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1 Applications

Modern estimation theory can be found at the heart of many electronic signal
processing systems designed to extract information. These systems include:

Radar where the delay of the received pulse echo has to be estimated in the
presence of noise

Sonar where the delay of the received signal from each sensor has to estimated
in the presence of noise

Speech where the parameters of the speech model have to be estimated in the
presence of speech/speaker variability and environmental noise

Image where the position and orientation of an object from a camera image
has to be estimated in the presence of lighting and background noise

Biomedicine where the heart rate of a fetus has to be estimated in the presence
of sensor and environmental noise

Communications where the carrier frequency of a signal has to be estimated
for demodulation to the baseband in the presence of degradation noise

Control where the position of a powerboat for corrective navigation correction
has to be estimated in the presence of sensor and environmental noise

Siesmology where the underground distance of an oil deposit has to be esti-
mated from noisy sound re�ections due to di�erent densities of oil and
rock layers

The majority of applications require estimation of an unknown parameter θ from
a collection of observation data x[n] which also includes �arti�cacts� due to to
sensor inaccuracies, additive noise, signal distortion (convolutional noise), model
imperfections, unaccounted source variability and multiple interfering signals.
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2 Introduction

De�ne:

• x[n] ≡ observation data at sample time n,

• x = (x[0]x[1] . . . x[N − 1])T ≡ vector of N observation samples (N -point
data set), and

• p(x; θ) ≡mathemtical model (i.e. PDF) of the N -point data set parametrized
by θ.

The problem is to �nd a function of the N -point data set which provides an
estimate of θ, that is:

θ̂ = g(x = {x[0], x[1], . . . , x[N − 1]})

where θ̂ is an estimate of θ, and g(x) is known as the estimator function.

Once a candidate g(x) is found, then we usually ask:

1. How close will θ̂ be to θ (i.e. how good or optimal is our estimator)?

2. Are there better (i.e. closer ) estimators?

A natural optimal criterion is minimisation of the mean square error :

mse(θ̂) = E[(θ̂ − θ)2]

But this does not yield realisable estimator functions which can be written as
functions of the data only:

mse(θ̂) = E

{[(
θ̂ − E(θ̂)

)
+
(
E(θ̂)− θ

)]2}
= var(θ̂) +

[
E(θ̂)− θ

]2
However although

[
E(θ̂)− θ

]2
is a function of θ the variance of the estimator,

var(θ̂), is only a function of data. Thus an alternative approach is to assume
E(θ̂) − θ = 0 and minimise var(θ̂). This produces the Minimum Variance
Unbiased (MVU) estimator.

2.1 Minimum Variance Unbiased (MVU) Estimator

1. Estimator has to be unbiased , that is:

E(θ̂) = θ for a < θ < b

where [a,b] is the range of interest

2. Estimator has to have minimum variance:

θ̂MV U = arg min
θ̂
{var(θ̂)} = arg min

θ̂
{E(θ̂ − E(θ̂))2}
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2.2 EXAMPLE

Consider a �xed signal, A, embedded in a WGN (White Gaussian Noise) signal,
w[n] :

x[n] = A + w[n] n = 0, 1, . . . , N − 1

where θ = A is the parameter to be estimated from the observed data, x[n].
Consider the sample-mean estimator function:

θ̂ =
1
N

N−1∑
n=0

x[n]

Is the sample-mean an MVU estimator for A?

Unbiased?

E(θ̂) = E( 1
N

∑
x[n]) = 1

N

∑
E(x[n]) = 1

N

∑
A = 1

N NA = A

Minimum Variance?

var(θ̂) = var( 1
N

∑
x[n]) = 1

N2

∑
var(x[n]) = 1

N2

∑
σ = Nσ

N = σ2

N

But is the sample-mean θ̂ the MVU estimator? It is unbiased but is it minimum
variance? That is, is var(θ̃) ≥ σ2

N for all other unbiased estimator functions θ̃ ?

3 Cramer-Rao Lower Bound (CLRB)

The variance of any unbiased estimater θ̂ must be lower bounded by the CLRB,
with the variance of the MVU estimator attaining the CLRB. That is:

var(θ̂) ≥ 1

−E
[

∂2 ln p(x;θ)
∂θ2

]
and

var(θ̂MV U ) =
1

−E
[

∂2 ln p(x;θ)
∂θ2

]
Furthermore if, for some functions g and I:

∂ ln p(x; θ)
∂θ

= I(θ)(g(x)− θ)

then we can �nd the MVU estimator as: θ̂MV U = g(x) and the minimum
variance is 1/I(θ). For a p-dimensional vector parameter,θ, the equivalent
condition is:

Cθ̂ − I−1(θ) ≥ 0
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i.e. Cθ̂ − I−1(θ) is postitive semide�nite where Cθ̂ = E[(θ̂ −E(θ̂)T (θ̂ −E(θ̂))
is the covariance matrix. The Fisher matrix, I(θ), is given as:

[I(θ)]ij = −E

[
∂2 ln p(x;θ)

∂θi∂θj

]
Furthermore if, for some p-dimensional function g and p× p matrix I:

∂ ln p(x;θ)
∂θ

= I(θ)(g(x)− θ)

then we can �nd the MVU estimator as: θMV U = g(x) and the minimum
covariance is I−1(θ).

3.1 EXAMPLE

Consider the case of a signal embedded in noise:

x[n] = A + w[n] n = 0, 1, . . . , N − 1

where w[n] is a WGN with variance σ2, and thus:

p(x; θ) =
N−1∏
n=0

1√
2πσ2

exp
[
− 1

2σ2
(x[n]− θ)2

]

=
1

(2πσ2)
N
2

exp

[
− 1

2σ2

N−1∑
n=0

(x[n]− θ)2
]

where p(x; θ) is considered a function of the parameter θ = A (for known x)
and is thus termed the likelihood function. Taking the �rst and then second
derivatives:

∂ ln p(x; θ)
∂θ

=
N

σ2
(

1
N

∑
x[n]− θ) =

N

σ2
(θ̂ − θ)

∂2 ln p(x; θ)
∂θ2

= −N

σ2

For a MVU estimator the lower bound has to apply, that is:

var(θ̂MV U ) =
1

−E
[

∂2 ln p(x;θ)
∂θ2

] =
σ2

N

but we know from the previous example that var(θ̂) = σ2

N and thus the sample-
mean is a MVU estimator. Alternatively we can show this by considering the
�rst derivative:

∂ ln p(x; θ)
∂θ

=
N

σ2
(

1
N

∑
x[n]− θ) = I(θ)(g(x)− θ)

where I(θ) = N
σ2 and g(x) = 1

N

∑
x[n]. Thus the MVU estimator is indeed

θ̂MV U = 1
N

∑
x[n] with minimum variance 1

I(θ) = σ2

N .
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4 Linear Models

If N-point samples of data are observed and modeled as:

x = Hθ + w

where

x = N × 1 observation vector
H = N × p observation matrix
θ = p× 1 vector of parameters to be estimated
w = N × 1 noise vector with PDF N(0, σ2I)

then using the CRLB theorem θ = g(x) will be an MVU estimator if:

∂ ln p(x;θ)
∂θ

= I(θ)(g(x)− θ)

with Cθ̂ = I−1(θ). So we need to factor:

∂ ln p(x;θ)
∂θ

=
∂

∂θ

[
− ln(2πσ2)

N
2 − 1

2σ2
(x−Hθ)T (x−Hθ)

]
into the form I(θ)(g(x)− θ). When we do this the MVU estimator for θ is:

θ̂ = (HT H)−1HT x

and the covariance matrix of θ is:

Cθ̂ = σ2(HT H)−1

4.1 EXAMPLES

4.1.1 Curve Fitting

Consider �tting the data, x(t), by a pth order polynomial function of t:

x(t) = θ0 + θ1t + θ2t
2 + · · ·+ θpt

p + w(t)

Say we have N samples of data, then:

x = [x(t0), x(t1), x(t2), . . . , x(tN−1)]
T

w = [w(t0), w(t1), w(t2), . . . , w(tN−1)]
T

θ = [θ0, θ1, θ2, . . . . θp]
T
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so x = Hθ + w, where H is the N × p matrix:

H =


1 t0 t20 · · · tp0
1 t1 t21 · · · tp1
...

...
...

. . . · · ·
1 tN−1 t2N−1 · · · tpN−1


Hence the MVU estimate of the polynomial coe�cients based on the N samples
of data is:

θ̂ = (HT H)−1HT x

4.1.2 Fourier Analysis

Consider �tting or representing the N samples of data, x[n], by a linear combi-
nation of sine and cosine functions at di�erent harmonics of the fundamental
with period N samples. This implies that x[n] is a periodic time series with
period N and this type of analysis is known as Fourier analysis. We consider
our model as:

x[n] =
M∑

k=1

ak cos
(

2πkn

N

)
+

M∑
k=1

bk sin
(

2πkn

N

)
+ w[n]

so x = Hθ + w, where:

x = [x[0], x[1], x[2], . . . , x[N − 1]]T

w = [w[0], w[1], w[2], . . . , w[N − 1]]T

θ = [a1, a2, . . . , aM , b1, b2, . . . , bM ]T

where H is the N × 2M matrix:

H =
[
ha

1 ha
2 · · · ha

M hb
1 hb

2 · · · hb
M

]
where:

ha
k =



1
cos
(

2πk
N

)
cos
(

2πk2
N

)
...

cos
(

2πk(N−1)
N

)

 , hb
k =



0
sin
(

2πk
N

)
sin
(

2πk2
N

)
...

sin
(

2πk(N−1)
N

)


Hence the MVU estimate of the Fourier co-e�cients based on the N samples of
data is:

θ̂ = (HT H)−1HT x
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After carrying out the simpli�cation the solution can be shown to be:

θ̂ =



2
N (ha

1)T x
...

2
N (ha

M )T x
2
N (hb

1)
T x

...
2
N (hb

M )T x


which is none other than the standard solution found in signal processing text-
books, usually expressed directly as:

âk =
2
N

N−1∑
n=0

x[n] cos
(

2πkn

N

)

b̂k =
2
N

N−1∑
n=0

x[n] sin
(

2πkn

N

)

and Cθ̂ = 2σ2

N I.

4.1.3 System Identi�cation

We assume a tapped delay line (TDL) or �nite impulse response (FIR) model
with p stages or �taps� of an unknown system with output, x[n]. To identify
the system a known input, u[n], is used to �probe� the system which produces
output:

x[n] =
p−1∑
k=0

h[k]u[n− k] + w[n]

We assume N input samples are used to yield N output samples and our iden-
ti�cation problem is the same as estimation of the linear model parameters for
x = Hθ + w, where:

x = [x[0], x[1], x[2], . . . , x[N − 1]]T

w = [w[0], w[1], w[2], . . . , w[N − 1]]T

θ = [h[0], h[1], h[2], . . . , h[p− 1]]T

and H is the N × p matrix:

H =


u[0] 0 · · · 0
u[1] u[0] · · · 0
...

...
. . .

...
u[N − 1] u[N − 2] · · · u[N − p]


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The MVU estimate of the system model co-e�cients is given by:

θ̂ = (HT H)−1HT x

where Cθ̂ = σ2(HT H)−1. Since H is a function of u[n] we would like to choose
u[n] to achieve minimum variance. It can be shown that the signal we need is a
pseudorandom noise (PRN) sequence which has the property that the autocor-
relation function is zero for k 6= 0, that is:

ruu[k] =
1
N

N−1−k∑
n=0

u[n]u[n + k] = 0 k 6= 0

and hence HT H = Nruu[0]I. De�ne the crosscorrelation function:

rux[k] =
1
N

N−1−k∑
n=0

u[n]x[n + k]

then the system model co-e�cients are given by:

ĥ[i] =
rux[i]
ruu[0]

4.2 General Linear Models

In a general linear model two important extensions are:

1. The noise vector, w, is no longer white and has PDF N(0,C) (i.e. general
Gaussian noise)

2. The observed data vector, x, also includes the contribution of known signal
components, s.

Thus the general linear model for the observed data is expressed as:

x = Hθ + s + w

where:

s N × 1 vector of known signal samples
w N × 1 noise vector with PDF N(0,C)

Our solution for the simple linear model where the noise is assumed white can
be used after applying a suitable whitening transformation. If we factor the
noise covariance matrix as:

C−1 = DT D
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then the matrix D is the required transformation since:

E[wwT ] = C ⇒ E[(Dw)(Dw)T ] = DCDT = (DD−1)(DT−1
DT ) = I

that is w′ = Dw has PDF N(0, I). Thus by transforming the general linear
model:

x = Hθ + s + w

to:

x′ = Dx = DHθ + Ds + Dw

x′ = H′θ + s′ + w′

or:
x′′ = x′ − s′ = H′θ + w′

we can then write the MVU estimator of θ given the observed data x′′ as:

θ̂ = (H′T H′)−1H′T x′′

= (HT DT DH)−1HT DT D(x− s)

That is:
θ̂ = (HT C−1H)−1HT C−1(x− s)

and the covariance matrix is:

Cθ̂ = (HT C−1H)−1

5 General MVU Estimation

5.1 Su�cient Statistic

For the cases where the CRLB cannot be established a more general approach
to �nding the MVU estimator is required. We need to �rst �nd a su�cient
statistic for the unknown parameter θ :

Neyman-Fisher Factorization: If we can factor the PDF p(x; θ) as:

p(x; θ) = g(T (x), θ)h(x)

where g(T (x), θ) is a function of T (x) and θ only and h(x) is a function of x
only, then T (x) is a su�cient statistic for θ. Conceptually one expects that the
PDF after the su�cient statistic has been observed, p(x|T (x) = T0; θ), should
not depend on θ since T (x) is su�cient for the estimation of θ and no more
knowledge can be gained about θ once we know T (x).
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5.1.1 EXAMPLE

Consider a signal embedded in a WGN signal:

x[n] = A + w[n]

Then:

p(x; θ) =
1

(2πσ2)
N
2

exp

[
− 1

2σ2

N−1∑
n=0

(x[n]− θ)2
]

where θ = A is the unknown parameter we want to estimate. We factor as
follows:

p(x; θ) =
1

(2πσ2)
N
2

exp

[
− 1

2σ2
(Nθ2 − 2θ

N−1∑
n=0

x[n]

]
exp

[
− 1

2σ2

N−1∑
n=0

x2[n]

]
= g(T (x), θ) · h(x)

where we de�ne T (x) =
∑N−1

n=0 x[n] which is a su�cient statistic for θ.

5.2 MVU Estimator

There are two di�erent ways one may derive the MVU estimator based on the
su�cient statistic, T (x):

1. Let θ̆ be any unbiased estimator of θ. Then θ̂ = E(θ̆|T (x)) =
∫

θ̆p(θ̆|T (x))dθ̆
is the MVU estimator.

2. Find some function g such that θ̂ = g(T (x)) is an unbiased estimator of
θ, that is E[g(T (x))] = θ, then θ̂ is the MVU estimator.

The Rao-Blackwell-Lehmann-Sche�e (RBLS) theorem tells us that θ̂ =
E(θ̆|T (x)) is:

1. A valid estimator for θ

2. Unbiased

3. Of lesser or equal variance that that of θ̆, for all θ.

4. The MVU estimator if the su�cient statistic, T (x), is complete.

The su�cient statistic, T (x), is complete if there is only one function g(T (x))
that is unbiased. That is, if h(T (x)) is another unbiased estimator (i.e. E[h(T (x))] =
θ) then we must have that g = h if T (x) is complete.
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5.2.1 EXAMPLE

Consider the previous example of a signal embedded in a WGN signal:

x[n] = A + w[n]

where we derived the su�cient statistic, T (x) =
∑N−1

n=0 x[n]. Using method 2
we need to �nd a function g such that E[g(T (x))] = θ = A. Now:

E[T (x)] = E

[
N−1∑
n=0

x[n]

]
=

N−1∑
n=0

E[x[n]] = Nθ

It is obvious that:

E

[
1
N

N−1∑
n=0

x[n]

]
= θ

and thus θ̂ = g(T (x)) = 1
N

∑N−1
n=0 x[n], which is the sample mean we have

already seen before, is the MVU estimator for θ.

6 Best Linear Unbiased Estimators (BLUEs)

It may occur that the MVU estimator or a su�cient statistic cannot be found or,
indeed, the PDF of the data is itself unknown (only the second-order statistics
are known). In such cases one solution is to assume a functional model of the
estimator, as being linear in the data, and �nd the linear estimator which is
both unbiased and has minimum variance, i.e. the BLUE.

For the general vector case we want our estimator to be a linear function of the
data, that is:

θ̂ = Ax

Our �rst requirement is that the estimator be unbiased, that is:

E(θ̂) = AE(x) = θ

which can only be satis�ed if:

E(x) = Hθ

i.e. AH = I. The BLUE is derived by �nding the A which minimises the
variance, Cθ̂ = ACAT , where C = E[(x−E(x))(x−E(x))T ] is the covariance
of the data x, subject to the constraint AH = I. Carrying out this minimisation
yields the following for the BLUE:

θ̂ = Ax = (HT C−1H)−1HT C−1x

where Cθ̂ = (HT C−1H)−1. The form of the BLUE is identical to the MVU
estimator for the general linear model. The crucial di�erence is that the BLUE
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does not make any assumptions on the PDF of the data (or noise) whereas the
MVU estimator was derived assuming Gaussian noise. Of course, if the data is
truly Gaussian then the BLUE is also the MVU estimator. The BLUE for the
general linear model can be stated as follows:

Gauss-Markov Theorem Consider a general linear model of the form:

x = Hθ + w

where H is known, and w is noise with covariance C (the PDF of w is otherwise
arbitrary), then the BLUE of θ is:

θ̂ = (HT C−1H)−1HT C−1x

where Cθ̂ = (HT C−1H)−1 is the minimum covariance.

6.1 EXAMPLE

Consider a signal embedded in noise:

x[n] = A + w[n]

Where w[n] is of unspeci�ed PDF with var(w[n]) = σ2
n and the unknown pa-

rameter θ = A is to be estimated. We assume a BLUE estimate and we derive
H by noting:

E[x] = 1θ

where x = [x[0], x[1], x[2], . . . , x[N − 1]]T , 1 = [1, 1, 1, . . . , 1]T and we have
H ≡ 1. Also:

C =


σ2

0 0 · · · 0
0 σ2

1 · · · 0
...

...
. . .

...
0 0 · · · σ2

N−1

 ⇒ C−1 =


1

σ2
0

0 · · · 0
0 1

σ2
1

· · · 0
...

...
. . .

...
0 0 · · · 1

σ2
N−1


and hence the BLUE is:

θ̂ = (HT C−1H)−1HT C−1x =
1T C−1x
1T C−11

=

∑N−1
n=0

x[n]
σ2

n∑N−1
n=0

1
σ2

n

and the minimum covariance is:

Cθ̂ = var(θ̂) =
1

1T C−11
=

1∑N−1
n=0

1
σ2

n
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and we note that in the case of white noise where σ2
n = σ2 then we get the

sample mean:

θ̂ =
1
N

N−1∑
n=0

x[n]

and miminum variance var(θ̂) = σ2

N .

7 Maximum Likelihood Estimation (MLE)

7.1 Basic MLE Procedure

In some cases the MVU estimator may not exist or it cannot be found by any of
the methods discussed so far. The MLE approach is an alternative method in
cases where the PDF is known. With MLE the unknown parameter is estimated
by maximising the PDF. That is de�ne θ̂ such that:

θ̂ = arg max
θ

p(x; θ)

where x is the vector of observed data (of N samples). It can be shown that θ̂
is asymptotically unbiased:

lim
N→∞

E(θ̂) = θ

and asymptotically e�cient:

lim
N→∞

var(θ̂) = CRLB

An important result is that if an MVU estimator exists, then the MLE
procedure will produce it. An important observation is that unlike the
previous estimates the MLE does not require an explicit expression for
p(x; θ)! Indeed given a histogram plot of the PDF as a function of θ one can
numerically search for the θ that maximises the PDF.

7.1.1 EXAMPLE

Consider the signal embedded in noise problem:

x[n] = A + w[n]

where w[n] is WGN with zero mean but unknown variance which is also A, that
is the unknown parameter, θ = A, manifests itself both as the unknown signal
and the variance of the noise. Although a highly unlikely scenario, this simple
example demonstrates the power of the MLE approach since �nding the MVU
estimator by the previous procedures is not easy. Consider the PDF:

p(x; θ) =
1

(2πθ)
N
2

exp

[
− 1

2θ

N−1∑
n=0

(x[n]− θ)2
]
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We consider p(x; θ) as a function of θ, thus it is a likelihood function and we
need to maximise it wrt to θ. For Gaussian PDFs it easier to �nd the maximum
of the log-likelihood function:

ln p(x; θ) = ln

(
1

(2πθ)
N
2

)
− 1

2θ

N−1∑
n=0

(x[n]− θ)2

Di�erentiating we have:

∂ ln p(x; θ)
∂θ

= −N

2θ
+

1
θ

N−1∑
n=0

(x[n]− θ) +
1

2θ2

N−1∑
n=0

(x[n]− θ)2

and setting the derivative to zero and solving for θ, produces the MLE estimate:

θ̂ = −1
2

+

√√√√ 1
N

N−1∑
n=0

x2[n] +
1
4

where we have assumed θ > 0. It can be shown that:

lim
N→∞

E(θ̂) = θ

and:

lim
N→∞

var(θ̂) = CRLB =
θ2

N(θ + 1
2 )

7.1.2 EXAMPLE

Consider a signal embedded in noise:

x[n] = A + w[n]

where w[n] is WGN with zero mean and known variance σ2. We know the MVU
estimator for θ is the sample mean. To see that this is also the MLE, we consider
the PDF:

p(x; θ) =
1

(2πσ2)
N
2

exp

[
− 1

2σ2

N−1∑
n=0

(x[n]− θ)2
]

and maximise the log-likelihood function be setting it to zero:

∂ ln p(x; θ)
∂θ

=
1
σ2

N−1∑
n=0

(x[n]− θ) = 0 ⇒
N−1∑
n=0

x[n]−Nθ = 0

thus θ̂ = 1
N

∑N−1
n=0 x[n] which is the sample-mean.
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7.2 MLE for Transformed Parameters

The MLE of the transformed parameter, α = g(θ), is given by:

α̂ = g(θ̂)

where θ̂ is the MLE of θ. If g is not a one-to-one function (i.e. not invertible)
then α̂ is obtained as the MLE of the transformed likelihood function, pT (x;α),
which is de�ned as:

pT (x;α) = max
{θ:α=g(θ)}

p(x; θ)

7.3 MLE for the General Linear Model

Consider the general linear model of the form:

x = Hθ + w

where H is a known N × p matrix, x is the N × 1 observation vector with N
samples, and w is a noise vector of dimension N × 1 with PDF N(0,C). The
PDF is:

p(x;θ) =
1

(2π)
N
2 det

1
2 (C)

exp
[
−1

2
(x−Hθ)T C−1(x−Hθ)

]

and the MLE of θ is found by di�erentiating the log-likelihood which can be
shown to yield:

∂ ln p(x;θ)
∂θ

=
∂(Hθ)T

∂θ
C−1(x−Hθ)

which upon simpli�cation and setting to zero becomes:

HT C−1(x−Hθ) = 0

and this we obtain the MLE of θ as:

θ̂ = (HT C−1H)−1HT C−1x

which is the same as the MVU estimator.

7.4 EM Algorithm

We wish to use the MLE procedure to �nd an estimate for the unknown param-
eter θ which requires maximisation of the log-likelihood function, ln px(x;θ).
However we may �nd that this is either too di�cult or there aredi�culties in
�nding an expression for the PDF itself. In such circumstances where direct
expression and maxmisation of the PDF in terms of the observed data x is
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di�cult or intractable, an iterative solution is possible if another data set, y,
can be found such that the PDF in terms of y set is much easier to express in
closed form and maximise. We term the data set y the complete data and the
original data x the incomplete data. In general we can �nd a mapping from the
complete to the incomplete data:

x = g(y)

however this is usually a many-to-one transformation in that a subset of the
complete data will map to the same incomplete data (e.g. the incomplete data
may represent an accumulation or sum of the complete data). This explains the
terminology: x is incomplete (or is �missing� something) relative to the data,
y, which is complete (for performing the MLE procedure). This is usually not
evident, however, until one is able to de�ne what the complete data set. Un-
fortuneately de�ning what constitutes the complete data is usually an arbitrary
procedure which is highly problem speci�c.

7.4.1 EXAMPLE

Consider spectral analysis where a known signal, x[n], is composed of an un-
known summation of harmonic components embedded in noise:

x[n] =
p∑

i=1

cos 2πfin + w[n] n = 0, 1, . . . , N − 1

where w[n] is WGN with known variance σ2 and the unknown parameter vector
to be estimated is the group of frequencies: θ = f = [f1 f2 . . . fp]T . The
standard MLE would require maximisation of the log-likelihood of a multi-
variate Gaussian distribution which is equivalent to minimising the argument
of the exponential:

J(f) =
N−1∑
n=0

(
x[n]−

p∑
i=1

cos 2πfin

)2

which is a p-dimensional minimisation problem (hard!). On the other hand if
we had access to the individual harmonic signal embedded in noise:

yi[n] = cos 2πfin + wi[n]
i = 1, 2, . . . , p

n = 0, 1, . . . , N − 1

where wi[n] is WGN with known variance σ2
i then the MLE procedure would

result in minimisation of:

J(fi) =
N−1∑
n=0

(yi[n]− cos 2πfin)2 i = 1, 2, . . . , p
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which are p independent one-dimensional minimisation problems (easy!). Thus
y is the complete data set that we are looking for to facilitate the MLE proce-
dure. However we do not have access to y. The relationship to the known data
x is:

x = g(y) ⇒ x[n] =
p∑

i=1

yi[n] n = 0, 1, . . . , N − 1

and we further assume that:

w[n] =
p∑

i=1

wi[n]

σ2 =
p∑

i=1

σ2
i

However since the mapping from y to x is many-to-one we cannot directly form
an expression for the PDF py(y;θ) in terms of the known x (since we can't do
the obvious substitution of y = g−1(x)).

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

Once we have found the complete data set, y, even though an expression for
ln py(y;θ) can now easily be derived we can't directly maxmise ln py(y;θ) wrt
θ since y is unavailable. However we know x and if we further assume that we
have a good �guess� estimate for θ then we can consider the expected value of
ln py(y;θ) conditioned on what we know:

E[ln py(y;θ)|x;θ] =
∫

ln py(y;θ)p(y|x;θ)dy

and we attempt to maximise this expectation to yield, not the MLE, but next
�best-guess� estimate for θ.

What we do is iterate through both an E-step (�nd the expression for the
Expectation) and M-step (Maxmisation of the expectation), hence the name
EM algorithm. Speci�cally:

Expectation(E): Determine the average or expectation of the log-likelihood
of the complete data given the known incomplete or observed data and current
estimate of the parameter vector

Q(θ,θk) =
∫

ln py(y;θ)p(y|x;θk)dy

Maxmisation (M):Maximise the average log-likelihood of the complete date
or �Q-function� to obtain the next estimate of the parameter vector

θk+1 = arg max
θ

Q(θ,θk)

17



Convergence of the EM algorithm is guaranteed (under mild conditions) in the
sense that the average log-likelihood of the complete data does not decrease at
each iteration, that is:

Q(θ,θk+1) ≥ Q(θ,θk)

with equality when θk is the MLE. The three main attributes of the EM algo-
rithm are:

1. An initial value for the unknown parameter is needed and as with most
iterative procedures a good initial estimate is required for good conver-
gence

2. The selection of the complete data set is arbitrary

3. Although ln py(y;θ) can usually be easily expressed in closed form �nding
the closed form expression for the expectation is usually harder.

7.4.2 EXAMPLE

Applying the EM algorithm to the previous example requires �nding a closed
expression for the average log-likelihood.

E-step We start with �nding an expression for ln py(y;θ) in terms of the
complete data:

ln py(y;θ) ≈ h(y) +
p∑

i=1

1
σ2

i

N−1∑
n=0

yi[n] cos 2πfin

≈ h(y) +
p∑

i=1

1
σ2

i

cT
i yi

where the terms in h(y) do not depend on θ , ci = [1, cos 2πfi, cos 2πfi(2), . . . , cos 2πfi(N−
1)]T and yi = [yi[0], yi[1], yi[2], . . . , yi[N −1]]T . We write the conditional expec-
tation as:

Q(θ,θk) = E[ln py(y;θ)|x;θk]

= E(h(y)|x;θk) +
p∑

i=1

1
σ2

i

cT
i E(yi|x;θk)

Since we wish to maximise Q(θ,θk) wrt to θ, then this is equivalent to maxim-
ing:

Q′(θ,θk) =
p∑

i=1

cT
i E(yi|x;θk)

We note that E(yi|x;θk) can be thought as as an estimate of the yi[n] data set
given the observed data set x[n] and current estimate θk. Since y is Gaussian
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then x is a sum of Gaussians and thus x and y are jointly Gaussian and one of
the standard results is:

E(y|x;θk) = E(y) + CyxC−1
xx (x− E(x))

and application of this yields:

ŷi = E(yi|x;θk) = ci +
σ2

i

σ2
(x−

p∑
i=1

ci)

and

ŷi[n] = cos 2πfik
n +

σ2
i

σ2

(
x[n]−

p∑
i=1

cos 2πfik
n

)

Thus:

Q′(θ,θk) =
p∑

i=1

cT
i ŷi

M-step Maximisation of Q′(θ,θk) consists of maximising each term in the
sum separately or:

fik+1 = arg max
fi

cT
i ŷi

Furthermore since we assumed σ2 =
∑p

i=1 σ2
i we still have the problem that we

don't know what the σ2
i are. However as long as:

σ2 =
p∑

i=1

σ2
i ⇒

p∑
i=1

σ2
i

σ2
= 1

then we can chose these values arbitrarily.

8 Least Squares Estimation (LSE)

8.1 Basic LSE Procedure

The MVU, BLUE and MLE estimators developed previously required an ex-
pression for the PDF p(x; θ) in order to estimate the unknown parameter θ in
some optimal fashion. An alternative approach is to assume a signal model
(rather than probabilistic assumptions about the data) and achieve a design
goal assuming this model. With the Least Squares (LS) approach we assume
that the signal model is a function of the unknown parameter θ and produces a
signal:

s[n] ≡ s(n; θ)
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where s(n; θ) is a function of n and parameterised by θ. Due to noise and model
inaccuracies, w[n], the signal s[n] can only be observed as:

x[n] = s[n] + w[n]

Unlike previous approaches no statement is made on the probabilistic distri-
bution nature of w[n]. We only state that what we have is an �error�: e[n] =
x[n] − s[n] which with the appropriate choice of θ should be minimised in a
least-squares sense. That is we choose θ = θ̂ so that the criterion:

J(θ) =
N−1∑
n=0

(x[n]− s[n])2

is minimised over the N observation samples of interest and we call this the LSE
of θ. More precisely we have:

θ̂ = arg min
θ

J(θ)

and the minimum LS error is given by:

Jmin = J(θ̂)

An important assumption to produce a meaningful unbiassed estimate is that
the noise and model inaccuracies, w[n], have zero-mean. However no other
probabilistic assumptions about the data are made (i.e. LSE is valid for both
Gaussian and non-Gaussian noise), although by the same token we also can-
not make any optimality claims with LSE. (since this would depend on the
distribution of the noise and modelling errors ).

A problem that arises from assuming a signal model function s(n; θ) rather than
knowledge of p(x; θ) is the need to choose an appropriate signal model. Then
again in order to obtain a closed form or �parameteric� expression for p(x; θ)
one usually needs to know what the underlying model and noise characteristics
are anyway.

8.1.1 EXAMPLE

Consider observations, x[n], arising from a DC-level signal model, s[n] = s(n; θ) =
θ:

x[n] = θ + w[n]

where θ is the unknown parameter to be estimated. Then we have:

J(θ) =
N−1∑
n=0

(x[n]− s[n])2 =
N−1∑
n=0

(x[n]− θ)2
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The di�erentiating wrt θ and setting to zero:

∂J(θ)
∂θ

∣∣∣∣
θ=θ̂

= 0 ⇒ −2
N−1∑
n=0

(x[n]− θ̂) = 0 ⇒
N−1∑
n=0

x[n]−Nθ̂ = 0

and hence θ̂ = 1
N

∑N−1
n=0 x[n] which is the sample-mean. We also have that:

Jmin = J(θ̂) =
N−1∑
n=0

(
x[n]− 1

N

N−1∑
n=0

x[n]

)2

8.2 Linear Least Squares

We assume the signal model is a linear function of the estimator, that is:

s = Hθ

where s = [s[0], s[1], . . . , s[N − 1]]T and H is a known N × p matrix with θ =
[θ1, θ2, . . . , θp]. Now:

x = Hθ + w

and with x = [x[0], x[1], . . . , x[N − 1]]T we have:

J(θ) =
N−1∑
n=0

(x[n]− s[n])2 = (x−Hθ)T (x−Hθ)

Di�erentiating and setting to zero:

∂J(θ)
∂θ

∣∣∣∣
θ=θ̂

= 0 ⇒ −2HT x + 2HT Hθ̂ = 0

yields the required LSE:
θ̂ = (HT H)−1HT x

which, surprise, surprise, is the identical functional form of the MVU estimator
for the linear model.

An interesting extension to the linear LS is the weighted LS where the contribu-
tion to the error from each component of the parameter vector can be weighted
in importance by using a di�erent from of the error criterion:

J(θ) = (x−Hθ)T W(x−Hθ)

where W is an N ×N postive de�nite (symmetric) weighting matrix.
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8.3 Order-Recursive Least Squares

In many cases the signal model is unknown and must be assumed. Obviously
we would like to choose the model, s(θ), that minimises Jmin, that is:

sbest(θ) = arg min
s(θ̂)

Jmin

We can do this arbitrarily by simply choosing models, obtaining the LSE θ̂, and
then selecting the model which provides the smallest Jmin. However, models
are not arbitrary and some models are more �complex� (or more precisely have
a larger number of parameters or degrees of freedom) than others. The more
complex a model the lower the Jmin one can expect but also the more likely
the model is to over�t the data or be overtrained (i.e. �t the noise and not
generalise to other data sets).

8.3.1 EXAMPLE

Consider the case of �line �tting� where we have observations x(t) plotted against
the sample time index t and we would like to �t the �best� line to the data. But
what line do we �t: s(t;θ) = θ1, constant? s(t;θ) = θ1 + θ2t, a straight line?
s(t;θ) = θ1+θ2t+θ3t

2, a quadratic? etc. Each case represents an increase in the
order of the model (i.e. order of the polynomial �t), or the number of parameters
to be estimated and consequent increase in the �modelling power�. A polynomial
�t represents a linear model, s = Hθ, where s = [s(0), s(1), . . . , s(N − 1)]T and:

Constant θ = [θ1]T and H =


1
1
...
1

 is a N × 1 matrix

Linear θ = [θ1, θ2]T and H =


1 0
1 1
1 2
...

...
1 N − 1

 is a N × 2 matrix

Quadratic θ = [θ1, θ2, θ3]T and H =


1 0 0
1 1 1
1 2 4
...

...
...

1 N − 1 (N − 1)2

 is a N × 3

matrix
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and so on. If the underlying model is indeed a straight line then we would expect
not only that the minimum Jmin result with a straight line model but also that
higher order polynomial models (e.g. quadratic, cubic, etc.) will yield the same
Jmin (indeed higher-order models would �degenerate� to a straight line model,
except in cases of over�tting). Thus the straight line model is the �best� model
to use.

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

An alternative to providing an independent LSE for each possible signal model
a more e�cient order-recursive LSE is possible if the models are di�erent orders
of the same base model (e.g. polynomials of di�erent degree). In this method
the LSE is updated in order (of increasing parameters). Speci�ally de�ne θ̂k as
the LSE of order k (i.e. k parameters to be estimated). Then for a linear model
we can derive the order-recursive LSE as:

θ̂k+1 = θ̂k + UPDATEk

However the success of this approach depends on proper formulation of the linear
models in order to facilitate the derivation of the recursive update. For example,
if H has othonormal column vectors then the LSE is equivalent to projecting
the observation x onto the space spanned by the orthonormal column vectors of
H. Since increasing the order implies increasing the dimensionality of the space
by just adding another column to H this allows a recursive update relationship
to be derived.

8.4 Sequential Least Squares

In most signal processing applications the observations samples arrive as a
stream of data. All our estimation strategies have assumed a batch or block
mode of processing whereby we wait for N samples to arrive and then form our
estimate based on these samples. One problem is the delay in waiting for the
N samples before we produce our estimate, another problem is that as more
data arrives we have to repeat the calculations on the larger blocks of data (N
increases as more data arrives). The latter not only implies a growing computa-
tional burden but also the fact that we have to bu�er all the data we have seen,
both will grow linearly with the number of samples we have. Since in signal
processing applications samples arise from sampling a continuous process our
computational and memory burden will grow linearly with time! One solution
is to use a sequential mode of processing where the parameter estimate for n
samples, θ̂[n], is derived from the previous parameter estimate for n−1 samples,
θ̂[n− 1]. For linear models we can represent sequential LSE as:

θ̂[n] = θ̂[n− 1] + K[n](x[n]− s[n|n− 1])

where s[n|n − 1] ≡ s(n; θ[n − 1]). The K[n] is the correction gain and (x[n] −
s[n|n− 1]) is the prediction error. The magnitude of the correction gain K[n] is
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usually directly related to the value of the estimator error variance, var(θ̂[n−1]),
with a larger variance yielding a larger correction gain. This behaviour is rea-
sonable since a larger variance implies a poorly estimated parameter (which
should have minumum variance) and a larger correction gain is expected. Thus
one expects the variance to decrease with more samples and the estimated pa-
rameter to converge to the �true� value (or the LSE with an in�nite number of
samples).

8.4.1 EXAMPLE

We consider the speci�c case of linear model with a vector parameter:

s[n] = H[n]θ[n]

The most interesting example of sequential LS arises with the weighted LS
error criterion with W[n] = C−1[n] where C[n] is the covariance matrix of the
zero-mean noise, w[n], which is assumed to be uncorrelated. The argument [n]
implies that the vectors are based on n sample observations. We also consider:

C[n] = diag(σ2
0 , σ2

1 , . . . , σ2
n)

H[n] =
[

H[n− 1]
hT [n]

]
where hT [n] is the nthrow vector of the n×p matrix H[n]. It should be obvious
that:

s[n− 1] = H[n− 1]θ[n− 1]

We also have that s[n|n− 1] = hT [n]θ[n− 1]. So the estimator update is:

θ̂[n] = θ̂[n− 1] + K[n](x[n]− hT [n]θ[n− 1])

Let Σ[n] = Cθ̂[n] be the covariance matrix of θ̂ based on n samples of data and
the it can be shown that:

K[n] =
Σ[n− 1]h[n]

σ2
n + hT [n]Σ[n− 1]h[n]

and furthermore we can also derive a covariance update:

Σ[n] = (I−K[n]hT [n])Σ[n− 1]

yielding a wholly recursive procedure requiring only knowledge of the observa-
tion data x[n] and the initialisation values: θ̂[−1] and Σ[−1], the initial estimate
of the parameter and a initial estimate of the parameter covariance matrix.
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8.5 Constrained Least Squares

Assume that in the vector parameter LSE problem we are aware of constraints
on the individual parameters, that is p-dimensional θ is subject to r < p inde-
pendent linear constraints. The constraints can be summarised by the condition
that θ satisfy the following system of linear �constraint� equations:

Aθ = b

Then using the technique of Lagrangian multipliers our LSE problem is that of
miminising the following Lagrangian error criterion:

Jc = (x−Hθ)T (x−Hθ) + λT (Aθ − b)

Let θ̂ be the unconstrained LSE of a linear model, then the expression for θ̂c

the constrained estimate is:

θ̂c = θ̂ + (HT H)−1AT [A(HT H)−1AT ]−1(Aθ − b)

where θ̂ = (HT H)−1HT x for unconstrained LSE.

8.6 Nonlinear Least Squares

So far we have assumed a linear signal model: s(θ) = Hθ where the notation
for the signal model, s(θ) , explicitly shows its dependence on the parameter θ.
In general the signal model will be an N -dimensional nonlinear function of the
p-dimensional parameter θ. In such a case the minimisation of:

J = (x− s(θ))T (x− s(θ))

becomes much more di�cult. Di�erentiating wrt θ and setting to zero yields:

∂J

∂θ
= 0 ⇒ ∂s(θ)T

∂θ
(x− s(θ)) = 0

which requires solution of N nonlinear simultaneous equations. Approximate
solutions based on linearization of the problem exist which require iteration until
convergence.

8.6.1 Newton-Rhapson Method

De�ne:

g(θ) =
∂s(θ)T

∂θ
(x− s(θ))

So the problem becomes that of �nding the zero of a nonlinear function, that
is: g(θ) = 0. The Newton-Rhapson method linearizes the function about the
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initialised value θk and directly solves for the zero of the function to produce
the next estimate:

θk+1 = θk −
(

∂g(θ)
∂θ

)−1

g(θ)

∣∣∣∣∣
θ=θk

Of course if the function was linear the next estimate would be the correct value,
but since the function is nonlinear this will not be the case and the procedure
is iterated until the estimates converge.

8.6.2 Gauss-Newton Method

We linearize the signal model about the known (i.e. initial guess or current
estimate) θk:

s(θ) ≈ s(θk) +
∂s(θ)
∂θ

∣∣∣∣
θ=θk

(θ − θk)

and the LSE minimisation problem which can be shown to be:

J = (x̂(θk)−H(θk)θ)T (x̂(θk)−H(θk)θ)

where x̂(θk) = x− s(θk) + H(θk)θk is known and:

H(θk) =
∂s(θ)
∂θ

∣∣∣∣
θ=θk

Based on the standard solution to the LSE of the linear model, we have that:

θk+1 = θk + (HT (θk)H(θk))−1HT (θk)(x− s(θk))

9 Method of Moments

Although we may not have an expression for the PDF we assume that we can
use the natrual estimator for the kth moment, µk = E(xk[n]), that is:

µ̂k =
1
N

N−1∑
n=0

xk[n]

If we can write an expression for the kth moment as a function of the unknown
parameter θ:

µk = h(θ)

and assuming h−1 exists then we can derive the an estimate by:

θ̂ = h−1(µ̂k) = h−1

(
1
N

N−1∑
n=0

xk[n]

)
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If θ is a p-dimensional vector then we require p equations to solve for the p
unknowns. That is we need some set of p moment equations. Using the lowest
order p moments what we would like is:

θ̂ = h−1(µ̂)

where:

µ̂ =


1
N

∑N−1
n=0 x[n]

1
N

∑N−1
n=0 x2[n]
...

1
N

∑N−1
n=0 xp[n]



9.1 EXAMPLE

Consider a 2-mixture Gaussian PDF:

p(x; θ) = (1− θ)g1(x) + θg2(x)

where g1 = N(µ1, σ
2
1) and g2 = N(µ2, σ

2
2) are two di�erent Gaussian PDFs and

θ is the unknown parameter that has to be estimated. We can write the second
moment as a function of θ as follows:

µ2 = E(x2[n]) =
∫

x2p(x; θ)dx = (1− θ)σ2
1 + θσ2

2 = h(θ)

and hence:

θ̂ =
µ̂2 − σ2

1

σ2
2 − σ2

1

=
1
N

∑N−1
n=0 x2[n]− σ2

1

σ2
2 − σ2

1

10 Bayesian Philosophy

10.1 Minimum Mean Square Estimator (MMSE)

The classic approach we have been using so far has assumed that the parameter
θ is unknown but deterministic. Thus the optimal estimator θ̂ is optimal irre-
spective and independent of the actual value of θ. But in cases where the actual
value or prior knowledge of θ could be a factor (e.g. where an MVU estimator
does not exist for certain values or where prior knowledge would improve the
estimation) the classic approach would not work e�ectively.

In the Bayesian philosophy the θ is treated as a random variable with a known
prior pdf, p(θ). Such prior knowledge concerning the distribution of the estima-
tor should provide better estimators than the deterministic case.
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In the classic approach we derived the MVU estimator by �rst considering mimi-
sation of the mean square eror, i.e. θ̂ = arg minθ̂ mse(θ̂) where:

mse(θ̂) = E[(θ̂ − θ)2] =
∫

(θ̂ − θ)p(x; θ)dx

and p(x; θ) is the pdf of x parametrised by θ. In the Bayesian approach we
similarly derive an estimator by minimising θ̂ = arg minθ̂ Bmse(θ̂) where:

Bmse(θ̂) = E[(θ − θ̂)2] =
∫ ∫

(θ − θ̂)2p(x, θ)dxdθ

is the Bayesian mse and p(x, θ) is the joint pdf of x and θ (since θ is now a
random variable). It should be noted that the Bayesian squared error (θ − θ̂)2

and classic squared error (θ̂−θ)2 are the same. The minimum Bmse(θ̂) estimator
or MMSE is derived by di�erentiating the expression for Bmse(θ̂) with respect
to θ̂ and setting this to zero to yield:

θ̂ = E(θ|x) =
∫

θp(θ|x)dθ

where the posterior pdf, p(θ|x), is given by:

p(θ|x) =
p(x, θ)
p(x)

=
p(x, θ)∫
p(x, θ)dθ

=
p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

Apart from the computational (and analytical!) requirements in deriving an
expression for the posterior pdf and then evaluating the expectation E(θ|x)
there is also the problem of �nding an appropriate prior pdf . The usual choice
is to assume the joint pdf, p(x, θ), is Gaussian and hence both the prior pdf, p(θ),
and posterior pdf, p(θ|x), are also Gaussian (this property imples the Gaussian
pdf is a conjugate prior distribution). Thus the form of the pdfs remains the
same and all that changes are the means and variances.

10.1.1 EXAMPLE

Consider signal embedded in noise:

x[n] = A + w[n]

where as before w[n] = N(0, σ2) is a WGN process and the unknown parameter
θ = A is to be estimated. However in the Bayesian approach we also assume
the parameter A is a random variable with a prior pdf which in this case is the
Gaussian pdf p(A) = N(µA, σ2

A) . We also have that p(x|A) = N(A, σ2) and we
can assume that x and A are jointly Gaussian. Thus the posterior pdf:

p(A|x) =
p(x|A)p(A)∫
p(x|A)p(A)dA

= N(µA|x, σ2
A|x)
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is also a Gaussian pdf and after the required simpli�cation we have that:

σ2
A|x =

1
N
σ2 + 1

σ2
A

and µA|x =
(

N

σ2
x̄ +

µA

σ2
A

)
σ2

A|x

and hence the MMSE is:

Â = E[A|x] =
∫

Ap(A|x)dA = µA|x

= αx̄ + (1− α)µA

where α = σ2
A

σ2
A+ σ2

N

. Upon closer examination of the MMSE we observe the

following (assume σ2
A � σ2):

1. With few data (N is small) then σ2
A � σ2/N and Â → µA, that is the

MMSE tends towards the mean of the prior pdf (and e�ectively ignores
the contribution of the data). Also p(A|x) ≈ N(µA, σ2

A).

2. With large amounts of data (N is large)σ2
A � σ2/N and Â → x̄, that is

the MMSE tends towards the sample mean x̄ (and e�ectively ignores the
contribution of the prior information). Also p(A|x) ≈ N(x̄, σ2/N).

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

If x and y are jointly Gaussian, where x is k×1 and y is l×1, with mean vector
[E(x)T , E(y)T ]T and partitioned covariance matrix

C =
[

Cxx Cxy

Cyx Cyy

]
=
[

k × k k × l
l × k l × l

]
then the conditional pdf, p(y|x), is also Gaussian and:

E(y|x) = E(y) + CyxC−1
xx (x− E(x))

Cy|x = Cyy −CyxC−1
xx Cxy

10.2 Bayesian Linear Model

Now consider the Bayesian Llinear Model:

x = Hθ + w

where θ is the unknown parameter to be estimated with prior pdf N(µθ,Cθ)
and w is a WGN with N(0,Cw). The MMSE is provided by the expression for
E(y|x) where we identify y ≡ θ. We have that:

E(x) = Hµθ

E(y) = µθ
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and we can show that:

Cxx = E[(x− E(x))(x− E(x))T ] = HCθHT + Cw

Cyx = E[(y − E(y))(x− E(x)T ] = CθHT

and hence since x and θ are jointly Gaussian we have that:

θ̂ = E(θ|x) = µθ + CθHT (HCθHT + Cw)−1(x−Hµθ)

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

10.3 Relation with Classic Estimation

In classical estimation we cannot make any assumptions on the prior, thus all
possible θ have to be considered. The equivalent prior pdf would be a �at
distribution, essentially σ2

θ = ∞. This so-called noninformative prior pdf will
yield the classic estimator where such is de�ned.

10.3.1 EXAMPLE

Consider the signal embedded in noise problem:

x[n] = A + w[n]
where we have shown that the MMSE is:

Â = αx̄ + (1− α)µA

where α = σ2
A

σ2
A+ σ2

N

. If the prior pdf is noninformative then σ2
A = ∞ and α = 1

with Â = x̄ which is the classic estimator.

10.4 Nuisance Parameters

Suppose that both θ and α were unknown parameters but we are only interested
in θ. Then α is a nuisance parameter. We can deal with this by �integrating α
out of the way�. Consider:

p(θ|x) =
p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

Now p(x|θ) is, in reality, p(x|θ, α), but we can obtain the true p(x|θ) by:

p(x|θ) =
∫

p(x|θ, α)p(α|θ)dα

and if α and θ are independent then:

p(x|θ) =
∫

p(x|θ, α)p(α)dα
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11 General Bayesian Estimators

The Bmse(θ̂) given by:

Bmse(θ̂) = E[(θ − θ̂)2] =
∫ ∫

(θ − θ̂)2p(x, θ)dxdθ

is one speci�c case for a general estimator that attempts to minimise the average
of the cost function, C(ε), that is the Bayes risk R = E[C(ε)] where ε = (θ− θ̂).
There are three di�erent cost functions of interest:

1. Quadratic: C(ε) = ε2 which yields R = Bmse(θ̂). We already know that
the estimate to minimise R = Bmse(θ̂) is:

θ̂ =
∫

θp(θ|x)dθ

which is the mean of the posterior pdf.

2. Absolute: C(ε) = |ε|. The estimate, θ̂, that minimises R = E[|θ − θ̂|]
satis�es: ∫ θ̂

−∞
p(θ|x)dθ =

∫ ∞

θ̂

p(θ|x)dθ or Pr{θ ≤ θ̂|x} =
1
2

that is, the median of the posterior pdf.

3. Hit-or-miss: C(ε) =
{

0 |ε| < δ
1 |ε| > δ

. The estimate that minimises the

Bayes risk can be shown to be:

θ̂ = arg max
θ

p(θ|x)

which is the mode of the posterior pdf (the value that maxmises the pdf).

For the Gaussian posterior pdf it should be noted that the mean, mediam and
mode are identical. Of most interest are the quadratic and hit-or-miss cost
functions which, together with a special case of the latter, yield the following
three important classes of estimator:

1. MMSE (Minimum Mean Square Error) estimator which we have
already introduced as the mean of the posterior pdf :

θ̂ =
∫

θp(θ|x)dθ =
∫

θp(x|θ)p(θ)dθ
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2. MAP (Maximum A Posteriori) estimator which is the mode or maximum
of the posterior pdf :

θ̂ = arg max
θ

p(θ|x)

= arg max
θ

p(x|θ)p(θ)

3. Bayesian ML (Bayesian Maximum Likelihood) estimator which is
the special case of the MAP estimator where the prior pdf, p(θ), is uniform
or noninformative:

θ̂ = arg max
θ

p(x|θ)

Noting that the conditional pdf of x given θ, p(x|θ), is essentially equiva-
lent to the pdf of x parametrized by θ, p(x; θ), the Bayesian ML estimator
is equivalent to the classic MLE.

Comparing the three estimators:

• The MMSE is preferred due to its least-squared cost function but it is
also the most di�cult to derive and compute due to the need to �nd an
expression or measurements of the posterior pdf p(θ|x)in order to integrate∫

θp(θ|x)dθ

• The MAP hit-or-miss cost function is more �crude� but the MAP esti-
mate is easier to derive since there is no need to integrate, only �nd the
maximum of the posterior pdf p(θ|x) either analytically or numerically.

• The Bayesian ML is equivalent in performance to the MAP only in the
case where the prior pdf is noninformative, otherwise it is a sub-optimal
estimator. However, like the classic MLE, the expression for the condi-
tional pdf p(x|θ) is usually easier to obtain then that of the posterior pdf,
p(θ|x). Since in most cases knowledge of the the prior pdf is unavailable
so, not surprisingly, ML estimates tend to be more prevalent. However it
may not always be prudent to assume the prior pdf is uniform, especially
in cases where prior knowledge of the estimate is available even though
the exact pdf is unknown. In these cases a MAP estimate may perform
better even if an �arti�cial� prior pdf is assumed (e.g. a Gaussian prior
which has the added bene�t of yielding a Gaussian posterior).

12 Linear Bayesian Estimators

12.1 Linear Minimum Mean Square Error (LMMSE) Es-
timator

We assume that the parameter θ is to be estimated based on the data set
x = [x[0]x[1] . . . x[N − 1]]T rather than assume any speci�c form for the joint
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pdf p(x, θ). We consider the class of all a�ne estimators of the form:

θ̂ =
N−1∑
n=0

anx[n] + aN = aT x + aN

where a = [a1 a2 . . . aN−1]T and choose the weight co-e�cients {a, aN} to min-
imize the Bayesian MSE:

Bmse(θ̂) = E
[
(θ − θ̂)2

]
The resultant estimator is termed the linear minimum mean square error (LMMSE)
estimator. The LMMSE will be sub-optimal unless the MMSE is also linear.
Such would be the case if the Bayesian linear model applied:

x = Hθ + w

The weight co-e�cients are obtained from ∂Bmse(θ̂)
∂ai

= 0 for i = 1, 2, . . . , N
which yields:

aN = E(θ)−
N−1∑
n=0

anE(x[n]) = E(θ)− aT E(x) and a = C−1
xx Cxθ

where Cxx = E
[
(x− E(x))(x− E(x))T

]
is the N × N covariance matrix and

Cxθ = E [(x− E(x))(θ − E(θ))] is the N × 1 cross-covariance vector. Thus the
LMMSE estimator is:

θ̂ = aT x + aN = E(θ) + CθxC−1
xx (x− E(x))

where we note Cθx = CT
xθ = E

[
(θ − E(θ))(x− E(x))T

]
. For the 1 × p vector

parameter θ an equivalent expression for the LMMSE estimator is derived:

θ̂ = E(θ) + CθxC−1
xx (x− E(x))

where now Cθx = E
[
(θ − E(θ))(x− E(x))T

]
is the p × N cross-covariance

matrix. And the Bayesian MSE matrix is:

Mθ̂ = E
[
(θ − θ̂)(θ − θ̂)T

]
= Cθθ −CθxC−1

xx Cxθ

where Cθθ = E
[
(θ − E(θ))(θ − E(θ))T

]
is the p× p covariance matrix.

12.1.1 Bayesian Gauss-Markov Theorem

If the data are described by the Bayesian linear model form:

x = Hθ + w

33



where x is the N × 1 data vector, H is a known N × p observation matrix, θ
is a p× 1 random vector of parameters with mean E(θ) and covariance matrix
Cθθ and w is an N × 1 random vector with zero mean and covariance matrix
Cw which is uncorrelated with θ (the joint pdf p(w,θ) and hence also p(x,θ)
are otherwise arbitrary), then noting that:

E(x) = HE(θ)
Cxx = HCθθHT + Cw

Cθx = CθθHT

the LMMSE estimator of θ is:

θ̂ = E(θ) + CθθHT (HCθθHT + Cw)−1(x−HE(θ))
= E(θ) + (C−1

θθ + HT C−1
w H)−1HT C−1

w (x−HE(θ))

and the covariance of the error which is the Bayesian MSE matrix is:

Mθ̂ = (C−1
θθ + HT C−1

w H)−1

12.2 Wiener Filtering

We assume N samples of time-series data x = [x[0]x[1] . . . x[N − 1]]Twhich are
wide-sense stationary (WSS). As such the N × N covariance matrix takes the
symmetric Toeplitz form:

Cxx = Rxx where [Rxx]ij = rxx[i− j]

where rxx[k] = E(x[n]x[n − k]) is the autocorrelation function (ACF) of the
x[n] process and Rxx denotes the autocorrelation matrix. Note that since x[n]
is WSS the expectation E(x[n]x[n − k]) is independent of the absolute time
index n. In signal processing the estimated ACF is used:

r̂xx[k] =
{

1
N

∑N−1−|k|
n=0 x[n]x[n + |k|] |k| ≤ N − 1

0 |k| ≥ N

Both the data x and the parameter to be estimated θ̂ are assumed zero mean.
Thus the LMMSE estimator is:

θ̂ = CθxC−1
xx x

Application of the LMMSE estimator to the three signal processing estimation
problems of �ltering, smoothing and prediction gives rise to the Wiener �ltering
equation solutions.
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12.2.1 Smoothing

The problem is to estimate the signal θ = s = [s[0] s[1] . . . s[N − 1]]Tbased on
the noisy data x = [x[0]x[1] . . . x[N − 1]]T where:

x = s + w

and w = [w[0]w[1] . . . w[N − 1]]T is the noise process. An important di�erence
between smoothing and �ltering is that the signal estimate s[n] can use the
entire data set: the past values (x[0], x[1], . . . x[n − 1]), the present x[n] and
future values (x[n + 1], x[n + 2], . . . , x[N − 1]). This means that the solution
cannot be cast as ��ltering� problem since we cannot apply a causal �lter to the
data.

We assume that the signal and noise processes are uncorrelated. Hence:

rxx[k] = rss[k] + rww[k]

and thus:
Cxx = Rxx = Rss + Rww

also:
Cθx = E(sxT ) = E(s(s + w)T ) = Rss

Hence the LMMSE estimator (also called the Wiener estimator) is:

ŝ = Rss(Rss + Rww)−1x = Wx

and the N ×N matrix:

W = Rss(Rss + Rww)−1

is referred to as the Wiener smoothing matrix.

12.2.2 Filtering

The problem is to estimate the signal θ = s[n] based only on the present and
past noisy data x = [x[0]x[1] . . . x[n]]T . As n increases this allows us to view
the estimation process as an application of a causal �lter to the data and we
need to cast the LMMSE estimator expression in the form of a �lter.

Assuming the signal and noise processes are uncorrelated we have:

Cxx = Rss + Rww

where Cxx is an (n + 1)× (n + 1) autocorrelation matrix. Also:

Cθx = E(sxT ) = E(s(s + w)T ) = E(ssT )
= E(s[n] [s[0] s[1] . . . s[n]])
= [rss[n] rss[n− 1] . . . rss[0]] = řT

ss
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is a 1× (n + 1) row vector. The LMMSE estimator is:

ŝ[n] = řT
ss(Rss + Rww)−1x = aT x

where a = [a0 a1 . . . an]T = (Rss + Rww)−1řT
ss is the (n + 1) × 1 vector of

weights. Note that the �check� subscript is used to denote time-reversal. Thus:

rT
ss = [rss[0] rss[1] . . . rss[n]]

We interpret the process of forming the estimator as time evolves (n increases)
as a �ltering operation. Speci�cally we let h(n)[k], the time-varying impulse
response, be the response of the �lter at time n to an impulse applied k samples
before (i.e. at time n− k). We note that ai can be intrepreted as the response
of the �lter at time n to the signal (or impulse) applied at time i = n−k . Thus
we can make the following correspondence:

h(n)[k] = an−k k = 0, 1, . . . , n.

Then:

ŝ[n] =
n∑

k=0

akx[k] =
n∑

k=0

h(n)[n− k]x[k] =
n∑

k=0

h(n)[k]x[n− k]

We de�ne the vector h =
[
h(n)[0]h(n)[1] . . . h(n)[n]

]T
. Then we have that h = ǎ,

that is, h is a time-reversed version of a. To explicitly �nd the impulse response
h we note that since:

(Rss + Rww)a = řT
ss

then it also true that:
(Rss + Rww)h = rss

When written out we get the Wiener-Hopf �ltering equations:


rxx[0] rxx[1] · · · rxx[n]
rxx[1] rxx[0] · · · rxx[n− 1]

...
...

. . .
...

rxx[n] rxx[n− 1] · · · rxx[0]




h(n)[0]
h(n)[1]

...
h(n)[n]

 =


rss[0]
rss[1]
...

rss[n]


where rxx[k] = rss[k] + rww[k]. A computationally e�cient solution for solving
the equations is the Levinson recursion which solves the equations recursively
to avoid resolving them for each value of n.

12.2.3 Prediction

The problem is to estimate θ = x[N − 1 + l] based on the current and past x =
[x[0]x[1] . . . x[N − 1]]T at sample l ≥ 1 in the future. The resulting estimator is
termed the l-step linear predictor.
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As before we have Cxx = Rxx where Rxx is the N ×N autocorrelation matrix,
and:

Cθx = E(xxT )
= E(x[N − 1 + l] [x[0]x[1] . . . x[N − 1]])
= [rxx[N − 1 + l] rxx[N − 2 + l] . . . rxx[l]] = řT

xx

Then the LMMSE estimator is:

x̂[N − 1 + l] = řT
xxR

−1
xx x = aT x

where a = [a0 a1 . . . aN−1]
T = R−1

xx řxx. We can interpret the process of forming
the estimator as a �ltering operation where h(N)[k] = h[k] = an−k ⇒ h[N −
k] = ak and then:

x̂[N − 1 + l] =
N−1∑
k=0

h[N − k]x[k] =
N∑

k=1

h[k]x[N − k]

De�ning h = [h[1]h[2] . . . h[N ]]T = [aN−1 aN−2 . . . a0]
T = ǎ as before we can

�nd an explicit expression for h by noting that:

Rxxa = rxx ⇒ Rxxh = rxx

where rxx = [rxx[l] rxx[l + 1] . . . rxx[l + N − 1]]T is the time-reversed version of
řxx. When written out we get the Wiener-Hopf prediction equations:

rxx[0] rxx[1] · · · rxx[N − 1]
rxx[1] rxx[0] · · · rxx[N − 2]

...
...

. . .
...

rxx[N − 1] rxx[N − 2] · · · rxx[0]




h[1]
h[2]
...

h[N ]

 =


rxx[l]

rxx[l + 1]
...

rxx[l + N − 1]


A computationally e�cient solution for solving the equations is the Levinson
recursion which solves the equations recursively to avoid resolving them for
each value of n. The special case for l = 1, the one-step linear predictor, covers
two important cases in signal processing:

• the values of −h[n] are termed the linear prediction coe�cients which are
used extensively in speech coding, and

• the resulting equations are identical to the Yule-Walker equations used to
solve the AR �lter parameters of an AR(N) process.

12.3 Sequential LMMSE

We can derive a recursive re-estimation of θ̂[n] (i.e. θ̂ based on n data samples)
from:
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• θ̂[n− 1], the estimate based on n− 1 data samples,

• x[n], the nth data sample, and

• x̂[n|n− 1], an estimate of x[n] based on n− 1 data samples.

Using a vector space analogy where we de�ne the following inner product:

(x, y) = E(xy)

the procedure is as follows:

1. From the previous iteration we have the estimate, θ̂[n − 1], or we have
an initial estimate θ̂[0]. We can consider θ̂[n − 1] as the true value of θ
projected on the subspace spanned by {x[0], , x[1], . . . , x[n− 1]}.

2. We �nd the LMMSE estimator of x[n] based on the previous n−1 samples,
that is the one-step linear predictor, x̂[n|n − 1], or we have an initial
estimate, x̂[0| − 1]. We can consider x̂[n|n − 1] as the true value x[n]
projected on the subspace spanned by {x[0], , x[1], . . . , x[n− 1]}.

3. We form the innovation x[n]− x̂[n|n− 1] which we can consider as being
orthogonal to the space spanned by {x[0], , x[1], . . . , x[n − 1]} and rep-
resenting the direction of correction based exclusively on the new data
sample x[n].

4. We calculate the correction gain K[n] by the normalised projection of θ
on the innovation x[n]− x̂[n|n− 1], that is:

K[n] =
E[θ(x[n]− x̂[n|n− 1])]
E[(x[n]− x̂[n|n− 1])2]

5. Finally we update the estimator by adding the correction:

θ̂[n] = θ̂[n− 1] + K[n](x[n]− x̂[n|n− 1])

12.3.1 Sequential LMMSE for the Bayesian Linear Model

For the vector parameter-scalar data form of the Bayesian linear model:

x[n] = hT θ + w[n]

we can derive the sequential vector LMMSE:

θ̂[n] = θ̂[n− 1] + K[n](x[n]− hT [n]θ̂[n− 1])

K[n] =
M[n− 1]h[n]

σ2
n + hT [n]M[n− 1]h[n]

M[n] = (I−K[n]hT [n])M[n− 1]

where M[n] is the error covariance estimate:

M[n] = E[(θ − θ̂[n])(θ − θ̂[n])T ]
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13 Kalman Filters

The Kalman �lter can be viewed as an extension of the sequential LMMSE to
the case where the parameter estimate, or state, varies with time in a known but
stochastic way and unknown initialisation. We consider the vector state-vector
observation case and consider the unknown state (to be estimated) at time n,
s[n], to vary according to the Gauss-Markov signal model process equation:

s[n] = As[n− 1] + Bu[n] n ≥ 0

where s[n] is the p×1 state vector with unknown initialisation s[−1] = N(µs,Cs
)

, u[n] = N(0,Q) is the WGN r × 1 driving noise vector and A,B are known
p × p and p × r matrices. The observed data, x[n], is then assumed a linear
function of the state vector with the following observation equation:

x[n] = H[n]s[n] + w[n] n ≥ 0

where x[n] is the M × 1 observation vector, w[n] = N(0,R) is the WGN M × 1
observation noise sequence and H is a known M × p matrix.

We wish to estimate s[n] based on the observationsX[n] =
[
xT [0]xT [1] . . . xT [n]

]
.

Our criterion of optimality is the Bayesian MMSE:

E[(s[n]− ŝ[n|n])2]

where ŝ[n|n] = E(s[n]|X[n]) is the estimate of s[n] based on the observation
sequence X[n]. We de�ne the innovation sequence:

x̃[n] = x[n]− x̂[n|n− 1]

where x̂[n|n − 1] = E(x[n]|X[n − 1]) is the predictor of x[n] based on the
observation sequence X[n − 1]. We can consider ŝ[n|n] as being derived from
two separate components:

ŝ[n|n] = E(s[n]|X[n− 1]) + E(s[n]|x̃[n])

where E(s[n]|X[n − 1]) is the �state prediction� and E(s[n]|x̃[n]) is the �inno-
vation correction�. By de�nition ŝ[n|n − 1] = E(s[n]|X[n − 1]) and from the
process equation we can show that:

ŝ[n|n− 1] = Aŝ[n− 1|n− 1]

From our sequential LMMSE results we also have that :

E(s[n]|x̃[n]) = K[n](x[n]− x̂[n|n− 1])

and:

K[n] = E(s[n]x̃T [n])E(x̃[n]x̃T [n])−1 = M[n|n−1]HT [n](H[n]M[n|n−1]HT [n]+R)−1
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where:
M[n|n− 1] = E

[
(s[n]− ŝ[n|n− 1])(s[n]− ŝ[n|n− 1])T

]
is the state error covariance predictor at time n based on the observation se-
quence X[n− 1]. From the process equation we can show that:

M[n|n− 1] = AM[n− 1|n− 1]AT + BQBT

and by appropriate substitution we can derive the following expression for the
state error covariance estimate at time n:

M[n|n] = (I−K[n]H[n])M[n|n− 1]

Kalman Filter Procedure

Prediction

ŝ[n|n− 1] = Aŝ[n− 1|n− 1]
M[n|n− 1] = AM[n− 1|n− 1]AT + BQBT

Gain
K[n] = M[n|n− 1]HT [n](H[n]M[n|n− 1]HT [n] + R)−1

Correction

ŝ[n|n] = ŝ[n|n− 1] + K[n](x[n]− x̂[n|n− 1])
M[n|n] = (I−K[n]H[n])M[n|n− 1]
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