirely connected to the fact that the L is approximate since it is

constructed from sample correlation functions of the output which are estimated from

finite duration signals. Substituting L̂ as the estimate of L, the solution of Eq.3.2.7 can

be presented as in the following.

Case #1 mn = (r2 +mr)

In this case H is full rank and there exists a unique minimum norm solution for a

weighting matrix I given in the following,

X̂ = (HTH)−1HT L̂ (3.2.9)

Case #2 mn < (r2 +mr)
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In this case the matrix is rank deficient, and the size of null space of H can be calculated

from t = r2 −mn. The solution is written as follows,

X̂ = X̂0 + null(H)Y (3.2.10)

where X̂0 is the minimum norm solution given in Eq.3.2.9 and Y εRtx1 is an arbitrary

vector. Therefore, we conclude Eq.3.2.7 has infinite solution when mn < (r2 +mr).

Estimation of R

Estimation of R is quite simple after one has Q and S. It first requires solving the

Lyapunov equation in Eq.2.3.132 for Σ, then using the zero lag correlation function in

Eq.2.3.134, estimate of R can be obtained as follows,

R̂ = Λ̂0 − CΣ̂CT (3.2.11)

Although a unique solution for Q and S does not exist when mn < (r2 + mr),

any of the solution for Q, R and S from Eqs.3.2.10 and 3.2.11, still gives the optimal

Kalman gain. K can be calculated using classical approach which involves solving Riccati

equation given in Eq.2.3.50 for error covariance, P and obtaining K from Eq.2.3.51. In

fact in this case although resulting K and covariance of innovations F are correct, P

is not correct and it cannot be calculated without knowing the correct noise covariance

matrices.

3.2.2 The Innovations Correlations Approach

As opposed to output correlations approach, innovations correlations approach gives
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estimates of noise covariance matrices from a single step procedure. We start apply-

ing vec operator to both sides of the auto-correlation function of the innovations in

Eqs.2.3.119-2.3.120, namely

vec(Lj) = (C ⊗ C)vec(P̄ ) + vec(R) j = 0 (3.2.12)

vec(Lj) = (CĀj ⊗ C)vec(P̄ ) + (GT ⊗ CĀj−1)vec(S)−

−(I ⊗ CĀj−1K0)vect(R) j > 0
(3.2.13)

and applying vec operator to error covariance equation in Eq.2.3.114, one has

vec(P̄ ) = [I − (Ā⊗ Ā)]−1[(K0 ⊗K0)vec(R) +G⊗Gvec(Q)−

− (G⊗K0)vec(S)− (K0 ⊗G)vec(ST )] (3.2.14)

Substituting Eq.3.2.14 into Eqs.3.2.12 and 3.2.13 , and adding the terms related to ST

to the terms related to S and canceling ST , one finds

vec(Lj) =
[
hQj hSj hRj

]
vec(Q)

vec(S)

vec(R)

 (3.2.15)
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where

hQj = (C ⊗ C)[I − (Ā⊗ Ā)]−1(G⊗G) j = 0 (3.2.16)

hQj = (C ⊗ CĀj)[I − (Ā⊗ Ā)]−1(G⊗G) j > 0 (3.2.17)

hSj = −2I(C ⊗ C)[I − (Ā⊗ Ā)]−1(G⊗K0) j = 0 (3.2.18)

hSj = (BT ⊗ CĀj−1)− 2I[(C ⊗ CĀj)[I − (Ā⊗ Ā)]−1(G⊗K0)] j > 0 (3.2.19)

hRj = (C ⊗ C)[I − (Ā⊗ Ā)]−1(K0 ⊗K0) + I j = 0 (3.2.20)

hRj = (C ⊗ CĀj)[I − (Ā⊗ Ā)]−1(K0 ⊗K0)− (I ⊗ CĀj−1K0) j > 0 (3.2.21)

Listing explicitly the correlation functions in Eq.3.2.15 for lags j = 1, 2 , ..p and writing

in matrix form one has

HX = L (3.2.22)

where

H =



hQ0 hS0 hR0

hQ1 hS1 hR1

hQ2 hS2 hR2
...

...
...

hQp hSp hRp


, L =



vec(L0)

vec(L1)

vec(L2)
...

vec(Lp)


, X =


vec(Q)

vec(S)

vec(R)



Estimates of Q, S and R can be obtained from Eq.3.2.22. From its inspection, one

finds that H has dimensions m2px(r2 + m2 + mr). The sufficient condition for the

uniqueness of the solution of Eq.3.2.22 is identical with the uniqueness of the solution of

Eq.3.2.7. The observations presented in section 3.2.1 on the uniqueness of the Kalman

gain, K , the error covariance, P , and covariance of the innovations, F , hold in this case
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as well.

3.3 Direct Kalman Gain Approaches

3.3.1 The Output Correlations Approach

Output correlations approach for direct estimation of Kalman gain has three steps.

In the first step, an estimate of AΣCT +GS is obtained from sample correlation functions

of measurement solving a least square problem. In the second step, a Riccati equation

is solved for state error estimate covariance using the estimate of AΣCT +GS and zero

lag correlation. In the last step, the Kalman gain K is obtained using the state estimate

covariance Σ and zero lag correlation of output. We start with listing explicitly the

correlation functions in Eq.2.3.135 for lags j = 1, 2 , ..p, namely

Λ1 = C(AΣCT +GS) (3.3.1)

Λ2 = CA(AΣCT +GS) (3.3.2)

Λ2 = CA3(AΣCT +GS) (3.3.3)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Λp = CAp−1(AΣCT +GS) (3.3.4)

from where one can write

Λ = T (AΣCT +GS) (3.3.5)

where
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Λ =



Λ1

Λ2

...

Λp


(3.3.6)

and

T =



C

CA

...

CAp−1


(3.3.7)

The estimate of (AΣCT+GS) can be obtained from minimum norm solution of Eq.3.3.5

using sample correlations as follows

AΣCT +GS = T †Λ̂ (3.3.8)

where T † is the pseudo-inverse of T . On the assumption that the system is stable

and observable one concludes that T attains full column rank when p is no larger than

the order of the system, n. The error in solving Eq.3.3.8 for AΣCT + GS is entirely

connected to the fact that the Λ̂ is approximate since it is constructed from sample

correlation functions of the output which are estimated from finite duration signal.

One can write the relation between state error covariance and state covariance as

follows, [30]

P = Σ− Γ (3.3.9)

where Γ is the state estimate covariance, namely
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Γ
def
= E(x̂kx̂Tk ) (3.3.10)

Substituting Eq.3.3.9 into Eq.2.3.91, one gets

K = (AΣCT −AΓCT +GS)(CΣCT − CΓCT +R)−1 (3.3.11)

Defining

M
def
= AΣCT +GS (3.3.12)

and using zero lag correlation of output in Eq.2.3.134, yields

K = (M −AΓCT )(Λ0 − CΓCT )−1 (3.3.13)

One requires state estimate covariance, Γ to obtain an estimate of K from 3.3.13.

Substituting Σ from Eq.2.3.132 and P from Eq.2.3.90 into Eq.3.3.9 one can obtain the

following Riccati equation for Γ,

Γ = AΓAT −(AΣC−AΓC+GS)(CΣCT −CΓCT +R)−1(AΣC−AΓC+GS)T (3.3.14)

Using the definition in Eq.3.3.12 and zero lag correlation in Eq.2.3.134, yields

Γ = AΓAT − (M −AΓC)(Λ0 − CΓCT +R)(M −AΓC)T (3.3.15)

Substituting the estimates of M and zero lag correlation Λ0 into Eq.3.3.13, one gets

Γ̂ = AΓ̂AT − (M̂ −AΓ̂C)(Λ̂0 − CΓ̂C)−1(M̂ −AΓ̂C)T (3.3.16)
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Finally, estimate ofK is obtained by solving the Riccati Eq.3.3.16 for Γ̂, and substituting

it into Eq.3.3.13, gives

K̂ = (M̂ −AΓ̂CT )(Λ̂0 − CΓ̂CT )−1 (3.3.17)

We note that an estimate of covariance of innovations process from optimal filter can be

obtained from

F̂ = Λ̂0 − CΓ̂CT (3.3.18)

Output correlations approach to estimateK is summarized in three steps in the following:

(1) Obtain estimate of M from Eq.3.3.8.

(2) Solve the Riccati equation in Eq.3.3.16 for Γ̂ using the estimates of M and Λ0.

(3) Obtain estimate of K from 3.3.17 using the estimates of M , Λ0 and Γ.

3.3.2 The Innovations Correlations Approach

Here we describe an innovations correlations approach for direct estimation of K

which initially presented by Carew and Bellanger [16]. We start rewriting innovations

correlation functions by combining Eqs.2.3.123 and 2.3.124 as follows

Lj = CĀj−1(AP̃CT +KF −K0L0) j > 0 (3.3.19)

Listing explicitly the correlation functions in Eq.3.3.19 for lags j = 1, 2 , ..p one has
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L1 = C(AP̃CT +KF −K0L0) (3.3.20)

L2 = CĀ(AP̃CT +KF −K0L0) (3.3.21)

L3 = CĀ2(AP̃CT +KF −K0L0) (3.3.22)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

Lp = CĀp−1(AP̃CT +KF −K0L0) (3.3.23)

from where one can write

L = O(AP̃CT +KF −K0L0) (3.3.24)

where

L =



L1

L2

L3

...

Lp


, O =



C

CĀ

CĀ2

...

CĀp−1


As can be seen, matrix O is the observability block of an observer whose gain is K0.

On the assumption that the closed loop is stable and observable one concludes that O

attains full column rank when p is no larger than the order of the system, n. Defining

Z = AP̃CT +KF (3.3.25)

and accepting that the matrix, O is full rank and using the estimates of L0 and L one

finds that the unique least square solution to Eq.3.3.24 is
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Ẑ = O†L̂+K0L̂0 (3.3.26)

where O† is the pseudo-inverse of O. The error in solving Eq.3.3.26 for Z is entirely

connected to the fact that the L̂0 and L̂ matrices are approximate since they constructed

from sample correlation functions of the innovations which are estimated from finite

duration signal.

Solving Lyapunov equation in Eq.2.3.126 for P̃ is essential to calculate K from Z.

This requires a recursive algorithm which is shown in the following,

Fk = L̂0 − CP̃kCT (3.3.27)

Kk = (Ẑ −AP̃kCT )F−1
k (3.3.28)

P̃k+1 = ĀP̃kĀ
T + (Kk −K0)Fk(K −K0)T (3.3.29)

Algorithm can be started assuming P̃0 is a null matrix. Reader is referred to [16] for

convergence analysis of the algorithm.

3.4 Ill-conditioned Least Square Problem

In this section we address the ill-conditioned least square problem that arise in corre-

lation approaches and describe Tikhonov’s regularization technique to approach the mat-

ter. As shown in the sections 3.2-3.3, the correlation methods to estimate the Kalman

gain from measurements lead to a problem of the form (refer to Eqs.3.2.7-3.3.8 and

Eqs.3.2.22-3.3.26 for output and innovations correlations approaches, respectively),

HX = L (3.4.1)
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where H εRaxb is a tall matrix formed by using system matrices and the arbitrary filter

gain, X ε Rbx1 is a column vector contains the entries in noise covariance matrices as

unknowns and L εRax1 is a vector valued function that contains correlation functions of

the output or innovations correlations. In the limiting case where the output sequences

is infinite an exact L can be calculated. When H is full rank and L is exact, a unique

and exact least squares minimum norm solution of Eq.3.4.1 is calculated from

X = min
X

(‖HX − L‖2) (3.4.2)

where
∥∥·∥∥

2
denotes the L2 vector norm. A closed form solution is

X = H†L (3.4.3)

where † denotes pseudo inverse, namely

H† = (HTH)−1HT (3.4.4)

Another form of the solution can be given by using singular value decomposition (SVD)

of H, which is

H = UΣV T =
b∑
i=1

uiσiv
T
i (3.4.5)

where U = (u1, . . . , ub) and V = (v1, . . . , vb) are matrices with orthonormal columns,

UTU = V TV = I , and Σ = diag(σ1, . . . , σb) has non-negative diagonal elements ap-

pearing in decreasing order such that

σ1 > . . . σb > 0 (3.4.6)

Replacing H in Eq.3.4.3 by its SVD yields
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X = V Σ†UTL (3.4.7)

X =
b∑
i=1

uTi L

σi
vi (3.4.8)

As can be seen from Eq.3.4.8 that the solution is controlled by the singular values σi.

A condition that insures the solution stability is that the term uTi L on the average has

to decay to zero faster than the corresponding values of σi, which is known as Discrete

Picard Condition (DPC).

The issue in the correlations approaches is that, in practical applications, only an

estimate of output or innovations correlations can be calculated since a finite duration of

observed data is available. Therefore, the uncertainty in the estimate of L is an inevitable

problem. Let L̂ be an estimate of L with error ε, namely L̂ = L+ ε. Substituting it in

Eq.3.1.1 gives

HX = L+ ε (3.4.9)

A least squares approximation of X, which we denote as X̂, is calculated from

X̂ = min
X

(∥∥∥HX − L̂∥∥∥
2

)
(3.4.10)

and SVD form of the solution is

X̂ =
b∑
i=1

uTi L

σi
vi +

b∑
i=1

uTi ε

σi
vi (3.4.11)

Thus X̂ consists of two terms, one is the actual solution of the error-free problem, and

the other is the contribution from the error. In correlations approaches, the accuracy
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of X̂ rely heavily on the second term which does not satisfy the DPC. The term uTi ε

corresponding to the smaller σi do not decay as fast as the σi, therefore the solution

governed by the terms in the sum corresponding to the smallest σi . An illustration

of this issue is depicted in Fig.3.2. As can be seen most of the uTi L satisfied the DPC

however for large i both the uTi L and the σi become dominated by rounding errors. For

the same problem with L̂, we see that the uTi L̂ become dominated by the error so small

values of σi are causing the ratios uT
i L̂
σi

blow up.

Figure 3.2: Discrete Picard Condition (DPC) [31], Top: DPC for L and, Bottom: DPC
for L̂.

In practical applications, the condition number of H is used to describe how sensitive

the solution is to changes in L̂, which is defined as the ratio of the largest singular values

of the H to the smallest, namely

κH =
σ1

σb
(3.4.12)

The big condition number implies that the possibility exists for small error in L lead to
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very large changes on the calculated solution ofX. A matrix with a low condition number

is said to be well-conditioned, while a matrix with a high condition number is said to be

ill-conditioned. The ill-conditioning of H matrix in Eq.3.4.1 is a concern only when one

must operates with finite length sequences which is the case in real situations. In the

limiting case where the output sequences are infinite in principle the results from output

correlations and innovations correlations converge to the exact solution independently

of the conditioning of the H matrix. The theory for ill-conditioned problems is well

developed in the literature. A review can be found in [32].

Tikhonov’s Regularization

Numerical regularization methods aim to calculate an approximate solution for ill-

conditioned problem by formulating a related well-conditioned problem that applies some

constraint to the desired solution. In general, the constraint is chosen such that the size

of the solution is controlled, namely

‖X‖2 < δ (3.4.13)

The constraint on the solution leads to a multi-objective problem where one tries to

balance the perturbations and the constraint on the solution. Therefore regulariza-

tion methods has two aspects: (1) Computation of the regularization parameter and

(2) Computation of the regularized solution, [33]. Among the regularization methods

the Tikhonov’s method is most commonly used and well-known form of regularization,

because of the existence of a closed-form solution. A general form of the Tikhonov’s

regularization, which is basically adding a side constraint to the objective function, is
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X̂ = min
X

(∥∥∥HX − L̂∥∥∥2

2
+ λ2

∥∥∥(X − X̂0)
∥∥∥2

2

)
(3.4.14)

where is λ regularization parameter chosen by the user which introduces a suitable bias-

variance trade-off between the residual norm,
∥∥∥HX − L̂∥∥∥

2
and solution norm,

∥∥∥(X − X̂0)
∥∥∥

2

and X̂0 is initial guess for the solution. The closed form of the Tikhonov’s regularization

in Eq.3.4.14 can be written as

X̂ = X̂0 + (HTH + λ2I)−1HT (L̂−HX̂0) (3.4.15)

where I is the identity matrix. λ controls the sensitivity of the regularized solution X̂

to the norm of the solution and perturbations in L. A large λ (equivalent to a large

amount of regularization) favors a small solution norm at the cost of a large residual

norm, while a small λ has the opposite effect.

An alternative form of the Tikhonov’s regularization is given as follows

X̂ = min
X


∥∥∥∥∥∥∥
 H

λI

X −
 L̂

0


∥∥∥∥∥∥∥

2

 (3.4.16)

which is also called damped least square problem. Applying SVD of the H matrix given

in Eq.3.4.5 yields

X̂ = V (ΣTΣ + λ2I)−1ΣTUT L̂ (3.4.17)

X̂ =
b∑
i=1

ϕi
uTi L̂

σi
vi (3.4.18)

where ϕi is called Tikhonov’s regularization filter factors
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ϕi =
σ2
i

σ2
i + λ2

'


1 σi � λ(σi
λ

)2
σi � λ

(3.4.19)

As can be seen from Eq.3.4.18 that Tikhonov’s regularization performs as a filter where

the contribution of the singular values, that make the system ill-conditioned, is damped

out. Thus, the regularization parameter, λ is an important quantity which controls the

effect of singular values that close zero on the solution, [31].

Many numerical methods are proposed to compute λ in the literature, in which L-

curve and generalized cross-validation (GCV) methods are the most commonly used and

well-known. GCV technique is based on the strategy that if an arbitrary element of the

L is left out, then the corresponding regularized solution should predict this element of

L with good approximation [34, 31]. In the L-curve method, one plots the norm of the

regularized solution ||X − X0||2 versus the corresponding residual norm,
∥∥∥HX̂ − L̂∥∥∥

2

for all possible regularization parameters. The plot demonstrates the trade off between

minimization of these two quantities, and when log-log scale is used for plotting, almost

always has a characteristic L-shaped appearance with a corner separating the vertical

and the horizontal parts of the curve. The λ used in Tikhonov’s regularization is the

one that gives the corner of the L curve, [35]. The generic form of an L-curve is depicted

in Fig.3.3. The vertical part of the L-curve corresponds to solutions where ||X −X0||2

is very sensitive to changes in λ because of the error in L̂. The horizontal part of

the L-curve corresponds to solutions where it is the residual norm
∥∥∥HX − L̂∥∥∥

2
that is

most sensitive to the regularization parameter because the solution is dominated by the

regularization error.

There are many other regularization methods besides Tikhonov’s regularization with

properties that make them better suited to certain problems. For other methods, the
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Figure 3.3: The generic form of the L-curve [31].

reader is referred to [32, 31].

Enforcing Positive Semi-definitiveness

By definition, the noise covariance matrix constructed from Q, R and S is positive

semi-definite (i.e., all their eigenvalues are ≥ 0), namely

4 def
=

 Q S

ST R

 > 0 (3.4.20)

However, due to error in sample correlation functions, the least squares solution of from

Eq.3.4.10 may not satisfy this requirement. In the general case one can satisfy positive

semi-definitiveness by recasting the problem as an optimization with constraints which

is minimizing the ||HX− L̂||2 subject to constraint that all eigenvalues of 4 > 0 namely

X̂ = min
4̂>0

(∥∥∥HX − L̂∥∥∥
2

)
(3.4.21)

The positive semi-definitiveness constraint on the regularized solution can be applied by

recasting the problem as
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X̂ = min
4̂>0

(∥∥∥HX − L̂∥∥∥2

2
+ λ2

∥∥∥(X − X̂0)
∥∥∥2

2

)
(3.4.22)

Eqs.3.4.21-3.4.22 are called are least square problem with semi-definite constraint and

they can be solved by optimization, [36, 27]. As described in the sections 3.2-3.3, the

expressions in innovations correlations approach allows to enforce the positive semi-

definiteness of the solution when solving for Q, R and the S. However in output corre-

lations approach the X in Eq.3.2.7 involves only the unknowns of Q and S. R has to

be calculated from Eq.3.2.11, which requires the estimates of Q and S. Therefore en-

forcing the positive semi-definiteness of the solution for X is not possible in the output

correlations approach.

3.5 Numerical Experiments

3.5.1 Experiment 1: Five-DOF Spring Mass System

In this experiment, we present an application of innovations correlations approaches

to estimate steady Kalman filter gain using the five-DOF spring mass system depicted in

Fig.3.4. The un-damped natural frequencies (in Hz) are {2.45, 6.75, 12.21, 13.32, 16.12,

16.5}.

We obtain results for a single output sensor located at coordinate three, which is

measuring the velocity data at 100Hz sampling. The stationary stochastic disturbances

are assumed to act at all masses. The measurement noise is prescribed to have a root-

mean-square (RMS) equal to approximately 10% of the RMS of the response measured.

Unmeasured excitations and measurement noise are assumed to be mutually uncorre-

lated, namely S = 0. Two cases of noise statistics are considered which are given in the

following,
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Figure 3.4: Five-DOF spring mass system, m1 = m3 = m4 = m5 = 0.05, m2 = 0.10,
k1 = k3 = k5 = k7 = 100, k2 = k4 = k6 = 120, (in consistent units). Damping is 2% in
all modes.

Case I: Uncorrelated Process Noise;

Q =



3 0 0 0 0

0 5 0 0 0

0 0 4 0 0

0 0 0 2 0

0 0 0 0 4


R = 0.030 S = 0

Case II: Correlated Process Noise;

Q =



19 6 11 0 −4

6 6 5 1 −5

11 5 9 −2 −4

0 1 −2 5 1

−4 −5 −4 1 6


R = 0.125 S = 0

Innovations correlations approaches are applied to estimate the steady state Kalman

gain K in line with sections 3.2-3.3. Innovations process is generated using an arbitrary

gain, K0, that is chosen such that eigenvalues of the matrix A − K0C are assumed to

have the same phase as those of A but with a 20% smaller radius. In the indirect noise
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covariance approach, the construction of H matrix from Eq.2.5.9 requires only A, C and

K0.

In general case, where one does not know the spatial distribution of the noise and

correlation terms in the covariance, full noise covariance matrices with no zero terms

can be considered. In Case II, by taking the symmetry into account, the number of

unknowns in Q is 15 and in R is 1, which results to an H matrix with 16 columns.

However, in Case I only diagonal terms of Q are of interest, so H is constructed by

taking only related columns of the full H matrix. The change in the condition number

of H matrix for two noise cases, from a range of p = {6 − 60} is depicted in Fig.3.5,

and 50 lags of correlation functions of innovations process is taken into consideration for

further calculations.

Figure 3.5: Change in the condition number of H matrix with respect to number of
lags.

The condition number of H matrix in Eq.3.2.22 for p = 50 is 1.0043x104 and

6.53x1016 for Case I and Case II, respectively. In Case I, the number unknown pa-

rameters in Q is smaller than mxn, namely
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mxn = 1x10 = 10 > 5

Therefore, uniqueness condition of noise covariance matrices is satisfied and Q and R

matrices are estimated uniquely. In Case II, the number of unknown parameters in Q is

bigger than mxn, namely

mxn = 1x10 = 10 < 15

Therefore the H matrix is rank deficient and solution for noise covariance matrices is not

unique. Although a unique solution does not exist in this case, the Q and R estimates

are used to calculate the K from classical formulations of the KF. The sample innovation

correlations functions are calculated using 200 seconds of data.

Figure 3.6: Discrete Picard Condition of five-DOF spring mass system; Left: Case I,
Right: Case II.

Stability of the least squares solution is examined using Discrete Picard Condition,

which is depicted in Fig.3.6. As can be seen poor conditioned H matrix and insufficient

accuracy in the estimates of innovation correlations lead to and ill-conditioned least

square problem. Particularly, the estimates of K and noise covariance matrices from

the ill-conditioned least square problem in Case II are simply wrong. The H matrix
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in Case II is more poorly conditioned than the H matrix in Case I. That is due to

the fact that the number of unknowns in Case II much more than the Case I. The

Tikhonov’s regularization with enforcing positive semi-definitiveness of the Q and R

on the solution is applied in accordance with section 3.4. Regularization parameter is

calculated λ = 0.00028 using L-curve approach. An illustration of L-curve from one

simulation is presented in Fig.3.7.

Figure 3.7: The L-curve for five-DOF spring mass system (Case II).

Histograms of Q and R estimates from 200 simulations for Case I are depicted in

Fig.3.8. As can be seen, the estimates of R and 2nd, 3rd, and 5th diagonals of Q are

quite successful with ratio of σ/µ < 0.1. The estimates of 1st and 4th diagonals of Q are

poor, they have values of 0.53 and 0.61 for ratio of σ/µ, respectively.

We present the poles of the estimated Kalman filter calculated from indirect noise

covariance and direct filter gain approaches in Fig.3.9. As can be seen, the estimated

filter poles are very close to correct values.

We check optimality of the estimated Kalman gain by comparing theoretical covari-

ance of innovations process, F , and with its experimental estimate. Theoretical values of
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Figure 3.8: Histograms ofQ and R estimates from 200 simulations for Case I in numerical
testing using five-DOF spring mass system.

covariance of the optimal innovations are 0.33 and 0.55 in Case 1 and in Case 2, respec-

tively. Histograms of innovations covariance estimates from 200 simulations are depicted

in Fig.3.10. As can be seen variances of the innovations covariances estimates from 200

simulations are very small and the mean values are identical with the theoretical values.

This results shows that the estimated K are nearly optimal.

The estimation of K from measurements is successfully exemplified on a five-DOF

spring-mass model, which demonstrated that the Tikhonov’s regularization is a useful

tool in order to obtain the estimates of K from finite data. However the challenges in

structural engineering applications remains to be checked since the size of the model

can be an issue, which is examined in the following numerical experiment using a truss

structure.
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Figure 3.9: Five-DOF spring mass system estimated filter poles, a) Case I - Indirect
Approach b) Case I - Direct Approach c) Case II - Indirect Approach d) Case II - Direct
Approach, (blue: Estimated gain poles, Red: Initial gain poles, Black: Optimal gain
poles).

Figure 3.10: Histograms of innovations covariance estimates from 200 simulations in
numerical testing using five-DOF spring mass system, First Row: Case I, Second Row:
Case II, a-c) Indirect noise covariance approach, b-d) Direct Kalman gain approach
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3.5.2 Experiment 2: Planar Truss Structure

This simulation experiment demonstrates the application of innovations correlations

approaches to estimate steady state Kalman gain for a truss structure. The planar truss

structure considered is depicted in Fig.3.11. It has 44 bars and a total of 39 DOF. All the

bars are made of steel (with E = 200 GPa) with an area of 64.5 cm2. Mass of 1.75*105

kg at each coordinate. Damping is 2% in all modes. The first five un-damped natural

frequencies (in Hz) are {0.649, 1.202, 1.554, 2.454, 3.301} and the largest one is 16.584

Hz. The system is statically indeterminate both externally and internally.

Figure 3.11: Truss structure utilized in the numerical testing of correlations approaches.

Three sensors recording motions in the vertical and horizontal directions are located

at the joints of {3, 6, 9}, which are measuring the velocity data at 50Hz sampling.

The unmeasured stationary and mutually correlated excitations are assumed to act at

all joints on truss. The measurement noise in each simulation is prescribed to have

RMS equal to approximately 10% of the RMS of the response measured. Unmeasured

excitations and measurement noise are assumed to be mutually uncorrelated, namely

S = 0.

The number of unknown parameters in Q is bigger than mxn, namely

mxn = 6x78 = 468 < 780
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Therefore the H matrix is rank deficient and solution for noise covariance matrices is not

unique. Although a unique solution does not exist in this case, the Q and R estimates

are used to calculate the K from classical formulations of the KF.

Innovations process obtained from an arbitrary gain K0 that is chosen such that

eigenvalues of the matrix A−K0C are assumed to have the same phase as those of A but

with a 15% smaller radius. 150 lags of correlation functions are considered. The sample

innovation correlations functions are calculated using 600 seconds of data. In this case

the condition number of H matrix in Eq.3.2.22 is calculated as 1.45x1021. Stability of

the least squares solution is examined using Discrete Picard Condition, which is depicted

in Fig.3.12. As can be seen poor conditioned H matrix and insufficient accuracy in the

estimates of innovation correlations lead to an ill-conditioned least square problem, in

which the solution is blowing up due to contribution of singular values that are close to

zero.

Figure 3.12: Discrete Picard Condition for truss structure.

The Tikhonov’s regularization with enforcing positive semi-definitiveness of the Q

andR on the solution is applied in accordance with section 3.4. Regularization parameter
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is calculated as λ = 0.0011 using L-curve approach. An illustration of L-curve from one

simulation is depicted in 3.13.

The estimated filter poles from direct and indirect innovations correlations approaches

with Tikhonov’s regularization are depicted in Fig.3.14. As can be the seen the filter

poles are estimated with a good approximation with the use of Tikhonov’s regularization

although the size of the problem is relatively large with 468 unknowns parameter of in

the K matrix. Indirect noise covariance approach has better performance compared to

direct Kalman gain approach in this experiment. This can be due to the fact that the

indirect noise covariance approach allows enforcing positive semi-definitiveness of the

noise covariances while this is not the case in the direct Kalman gain approach.

Figure 3.13: The L-curve for truss structure.



88 Chapter 3: Steady State Kalman Gain Estimation

Figure 3.14: Truss structure, estimates of filter poles for 200 simulations; Top: Indirect
noise covariance approach, Bottom: Direct Kalman gain Approach (Red: Estimated
gain poles, Blue: Optimal gain poles)

Figure 3.15: Histograms of trace of state error covariance estimates from 200 simulations
- truss structure, a) Indirect noise covariance approach b) Direct Kalman gain approach

The performance of the estimated filter gain is evaluated using experimental state

error covariance for each simulation, which is calculated from,
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P̂ =
1
N

N∑
k=1

[
(xk − x̂k)(xk − x̂k)T

]
(3.5.1)

where xk is correct state, x̂k is state estimate obtained from calculated Kalman gain, N

is the number of time steps. Theoretical value of trace of state error covariance P for

optimal gain is 0.060. Histograms of trace of experimental state error covariance from 200

simulations are presented in Fig.3.15. As can be seen indirect noise covariance approach

performs better compared to direct Kalman gain approach, which is a result in line with

Fig.3.14. Mean value of the trace of error covariance estimates from both methods,

is larger than 0.060 therefore we conclude that filter gain estimates from correlations

approaches are suboptimal in this numerical experiment.

3.6 Summary

This chapter studies estimation of steady state Kalman gain K for time invariant

stochastic systems. The operating assumptions are that the system is linear and sub-

jected to unmeasured Gaussian stationary disturbances and measurement noise, which

are (in general) correlated. In classical Kalman filter theory, the noise covariance ma-

trices (Q, R and S ) are assumed known. Here, we assumed that system matrices (A,

C) are known without model error however Q, R and S are not known. The chapter

presented a complete description of the classical correlations approaches to estimate the

K as well as Q, R and S . The correlations approaches examined use the measurements

obtained from a data collection session, so the results are restricted to problems where

the estimation is done off-line. The procedures has to be carried out off-line, but in

many applications in structural engineering this is not an issue. There are two strategies

to calculate K from correlations of measurements or innovations of an arbitrary filter:
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1) Indirect noise covariance approach. 2) Direct Kalman gain approach. The direct

approach identifies the K directly from measured data. The indirect noise covariance

approach estimates the Q, R and S first, and then use them to calculate K from classical

Kalman filter formulations.

In theory, K and corresponding covariance of innovations, F can be computed from

measurements or innovations of an arbitrary filter because correlation functions of mea-

surements or the innovations sequence can be related to K and F . However, state error

covariance matrix, P corresponding to optimal Kalman gain cannot be computed with-

out the information of noise covariance matrices. In theory, Q, R and S can be computed

from measurements or innovations of an arbitrary filter because correlations functions

of measurements or the innovations of any arbitrary filter can be related to the Q, R

and S linearly. In an off-line setting, the estimation of K and noise covariance matrices

lead to a problem of the form;

HX = L (3.6.1)

where L are the correlation functions of measurements or innovations from an arbi-

trary filter and X contains the entries in noise covariance matrices as unknowns. H

is calculated using system matrices and arbitrary gain K0, and is known without any

error. From the results presented in the previous sections, we can identify the following

conclusions:

• Computing noise covariance matrices from Eq.3.6.1 may have infinite solutions. A

unique solution for noise covariance matrices exists only if the number of unknown

parameters in Q and S is smaller than the product of the number of measurements

and the number of state. However, when uniqueness condition of solving for the

noise covariance matrices is not satisfied, the optimal Kalman gain, K and covari-

ance of the optimal innovations, F can still be computed from any of the solutions
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for noise covariance matrices. Note that, in this case although any of the solution

for noise covariance matrices is resulting to correct K and F , the resulting covari-

ance of state error, P is not the correct one, and it cannot be calculated without

getting the unique solution for noise covariance matrices.

• The innovations correlations approach leads to expressions that are more complex

than the output correlations scheme, but the differences are not important when it

comes down to computer implementation. Since the innovations are less correlated

than the output, the innovations approach is more efficient and gives more accurate

estimates with short data compare to output correlations approaches.

• The expressions in the innovations correlations approach allows to enforce the

positive semi-definiteness when solving for Q, R and the S. However in output

correlations approach, the unknown vector of least square problem involves only

the unknowns of Q and S. R has to be calculated from another equation which

requires theQ and S estimates. Therefore enforcing the positive semi-definitiveness

of the solution is not possible in the output correlations approach.

• In general, the least square problem of estimating the K and noise covariance ma-

trices from correlation approaches has an ill-conditioned coefficient matrix. The

examinations show that, in the indirect noise covariance approaches, the condi-

tion number of the coefficient matrix increases with an increase in the number of

unknown parameters of noise covariance matrices.

• In real applications, the right hand side of the Eq.3.6.1 has some uncertanity

since it is constructed from sample correlation functions of innovations process

calculated using finite data. The accuracy of the sample correlation functions of

innovations process is improved by using long data, however, due to fact that

coeffecient matrix is ill-conditioned, the stability of the solution being sensitive to



92 Chapter 3: Steady State Kalman Gain Estimation

the errors in correlations functions is examined using Discrete Picard Condition

(DPC). Numerical examinations show that the correlations approaches do not

satisfy the DPC, therefore, the estimates obtained from the classical least square

solution are simply wrong. In this study we examined the merit of using Tikhonov’s

regularization to approach the ill-conditioned problems of correlations approaches.

Numerical examinations show that the estimates can be significantly improved

by applying Tikhonov’s regularization to ill-conditioned problems of correlations

approaches. This is shown for a simulated five DOF spring mass system and a

truss structure.

Given the results of the examinations, we conclude that the direct Kalman gain approach

examined in this study is recursive and convergence of the solution is heavily related to

accuracy in the sample correlation functions of innovations and it is not guaranteed. We

recommend the use of indirect noise covariance approach to estimate the steady state

Kalman gain from measurements. To apply the indirect noise covariance approach to

estimate the steady state Kalman gain from available measurements, the reader can

follow the instructions below:

1. Construct the coefficient matrix H in Eq.3.2.22 for given set of (A, C, G ) and

choosing an arbitrary stable gain K0.

2. Use available measurements and obtain the innovations process of the filter with

gain K0.

3. Construct the L matrix in Eq.3.2.22 using sample correlations of the innovations

process that are calculated from Eq.3.1.3.

4. Check the stability of the H being sensitive to the errors in L using DPC.
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5. If #4 shows that the problem is ill-conditioned, calculate regularization parameter

from L-shape approach and apply Tikhonov’s regularization in Eq.3.4.15 to obtain

estimates of noise covariance matrices.

6. Check the noise covariance estimates from #5. If they are not positive semi-

definitive matrices, enforce the positive semi-definitiveness using optimization al-

gorithms.

7. Use the classical Kalman filter formulations presented in Chapter 2 and calculate

the K using system parameters (A, C, G) and noise covariance estimates obtained

from #6.
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Chapter 4

Kalman Filter with Model

Uncertainty

4.1 Background and Motivation

In the classical Kalman filter theory, one of the key assumptions is that a priori

knowledge of the system model, which represents the actual system, is known without

uncertainty. In reality, due to the complexity in the systems, it is often impractical

(and sometimes impossible) to model them exactly. Therefore, there is considerable

uncertainty about the system model and the error-free model assumption of classical

Kalman filtering is not realistic in applications. Methods for addressing the Kalman

filtering with model uncertainty can be classified into two groups: (1) Robust Kalman

Filtering (RKF), (2) Adaptive Kalman Filtering.

The key idea in RKF is to design a filter such that a range of model parameters

are taken into account. In this case, the filter gain is calculated by minimizing a bound

on the trace of the state error covariance, not the trace itself. One of the fundamental

95
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contribution on the RKF is the work by Xie, Soh and Souza, who considered to design of

Kalman filter for linear discrete-time systems with norm-bounded parameter uncertainty

in the state and output matrices, [37]. They calculated the filter gain on the premise that

the covariance of the state estimation error is guaranteed to be within a certain bound

for all admissible parameter uncertainties. They showed that a steady-state solution to

the robust Kalman filtering problem is related to two algebraic Riccati equations. The

formulation of RKF is computationally intensive and solving two Riccati equations in

systems of large model size may be impracticable. We refer to work by Petersen and

Savkin [38] for a general treatment and a review of RKF algorithms.

The adaptive Kalman filtering can be categorized into two approaches. One is simul-

taneous estimation of the parameters and the state, which is applicable in two ways: (1)

The bootstrap approach, (2) The combined state and parameter estimation approach.

In the bootstrap approach, the estimation is carried out in two steps. In the first step the

states are estimated with the assumed nominal values of the parameters. In the second

step the parameters are calculated using the recent estimates of the state from step one

in addition to measurements, [39, 40]. Probably, the first bootstrap solution for param-

eter and state estimation problem is proposed by Cox [41] who obtained the estimates

based on the maximization of the likelihood function of the measurement constrained by

the nominal model of the system. El Sherief and Sinha [42] have also proposed an other

bootstrap method to obtain estimates of the parameters of an Kalman filter model as

well as the state.

In the combined state estimation approach, the unknown parameters are augmented

to the state vector for their online identification. This idea was initially introduced by

Kopp and Orford [43], who derived a recursive relationship for the updated estimates

of the parameters and state as a function of measurement. Since the problem posed as

nonlinear, nonlinear filtering techniques such as particle filter, extended Kalman filter
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(EKF) and unscented Kalman filter (UKF) are used to obtain the combined estimates

of parameters and [44, 45, 46]. In literature the problem is called with various names

such as dual estimation [47, 48], combined state estimation [39, 49, 50], augmented state

estimation [51, 52] and joint state estimation, [53]. This chapter examines the use of

EKF for on-line state and parameter estimation. A fundamental contribution on the

theory of the EKF as a parameter estimator for linear systems is the work of Ljung

[54], who presented asymptotic behavior of the filter. Panuska extended the work to the

systems which are subjected to the correlated noise and presented another form of the

filter, where the state consists only of the parameters to be estimated [55, 56]. Recently,

Wu and Smyth [57] are compared the performance of the EKF as an parameter estimator

against that of the UKF.

The other approach in adaptive Kalman filtering, instead of estimating the uncertain

parameters themselves, includes the effect of the uncertain parameters in state estima-

tion, [19, 58]. In this approach, the model errors are approximated by fictitious noise and

the covariance of the noise is tuned based on an analytical criteria. To the best of the

writer’s knowledge, this idea is first applied by Jazwinski [59] who determined the co-

variance fictitious noise so as to produce consistency between Kalman filter innovations

and their statistics.

The objective in this chapter is to address the uncertainty issue in model that is used

in Kalman filtering. We examine the feasibility and merit of an approach that takes the

effects of the uncertain parameters of the nominal model into account in state estimation.

In this approach, the system is approximated with a stochastic model and the problem

is addressed in off-line conditions. The model errors are approximated by fictitious

noise and the covariance of the fictitious noise is calculated on the premise that the

norm of discrepancy between covariance functions of measurements and their estimates

from the nominal model is minimum. Additionally, the problem in considered in on-
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line operating conditions, and the EKF-based combined parameter and state estimation

method is examined.

4.2 Stochastic Modeling of Uncertainty

In this section, for the situation where the uncertainty in the state estimate, in

addition to the disturbances, derives from error in the matrices of the state space model.

Specifically, we consider the situation given by

xk+1 = (An +4A)xk + (Gn +4G)wk (4.2.1)

yk = Cxk + vk (4.2.2)

where An and Gn are nominal model matrices; 4A and 4G error matrices. Suppose

that the noise covariance and error matrices are unknown. The objective is to obtain

an estimate of the state xk using the information of nominal model matrices and stored

data of measurement sequence yk.

4.2.1 Fictitious Noise Approach

An approximation of the state sequence of the system in Eq.4.2.1-4.2.2 is obtained

from an equivalent stochastic model, namely

x̄k+1 = Anx̄k + w̄k (4.2.3)

ȳk = Cx̄k + v̄k (4.2.4)

Suppose that w̄k are v̄k are white noise sequences, with covariance matrices Q̄ and R̄,
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respectively The equivalent disturbance w̄k obtained by comparing Eqs.4.2.1 and 4.2.3

is

w̄k = 4Ax̄k +Gwk (4.2.5)

If the Q̄ and R̄ are known, then the KF can be applied to the equivalent stochastic

model in Eqs.4.2.3-4.2.4 to obtain an estimate of the state. Since the actual system and

equivalent model are stochastic systems, the outputs yk and ȳk can be characterized

with the covariance functions. The main idea explored here is that the covariance of w̄k

and v̄k are calculated on the premise that the norm of discrepancy between correlation

functions of yk and ȳk is minimum, namely minimizing the cost function

J = ‖corr(y)− corr(ȳ)‖

The solution of a similar problem is presented in Chapter 3, in which the noise covariance

matrices of a model error free stochastic system are calculated. The fundamental steps

of the solution involves: (1) Theoretical correlation functions of ȳk is derived as a linear

function of An, C and noise covariance matrices Q̄ and R̄. (2) Using available stored

data, an estimate of the correlations function of yk, which we denote as Λj , is calculated

from

Λj
def
= E(ykyTk−j) =

1
N − j

N−j∑
k=1

yky
T
k−j (4.2.6)

where N is the number of time steps. (3) A linear least square problem is formed consid-

ering a number of lags of correlations and solved for equivalent noise covariance matrices.

Since the state sequence xk is not a white process and the white noise approximation

of w̄k in Eq.4.2.5 is theoretically not correct. However, since our aim is to obtain an

estimate of the state, we examine the merit of using some noise covariance matrices that
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make the output correlations of the actual system and equivalent model approximately

equal. The correlations is a function lag, therefore, the solution will be dependent on

the number of lags considered. Given the fact output correlations of a stochastic system

approach to zero as seen in Eq.2.3.135, a solution that gives a better approximation of

output correlations of the actual system requires taking a range of lags starting from

zero.

Since the w̄k and v̄k are fictitious, the uniqueness of the solution of the least square

problem is not a concern, as long as the positive definitiveness of the covariance matrices

are provided. Therefore, the information of covariance matrices of wk and vk does

not apply any condition to the solution. For instance, one can force the equivalent

disturbances w̄k and measurement noise v̄k noise to be mutually correlated, namely,

S̄ 6= 0, although the actual system has mutually uncorrelated wk and vk.

As noted in Chapter 3, the drawback of output correlations approach is that the

calculations of the Q̄ and R̄ matrices are performed in two steps and it does not allow

to force positive definitiveness of the solution for these matrices. Moreover, the out-

put correlations approach requires very long data to obtain accurate estimates of noise

covariance matrices since the measurements are generally overly correlated.

Another approach to this problem uses the correlations of innovations process. In

this approach, the available measurements are filtered with an arbitrary gain and the

correlations of resulting innovations are used. Suppose that the measurements ykis

filtered thorough an arbitrary filter, in which we denote the gain as K0, namely

x̂k+1 = (An −K0C)x̂k +K0yk (4.2.7)

ek = yk − Cx̂k (4.2.8)

and ȳk is filtered with the same filter, namely
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x̂k+1 = (An −K0C)x̂k +K0ȳk (4.2.9)

ēk = ȳk − Cx̂k (4.2.10)

In this case, the covariance of w̄k and v̄k are calculated on the premise that the norm of

discrepancy between correlation functions of ek and ēk is minimum, namely minimizing

the cost function

J = ‖corr(e)− corr(ē)‖

The solution involves three fundamental steps similar to the output correlations: (1)

Theoretical correlation functions of ēk is derived as a linear function of An, C, K0 and

noise covariance matrices Q̄ and R̄. (2) An estimate of the correlations function of ek,

which we denote as Lj , is calculated from

Lj
def
= E(ekeTk−j) =

1
N − j

N−j∑
k=1

eke
T
k−j (4.2.11)

where N is the number of time steps. (3) A linear least square problem is formed

considering a number of lags of innovations correlations and solved for equivalent noise

covariance matrices. Since the innovations are less correlated, the innovations approach

is more efficient and gives more accurate estimates with short data compare to output

correlations approaches. The innovations correlations approach allows to enforce the

positive semi-definiteness when solving for Q̄, R̄ and S̄. The reader is referred to the

section 3.2 for a detailed review of innovations and output correlations approaches to

calculate noise covariance matrices.
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4.2.2 Equivalent Kalman Filter Approach

An approximation of the state sequence of the system in Eq.4.2.1-4.2.2 can be cal-

culated using a Kalman filter model that is constructed from the nominal model and

available measurements. Suppose that operating condition is off-line and consider an

output form Kalman filter is given, namely

x̂k+1 = (An −KC)x̂k +Kyk (4.2.12)

ŷk = Cx̂k (4.2.13)

where ŷk is the measurement predictions of the filter. The main idea here, which is

initially described by Juang, Chen and Phan [60], is to calculate the filter gain K by

minimizing the norm of the discrepancy between available measurement yk and its esti-

mate ŷk from the filter model is minimum, namely, minimizing the cost function

J = ‖y − ŷ‖

Assuming the initial state is zero and (An−KC) is asymptotically stable, one can write

auto-regressive (AR) model of the output form Kalman filter model as follows,

ŷk =
p∑
j=0

Yjyk−j (4.2.14)

where Yj is the markov parameters of the output form Kalman filter, namely

Yj = CĀj−1
n K (4.2.15)

where
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Ān = An −KC (4.2.16)

It is assumed that for a sufficiently large value of p in Eq.4.2.14,

Ākn ≈ 0 k > p (4.2.17)

To obtain markov parameters of AR model from observations one can write Eq.4.2.14

in matrix form for a given set of data as follows,

e = y − Y V (4.2.18)

where

V =



y0 y1

0 y0

...
...

0 0

· · · yn−1

· · · yn−2

...
...

· · · yn−p−2


(4.2.19)

and

Y =
[
Y1 Y2 · · · Yp

]
, y =



yT1

yT2
...

yTn



T

, e =



eT1

eT2
...

eTn



T

(4.2.20)

n is the data length. Assuming the innovations are minimal and uncorrelated Y can be

computed by least square solution as follows,
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Y = yV † (4.2.21)

where † denotes the pseudo inverse. The Y matrix contains the markov parameters of

moving average (MA) model of the filter, namely

Y 0
k = CAj−1

n K (4.2.22)

One can obtain these parameters from the following recursion equation

Y 0
k = Yk +

k−1∑
j=0

Y 0
k−jYj k = 1, 2 , 3 · · · p (4.2.23)

Finally, the filter gain can be solved from the markov parameters of MA model of the

filter as follows,

K = O†Y 0 (4.2.24)

where † denotes the pseudo inverse and O is the observability block of An and C, Y 0 is

the matrix formed by Y 0
k ’s, namely,

Y 0 =



Y 0
1

Y 0
2

...

Y 0
p


=



CK

CAnK

...

CAp−1
n K


(4.2.25)

and
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O =



C

CAn
...

CAp−1
n


(4.2.26)

The algorithm to estimate the filter gain can be summarized in three steps:

1. Obtain markov parameters of the AR model, solving the least square problem in

Eq.4.2.21.

2. Obtain markov parameters of the MA model, from Eq.4.2.23.

3. Obtain the filter gain, K from Eq.4.2.24.

4.3 Combined State and Parameter Estimation

In this section we outline the extended Kalman filter approach to the parameter

estimation problem in the case where the system is linear and the non-linearity arises

from the augmentation of the state vector with unknown parameters. Let the system be

described by

ẋ(t) = Ac(θ)x(t) +Bc(θ)u(t) +Gcw(t) (4.3.1)

with notations defined in section 2.4. θ is finite dimensional parameter vector which de-

notes unknown parameters of the system. The available measurements has the following

description in sampled time:
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yk = Cxk + vk (4.3.2)

The w(t) and vk are uncorrelated Gaussian stationary white noise sequences with zero

mean and covariance of Qc and R respectively, with notations defined in section 2.5.

Additionally, it is also assumed that w(t) and vk are independent of θ. One begins by

augmenting the state with the parameter vector, namely

z(t)
def
=

 x(t)

θ(t)

 (4.3.3)

We suppose that the parameters are constant, namely

θ̇(t) = 0 (4.3.4)

The second step involves comprising a new state space model for the augmented state

by combining Eqs.4.3.1 and 4.3.4, namely

ż(t) = Ā(θ)z(t) + B̄(θ)u(t) + Ḡw̄(t) (4.3.5)

yk = C̄zk + vk (4.3.6)

where w̄(t) is the process noise of the combined model described by

w̄(t) =

 w(t)

wp(t)

 (4.3.7)

wp(t) is a pseudo noise with a covariance q introduced to drive the filter to change the

estimate of θ. Augmented state model system matrices are formed as
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Ā =

 A(θ) 0

0 0

 (4.3.8)

B̄ =
[
BT (θ) 0

]T
(4.3.9)

C̄ =
[
C 0

]
(4.3.10)

Ḡ =

 G 0

0 I

 (4.3.11)

The augmented state space model in Eq.4.3.5 has the unknown parameters as additional

state of the system. It’s important to note that due to the coupling of the state with

the parameters, the estimation problem becomes nonlinear although the system given in

Eq.4.3.1 is linear. Consequently, nonlinear techniques have to be used to perform state

estimation for this model, where we utilize from EKF. The last step of the combined

state and parameter estimation involves formulating the EKF for the nonlinear model

in Eq.4.3.5 in accordance with the section 2.5. The prediction and update steps of the

EKF are presented in the following.

Prediction Step:

Since the disturbances are not known the derivative of the augmented state is ob-

tained as

˙̂z(t) = Ā(θ)ẑ(t) + B̄(θ)u(t) (4.3.12)

The a priori state error covariance of the augmented model is described by
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P̄ (t) =

 Px(t) [0]

[0] Pθ(t)

 (4.3.13)

where

Px(t) = E
[
(x(t)− x̂(t))(x(t)− x̂(t))T

]
(4.3.14)

Pθ(t) = E
[
(θ − θ̂(t))(θ − θ̂(t))T

]
(4.3.15)

and P̄ (t) satisfies

˙̄P (t) = ∆(t)P̄ (t) + P̄ (t)∆T (t) + ḠQ̄ḠT (4.3.16)

where

Q̄ =

 Q [0]

[0] q

 (4.3.17)

∆(t) is the Jacobian of the nonlinear model around current state ẑ(t), which is calculated

from
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∆(t) =
∂ż(t)
∂z

∣∣∣∣
z=ẑ(t)

=

 A(θ̂(t)) D(t)

0 0

 (4.3.18)

D(t) =
∂A(θ)
∂θ

∣∣∣∣
θ=θ̂

x̂(t) +
∂B(θ)
∂θ

∣∣∣∣
θ=θ̂

u(t) (4.3.19)

Integrating Eqs.4.3.12 and 4.3.16 numerically, the solution for state estimate and state

error covariance are advanced one time step to obtain ẑ(t+1) = ẑ−k+1 and P̄ (t+1) = P̄−k+1,

respectively.

Update Step:

Upon arrival of the measurement the posterior estimate of the state is computed

from

ẑ+
k+1 = ẑ−k+1 +Kk+1(yk+1 − C̄ẑ−k+1) (4.3.20)

The Kalman gain Kk+1 and the a posteriori error covariance P̄+
k+1 are calculated from

Kk+1 = P̄−k+1C̄
T (C̄P̄−k+1C̄

T +R)−1 (4.3.21)

P̄+
k+1 = (I −Kk+1C̄)P̄−k+1(I −Kk+1C̄)T +Kk+1RK

T
k+1 (4.3.22)

The filter is initialized by using initial state estimate and state error covariance, namely
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ẑ0 =

 E [x̂0]

E
[
θ̂0

]
 (4.3.23)

P̄0 =

 Px0(t) [0]

[0] Pθ0(t)

 (4.3.24)

Convergence of the augmented filter model requires

∂Kx(θ)
∂θ

∣∣∣∣
x=x̂, θ=θ̂

6= 0 (4.3.25)

where Kx is the partition of the Kalman gain, corresponding to the un-augmented state,

namely,

Kk
def
=

 Kx

Kθ


The lack of coupling between Kx and θ in the filter may lead to divergence of the

estimates, [54]. An illustration that involves the steps of the EKF-based parameter

estimation algorithm is presented in the following example.

Example:

The following example presents the EKF applied to parameter estimation. Consider

an un-damped two-degree-of-freedom shear frame structure whose story stiffnesses and

story masses are given in consistent units as {100, 100} and {1.0, 1.0}, respectively.

The un-damped frequencies of the structure are {0.98, 2.57} in Hz. The unmeasured

excitation is assumed to act at the 1st floor, which has a unit variance (Qc = 1) in discrete

data sampled at 100Hz. There is no deterministic excitation acting on structure, namely
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u(t) = 0. We obtain results for output sensor at the second floor, which is recording

displacement data at 100Hz sampling. The measurement noise is assumed to have a

standard deviation that is equal 10% standard deviation of the response; the variance

is calculated as R = 1.25x10−5. The the state x(t) and measurements yk satisfy the

following state space model given by

ẋ(t) = A(θ)x(t) +Gw(t) (4.3.26)

yk = Cxk + vk (4.3.27)

where

A(θ) =

 [0] [I]

−M−1K(θ) [0]

 (4.3.28)

M and K(θ) are the mass and stiffness matrices of the structure, respectively, which are

obtained from

K =

 θ + k1 −k1

−k1 −k1

 (4.3.29)

M =

 m1 0

0 m2

 (4.3.30)

Input to state matrix G and state to output matrix C are obtained from,
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G =
[

0 0 1/m1 0

]T
(4.3.31)

C =
[

0 1 0 0

]
(4.3.32)

It’s apparent from Eq.4.3.29 that k1 denotes the stiffness of the first floor and the θ

denotes the stiffness of the second floor, namely

θ
def
= [k2] (4.3.33)

We suppose that the k2 is constant, namely

θ̇(t) = 0 (4.3.34)

We form a new state space model by combining Eqs.4.3.26 and 4.3.34 as follows

ż(t) = Ā(θ)z(t) + Ḡw̄(t) (4.3.35)

yk = C̄zk + vk (4.3.36)

where z(t) is the new state is obtained by augmenting the state with the parameter

vector

z(t)
def
=
[
x(t) θ(t)

]T
=
[
x1(t) x2(t) ẋ1(t) ẋ2(t) θ(t)

]T
(4.3.37)

The w̄(t) is the process noise of the combined model, which is formed by
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w̄(t) =

 w(t)

wp(t)

 (4.3.38)

where wp(t) is a pseudo noise with a variance q introduced to drive the filter to change

the estimate of θ. Augmented state model system matrices are formed as

Ā(θ) =



0 0 1 0 0

0 0 0 1 0

−(θ + k1)/m1 k1/m1 0 0 0

k1/m2 −k1/m2 0 0 0

0 0 0 0 0


(4.3.39)

C̄ =
[

0 1 0 0 0

]
(4.3.40)

Ḡ =

 0 0 1/m1 0 0

0 0 0 0 1


T

(4.3.41)

The state space model in Eq.4.3.35 is nonlinear due to fact that the augmented

state is coupled with system parameters. We use the EKF to estimate the state of

this combined state model. We suppose that the variance of the pseudo noise q in the

estimate of θ is fixed as zero, and the filter is initialized with

ẑ(0) =
[

0 0 0 0 1

]T
(4.3.42)

P (0) = I (4.3.43)

The prediction step of the EKF is adapted by using the Eqs.2.5.5 and 2.5.8, where the
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Jacobian of the combined state model ∆(t) around ẑ(t) is

∆(t) =



0 0 1 0 0

0 0 0 1 0

−(θ̂ + k1)/m1 k1/m1 0 0 −x̂1/m1

k1/m2 −k1/m2 0 0 0

0 0 0 0 0


(4.3.44)

The Ā(θ) and ∆(t) are updated using current estimate of the parameter θ at every time

step before prediction step calculations are performed. The noise covariance matrix that

is used for calculation of state error covariance is given by

Q̄ =

 Qc [0]

[0] q

 (4.3.45)

Figure 4.1: Estimate of second floor stiffness k2 and error covariance.

Fourth-order Runge–Kutta method is used in order to integrate the first order dif-

ferential functions in the prediction step of the EKF numerically. The estimate of k2
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and the state error covariance are presented in Fig.4.1. As can be seen the estimate of

k2 is converging to true value of 100 at 50 seconds, and the state error covariance is

converging to zero as expected.

EKF with Large Size Models

The EKF approach for combined state estimation algorithm requires that at each

time station one write the state space formulation explicitly as a function of the state

and parameters in order to calculate the Jacobian. This is easily done when treating

small models as shown in the example, but can be impractical when the parameter vector

is large. Here we use a parametrization, described in the Appendix B, that simplifies

implementation of the EKF-based parameter estimation algorithm efficiently regardless

of the size of the model and parameter vector.

4.4 Numerical Experiment: Five-DOF Spring Mass System

In this numerical experiment we use the five-DOF spring mass system depicted in

Fig.3.4 in order to examine the uncertainty modeling methods for Kalman filtering. We

suppose that true stiffness and mass values are given in consistent units as ki = 100 and

mi = 0.05, respectively. We assumed that the spring stiffness values of the model has

uncertainty and the nominal model (An) is constructed based on the stiffness values are

{80, 110, 90, 85, 110, 110, and 105}. The un-damped frequencies of the system and the

model used in Kalman filtering are depicted in Table 4.1.

Damping is classical with 2% in each mode. We obtain results for output sensors at

the third masses, which are recording velocity data at 100Hz sampling. The measurement
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Table 4.1: The un-damped frequencies of the spring mass system and erroneous model.
Frequency No. System Model %Change

1 0.582 0.545 6.349
2 1.591 1.594 0.184
3 2.851 2.883 1.104
4 3.183 3.119 2.008
5 3.434 3.470 1.073

noise is prescribed to have a root-mean-square (RMS) equal to approximately 10% of

the RMS of the response measured. Unmeasured excitations and measurement noise are

assumed to be mutually uncorrelated, with the covariance matrices,

Q =



3 0 0 0 0

0 5 0 0 0

0 0 4 0 0

0 0 0 2 0

0 0 0 0 4


R = 0.030 S = 0

Stochastic Modeling of Uncertainty

Fictitious noise approach is applied in line with section 4.2.1 and using correlations

of innovations process. The arbitrary filter gain K0, that is chosen such that eigenvalues

of the matrix (An −K0C) are assumed to have the same phase as those of An but with

a 20% smaller radius. 80 lags of correlation functions of innovations process is taken

into consideration and the sample innovation correlations functions are calculated using

600 seconds of data. The noise covariance matrices of the equivalent stochastic model is

calculated as,
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Q̄ =



11.86 5.64 4.33 −7.23 −0.015

5.64 3.58 0.90 −1.80 1.33

4.33 0.90 3.27 −4.99 −1.94

−7.23 −1.80 −4.99 7.69 2.719

−0.015 1.33 −1.94 2.719 2.244


R̄ = 0.0067 S̄ =



−0.218

−0.058

−0.147

0.227

0.077


The output correlation function of the actual system and equivalent stochastic model are

depicted in Fig.4.2. The Q̄, R̄ and S̄ are used to calculate a filter gain from the classical

formulations of the Kalman filter and the state estimates are obtained from this filter.

Figure 4.2: The output correlation function of the five-DOF spring mass system.

The equivalent Kalman Filter approach is applied in line with section 4.2.2 and

the state estimates are obtained using the calculated filter gain. Since the optimal

estimate of the state can only be calculated using a Kalman filter that is constructed

error free model of the actual system and the true noise covariance matrices, the methods

examined in this study are suboptimal. For the comparison of the methods, we take the
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discrepancy between state estimate from optimal Kalman filter and suboptimal state

estimate, namely

ε = x̂optimal − x̂suboptimal (4.4.1)

and define the filter cost as

J = trace(E(εεT )) (4.4.2)

Figure 4.3: Displacement estimate of the second mass

The displacement estimate of the second mass from the fictitious noise and equivalent

Kalman filter approaches are depicted in Fig.4.3. As can be seen examined methods

give better estimates compare to the arbitrary filter. Histograms of filter cost from 200

simulations for the examined methods and the arbitrary filter are depicted in Fig.4.4. As
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can be seen, the estimate from the arbitrary filter is the worst with a mean of the filter

cost µ = 11.84. The fictitious noise approach performs better compare to the equivalent

Kalman filter approach. The mean of the filter cost from 200 simulations are 1.60 and

2.65, respectively.

Figure 4.4: Histograms of filter cost from 200 simulations, a) Arbitrary filter b) Fictitious
Noise Approach c) Equivalent Kalman Filter Approach

Combined State and Parameter Estimation

The initial error covariance for each spring is taken as 200. The combined state and

parameter estimation is applied using parametrization scheme described in the Appendix

B. The results from a single simulation of 120 seconds are presented in Fig.4.5. As can be

seen, the stiffness values are converging to 100 and error covariance values are converging

to zero. The estimated spring stiffness values at the end of the simulation are {102.5,

97.9, 99.1, 100.1, 98.02, 104.3 and 102.9}.

Although the EKF-based parameter estimation method leads to satisfying results in

this numerical experiment, examinations show that the method is not robust to large

uncertainties in initial parameter estimate and error covariance matrix when unknown

parameter vector is large. For instance, in this experiment an initial stiffness parameter

vector of {25, 150, 50, 170, 10, 190, 250} leads to divergence in some of the parameter

estimates. The dependence of estimation results on the initial estimation error covari-
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Figure 4.5: Spring stiffness estimates and error covariance for the five-DOF spring mass
system

ance matrix and the initial value of parameters to be estimated is also reported by Liu,

Escamilla-Ambrosio and Lieven [46]. The authors examined the merit of using a mul-

tiple model adaptive estimator consisting of a bank of EKF, in which a different error

covariance for each filter in the bank is chosen. Due to the fact that the algorithm has

high computational cost; implementation is difficult.

4.5 Summary

This chapter studies state estimation of time invariant stochastic systems that an-

alytical model of the system has uncertainty. The operating assumptions are that the

system is linear and subjected to unmeasured Gaussian stationary disturbances and mea-

surement noise, which are correlated. In classical Kalman filter theory, the model that

represents the actual system is assumed known. Here, we assumed that state transition

matrices (A) has error and noise covariance matrices Q, R and S are not known. The

chapter is addressed the uncertainty issue in model that is used in Kalman filtering and

examined the feasibility and merit of an approach that takes the effects of the uncertain

parameters of the nominal model into account in state estimation. In this approach, the
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system is approximated with a stochastic model and the problem is addressed in off-line

conditions. The model errors are approximated by fictitious noise and covariance of the

fictitious noise is calculated using the data on the premise that the norm of discrepancy

between correlation functions of the measurements and their estimates from the nominal

model is minimum. Another approach examined approximates the system with an equiv-

alent Kalman filter model and the filter gain is calculated using the data on the premise

that the norm of measurement error of the filter is minimum. Additionally, the problem

is addressed in on-line operating conditions, and the EKF-based combined parameter

and state estimation method is examined. In this method, the uncertain parameters

are taken as part of the state vector and the combined parameter and state estimation

problem is solved as a nonlinear estimation via EKF. From the results presented in the

previous sections, we can identify the following conclusions:

• The fictitious noise and equivalent Kalman filter approaches are applicable in off-

line conditions where stored measurement data is available. The fictitious noise

approach leads to expressions that are more complex than the equivalent Kalman

filter approach scheme, but the differences are not important when it comes down

to computer implementation. Examinations show that although the state estimates

from these two approaches are suboptimal, they both perform better than an

arbitrary filter.

• In general, the fictitious noise approach performs better than the equivalent Kalman

filter approach. However, the performance of the fictitious noise approach is de-

pended on the length of the data. This is due to the fact that the output correla-

tions are calculated from a finite length sequences and the accuracy of the sample

correlations increase with longer data. Therefore, when the sample correlations

are not calculated with a good approximation, e.g. they are calculated from short
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data, the equivalent Kalman filter approach gives better state estimates for the

same data.

• Online estimation of the uncertain model parameters using EKF-based combined

parameter and state estimation strategy is simple in theory but is not trivial in

applications when the model is large and the uncertain model parameters are too

many. The EKF requires the computation of Jacobian of the augmented model.

That is easy for systems with small model that state and measurement equations

can be written explicitly. However, writing explicit state and measurement equa-

tions are impractical for systems with large models. A parametrization scheme for

structural matrices (M, C, K) is presented that simplifies implementation of the

EKF-based combined state estimation algorithm regardless of the size of the model

and parameter vector. The performance of the EKF-based parameter estimation

for linear systems is shown for a simulated five-DOF spring mass system.

• Examinations show that the EKF-based combined parameter estimation approach

is not robust to large uncertainties in initial parameter estimate and error covari-

ance matrix when unknown parameter vector is large.



Chapter 5

Damage Detection using Kalman

Filter

5.1 Background and Motivation

Damage is caused by factors such as aging, fatigue, earthquakes and blast-loading.

Implementing a damage identification strategy for civil engineering structures involves

observing the structures over time using periodically taken measurements, extracting

damage-sensitive features from these measurements and performing a statistical analysis

of these features to determine if the system has changed notably from the reference state,

[61]. Two major components comprise a typical damage identification system: a network

of sensors for observations; and data process algorithms for structural assessment of

physical condition, [62]. In structural engineering, one has to deal with four classes of

changes in monitored structures, as described below:

(1) Structural changes: Structural changes refer to changes in the dynamical sys-

tem itself and boundary conditions. Examples of structural changes include concrete

123



124 Chapter 5: Damage Detection using Kalman Filter

degradation and steel corrosion in structural members and connections or settlements

in foundations, etc.

(2) Changes due to environmental conditions: One of the most important issues in

damage detection in civil structures is changing environmental conditions. In labora-

tory tests, environmental conditions usually do not play any role. However, in reality,

civil structures are subjected to temperature differences and those differences have an

influence on the dynamic characteristics of structures. Environmental conditions include

wind, temperature and humidity.

(3) Operational condition changes: Civil engineering structures are constantly ex-

cited by many unknown disturbances such as traffic, building occupants, operating ma-

chinery, etc. Operational condition changes include operational speed and mass loading

such as traffic loading and speed.

(4) Malfunctioning instruments.

In past decades, a broad spectrum of methods has been proposed for damage iden-

tification. These methods are classified into local and global. Local methods often

are known as Non-Destructive Evaluation. Common local damage detection methods

include thermography, magnetic-field analysis, ultrasonic inspection, radiography and

edyy-current methods. These methods can successfully detect damage if the possible

damage regions are known and if the regions of the structure needing inspection are

accessible, [63]. In global damage identification, damage is defined as change in sys-

tem parameters that are identified from measurement data. Global methods often are

developed using measured vibration data on the premise that commonly measured dy-

namic quantities and global modal characteristics (frequencies, mode shapes, and modal

damping) are functions of the physical properties of the structure (mass, damping, and

stiffness). Consequently, it is assumed that changes in the physical properties, such as

reductions in stiffness resulting from damage, will cause detectable changes in the modal



5.1: Background and Motivation 125

properties of the structures. A review of the literature on global damage identification

methods in structural engineering published before 1996 is presented by Doebling et.al.

[64]; more recent advances are presented by Sohn et.al. [65]. Global damage identifica-

tion includes modal-based techniques, model-updating techniques, and damage detection

filter methods.

The work in this chapter falls within the category of the detection filter methods and

the use of Kalman filter as a damage detector is examined. Our focus is on the detection

rather than localization of the damage. To the best of the writer’s knowledge, the

Kalman filter based damage detection is first discussed by Mehra and Peshon, [66]. They

used the Kalman filter for residual generation under the premise that an accurate model

for the system is available and that the covariance matrices of the disturbance and the

measurement noise are known. The seminal work of damage detection filters is done by

Beard [67] and Jones [68]. The main idea is that filter gain is chosen such that particular

damaged scenario can be seen in the residuals. Kranock extended Beard’s work and

proposed the use of a structural connectivity matrix and treated the forces resulting

from damage as inputs to the system. His method attempts to detect the damage in

real time. Another extension of the damage detection filters is proposed by Liberatore,

Speyer and Hsu [69]. They used the damage direction vectors obtained from pre-defined

damage locations in the structure which are used as the basis for identification of each

of the possible damage locations.

The use of bank of parallel detection filters have had quite attention in the litera-

ture. The idea is that different damage scenarios are defined for each of the filter models

in the bank, and multiple innovations tests respond to one of them, indicating dam-

ages included. The bank of parallel filters strategy is first applied by Montgomery and

Caglayan, [70]. The filter based damage detection in structural engineering first applied

by Fritzen, Seibold and Buchen [71], who used a bank of Kalman filters that each of
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the filter models represents a special type of damage. The filter residuals are used to

localize the damage. Seibold and Weinert applied the same idea for the localization of

cracks on a rotor dynamic system, [72]. Fritzen and Mengelkamp [73] and Yan et al. [74]

used the Kalman filter model obtained from observations to detect damage by checking

covariance of the innovation process.

There are research efforts that focus on identification of system changes due to chang-

ing environmental conditions. In this regard, Peeters and Roeck [75] attempted to de-

velop models from observations for environmental changes. They identified a stochastic

model using temperature data as input and estimated frequencies of the structure from

vibration data as output. The model than used to predict natural frequencies and dis-

crepancy between predicted and measured frequency is used to separate the influences

of temperature from damage on dynamical modal parameters. Kim, Yun and Yi de-

scribed a set of empirical frequency-correction formulas using the relationship between

temperature and natural frequencies, [76]. They adjusted the measured frequencies by

the frequency-correction formulas and fed them into the damage-detection scheme. It’s

known that varying environmental conditions are changing the modal parameters of

structures slowly. Hence, one can update the analytical model to take into account the

changes in the structure due to varying temperature.

The damage detection strategy examined in this chapter attempts to take operational

condition changes into consideration. On this subject, Zhang, Fan and Yuan reported

traffic-induced variability in the dynamic properties of a cable-stayed bridge, [77]. They

showed that the natural frequencies of the bridge can exhibit as much as 1% variation

within a day under a steady wind and temperature environment. Ruotolo and Surace

investigated a singular value decomposition based damage detection approach that com-

pares the data obtained from the system before and after the damage, [78]. They focused

on alterations during normal operating conditions, such as changes in mass, and tried to
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distinguish between changes in the working conditions and the onset of damage. Varia-

tions of this appraoch were presented by Vanlanduit et al. to detect damage using both

numerical and experimental data. They used an aluminum beam with different damage

scenarios and performed damage detection under several conditions including different

varying operating conditions, [79]. Shon et al. used a combination of time series analysis

and statistical pattern recognition techniques to detect damages on a roller coaster, in

which data were subsequently acquired during a test operation with varying speeds, mass

loading and damage conditions. The reader is referred to [80] for other research efforts

focused on damage detection under varying operational conditions in civil structures.

In this work, we suppose that the unmeasured disturbances acting on the structures

are characterized with stochastic process with a stationary Gaussian distribution. Using

available measured data and an analytical model of the structure, we use the Kalman

filter to generate the innovations process. Our focus is on the operational conditions

where covariance of unmeasured disturbances is subject to change between data col-

lection sessions and we aim to detect damages using Kalman filter innovations. The

classical Kalman filter approach to damage detection uses the whiteness property of the

innovations process and applies a correlations based whiteness test to the innovations

for deciding whether there is change in the system or not, [?]. The classical correlations

based whiteness test used, in which the criteria is that the correlations of innovations

inside the confidence interval indicate that the innovations are uncorrelated. Changes of

statistical characteristics of the innovation process are caused by variability in covariance

of disturbance and measurement noise and change in dynamical system parameters due

to damage. The objective is to make the detection insensitive to disturbance changes

and, at the same time, sensitive to damages.
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5.2 Innovations Approach to Damage Detection

The innovations approach to damage detection involves the following components: 1)

Kalman filter that is used to generate innovations process using available measurements,

2) Metric derived from the innovations, 3) Criteria for damage detection based on the

metric. The properties of the Kalman filter innovations process are presented in section

2.3.9. Here we explore the effect of variability in noise covariance statistics and damage

on the correlations functions of innovations process.

5.2.1 Dependence of the Innovations Correlations on the Noise Co-
variances

We consider the discrete dynamic system described in Eqs.2.3.1-2.3.2, and refer to it as

reference system. We suppose that the innovations process is generated using a Kalman

filter in the form of Eq.2.3.48 that is formulated using the reference system. Since any

change in the the reference system parameters and noise statistics make the Kalman

filter suboptimal, and we denote the filter gain as K0. As shown in section 2.3.9, the

correlations function of innovations process Lj can be expressed as a function of K0

and noise covariance matrices, Q, R and S. Applying the vec operator to both sides of

Eqs.2.3.119 and 2.3.114 one has

vec(Lj) = (CĀj ⊗ C)vec(P̄ ) + (GT ⊗ CĀj−1)vec(S)−

−(I ⊗ CĀj−1K0)vect(R) j 6= 0
(5.2.1)

and
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vec(P̄ ) = [I − (Ā⊗ Ā)]−1[(K0 ⊗K0)vec(R) +G⊗Gvec(Q)−

− (G⊗K0)vec(S)− (K0 ⊗G)vec(ST )] (5.2.2)

Substituting Eq.5.2.2 into Eq.5.2.1, and adding the terms related to ST to the terms

related to S and canceling ST , after organizing one finds

vec(Lj) =
[
hqj hsj hrj

]
vec(Q)

vec(S)

vec(R)

 (5.2.3)

where

hqj = (C ⊗ CĀj)[I − (Ā⊗ Ā)]−1(G⊗G) j 6= 0 (5.2.4)

hsj = (GT ⊗ CĀj−1)− 2I[(C ⊗ CĀj)[I − (Ā⊗ Ā)]−1(G⊗K0)] j 6= 0 (5.2.5)

hrj = (C ⊗ CĀj)[I − (Ā⊗ Ā)]−1(K0 ⊗K0)− (I ⊗ CĀj−1K0) j 6= 0 (5.2.6)

In ideal conditions, when K0 is the Kalman filter gain, the expected value of cor-

relation functions of innovations is zero. When noise covariance matrices are changed,

the reference filter becomes suboptimal and the innovations process become correlated.

It is apparent from Eq.5.2.3 that the correlations of the innovations process is linearly

related to the noise covariance matrices, Q, R and S. The variations in noise covariance

matrices have the effect in the correlations is determined by the coefficient matrices hq,

hs and hr, and these matrices have a norm that decays with lags. In particular, changes

that have strong projections in the direction of the vectors associated with the higher

singular values of hq, hs and hr introduce large change in the correlations while those
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that project on vectors associated with the smaller singular values have small effect.

5.2.2 Effect of Damage On the Innovations Correlations

The effect of the change in dynamical system parameters on the innovations process

is explored in this subsection.. We start with introducing parameter changes due to

damage in the system dynamics equation. Consider state space model of a dynamical

system after damage occurred is given in the following,

xk+1 = Axk +4Axk +Gwk (5.2.7)

yk = Cxk + vk (5.2.8)

where 4A ε Rnxn represents the change in the system parameters due to damage. We

refer to the original system for the assumptions on the system and noise characteristics

given in Eqs.2.3.1 and 2.3.2. While system parameters change due to damage, the

Kalman filter model remains the same as given in Eq.2.3.48. Thus, the filter is not

optimal anymore since the observations, yk from the damaged system used in the filtering

process. Therefore we denote the filter gain as K0 and innovations process as ek, and

start recalling the correlation function of innovations from Eq.2.3.112, which is

E(ekek−j) = CE(εkεTk−j)C
T + CE(εkvTk−j) (5.2.9)

To obtain the terms E(εkεk−j) and E(εkvTk−j) in Eq.5.2.9, we use similar steps to obtain

them as previously followed in section 2.3.9. The recurrence for the state error in the

damaged system case is presented in the following,
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εk = A(I −K0C)εTk−1 −K0vk−1 +Gwk−1 +4Axk−1 (5.2.10)

Carrying Eq.5.2.10 j steps back one find that,

εk = Ājεk−j−
j∑
t=1

Āt−1K0vk−t +
j∑
t=1

Āt−1Gwk−t +4A
j∑
t=1

Āt−1xk−t (5.2.11)

Post-multiplying Eq.5.2.11 by εk−j and taking expectation, it follows that

E(εkεTk−j) = ĀjE(εk−jεTk−j) +4A
j∑
t=1

Āj−1E(xk−tεTk−j) (5.2.12)

Post-multiplying Eq.5.2.11 by vTk−j and taking expectation,

E(εkvTk−j) = Āj−1GS − Āj−1AK0R+4A
j∑
t=1

Āj−1E(xk−tvTk−j) (5.2.13)

Substituting Eqs.5.2.12 and 5.2.13 into 5.2.9 one finds

E(ekek−j) = CĀjE(εk−jεTk−j)C
T + CĀj−1GS − CĀj−1AK0R+

C4A

[
j∑
t=1

Āj−1E(xk−tεTk−j)

]
CT + C4A

[
j∑
t=1

Āj−1E(xk−tvTk−j)

]
(5.2.14)

The main observation from Eq.5.2.14 is that after damage occurs in the dynamical

system. The expected value of correlations of filter innovations do not vanish as the

lag approaches large values. If the eigenvalues of the matrix Ā are inside the unit circle

(stability condition of the discrete filter model), then the first three terms in the Eq.5.2.14

vanishes as the lag j increases and the other summation terms are governed by the few

lower powers.
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We note that, the change in the system parameters, due to discretization of the

system, always lead to changes in input to state matrix (G) as well. However, the

change in G is trivial in our examination since it does not make any change in the

assumptions on the wk and in the conclusions from the Eq.5.2.14.

5.2.3 Frequency Domain Interpretation

An examination of the transfer function from process noise to innovations helps to de-

velop insight into the mechanism through which damage affects the correlation of the

Kalman filter innovations. The Kalman filter model in output form has the following

description:

˙̂x(t) = (Ac −KCc)x̂(t) +Ky(t) (5.2.15)

e(t) = y(t)− Ccx̂(t) (5.2.16)

Subscript c is used to refer to continuous system matrices. One can show that the

relation between between the process noise and the output in the s-domain is

y(s) = Cc(sI −Ac)−1Gcw(s) + v(s) (5.2.17)

and from Eqs.5.2.15-5.2.16 one has

e(s) =
(
−Cc[sI − (Ac −KC]−1K + I

)
y(s) (5.2.18)

Combining Eq.5.2.17 and Eq.5.2.18 one gets that
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e(s) =
[
Tw/e(s) Tv/e(s)

] w(s)

v(s)

 (5.2.19)

where

Tw/e(s) =
(
−Cc[sI − (Ac −KCc]−1K + I

) (
Cc(sI −Ac)−1Bc

)
(5.2.20)

and

Tv/e(s) =
(
−Cc[sI − (Ac −KCc]−1K + I

)
(5.2.21)

Tw/e(s) and Tw/e(s) are transfer functions from the process and measurement noise to

the innovations respectively. When the Kalman filter is optimal, the innovation process

is white signal and the parameters of the coefficient matrix in Eq.5.2.19 prove to be

constants. To analyze this in a simpler format, we neglect measurement noise and

consider the single input single output case. In this case, coefficient matrix in Eq.5.2.19

involves only transfer function from process noise to innovations, namely Tw/e(s). It is

convenient to factor the Tw/e(s) in the numerator and denominator, and to write it in

terms of those factors as follows

Tw/e(s) = g1g2

∏
s− zi∏
s− pi

∏
s− zj∏
s− pj

(5.2.22)

where the definitions of subscripts i and j are clear from Eq.5.2.20 that they refer to

transfer matrices from output to innovations (closed loop) and from process noise to

output (open loop) respectively, g1 and g2 are the gains of the corresponding transfer

functions. The values for zi and zj where the numerator of the transfer functions equal

zero are the complex frequencies that make transfer function zero, and they are called

zeros of the transfer function. The values for pi and pj , where the denominator of the
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transfer function equal zero, are the complex frequencies that make the transfer function

infinite. When the filter gain is optimal, the poles pi are equal to the zeros zjand the

zeros zi are equal to the poles pj so the transfer is just the product of the gains, g1 and

g2. The system changes can be observed in Tw/e(s) as follows:

When damage takes place the transfer function from output to innovations remains

the same and so pi and zi stay unchanged however the pj and zj change. Therefore, in

damage case, the innovations process may have large contributions from sinusoids for

which the new values of pj as well as pi which are identical to the zeros of the open loop

before the system get damaged, namely zj . In some cases the poles of the closed loop,

pi might be far from the imaginary, and the fact that the zeros zj may vary in position

as a result of the damage does not tend to have much influence on what happens along

the imaginary line so the innovations process may have large contributions only from

sinusoids due to the new values of pj .

The following example is intended to provide more insight on this point and to

exemplify the frequency domain interpretation of damage detection using Kalman filter

innovations. Consider a two-DOF shear frame whose story stiffnesses and story masses

are given in consistent units as {1000, 1000} and {1.25, 1.10} respectively. The un-

damped frequencies are {2.91,7.42} in Hz. Damping is classical with 2% in each mode.

We obtain transfer functions for a single input and single output sensor arrangement

at first floor. Measurement sensor is recording velocity data without noise and the

deterministic excitation is a white noise with a unit variance. The damage scenario

examined is 10% loss of stiffness in each floor.

Poles and zeros of the transfer functions from output to innovations (closed loop)

and process noise to output (open loop) in optimal case is depicted in Table 5.1. As can

been seen, zeros of the closed loop are equal poles of the open loop. And the poles of the

closed loop are equal with zeros of the open loop with two additional zeros. Therefore
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transfer function from output to innovations has only two zeros which are on the real

axis.

Table 5.1: Poles and zeros of the transfer functions in optimal case.
Open Loop Closed Loop

zeros poles zeros poles
-0.54±30.15i -0.093±46.62i -0.093±46.62i -0.54±30.15i

-0.37±18.28i -0.37±18.28i -0.01
-7.99x104

Poles and zeros of the closed loop and open loop in damage case are depicted in

Table 5.2. As can been seen, poles and the zeros of the closed loop stay unchanged since

the filter model remains the same. However poles and zeros of the open loop are shifted

due to damage; therefore transfer function from process noise to innovations in this case

has three zeros and five poles, in which two of them are on the real axis.

Table 5.2: Poles and zeros of the transfer functions in damage case.

Open Loop Closed Loop

zeros poles zeros poles

-0.54±28.59i -0.093±44.23i -0.093±46.62i -0.54±30.15i

-0.36±17.34i -0.37±18.28i -0.01

-7.99x104

Frequency response of the transfer function from process noise to innovations are

depicted in Fig.5.1. Two of the resonant peaks of the frequency response plot in damage

case at 2.47Hz and 7.04Hz are the natural frequencies of the damaged system, and the

third one at 4.8Hz is the zero of the healthy system. Two of the anti-resonant peaks

of the frequency response plot in damage case at 2.91Hz and 7.42Hz are the natural

frequencies of the healthy system, and the third one is the zero of the damaged system.
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Figure 5.1: Frequency response of the transfer function from process noise to innovations.

5.3 A Modified Whiteness Test

In statistics, two correlation tests for time series data are commonly used: (1) Indepen-

dence test, (2) Whiteness test. According to the independence test criteria, the optimal

Kalman filter innovations are uncorrelated with past inputs. This method is applicable

only to the systems in which the input is deterministic and known. According to the

whiteness test criteria, the correlations of innovations inside the confidence interval in-

dicate that the innovations are uncorrelated and decisions on the whiteness of the signal

are made using a statistical hypothesis test, [81].
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5.3.1 Hypothesis Testing

The damage detection approach based on correlations of the Kalman filter innovations

makes the decision on two hypotheses, which are

• H0 : ρ ≤ ρ0 {‘structure is undamaged’}

• H1 : ρ > ρ0 {‘structure is damaged’}

H0 is the null hypothesis, H1 is the alternative hypothesis and ρ is a metric used for

classification between damage and no damage whose value is equal to a certain value

e.g. it is smaller than cut-ff ρ0 under H0. The crucial part of the hypothesis testing is

the set of outcomes which, if they occur, will lead us to decide that there is damage.

That is, cause the null hypothesis to be rejected in favor of the alternative hypothesis.

The cutt-off as to which hypothesis to accept is selected based on a set of observations

whose PDF conditioned on H0 and H1

Two types of errors can be observed in the hypothesis testing approach for damage

detection. If ρ > ρ0 and one incorrectly claims that the structure is damaged, this

constitutes Type-I error. The opposite situation, in which ρ < ρ0 and one incorrectly

claims that the structure is healthy, is called Type-II error. Probabilities for these errors

are defined in the following,

• Type-I error probability: α = P{H1|H0} = P{accept H1|H0 true}

• Type-II error probability: β = P{H0|H1} = P{accept H0|H1 true}
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An illustration of possible distributions of ρ from healthy and a damage state is depicted

in Fig.5.2. The probabilities of Type-I error and Type-II error for a given cut-off ρ0 above

which damage is to be announced are illustrated in the figure. Power of the test (PT )

, also known as the probability of detection, is defined as one minus the probability of

Type-II error, namely

PT = P{H1|H1} = 1− β (5.3.1)

and it measures the performance of the test capability to detect H1 when it is true.

Figure 5.2: PDF of ρ from healthy and a damage state.

The hypothesis testing is conditional on the fact that the system is undamaged and

probability distribution of the metric in healty state is known. The operating assumption

on the damaged state is that probability distribution of metric for the all possible damage

scenarios of interest is shifted to the right relative to the reference. The test is performed

using a cut-off ρ0 that is selected from probability distribution of the metric in healty

state for a given Type-I error propability, α.

The examinations show the performance of the examined appraoch in this work is

depended on the size of the damage introduced to the system. That is due to the fact

that when the probability distribution of the metric for a damage scenario is not shifted
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to the right relative to the reference, i.e when damage produces very small change in

dynamics charateristic of the system, the power of test is very low.

5.3.2 The Test Statistics

A test statistic that quantifies the “whiteness” of a signal is defined using auto-

correlations of the signal. We use the sum of the auto-correlations of the innovations

for a preselected number of lags. We begin with obtaining a unit variance normalized

innovation sequence. To do this, the sample covariance matrix of the innovations

Ĉ0 =
1
N

N∑
k=1

(ek − e)(ek − e)T (5.3.2)

is computed, where ek is the innovations process, N is the length of the sequence and e

is the mean. The normalized innovations are obtained from,

ẽk =
ek√
Ĉ0

(5.3.3)

An un-biased estimate of auto-correlation function of innovations is computed from

l̂j =
1

N − j

N−j∑
k=1

(ẽk)(ẽk−j)T for j = 1, 2, ...p (5.3.4)

where j is the number of lags, [82]. The auto-correlation, l̂j is equal to 1 at zero lag and

remains between -1 and +1. On the premise that N � j all l̂j , under under H0, are

identically distributed random variables with a variance [83]

V ar(l̂j) =
1
N

(5.3.5)

To have a unit variance for each lag of correlations we normalize the correlation function,
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namely

l̄j = l̂j
√
N (5.3.6)

And finally, we define the following metric for whiteness test,

ρ =
s∑
j=1

l̄2j (5.3.7)

which follows a χ2 distribution (under H0) with s degrees of freedom (DOF), [81].

The probability that the value from Eq.5.3.7 in any given realization is larger than

any given number is obtained from the cumulative distribution function (CDF) of the

χ2 distribution for the appropriate number of DOF. A threshold for the metric, ρ0 is

obtained from χ2 CDF for s DOF and a preselected Type-I error probability, α. The

null hypothesis H0 is accepted if the test statistic is smaller than the selected threshold

ρ0 and rejected otherwise. The test requires a single measurement channel, for multi-

output cases, one can treat each available channel as a detector and announced damage

if the metric for any one exceeds the selected threshold.

Example:

Consider a three-degree-of-freedom shear frame whose story stiffnesses and story

masses are given in consistent units as {100, 100, 100} and {0.120, 0.110, 0.100} respec-

tively. The first un-damped frequency is 2.18Hz. Damping is classical with 2% in each

mode. It’s assumed there is a velocity sensor located at the first story and there is an

unmeasured Gaussian disturbance with a covariance of Q = 10 at the third story. The

exact response is computed at 100Hz sampling and Gaussian noise added to measure-

ment with a covariance of R = 0.01 (consistent with a noise that has 10% of the standard

deviation of the measurement). A single simulation is carried out with a duration of
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300 seconds. To present behavior of innovations process due to change in the dynamical

system, two additional cases are defined as follows:

Case #1: Unmeasured disturbance at the third story is scaled by 2 (Q = 40), and R

is consistent with a noise that has 10% of the RMS of the measurement.

Case #2: 5% stiffness loss in the second floor. The first un-damped frequency after

the stiffness change is introduced is 2.16Hz.

The Kalman filter innovations are generated for using the measurements from the

healthy system and changed systems given in two cases. Sample autocorrelation func-

tions of 50 lags for two cases are presented in Fig.5.3. The optimal case in Fig.5.3 refers

to original dynamical system without any change. The expected value of correlation

of a random noise signal with infinite duration is zero for any non-zero lag. However

it’s important to note that, due to finiteness of data, the autocorrelations are always

significantly different from zero, as seen in Fig.5.3.

Figure 5.3: Autocorrelation function of innovations process. Dash line represents the
95% confidence interval.
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For the example considered, the Chi-square whiteness test is carried out using 50

lags of correlations of innovations process with a Type-I error probability α = 5% and

the results are depicted in Table 5.3. It’s clear from the table that Kalman filter is able

to detect changes in the dynamical system and it shows that the innovations from the

cases #1 and #2 are correlated. Consequently, the innovations are sensitive to change

in disturbances as well as system changes and it is necessary to differentiate what comes

from damage and what does not, which is addressed in the following section.

Table 5.3: Chi square correlation test results for Type-I error probability, α = 0.05.

Optimal Case ρ50 = 49.87 < χ2
α(50) = 67.5

√

Case #1 ρ50 = 848.3 > χ2
α(50) = 67.5 X

Case #2 ρ50 = 718.12 > χ2
α(50) = 67.5 X

5.3.3 Modified Test Metric

The dependence of the innovations correlations on the noise covariances matrices is

explored in section 5.2. Inspection of Eq.5.2.3 shows that the matrices hq, hs and hr,

involve the matrix (A − KC) raised to powers that increase with the lag. Since this

matrix has all eigenvalues in the unit circle (i.e., the filter is stable) the entries decrease

as the lags increase and one concludes that, for sufficiently large lags the changes in

the disturbances will have no effect on the correlations function. Using large lags of the

correlations, a metric based on the modification of Eq.5.3.7 can be given as follows,

ρ =
d2∑
j=d1

l̄2j (5.3.8)

where the first lag is taken as d1 instead of one, and the number of lags s = d2−d1+1. The

modified metric will have a distribution that is essentially independent of the variations
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in the statistics of Q, R and S while correlations from damage are retained, provided

that d1 is large enough.

The range of lags that are used in the test is critical. If the correlation introduced

by damage persisted at all lags d1 could be selected arbitrarily (provided it is small

compared to N) but examinations shows that this is not the case. The sensitivity to

damage of the metric of Eq.5.3.8 also decreases with lags, although it has a different rate

than that due to variations in the noise covariance matrices. This issue is illustrated

using the example presented in the previous section. We calculated the metric ρ for 200

simulations and obtain an experimental PDF of ρ by fitting a generalized extreme value

(GEV) density function for the system changes considered. Changes from one simulation

to the next come from randomness in the unmeasured excitations and the measurement

noise. We obtained the modified test results for three different number of lag values,

namely s = 25, 50, 100 and 30 initial lags (d1), which are chosen by starting from the

lag #1 and by shifting at every 10th up to the lag #301. Power of test (P T ) results at

5% Type-I error for each case are depicted in Fig.5.4.

Figure 5.4: Trade-off between noise change and damage with respect to initial lag. Dash-
Line: Damage Case, Solid Line: Noise Change, Left: s = 25, Middle: s = 50, Right:
s = 100.

As can be seen from Fig.5.4, when d1 is chosen in the first 25 lags, the test cannot

differentiate the change in the noise covariance so the test fails almost all the time. The
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advantage of modified test becomes clear when d1 is larger than 60. In this case the

power of test for the noise covariance change case is increasing up to 90%.

It’s also obvious from Fig.5.4 that there is a trade-off between noise change and dam-

age cases in terms of location of initial lag (d1), with respect to the power of whiteness

test. Using higher lag bands gives better results for noise covariance change while lower

lag bands lead high power of test in the damage case. In the noise covariance change

case, after lag 100 the power of test fluctuates around 90%; however, in the damage case

it drops drastically after the lag 60. Therefore, using a lag range starting from d1 = 75

would give the maximum power of test which is around 85% for described system changes

in the considered example.

An approach to choose d1 is by inspecting the eigenvalues of the matrix in (A−KC)j

and selecting a value such that the largest eigenvalue in absolute value, raised to d1, is

smaller than some pre-selected number. The behavior of the of largest eigenvalue of (A−

KC)j in absolute value is depicted in Fig.5.5. As can be seen the maximum eigenvalue

of (A−KC)j is decreasing to 0.1 after the lag 200, which show that the change in noise

covariance matrices in the correlations functions of innovations will have no perceptible

effect after the lag 200. In this experiment, however, the sensitivity to damage of the

metric of Eq.5.3.8 also decreases quickly after the lag 75 with a corresponding largest

eigenvalue in absolute value is 0.4.

As can be seen in Fig.5.4, using s = 25, 50 or 100 doesn’t make much difference in

this experiment. After damage appeared in the system, the innovations process involves

oscillations with the same frequency content as the damaged system. Assuming the

damage produces small shift in the un-damped natural frequencies of the healthy system,

a heuristic criteria on selecting the number of lags used in the modified whiteness test,

s, can be introduced as follows

s >
T

∆t
(5.3.9)
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Figure 5.5: Largest eigenvalue of (A−KC)j in absolute value.

where ∆t is the sampling interval of the discrete system and T is the fundamental period

of the healthy system. The idea here is to cover all the lags of correlation functions that

are in one period of the system’s oscillation.

5.4 Numerical Experiment: Five-DOF Spring Mass System

In this experiment, we present an application of the innovations based damage detec-

tion technique and perform a Monte Carlo simulation using the five-DOF spring mass

system depicted in Fig.3.4. We obtain results for a single input and single output sensor

arrangement at coordinate #5. Measurement sensor is recording velocity data at 100Hz

sampling. The deterministic excitation is a white noise with a unit variance. The un-

measured excitations were assumed to act at all masses and to have an RMS that, for

each signal, is 10% of the RMS of the deterministic excitation, namely Q = 0.01 ∗ I.

Measurement noise has 10% of the standard deviation of the output and the variance is

calculated as R = 0.0016. Unmeasured excitations and measurement noise are assumed
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to be mutually uncorrelated, namely S = 0. The Kalman filter is designed with this

information of noise covariance matrices from the reference model and used to generate

innovations process from the system subjected to the following changes.

• Change in noise statistics: Each entry of the diagonals in Q is allowed to vary

independently between 0.25 and 4 times the value from the model. R is consistent

with a noise that has 10% of the standard deviation of the output.

• Damage in the system: The damage scenarios examined are loss of stiffness in each

one of the seven springs (one at a time) at three levels of severity: 2.5%, 5% and

10%.

200 simulations are performed with a duration of 400 seconds in each simulation. Change

from one simulation to the next is coming from randomness in the unmeasured excita-

tions and the measurement noise.

Table 5.4: Change in the first un-damped frequency (Hz) due to three damage cases in
tfive-DOF spring mass system (as percent of healthy system frequency).

Springs

Damage (%) k1 k2 k3 k4 k5 k6 k7

2.5 0.8798 0.1548 0.0008 0.0391 0.0387 0.1309 0.0229
5 1.7822 0.3141 0.0017 0.0796 0.0797 0.2656 0.0466
10 3.6585 0.6471 0.0035 0.1650 0.1690 0.5475 0.0964
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Test Parameters:

The whiteness test parameters, the location of first lag (s) and the number lags (d)

are chosen in the line of Section 5.3. The number of lags being examined is calculated

using Eq.5.3.9, namely

s >
T

∆t
=

0.408
0.01

= 40.8 (5.4.1)

from where s is chosen as 50. Type-I error probability, PEI
is assumed as 5% and the

threshold for whiteness test is calculated as ρ0 = χ2
0.05(50) = 67.50. Theoretical χ2 CDF

and PDF with 50 DOF and the threshold, ρ0 is depicted in Fig.5.6

Figure 5.6: Theoretical χ2 CDF and PDF with 50 DOF in in the numerical testing of
the five-DOF spring mass system.

For the selection of the first lag, d1 , the study in Fig.5.7 is performed to see how

the largest eigenvalue of (A−KC)j decay as the lag increases. The location of the first

lag, d1 = 60 is chosen such that the largest eigenvalue of (A −KC)j in absolute value

has decreased to 0.2.
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Figure 5.7: The largest eigenvalue of (A −KC)j in absolute value as the lag increases
in numerical testing of five-DOF spring-mass system.

Results:

Simulation results are depicted in Figs.5.8-5.10. In Fig.5.8, autocorrelations of the

innovations process are presented from a single simulation for two particular system

changes. These particular changes are chosen from predefined system change scenarios,

which are: (1) Disturbance at mass coordinate #2 is scaled by 2 and R is taken consistent

with a measurement noise that has 10% of the RMS of the response. (2) 5% stiffness

loss in the first spring.

As can be seen from Fig.5.8, the rate of decay of the correlations induced by changes

in the noise statistics is much faster than the one for system changes. The correlations

from the case of changes in the noise statistics fluctuate in the 95% confidence interval

after lag 50.

We compare the behavior of the correlations for two range of lags, namely {1 to

50} and {61 to 110}. The experimental PDFs of ρ are estimated from 200 simulations

by fitting a generalized extreme value (GEV) density function for the system changes

considered. Fig.5.9 presents experimental PDFs of ρ with 50 DOF for both range of
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Figure 5.8: Auto-correlations of the innovations process from a single simulation, Bot-
tom: Noise Change Case, disturbance at mass coordinate #2 is scaled by 2, Top: Dam-
age Case with a 5% stiffness loss in the second spring. Dash line represents the 95%
confidence interval.

lags from the case of change in the noise statistics. As can be seen, for the high lags

band, the estimated PDF of χ2(50) is very close to the theoretical one. In this case

the discrepancy between experimental and theoretical PDFs might partially stem from

duration of the data used in simulations. However, for the low lags band, experimental

PDF is shifted significantly away from the theoretical one.

Power of test, P T is calculated for each of the 21 damage cases using experimental

PDFs estimated from 200 simulations. Figure 5.10 presents the power of test result

with an 5% Type-I error for low and high range of lags. As can be seen, comparison

between two range of lags band shows that low and high lags band leads to almost the

same performance in the cases of 5% and 10% damage, with a 100% PT for all springs.

However, in the 2.5% damage case, the 3rd and 7th springs are poorly detectable even

when low lags band is used, in which power of test is 48%. The resolution of the low

lags band is superior to high lags band at 2.5% stiffness loss for the 2nd and 4th springs.
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Figure 5.9: Experimental χ2 PDFs of ρ with 50 DOF from 200 simulations for change
in noise statistics, Range of Lags: Top= 61 to 110, Bottom = 1 to 50.

Figure 5.10: Power of test, (P T ) at 5% Type-I error in the numerical testing of five-DOF
spring mass system. Damage Levels: Blue={2.5%}, Red={5%}, Black={10%}, Range
of Lags: Left= {1 to 50}, Right = {61 to 110}.

5.5 Summary

The objective of the study in this chapter is to examine a damage detection technique
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based on whiteness property of Kalman filter innovations process. The system considered

has time invariant discrete-time dynamics and is subjected to unmeasured stationary

disturbances. The measurements are corrupted by white noise and available in discrete-

time. It is assumed that the disturbance and measurement noise covariance fluctuates

between data collection sections, and so the standard whiteness test for innovations

process generated by reference Kalman filter model becomes ineffective. From the results

presented in the previous sections, we can identify the following conclusions:

• Any change in the reference system parameters and noise statistics make the

Kalman filter suboptimal. Theoretical derivations show that the correlations of

the innovations from an arbitrary stable filter gain decrease with lag and asymp-

totically approach zero. However when the system changes, filter innovations do

not vanish and asymptotically approach a value.

• A modified whiteness test is introduced. The test is insensitive to changes in the

statistics of the disturbances and the measurement noise. The proposed whiteness

test can be successfully applied to the damaged detection problem in structural

systems that an analytical model is available without uncertainty. This is shown

for a simulated five-DOF spring mass system.

• A special care has to be taken in order to choose range of lags used in the modified

whiteness test. Using higher lag bands gives better results for noise change case

while lower lag bands lead high power of test in the damage case. Therefore this

trade-off has to be considered when the location of initial lag is decided. This is

shown for a simulated three-DOF shear frame structural system.
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Chapter 6

Summary and Conclusions

The studies described in this dissertation have attempted to approach three problems

that arise in experimental mechanics where Kalman filter (KF) theory is used. The

operating assumptions are that dynamical system of interest is linear time invariant and

subjected to unmeasured Gaussian stationary disturbances. An analytical model that

represents the system is assumed to be known and measurements are corrupted by white

noise and available in discrete-time. From the results presented in the previous chapters,

we can summarize the problems examined and identify conclusions in the following:

• The first problem is estimating the steady state KF gain from measurements in

the absence of process and measurement noise statistics and we examined merit

of correlations based methods to approach to the problem. In an off-line setting

the estimation of noise covariance matrices, and the associated filter gain from

correlations of measurements or innovations process from an arbitrary filter is the-

oretically feasible but lead to an ill-conditioned linear least square problem. In real

applications, the right hand side of the least square problem has some uncertainty

since it is constructed from sample correlation functions of the innovations process
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or measurements calculated using finite data. The accuracy of the sample corre-

lation functions of innovations process is improved by using long data, however,

due to fact that coefficient matrix is ill-conditioned, the stability of the solution

being sensitive to the errors in correlations functions is examined using Discrete

Picard Condition (DPC). Examinations showed that the correlations approaches

do not satisfy the DPC, therefore, the estimates obtained from the classical least

square solution are simply wrong. In this study we examined the merit of using

Tikhonov’s regularization to approach the ill-conditioned problems of correlations

approaches. Numerical examinations showed that the noise covariance and the

optimal filter gain estimates can be significantly improved by applying Tikhonov’s

regularization to ill-conditioned problems of correlations approaches.

• The second problem is on state estimation using a nominal model that represents

the actual system. We examined an approach that takes the effects of uncertain

parameters of the nominal model into account in state estimation using KF. In this

approach the errors in the nominal model are approximated by fictitious noise and

covariance of the fictitious noise is calculated using the stored data on the premise

that the norm of discrepancy between correlation functions of the measurements

and their estimates from the nominal model is minimum. Another approach ex-

amined approximates the system with an equivalent Kalman filter model. In this

approach the filter gain is calculated using the stored data on the premise that the

norm of measurement error of the filter is minimum. The fictitious noise and equiv-

alent Kalman filter approaches are applicable in off-line conditions where stored

measurement data is available. The fictitious noise approach leads to expressions

that are more complex than the equivalent Kalman filter approach scheme, but

the differences are not important when it comes down to computer implementa-

tion. Examinations showed that the state estimates from these two approaches
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are suboptimal, however, they both perform better than an arbitrary filter. The

performance of the fictitious noise approach is depended on the length of the data

since it requires the sample output correlations that are calculated from a finite

length sequences. Therefore, when the sample correlations are not calculated with

a good approximation, e.g. they are calculated from short data, the equivalent

Kalman filter approach gives better state estimates for the same data.

• Additionally, the problem of state estimation using a nominal model is addressed

in on-line operating conditions using EKF-based combined state and parameter

estimation method. This method takes the uncertain parameters as part of the

state vector and a combined parameter and state estimation problem is solved

as a nonlinear estimation using extended KF (EKF). This strategy is simple in

theory but is not trivial in applications when the model is large and the uncertain

model parameters are too many. The EKF requires the computation of Jacobian

of the augmented model and writing explicit state and measurement equations,

which are impractical for systems with large models. A parametrization scheme

for structural matrices (M, C, K) is presented that simplifies implementation of

the EKF-based combined state estimation algorithm regardless of the size of the

model and parameter vector. Examinations showed that the EKF-based combined

parameter estimation approach is not robust to large uncertainties in initial pa-

rameter estimate and error covariance matrix when unknown parameter vector is

large.

• The last problem is related to the use of Kalman filter as a fault detector. It is

well known that the innovations process of the Kalman filter is white. When the

system changes due to damage the innovations are no longer white and correlations

of the innovations can be used to detect damage. A difficulty arises, however, when

the statistics of unknown excitations and/or measurement noise fluctuate because



156 Chapter 6: Summary and Conclusions

the filter detects these changes also and it becomes necessary to differentiate what

comes from damage and what does not. In this work, we showed that, theoretically,

the correlations of the innovations from an arbitrary stable filter gain decrease with

lag and asymptotically approach zero. However when the system changes, filter

innovations do not vanish and asymptotically approach a value. We investigated

if the correlation functions of the innovations evaluated at higher lags can be used

to increase the relative sensitivity of damage over noise fluctuations. A modified

whiteness test is introduced, that is insensitive to changes in the statistics of the

disturbances and the measurement noise. The test is successfully applied to a

damaged detection problem that is numerically simulated.
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Appendix A

An Introduction to Random Signals

and Noise

In this appendix we list some concepts from probability theory that are adapted from

the original texts that cover the material [84, 85].

A.1 Random Variables

A random variable is a number X assigned to every outcome ζ of an experiment Γ.

Let X be a random variable defined on the real space R. The (cumulative) probability

distribution function (CDF) F (x) associates, to each real value x, the probability of the

occurrence X ≤ x, namely

F : R→
[

0 1

]
(A.1.1)

F (x) = P {X ≤ x} (A.1.2)
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F (x) is a monotonous, increasing function, and can be continuous or discrete depending

on X has continuous or discrete values, respectively. The resulting random variable X

of the experiment Γ must satisfy the following conditions,

• The set (X ≤ x) is an event for every x.

• lim
x→+∞

F (x) = 1; lim
x→−∞

F (x) = 0;

The derivative

f(x) =
dF (x)

dx
(A.1.3)

f(x)dx = P {x ≤ X ≤ x+ dx} (A.1.4)

of F (x) is called probability density function(PDF) of the random variable X.

To characterize a random variable X, one can use the moments of this variable.

The first moment is called mean value or expected value. The second central moment

is called variance and is denoted var(X) = σ2
x where is σx is the standard deviation,

namely.

Expected V alue : E(X) =

+∞ˆ

−∞

xf(x)dx (A.1.5)

kth moment : E(Xk) =

+∞ˆ

−∞

xkf(x)dx (A.1.6)

kth central moment : E
(

(X − E(X))k
)

=

+∞ˆ

−∞

(x− E(x))kf(x)dx (A.1.7)
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Full description of a random variable requires the characterization of all its moments.

But from a practical point of view third and higher moments are not used because they

cannot be computed or derived easily. If the X is of discrete type taking the values xi

with probabilities pi then

f(x) =
∑
i

piδ(x− xi) (A.1.8)

where δ(x) is delta dirac function and pi = P {x = xi}. The definition of moments

involves a discrete sum :

E(Xk) =
∑
i

xki piδ(x− xi) (A.1.9)

Gaussian Random Variable:

A random variable X is called normal or Gaussian if its probability density is the

shifted or/and scaled Gaussian function, namely

f(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

x (A.1.10)

where µ and σx denote mean and standard deviation of the random variable X, respec-

tively. This is bell-shape curve, symmetrical about the line x = µ and the corresponding

cumulative distribution function (CDF) is given by

F (x) =
1√
2π

xˆ

−∞

e−t
2/2dt (A.1.11)

The normal (Gaussian) random variables are entirely defined by the first and second

moments. The distribution functions of Gaussian random variables for a set of {µ, σx}
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are depicted in Fig.A.1.

Figure A.1: Normal (Gaussian) distribution, Left: Probability density function, Right:
Cumulative distribution function

Uniform Distributed Random Variable:

A random variable X is called uniform between x1 and x2 if its probability density

is constant in the interval (x1, x2) and zero elsewhere, namely

f(x) =


1

x2 − x1

x1 ≤ x ≤ x2

0 otherwise

(A.1.12)

Typical distribution functions of uniform distributed random variables are depicted in

Fig.A.2.

A.2 Multivariate Random Variables

A multivariate random variable is a vector X = [X1, . . . , Xq]T whose components

are random variables on the same probability space. Let X be defined on the real space
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Figure A.2: Uniform distribution, Right: Probability density function, Left: Cumulative
distribution function.

Rq.

Probability distribution function:

F (x1, . . . , xq) = P{X1 < x1 and X2 < x1 and · · · and Xq < xq} (A.2.1)

Probability density function:

f(x1, . . . , xq) =
∂qF (x1, . . . , xq)
∂x1 . . . ∂xq

(A.2.2)

Moments:

Only the first moment (that is the mean vector) and the second central moment

(that is the covariance matrix) are presented in the following:

Expected V alue : E(X) = [ E(X1), · · · , E(Xq) ]T (A.2.3)

Covariance : Covx = E
[
(X − E(X)(X − E(X))T

]
(A.2.4)
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The component Covx(i, j) at row i and column j of this covariance matrix verifies:

Covx(i, j) =
ˆ

R2

(xi − E(Xi)(xj − E(Xj))TdF (xi, xj) (A.2.5)

The covariance matrix is definite, positive and symmetric.

Independence:

Two random variables X1 and X2 are independent if and only if:

F (x1, x2) = F (x1)F (x2) (A.2.6)

A.3 Random Signals

Given a random variable X, the random signal x(t) is a function of time t such that

for each given t, x(t) corresponds to a value (a sample) of X. Let w(t) be a random

signal, then:

Moments for random signal:

First Moment : m(t) = E[w(t)] (A.3.1)

SecondMoment : ψww(t, τ) = E[w(t)w(t+ τ)T ] (A.3.2)

The second moment of a random signal is called the auto-correlation function.

Stationarity:

A random signal is defined to be stationary if its mean is constant m(t) = m and if
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its auto-correlation function depends only on τ , namely ψww(t, τ) = ψww(τ).

Power Spectral Density:

Stationary random signals can also be characterized by their frequency domain rep-

resentation called Power Spectral Density (PSD). The spectrum in the s-plane of a sta-

tionary random signal is the Laplace transform of the auto-correlation function, namely

Φww(s) = L(ψww(τ)) =

∞̂

−∞

ψww(τ)e−τsdτ (A.3.3)

White Noise:

White noise is a random signal with with a flat power spectral density. In other words,

the signal contains equal power within a fixed bandwidth at any center frequency. In

statistical sense, a time series is characterized as white noise if it is a sequence of serially

uncorrelated random variables; whose auto-correlation function is proportional to a Dirac

function. From a practical point of view, it is not possible to simulate, on a numerical

computer, a perfect continuous-time white noise characterized by a finite PSD. However

an approximation is often used, which consists in holding band limited frequency range

over a sample data. This approximation corresponds to the band-limited white-noise.



Appendix B

Parametrization of Structural
Matrices

The calculation of the Jacobian of the parametric state space models makes use of the

EKF for combined state and parameter estimation impractical for large size models.

Here we introduce a parameterization scheme based on dynamical system matrices in

order to calculate the Jacobian. Let the equations of equilibrium of a linear dynamical

system be written as

M(θm)ÿ(t) + Cs(θc)ẏ(t) +K(θk)y(t) = b2u(t) (B.1)

where M , K and Cs are global mass, stiffness and damping matrices and θm, θkand θc

are finite dimensional parameter vectors which contain parameters related to the mass,

stiffness and damping properties of the elements of the structure model, respectively.

We define global parameter vector as

θ =
[
θm θk θc

]T
(B.2)

and write the structural matrices which consist of f elements as follows
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M(θm) =
f∑
j=1

θmj Mj = θm1 M1 + θm1 M2 + · · ·+ θmp Mp + · · ·+ θmf Mf (B.3)

K(θk) =
f∑
j=1

θkjKj = θk1K1 + θk2K2 + · · ·+ θkpKp + · · ·+ θkfKf (B.4)

Cs(θc) =
f∑
j=1

θcj(Cs)j = θc1(Cs)1 + · · ·+ θcp(Cs)p + · · ·+ θcj(Cs)f (B.5)

where Mj , Kj and (C)j denote the stiffness, mass and damping matrices for the jth

element in the global coordinate system and p is the number of the unknown parameters

in the structural system matrices. The parameters are in order such that 1 to p refer to

unknown parameters of structural matrices and p + 1 to n refer to known parameters.

One can partition these matrices as follows

M(θm) = MP +MR (B.6)

K(θk) = KP +KR (B.7)

Cs(θc) = CP + CR (B.8)

where subscript P and R denote the partition due to unknown and known parameters

in the structural system matrices, respectively, namely
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MP =
p∑
j=1

θjMj MR =
f∑

j=p+1

θjMj (B.9)

KP =
p∑
j=1

θkjKj KR =
f∑

j=p+1

θkjKj (B.10)

CP =
p∑
j=1

θcj(Cs)j CR =
f∑

j=p+1

θcj(Cs)j (B.11)

We extend the parameterization of structural matrices to the state space form system

matrices in the following. We recall the the state space matrices A(θ) and B(θ), which

are given in the following form,

A(θ) =

 0 I

−M(θm)−1K(θk) −M(θm)−1Cs(θc)

 (B.12)

B(θ) =

 0

M(θm)−1b2

 (B.13)

Using the definitions in Eqs.B.6-B.8, one can partition the state transition matrix A(θ)

in Eq.B.12 due to unknown and known parameters as follows,

A(θ) = AR +AP (B.14)

where
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AR =

 0 I

−M−1
R KR −M−1

R (Cs)R

 (B.15)

AP =

 0 0

− 1
θm1

θk1M
−1
1 K1 − 1

θm1
θk1M

−1
1 (Cs)1

+

· · ·+

 0 0

− 1
θmp

θk1M
−1
1 K1 − 1

θm1
θkpM

−1
p (Cs)p

 (B.16)

and state to input matrix, B(θ) is partitioned as follows,

B(θ) = BR +BP (B.17)

where

BR =

 0

−M−1
R b2

 (B.18)

BP =

 0

− 1
θmp

M−1
1 b2

+ · · ·+

 0

− 1
θmp

M−1
p b2

 (B.19)

The Jacobian of the augmented state space model in Eq.4.3.18 is presented in a

closed form as follows;
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∆(ẑ(t)) =
∂(ż(t))
∂θ

∣∣∣∣
z=ẑ(t)

=

 A(θ̂(t)) Dm(θ̂(t)) Dk(θ̂(t)) Dc(θ̂(t))

0 0 0 0

 (B.20)

where

Dm(θ̂(t))
def
=

∂(A(θ))x̂
∂θm

∣∣∣∣
θ=θ̂

+
∂(B(θ))u(t)

∂θm

∣∣∣∣
θ=θ̂

=
[
dm1 . . . dmp

]
(B.21)

Dk(θ̂(t))
def
=

∂(A(θ))x̂
∂θk

∣∣∣∣
θ=θ̂

=
[
dk1 . . . dkp

]
(B.22)

Dc(θ̂(t))
def
=

∂(A(θ))x̂
∂θc

∣∣∣∣
θ=θ̂

=
[
dc1 . . . dcp

]
(B.23)

and

dmj =

 0 0
1

(θ̂mj )2
θ̂kjM

−1
j Kj

1

(θ̂mj )2
θ̂cjM

−1
j (Cs)j

 x̂+

 0
1

(θ̂mj )2
M−1
j b2

u(t) (B.24)

dkj =

 0 0

− 1

θ̂mj
M−1
j Kj 0

 x̂ (B.25)

dcj =

 0 0

0 − 1

θ̂mj
M−1
j (Cs)j

 x̂ (B.26)

dj is a column vector with the size nx1 where we recall that n is the order of the

system. The size of Jacobian matrix F (ẑ(t)) is (n + 3p)x(n + 3p). It’s apparent that

the calculation of dj requires only global structural matrices of the elements that the

parameters are calculated, namelyMj , Kj and (C)j . After one have the a priori estimate
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of the augmented state, the dj ’s for each parameter can be calculated, then Jacobian

matrix ∆(ẑ(t)) is constructed from B.20.
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