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Identification of Observer/Kalman Filter Markov Parameters: 
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This paper discusses an algorithm lo  compute the Markov parameters of an observer or Kalman filter from 
experimental input and output data. The Markov parameters can then be used for identificatinn of a state-space 
representation, with associated Kalman or observer gain, for the purpose of controller design. The algorithm is 
a nonrecursive matrix version of two recursive algorithms developed in previous works for different purposes, 
and the relationship between these other algorithms is developed. The new matrix formulation here gives insight 
into the existence and uniqueness of solutions of certain equations and offers bounds on the proper choice of 
observer order. It is shown that if one uses data containing noise and seeks the fastest possible deterministic 
observer, the deadbeat observer, one instead obtains the Kalman filter, which is the fastest possible observer in 
the stochastic environment. The results of the paper are demonstrated in numerical studies and experiments on 
the Huhhle space telescope. 

Introduction 
ANY future spacecraft such as the space station will M be large and flexible and require control of the vibra- 

tional motion induced by internal and external disturbances 
for fine pointing and shape control. One can classify con- 
trollers for flexible structures into two types: model-indepen- 
dent and model-dependent controllers. The model-indepen- 
dent controller is attractive because it provides stability 
without precise knowledge of the system. However, it gener- 
ally produces low-authority control that may not meet the 
performance requirements. On the other hand, model-depen- 
dent controllers require an  accurate model to achieve high 
performance, but inaccuracies in the model may result in insta- 
bility of the controlled system.2 Current results indicate that an 
accurate model is necessary to design controllers with the 
needed performance level. 

In the past decade, many system identification techniques 
were developed and/or applied to identify a state-space model 
for modal parameter identification of large flexible space 
structures. The modal parameters include frequencies, damp- 
ing, and mode shapes. The identified state-space model is also 
used in controller design. Many satisfactory results were re- 
ported in the l i t e r a t ~ r e . ~ . ~  Most techniques are based on sam- 
pled pulse or impulse system response histories that are known 
as Markov parameters. The usual practice uses the fast Fourier 
transforms (FFT) of the inputs and measured outputs to com- 
pute the sampled pulse response histories. The discrete nature 
of the FFT causes one to obtain pulse response rather than an 
impulse response, and a somewhat rich input is required to 
prevent numerical ill-conditioning in the computation. An- 
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other approach is to solve directly in the time domain for the 
Markov parameters from the input and output data. The 
drawbacks of this method include the need to invert an input 
matrix that necessarily becomes particularly large for lightly 
damped  system^.^ 

Recently, an approach was developedh-x to address the prob- 
lem of inverting a large-dimensional input matrix. Reference 8 
gives a more detailed presentation of the developments in 
Refs. 6 and 7 including additional examples. Rather than iden- 
tifying the system Markov parameters that may exhibit very 
slow decay, it uses an asymptotically stable observer to form a 
stable state-space discrete model for the system to be identi- 
fied. The primary purpose of introducing an observer in Ref. 8 
is as an artifice to compress the data and improve system 
identification results in practice. The system identification 
engineeer can assign any poles desired and hence specify 
the decay rate of the observer Markov parameters to be de- 
termined from the data and simultaneously the number of 
parameters needed before they have decayed to a negligible 
level. The desired poles can be real, complex, or deadbeat. The 
deadbeat means that all the poles are zero in the complex plane 
for a discrete model. 

The treatment in Ref. 8 is purely deterministic. When 
stochastic models are considered, it would be desirable to iden- 
tify not only the system matrices of a realization, but also the 
noise or uncertainty characteristics of the model directly from 
the experimental data. This presumes that the same sensors 
and actuators used in the identification tests will also be em- 
ployed in the control system that is to be designed from the 
system identification results. There are basically two ways to 
characterize system uncertainties, including plant and mea- 
surement noises. One method is to describe the input and 
output uncertainties directly in terms of their covariances. 
Another way is to specify the Kalman filter equation with its 
steady-state Kalman gain that is a function of the input 
and output covariances. Recently, a recursive identification 
method was presented in Ref. 9 to identify Markov parameters 
for the identification of not only the system matrices, but also 
the Kalman filter gain. Note that the work in Ref. 9 was 
motivated by the unsolved problem in Ref. 10 in which single- 
mode projection filters were developed for modal parameter 
identification. There exist many unsolved issues, such as the 
relationship between the order of the Kalman filter and that of 
the system using the approach of Ref. 9. Furthermore, the 
computation time and data length are too long to become 
attractive in practice. Examination of the mathematics in- 
volved in Ref. 8 for accelerated identification using observers, 
and that in Ref. 9 for direct identification of the Kalman filter 
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U =  

Markov parameters, shows striking parallels that are investi- 
gated here. 

One objective of this paper is to present an algorithm to 
directly compute the Markov parameters of a steady-state Kal- 
man filter from experimental data. From these parameters, 
one can use various methods to obtain the Kalman filter state- 
space realization. The approach used in this paper is to re- 
formulate in matrix form the equations presented in Ref. 8 
for deadbeat observers and in Ref. 9 for Kalman filters. This 
matrix form gives added insight into the uniqueness of the 
transformation from observer or filter Markov parameters to 
the system Markov parameters and also allows the develop- 
ment of upper and lower bounds on the choice of observer 
order. Also, the recursive least-squares solution in Refs. 8 and 
9 is replaced by a nonrecursive least-squares solution. This 
results in an improved rate of convergence for the Kalman 
filter identification process by comparison to Ref. 9. 

Underlying this work is a second objective, to establish the 
relationship between the observer identification equations in 
Ref. 8 and the Kalman filter identification equations in Ref. 9. 
When the observer poles in Ref. 8 are all placed at the origin 
in the z plane in order to obtain a deadbeat observer of a 
sufficiently high order and then data containing both plant and 
measurement noise are used to develop the desired Markov 
parameters, the result is the Kalman filter Markov parameters. 
Stated in different words, if one uses data containing noise and 
seeks the Markov parameters for the fastest possible determin- 
istic discrete time observer, one instead obtains the Markov 
parameters of the slower Kalman filter, which is the fastest 
possible observer in the stochastic environment. 

This paper starts by explaining the relationship between the 
input and output histories in terms of system Markov parame- 
ters without any observer. An observer is then introduced into 
the input and output matrix relation, which is solved by a 
nonrecursive least-squares approach to compute the observer 
Markov parameters. Formulations are derived to compute the 
system Markov parameters and the observer gain from the 
observer Markov parameters. The relationship between the 
identified deadbeat observer and a Kalman filter is then estab- 
lished through the use of the ergodic property of stationary 
random processes. The optimal nature of the identified ob- 
server is also discussed. Numerical and experimental results 
are given to illustrate the validity of the algorithm presented in 
this paper. The experimental results are obtained from the 
Hubble space telescope having six gyros and four torque 
wheels. 

Basic Formulation 
Consider a discrete multivariable linear system described by 

x ( i  + 1) = A x ( i )  + Bu(i)  

y ( i )  = Cx(i)  + Du(i)  (1) 

where x ( i )  E R n ,  y ( i )  E Rq, u ( i )  E Rm. If we assume zero ini- 
tial conditions x(0) = 0, the set of this equations for a sequence 

u(0) u(1) u(2)  " '  u ( p )  " '  u ( l -  1 )  
u(0) u(1) . ' .  u ( p - 1 )  _ ' '  u( l -2 )  

u(0) _ ' '  u ( p - 2 )  _ ' '  u ( l -  3 )  
. . .  

u(0) " '  u ( l - p - 1 )  
- 

of i can be written as 
Y X P  m l x  P 
y = Y  u 

q x m P  

where 

Y = [ D  CB CAB . . .  CAY-2B] 

and 

U =  

u(0) u(1) u(2) . ' .  u(l-1) 
u(0) u(1) " '  u( l -2 )  

u(0) ' . .  u ( l - 3 )  

u (0) 

Equation (2) is a matrix representation of the relationship 
between input and output histories. The matrix y is a q x l  
output data matrix, where q is the number of outputs and Pthe 
number of data samples. The matrix Y ,  of dimension q x ma 
with m the number of inputs, contains all of the Markov 
parameters D ,  CB,  CAB, .  . . , CAP-2B to be determined. The 
matrix U is an mlx  lupper-block triangular input matrix. It is 
square in the case of a single-input system and otherwise has 
more rows than columns. 

Inspection of Eq. (2) indicates that there are q x rnl un- 
knowns in the Markov parameter matrix, but only q x lequa- 
tions. For the case where m > 1, the solution for Y is not 
unique. However, it is known that, for a finite-dimensional 
linear system, Y must be unique. The matrix Y can only be 
uniquely determined from this set of equations for m = 1 .  Even 
in this case, if the input has zero initial value, Le., u(0) = 0, or 
the input signals are not rich enough such as the case with 
sinusoidal input signals, the matrix U becomes ill-conditioned 
and thus the matrix Y = y U - '  cannot be accurately computed. 

Consider the case where A is asymptotically stable so that 
for some sufficiently large p ,  A'=O for all time steps i r p .  
Equation (2) can then be approximated by 

q x P  m p x l  
y = Y  u 

where 

( 3 )  

CAP- ' B ]  

Note that U [ rn (p + 1 )  x l ]  and Y [ q  X rn ( p  + l)] refer to trun- 
cated versions of U and Y in Eq. (2). Choose the data length 
!greater than m ( p  + l) ,  where again rn is the number of inputs 
and p an integer such that CA'B = 0 for i r p .  Equation ( 3 )  
indicates that there arc more equations (q x e )  than unknowns 
[q  x m ( p  + l)] because lrrn(p + 1) .  We conclude that if the 
data have a realization in the form of Eq. (l), then the first p 
Markov parameters approximately satisfy Y = y U + ,  where 
U + is the pseudoinverse of the matrix U ,  and the approxima- 
tion error decreases as p increases. 

Unfortunately, for lightly damped space structures, the in- 
teger p and thus the l required to make the approximation in 
Eq. ( 3 )  valid become impractically large in the sense that the 
size of the matrix U is too large to solve for its pseudoinverse 
U +  numerically. The question arises, is there any way to arti- 
ficially increase the damping of the system in order to allow the 
solution of Eq. ( 3 )  for the Markov parameters? A control 
engineer will immediately suggest that a feedback loop can be 
added to make the system as stable as desired. The same effect 
can be achieved by considering the following algebraic manip- 
ulation as presented in Ref. 8. 

Add and subtract the term My(i) to the right-hand side of 
the state equation in Eq. (1)  to yield 

x ( i  + 1 )  = A x ( i )  + Bu(i)  + M y ( i )  - My(i) 

= ( A  +MC)x( i )  + ( B  +MD)u(i )  - My(i) 

or 

x ( i  + 1) = A x ( i )  + Bv( i )  

y ( i )  = Cx(i) + Du(i)  (4) 
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v ( p - 1 )  ' . '  v(P- 2) 
v ( p - 2 )  _ ' '  v(P- 3 )  

. . .  

v(0)  ' . '  v ( P - p - I )  
- 

where 

provided that [ vvT]-' exists; otherwise vT[ vVT]-' should 
be replaced by vT. Equation (9) is identical to-Eq. (7), except 
that the2  in Eq. (7) is replaced by p and V by V.  The matrices 
p and V are subsets of y and V, respectively, produced by 
deleting the first p columns. For nonzero unknown initial con- 

A = A  + M C  

B = [B+MD,  -MI 

a_nd M is an n x q arbitrary matrix chosen to  make the matrix 
A as stable as desired. Although Eq. (4) is mathematically 
identical to Eq. ( l ) ,  it is expressed using different system ma- 
trices and has a different input. In fact, Eq. (4) is an observer 
equation if the state x(i) is considered an observer state (see 
Ref. 7 or 8). Therefore, the Markov parameters of the system 
in Eq. (4) will be referred to as the observer Markov parame- 
ters. The input-output description in matrix form for Eq. (4) 
becomes 

Equation (6) is obtained from Eq. (2) by replacing A by A ,  B 
by E, and u by v except for the first row partition. Because 
the n x-q matrix M can be arbitrarily chosen, the eigenval- 
ues of A may be arbitrarily assigned for an observable system. 
Reference 8 considers the identification of observer Markov 
parameters for any chosen observer pole locations for A = A  
+ MC. The mathematical development here can be interpreted 
from the point of view of Ref. 8 as attempting to place all the 
eigenvalues of A at the origin, Le., a deadbeat observer. This 
provides that CA'B = 0 for i 22. When using real data includ- 
ingnoise, the eigenvalues of A are, in fact, placed such that 
CA'B = O  for i r 2 ,  where p is a sufficiently large integer. 
Alternatively, if A represents the state matrix of the Kalman 
filter including the steady-state Kalman filter gain, the same 
property is satisfied as used in Ref. 7, which will be discussed 
in a later section. 

When CA'B = O  for i r p ,  one can solve for the observer 
Markov parameters from real data, using the same approach 
as in Eq. (3) 

Note that V and r refer to truncated versions of V and in 
Eq. (6). Similar to Eq. (3), if the data have a realization in the 
form of Eq. ( I )  or its equivalent, Eq. (41, then the first p 
Markov parameters approximately satisfy Y = y V + ,  where V +  
is the pseudoinverse of the matrix V and the approximation 
error decreases as p increases. Note that the observer Markov 
parameters thus identified may not necessarily appear to be 
asymptotically dFa_ying during the first p - 1 steps, although 
they produce CA'B = 0 for i 2 p  and noise-free data. Ref- 
erence 8 allows one to place the observer poles to produce 
more typical asymptotic decay of the observer Markov 
parameters. To solve for Y uniquely, all the rows of Vmust be 
linearly independent. Furthermore, to minimize any numerical 
error due to  the computation of the pseudoinverse, the rows 
of Vshould be chosen as independent as possible. As a result, 
the maximum p is the number that maximizes the number 
(m + q ) p  + m  of independent rows of V .  The maximum p 
means the upper bound of the order of the deadbeat observer. 
The lower bound of the order of the observer will be addressed 
in the next section. 

There are many ways of produgng the least-squares solution 
to equations such as Eq. (7) for Y .  Reference 5 presents three 
different approaches to solving equations similar to Eq. (7), 
including a bootstrapping procedure, the singular-value de- 
composition, and a recursive algorithm. However, the recur- 
sive least-squares algorithm presented in Ref. 8 includes substi- 
tution of the desired eigenvalues into Eq. (7) to minimize the 
number of unknown parameters in Y.  This is probably a very 
efficient computational procedure. However, it is not obtain- 
ing the least-squares solution of Eq. (7), but rather a somewhat 
modified problem that can be interpreted as a weighted least- 
squares solution. Disadvantages of the recursive formula in- 
clude a problem-dependent choice of error sensitivity that re- 
quires experiences in least-squares methods. 

All of the preceding equations assume zero initial condi- 
tions, x(0) = 0. For nonzero initial conditions, a somewhat 
different formula should be used. Rewrite Eq. (4) in another 
matrix form as 

where 

q x p  - ( (m+q)p+m]  x Y 
Y =  Y V 

For the case where AD is sufficiently small and all the states in 
x are bounded, Eq. (8) can be approximated by neglecting the 
first term on the right-hand side 

(7) 
q x  [ (m+q)p+m]  

where 

Y = [Y(O) Y (1 )  Y (2 )  . ' .  Y ( P )  ' . '  Y ( f - 1 ) ]  y =  rv (9) 

[u(0) u(1)  u(2)  ' ' _  u ( p )  " '  u(f-1) 1 = p I / T [ V v T l - I  or = p v ~  (10) 

r =  [D CS CAB . . .  CAP-lB] which has the following least-squares solution 

v(0)  v(1)  . ' .  

v(0)  . . '  
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- - 

C 
CA 
CA2 A [ B  AB A2B . . .  A N - l B ] = P A Q  

- CAP-‘  - (18) 

ditions, Eq. (9) must be used in order to eliminate the effect of 
initial conditions, because the initial conditions become negli- 
gible when they are multiplied by AP. In other words, the initial 
conditions have negligible influence on the measured data af- 
ter p time steps. When there is both system and measurement 
noise present, the elimination of initial condition dependence 
makes the system response become stationary, a fact that is 
used later to obtain the steady-state Kalman filter gain. 

Computation of Actual System 
Markov Parameters and Observer Gain 

To recover the system Markov parametersin Y from the 
observer Markov parameters in Y, partition Y such that 

- r = [Y- ’  r, r1 ” ’  (1 1) 

where 

r k  = cAkB 

= [ C ( A  +LWC)~(B + M D ) ,  - C ( A  +MC)kM]  

- = [T i ’ ) ,  Ti2)] ; k = 0,1,2,. . 
- 
Y-1 = D  

Note that the Markov parameter r- has a smaller dimension 
than the remaining Markov parameters. From the second 
equation in Eq. (1 I), the Markov parameter CB of the system 
is simply 

Yo = CB = C ( B  + M D )  - (CM)D 

(12) - - rd1) + & @ ) D  

To obtain the Markov parameter CAB, first consider the 
product r/’) 

T,(I’” = C ( A  + M C ) ( B  + M D )  

= CAB + CMCB + C ( A  +MC)MD 

Hence, 

Y l =  CAB 

= r,(l) + Fdo(l)y0 + T,(l)D (13) 

Similarly, toobtain the Markov parameter CA’B , consider 
the product YJ’) 

- 
YJ” = C ( A  +MC)’(B + M D )  

= C( A 2  + MCA + AMC + MCMC)( B + M D )  

= CA2B + CMCAB + C ( A  +MC)MCB 

+ C ( A  + MC)’MD 

Therefore, 

Y, = C A ~ B  

As established in Ref. 8, the general relationship between the 
actual system Markov parameters and the observer Markov 
parameters is 

- k -  1 

Yk = Ti’) + r(’) Yk- j -  1 + YL”D (15) 
i=O 

Knowledge of the actual system Markov parameters allows 
one to obtain a state-space realization of the system of interest. 
Modal parameters including natural frequencies, damping ra- 
tios, and mode shapes can then be found. Note that there are 
only p + 1 observer Markov parameters computed as a least- 
squares solution from Eq. (7). By the choice o f p  , Yi’) and Yi2) 
are considered to be zero for k > p .  

The relationship between observer Markov parameters and 
system Markov parameters-can be further developed as fol- 
lows. Let the matrices H ,  Y(,),  and 1 be defined as 

and 

I =  [ r , + l  r , + 2  y P + 3  ” ’  q J + N ]  
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Equation (15) can be written in the following matrix form: 

I 

- Tip3 . . .  

Note that I and all (i = 0, 1, .. . , k )  are q x q square 
matrices. It is immediately seen that back substitution for 
YO, Y l ,  . . . , Yk from Eq. (20) yields Eq. (15). It is known that 
recursive back substitution without pivoting may result in a 
significant error accumulation in the solution. For numerical 
accuracy, it is better to use some type of pivoting procedure to 
minimize the error accumulation, unless the diagonal terms are 
dominant. However, the recursive back substitution is supe- 
rior in computational efficiency relative to other methods, 
particularly when real-time computation is required. 

To identify the observer gain M ,  first recover the sequence 
of parameters 

Y i  = CAkM; k = 0, 1, 2 , .  . . (21) 

in terms of the observer Markov parameters. In fact, the first 
parameter in the sequence is simply 

- 
(22) y o  - CM = - y(2) 

0 -  0 

The next parameter in the sequence is obtained by considering 
Y p  

F[2) = - CAM = - (CAM + CMCM) = - Yp + Fd2’ Y,O 

which yields 

yp = - jy + Tf’y,o (23) 

Similarly, 

Ti2) = - CA2M = - (CA’M + CMCAM + CAMCM) 

By induction, the general relationship is 

Having obtained the sequence Y,O = CAkh 2 ,  . . . , 
where C and A can be realized by an identification methodll-12 
from the Markov parameter sequence Yk = CAkB, k = 0,  1, 
2 , .  . . obtained from Eq. (20), we can compute the observer 
gain M from 

k = 0,  

M = (OTO)-’OTYo (26) 

where 

O =  

C 
CA 
CA2 

CAk 

CM 
CAM 
CA2M 

CAkM 

Equation (25) can be written in matrix form as 

The foregoing statement about Eq. (15) regarding the number 
of independent system Markov parameters also applies to the 
observer gain Markov parameters Y; in Eq. (25) or (28). Note 
that I and all E(2) (i = 0 ,  1 , .  . . ) are q x q square matrices. 
Therefore, the leftmost matrix in Eq. (28) is square and full- 
rank and identical to that in Eq. (20). Hence, Y o  is determined 
uniquely from an identified set of observer Markov parame- 
ters. Equation (26) implies that the observer gain Mcomputed 
from Eq. (26) is automatically the same coordinates as those 
for a set of A , C (and B )  resulting from any realization. Recall 
that the set of system Markov parameters used for the system 
realization is also uniquely determined from the same identi- 
fied set of observer Markov parameters, Eqs. (15) or (20). 
Computationally, Eqs. (15) and (25) or Eqs. (20) and (28) can 
be combined as a single matrix equation to solve for Yk and Y i  
simultaneously, i.e., 

Pk = [Yk Y;]  = [CAkB CAkM] = CAk[B M ]  

Conventional system identification methods would use only 
the impulse response history Yk to determine A ,  B ,  C, and D.  
Here, the combined system and observer gain Markov parame- 
ters Pk are used in a Hankel matrix to identify A ,  [ B  M I ,  C ,  
and D by some time domain method such as ERA” or ERA/ 
DC.12 There are several advantages to this approach. First, the 
observer gain Mis  obtained directly, which will be shown to be 
related to the Kalman filter gain in the next section. Second, 
the number of independent Markov parameters has been com- 
pressed by using the observer. This allows one to use a smaller 
Hankel matrix and thus reduce the computational effort in the 
identification algorithm. Third, one can identify the number 
of independent system Markov parameters from a single set of 
data for lightly damped systems with multiple inputs and out- 
puts. This is a result of the increased stability produced by 
adding an observer gain that allows one to use a smaller p in 
Eq. (7) than in Eq. (3). 

Relationship Between the Identified Observer 
and a Kalman FiEter 

Let Eq. (1) be extended to include process and measurement 
noise described as 

x ( i +  1) = A x ( i )  + B u ( i )  + wl(i) 
y ( i )  = C x ( i )  + Du( i )  + w 2 ( k )  
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where w,(k) is the process noise assumed to be Gaussian, zero 
mean, and white with the covariance matrix Q ,  and wz(i) is 
the measurement noise with the same assumption as wl(i) but 
a different covariance matrix R .  The sequence w1 (i) and w2(i) 
are assumed to be statistically independent of each other. 

A typical Kalman filter for Eq. (30) can then be written as 

2+( i )  = ?-(i) + K [ y ( i ) - j ( i ) ]  4 F ( i )  + K t , ( i )  

P ( i )  = A i + ( i  - 1) + Bu(i - 1) 

j ( i )  = C2-(i) + Du( i )  (31) 

where .?+(i) is the estimated state. The term t,(i) is called the 
residual and is defined as the difference between the real mea- 
surement y (i) and predicted measurement j (  i ) .  Combination 
of the first two equations in Eq. (31) yields 

F ( i + l ) = A [ I - K C ] 2 - ( i ) +  [ B - A K D ] u ( i ) + A K y ( i )  

or 

y ( i )  = C2-(i) + Du(i)  + e r ( i )  (32) 

where 

A = A [ I - K C ]  

E =  [ B - A K D , A K ]  

A comparison of Eqs. (4) and (32) reveals that they are iden- 
tical if M =  - AK and t , ( i ) = O ,  and so are their Markov 
parameters. A question immediately arises as to whether 
K = - A  -'M if M is computed using the computational pro- 
cedure just developed. It is known that the Kalman filter gain 
K depends on the process covariance Q and measurement co- 
variance R . Some condition must exist such that the equation 
M =  - A K  is valid because the same equations are used to 
solve for the Kalman filter gain K and observer gain M .  The 
key is the error term. The conditions will be derived in the 
following discussion. 

Equation (32) can be written in the following matrix form: 

p =  m + E + C A P R -  (33) 

where p and v are defined in Eq. (8) and 

Y = [ D  CB CAB . . .  CAP - 'B  ] 

2- = [2-(0) 2- (1 )  2- (2 )  " '  ?-(P-p-l)] 

E = t r ( p  + 1) e r ( ~  + 2 )  . . .  e r ( P -  111 

and E is the residual error as defined in Eq. (3 1) and e the data 
length. Equation (33) applies to any equation with the same 
observer structure as Eq. (31). If the observer happens to be 
a Kalman filter, then the residual is white, zero-mean, and 
Gaussian. 

Postmultiplying Eq. (33) by V T  yields 

Let v be partitioned in rows as 

Equation (34) can then be rewritten as 

[Jvp' pvp'-, " '  JVT] 
r 1 

VPV,. I 
vp- 1vo 

i 

- vp-lvpT vp-IvpT-, " '  I i  v0v; vov,'-l " . . . VO V,. 

= [tvp' t V p ' - ,  " '  EV,.] 

Let us examine a term from tFT  
P-p- I 

j = O  
EV,T= e , ( p + j ) v T ( i + j ) ;  i = o ,  . . . , p  (35) 

If this term is divided by e-p,  it represents the time average of 
the product t (k )vT(k  - i )  from k = p  to e- 1 .  By the ergodic 
property,13 if the product is a sample function of a stationary 
random process, it can be replaced by its ensemble average, 
provided that Pgoes to infinity, P- 03, 

. P - 1  
I L 1  

E [ t , ( k ) v T ( k - i ) ]  = lim ~ t r ( j ) v T ( j - i ) ;  k > p  e--m e-p j = p  

(36) 
Physically, ergodicity implies that a sufficiently long record of 
a stationary random process contains all the statistical infor- 
mation about the random phenomenon. In practical applica- 
tions, the ergodic property makes it possible to obtain the 
noise-related moment functions of a stationary random pro- 
cess from a single long record. The conversion from a time 
average to an expected value is performed similarly for the 
other terms, including pv;, 2-v;, viv; (i.j = 0 , .  . . , p ) .  

The concept of stationarity in a random process is analogous 
to the steady-state behavior of a deterministic process. In prac- 
tice, no random process can be truly stationary. However, a 
long segment of a random process exhibiting uniform charac- 
teristics can be treated as stationary. One must allow sufficient 
time for the system transients to decay before the data se- 
quence starts. In addition, the choice o f p  in Eq. (33) has to be 
sufficiently large that the transients of the Kalman filter are 
negligible. 

Equation (34) can now be written as 

1 
lim - [JV-  P V F ]  = ~ [ t , ( k ) v ~ ( k )  t , (k )vT(k  - 1) . . .  ~ , ( k ) v ' ( k  - p ) ]  
e--m e- p 

+ CApE[2-(k)vT(k + p )  2-(k)vT(k + p  - 1) . ' '  2-(k)vT(k) ]  

for all k > p .  If we choose the observer such that 

p = p v T [ v v T ] - l  

in the limit e- 03, then 
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Because A for an observer is asymptotically stable, let p be 
chosen sufficiently large that the right-hand side of the afore- 
mentioned equation is negligible, i.e., 

E[€,(k)VT(k - i)] = 0 (40) 

for i =0,1,.  . . , p  and k > p .  Substitution of the definition for 
v(k - i) from Eq. (32) into Eq. (40) yields 

E[€,(k)UT(k - i ) ]  = 0; i = 0 , .  . . , p  

E[€,(k)yT(k-;)]  =o ;  ; = 1 ,  . . . , p  

for k > p ,  which implies that the residual error ~ , ( k )  at any 
time k is orthogonal to the input function u ( k  - i) with the 
time delay i from 1 up t o p ,  and the output functiony(k - j )  
with the time delay j from 0 up to p .  In other words, if we 
choose the observer with the observer Markov parameters that 
satisfy the least-squares equation (38), the residual describing 
the difference between the estimated output measurement and 
real measurement is orthogonal to the given input and the 
measured output with time delay. This has application to 
model reduction based on the orthogonality of the output 
measurements and the residuals, representing the output errors 
between the full and the reduced model.14 

Now given a set of data from a finite-dimensional system of 
Eq. (30), a Kalman filter exists with the property that the resid- 
ual is white, zero-mean, and Gaussian, Le., 

E [ ~ , ( k ) ]  = 0,  E [ ~ , ( j ) e T ( k ) ]  = 0;  j # k (42) 

and satisfies the principle of orthogonality 

E [ ~ , ( k ) y ~ ( k - i ) ]  = O ;  i = l ,  ..., k (43) 

If the experimental process is stationary and random, the 
Kalman filter gain is a constant that produces the Kalman filter 
Markov parameters in the limit e- 03 satisfying the least- 
squares equation (36), provided that the inverse [ V V T ]  - ex- 
ists. For a sufficiently rich input, the inverse always exists. 

We conclude that any observer satisfying Eq. (lo), or its 
equivalent, Eq. (38), produces the same input-output map as a 
Kalman filter if the data length is sufficiently long and the 
order of the observer sufficiently large so that the truncation 
error is negligible. Therefore, when reduced to the system 
order, the identified observer has to be a Kalman filter and 
thus the M computed from the combined Markov parameters 
of Eq. (29) gives the steady-state Kalman filter gain 

K =  - A - ’ M  (44) 

Secondary 
High gain antenna 

Equipment section 

Double roll out 

with radiator (1) Star tracker (3) 

Fig. 1 Hubble space telescope. 

Table 1 Comparison of identified modal parameters 

Mode 1 Mode 2 Mode 3 

Case Freq., Damp., Freq., Damp., Freq., Damp., 
no. Hz Va Hz 7 0  Hz % 

0 0.261 0.63 0.712 1.01 0.972 1.30 
1 0.261 0.55 0.712 0.96 0.970 1.65 
2 0.261 0.56 0.712 0.95 0.970 1.67 
3 0.261 0.59 0.712 0.99 0.971 1.52 
4 0.261 0.59 0.712 1.00 0.971 1.51 
5 0.261 0.65 0.712 0.99 0.971 1.52 
6 0.261 0.65 0.712 0.98 0.971 1.53 

Case 0: true values; case 1: 1000 data points, p =40; case 2: 1000 data points, 
p = 50; case 3: 2000 data points, p = 40; case 4: 2000 data points, p = 50; case 5: 
4000 data points, p = 40; and case 6 4000 data points, p = 50. 

Computational Algorithm 
Given a set of experimental input and output data, the iden- 

tification algorithm proceeds as follows. 
Step 1: Choose a value of p [see Eq. (7)1 that determines the 

number of observer Markov parameters to be identified from 
the given set of input and output data. In general, p is required 
to be sufficiently larger (at least four or five times) than the 
effective order of the system for identification of the Kalman 
filter gain with accuracy. 

as shown in 
Eq. (7) for zero initial conditions, or p and V as shown in 
Eq. (9) for nonzero initial conditions, and compute the lea$- 
squares solution of the observer Markov parameter matrix Y. 

Step3: Recover the combined system and Kalman filter 
Markov parameters Pk from the identified observer Markov 
parameters using Eq. (29). To solve for more Markov parame- 
ters than the number of identified observer Markov parame- 
ters, simply set the extra observer Markov parameters to zero. 

Step 4: Realize a state-space model of the system and the 
corresponding Kalman filter gain from the recovered sequence 
Pk using ERA or ERA/DC. 

Step 2: Form the two data matrices y and 

Simulation Results 
As an example, a spring/mass three-degree-of-freedom sys- 

tem is used to simulate data with known noise properties. The 
simulated system, used in Ref. 9, has one input and two out- 
puts. The continuous system is discretized at a sampling fre- 
quency of 10 Hz. The discrete-time model for this system with 
process and measurement noise covariances used in this exam- 
ple is given by Eqs. (Al) and (A2) in the Appendix. 

These covariances were chosen by the following procedure. 
First, a simulation was performed using random u ( k )  with a 
standard deviation of 20 to determine the noise-free sequences 
Bu(k)  and y ( k ) .  The standard deviation of the process noise 
was computed to be 5% that of the sequence Bu(k) .  Similarly, 
the standard deviation of the measurement noise was chosen as 
5% that of the sequence y ( k ) .  To examine the stochastic pro- 
perties of the system, one must assume that the sample histo- 
ries are infinitely long, but in practice they are not. Therefore, 
the effect of short time records must be examined. Also in the 
theoretical development, the observer order p is specified a 
priori. In the simulations, two different values for the observer 
order parameter p are used and the results compared. 

The computational algorithm is applied to identify the sys- 
tem and corresponding Kalman filter gain in the presence of 
the prescribed noise levels. Examination of Table 1 shows that 
the frequencies are accurately identified in all cases to within 
0.2%. Damping estimates, however, vary up to 28%, with 
improved results obtained when the number of data samples is 
increased. Computation of the frequencies and damping val- 
ues is based on a realization of the system matrix A from the 
Markov parameter sequence. The realization algorithm pre- 
sented in Ref. 12 is used, and a minimum-order realization is 
obtained from the Hankel correlation matrix HHT, where H 
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Table 2 Comparison of Kalman filter gains 

Case no. Kalman filter gain matrix 

0.0293 -0.0012 0.0025 0.0000 0.0241 0.0047 ' 
0 K = [  0.0295 0.0012 0.0000 0.0005 -0.0251 0.0042 I 

1 2 K =  [ 
K - [  0.0265 - 0.0052 0.0008 0.0037 - 0.0298 0.0062 1 

0.0261 -0.0166 0.0198 0.0046 0.0236 0.0086 ' 
0.0253 - 0.0020 - 0.0010 0.01 16 - 0.0328 0.0241 

0.0255 -0.0066 0.0196 -0.0047 0.0246 0.0071 ' 
6 

Table 3 Identified modal parameters for 
the Hubble space telescope 

Mode no. Frequency, Hz Damping, 070 Mode SV 

1 0.147 55.6 0.76 
2 0.155 58.4 0.98 
3 0.169 67.4 1 .oo 
4 0.633 5.73 0.68 
5 1.273 4.06 0.37 
6 2.433 5.23 0.02 
7 2.822 6.33 0.01 

I I 

Acc. CMD 

(radls')  

I I 

-2 10- 5: 

0 25 50 

Fig 

0.1 

V I  Rates 
(arc-sls) 

Time (sec) . .  

ta Excitation inpuf signal. 

Predicted Output 

---real .--..--.. reconstruction 

-0.1 
0 25 50 

Time (sec) 
Fig. 2b Comparison of test data with predicted output. 

Estimated Output 
0.1 
- real ...-..... reconstruction 

-0.1 -J 
0 25 50 

Time (sec) 
Fig. 2c Comparison of test data with estimated output. 

is as in Eq. (16). For deterministic systems, the rank of the 
correlation matrix is equal to the system order. For stochastic 
systems, the problem of rank determination is not as clear and 
the method of singular value decomposition is used to deter- 
mine the system order. Retaining only those singular values 
with a significant contribution to the correlation matrix ren- 
ders a model of the same order as the number of retained 
singular values. The value of p is chosen to be either 40 or 50 
and only the first six singular values are retained. 

Kalman filter gains are shown in Table 2 .  Although the 
numerical comparison in terms of frequencies and damping 
values is good, the estimated Kalman filter gains for the dif- 
ferent cases could be quite different from the true value 
because of the finiteness of the data lengths. Table 2 shows 
that as the number of data points used in the identification 
is increased, the identified Kalman filter gains approach the 
true value. 

Comparing the A ,  B, and C matrices in Eq. (A3) in the 
Appendix with the true ones in Eq. (Al) shows excellent agree- 
ment, but a nonzero direct transmission term is picked up by 
the identification. The reconstruction (not shown) of the sys- 
tem response using the identified observer parameters in 
Eq. (A3) and the identified Kalman filter gain in Table 2, when 
compared to the actual response, shows excellent agreement. 

Experimental Results 
To demonstrate the identification procedure using real ex- 

perimental data, the Hubble space telescope shown in Fig. 1 is 
employed. There are six gyros located on the optical telescope 
assembly (OTA) and four torque wheels on the spacecraft 
subsystem module (SSM). The OTA is fixed inside the SSM. 
The gyros are used mainly to measure the motion of the pri- 
mary mirror. Data from four out of the six gyros are recorded 
at a time. The measurement resolution is 0.005 arcsec/s, which 
implies that the gyro data are not adequate because the re- 
quirement is 0.007 arcsec pointing. The angular rates, which 
are measured along the four gyro directions, are combined and 
transformed using least-squares to recover the three rates in 
vehicle coordinates. Least-squares is used to smooth the poor 
resolution of the data. The input commands are given in terms 
of angular acceleration in the three rotational vehicle coordi- 
nates and then projected on the four torque wheel axes to 
excite the telescope mirror and spacecraft. The data were 
sampled at 40 Hz. Pulses combined with sine-sweeping in the 
middle of an excitation period (50.975 s) were used as input 
commands to the torque wheels. The excitation period was 
repeated six times for a total of approximately 12,000 samples 
taken for each experiment. The experiment was repeated three 
times for the other two vehicle coordinates. As a result, there 
were three inputs and four outputs for a total of 3 sets of 
12,000 input samples and 12 sets of 12,000 output samples to 
be used for the identification of vibration parameters. 

A linear model and observer were identified for the Hubble 
space telescope. The system order was chosen to be 30 for 
realization of the system matrices. Seven dominant modes 
were identified as shown in Table 3. The mode SV in the table 
describes the singular value contribution of each individual 
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mode to the pulse respon~es. '~ It has been normalized relative 
to the maximum singular value. The first three modes are 
attitude rigid modes. The 0.65-Hz mode is believed to be an 
in-plane bending mode of the solar array, the 1.29-Hz mode is 
a coupled solar and membrane mode, and the 2.45-Hz mode 
is the first mode of the primary deployment mechanism with 
the solar array housing attached. The identified dampings are 
higher than expected because there is an attitude control for 
maneuvering during testing and mechanical friction of solar 
array mechanism. 

Figure 2a illustrates the excitation input signal, including 
pulse combined with a sine-sweeping signal in the middle of an 
excitation period for the first vehicle axis. Figures 2b and 2c 
show overlapping 50 s of the reconstruction from the identified 
system models and the test data for the first vehicle axis. 
Figure 2b depicts the predicted output in comparison with the 
real output data and Fig. 2c the estimated output in compari- 
son with the real output data. The predicted output is the 
output reconstructed from the identified model only, whereas 
the estimated output is the output reconstructed from the iden- 
tified observer. There are visible differences in the predicted 
and estimated outputs. Comparison of the observer output 
with the measured response shows extremely good agreement, 
indicating that the observer is correcting for the system uncer- 
tainties including nonlinearities. The covariance of the esti- 
mated output residuals is about three orders in magnitude less 
than the predicted output residuals. Similar results of the pre- 

dicted and estimated outputs were obtained for the second and 
third vehicle axes and thus are not shown here. 

Concluding Remarks 
An algorithm for the direct computation of observer/Kal- 

man filter Markov parameters, and from them the observer/ 
Kalman filter matrices, has been presented. The matrix formu- 
lation developed here allows one to establish the uniqueness 
and invertibility of the transformation from observer/Kalman 
filter Markov parameters to the system Markov parameters. 
The matrix formulation also establishes bounds on the choice 
of the observer/Kalman filter order for the data. The algo- 
rithm is a nonrecursive matrix version of two previous algo- 
rithms: One is a recursive algorithm for Kalman filter identifi- 
cation, and the other is an algorithm for direct identification 
of observers with chosen pole locations, specialized to have all 
poles at the origin (the deadbeat observer). The nonrecursive 
form of the least-squares solution used here results in a 
substantial improvement in the convergence rate to the true 
Kalman gain that was reported before. The relationship be- 
tween the deadbeat observer and the Kalman filter Markov 
parameter identification problems is established here. It is 
shown that using the equations for deterministic deadbeat ob- 
server parameters on noisy data results in obtaining the Kal- 
man filter parameters, in the limit as the amount of data used 
tends to infinity. When a finite set of data is used, the resulting 
filter satisfies an optimality condition, indicating it is the best 
filter that can be obtained with the data length available. 

Appendix: Simulation Results 

0.9856 0.1628 I ,  [ 0.8976 0.43051, [ 0.8127 0.5690 
-0.1628 0.9856 - 0.4305 0.8976 - 0.5690 0.8127 

A = diag([ 

B = [0.0011 0.0134 -0.0016 -0.0072 0.0011 O.O034IT 

1 1.5119 0.0000 2.0000 0.0000 1.5119 0.0000 c = [  
1.3093 0.0000 0.0000 0.0000 - 1.3093 0.0000 

D = [O.OOOO O.OOOO] ' 

The matrix A is given in block diagonal form for later comparison with the identification results. The process noise and measure- 
ment noise covariances are specified, respectively, to be 

Q = diag[0.0242 3.5920 0.0534 1.034 0.0226 0.22791 x 

R = diag[2.785 2.7851 x 

The corresponding realized system matrices for case no. 6 are 

11 0.9856 0.1629 1 ,  [ 0.8977 0.43061, [ 0.8120 0.5676 
-0.5676 0.8120 - 0.1629 0.9856 - 0.4306 0.8977 

A = diag([ 

B = [0.0011 0.0132 - 0.0016 - 0.0068 0.001 1 0.00341 

1 1.5107 0.0000 2.0000 0.0000 1.5133 0.0000 
1.3107 0.0011 -0.0087 -0.0104 - 1.3073 0.0288 

c = [  

D = [0.0007 0.0012]T 
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