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Abstract

The Levenberg-Marquardt algorithm was developed in the early 1960’s to solve ne
onlinear least squares problems. Least squares problems arise in the context of fitting a
parameterized function to a set of measured data points by minimizing the sum of the
squares of the errors between the data points and the function. If the fit function is not
linear in the parameters the least squares problem is nonlinear. Nonlinear least squares
methods iteratively reduce the sum of the squares of the errors between the function
and the measured data points through a sequence of updates to parameter values.
The Levenberg-Marquardt algorithm combines two minimization methods: the gradient
descent method and the Gauss-Newton method. In the gradient descent method, the
sum of the squared errors is reduced by updating the parameters in the steepest-descent
direction. In the Gauss-Newton method, the sum of the squared errors is reduced by
assuming the least squares function is locally quadratic, and finding the minimum of
the quadratic. The Levenberg-Marquardt method acts more like a gradient-descent
method when the parameters are far from their optimal value, and acts more like the
Gauss-Newton method when the parameters are close to their optimal value. This
document describes these methods and illustrates the use of software to solve nonlinear
least squares curve-fitting problems.

1 Introduction

In fitting a function ¢(¢; p) of an independent variable ¢ and a vector of n parameters p
to a set of m data points (t;,y;), it is customary and convenient to minimize the sum of the
weighted squares of the errors (or weighted residuals) between the measured data y; and the
curve-fit function §(¢; p). This scalar-valued goodness-of-fit measure is called the chi-squared
error criterion because the sum of squares of normally-distributed variables is distributed as
the chi-squared distribution.
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where 0, is the measurement error for measurement y(¢;). Typically the weighting matrix W
is diagonal with W;; =1/ O'Si. More formally, W can be set to the inverse of the measurement
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error covariance matrix, in the unusual case that it is known. More generally, the weights
Wi, can be set to pursue other curve-fitting goals.

If the function §(¢; p) is nonlinear in the model parameters p, then the minimization of
x? with respect to the parameters must be carried out iteratively. The goal of each iteration
is to find a perturbation h to the parameters p that reduces y2.

2 The Gradient Descent Method

The steepest descent method is a general minimization method which updates parame-
ter values in the “downhill” direction: the direction opposite to the gradient of the objective
function. The gradient descent method converges well for problems with simple objective
functions [6, 7]. For problems with thousands of parameters, gradient descent methods are
sometimes the only viable choice.

The gradient of the chi-squared objective function with respect to the parameters is
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where the m x n Jacobian matrix [0g/0p] represents the local sensitivity of the function
7 to variation in the parameters p. Note that in models that are linear in the parameters,
y = Xp, the Jacobian [0y/0p] is the matrix of model basis vectors X. For notational
simplicity the variable J will be used for [0g/0p]. The parameter update h that moves the
parameters in the direction of steepest descent is given by

hgd = aJTW(y - 'g) 3 (7)

where the positive scalar a determines the length of the step in the steepest-descent direction.

3 The Gauss-Newton Method

The Gauss-Newton method is a method for minimizing a sum-of-squares objective func-
tion. It presumes that the objective function is approximately quadratic in the parameters
near the optimal solution [2]. For moderately-sized problems the Gauss-Newton method
typically converges much faster than gradient-descent methods [8].

The function evaluated with perturbed model parameters may be locally approximated
through a first-order Taylor series expansion.
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Substituting the approximation §(p + h) = g(p) + Jh into equation (3) for x*(p + h),
Vp+h) ~y Wy+43 Wi -2y Wy —2(y—9) WIh+h"JTWJh.  (9)

The first-order Taylor approximation (8) results in an approximation for x? that is quadratic
in the perturbation h. The Hessian of the chi-squared fit criterion is approximately JTWJ.

The parameter update h that minimizes x? is found from 9y?/0h = 0:

a—hXQ(p +h)~-2y—9) WJ+2R"TWJ (10)
and the resulting normal equations for the Gauss-Newton update are
TTWI| hgy =T W (y—9) . (11)

4 The Levenberg-Marquardt Method

The Levenberg-Marquardt algorithm adaptively varies the parameter updates between
the gradient descent update and the Gauss-Newton update,

TTWI + M| by =T W (y —9) , (12)

where small values of the damping parameter X\ result in a Gauss-Newton update and large
values of A result in a gradient descent update. The damping parameter A is initialized
to be large so that first updates are small steps in the steepest-descent direction. If any
iteration happens to result in a worse approximation (x*(p + hm) > X?(p)), then X is
increased. Otherwise, as the solution improves, A is decreased, the Levenberg-Marquardt
method approaches the Gauss-Newton method, and the solution typically accelerates to the
local minimum [6, 7, §].

In Marquardt’s update relationship [8],
(TTW T + ) diag(JTWT)| by = T W (y — §) , (13)
the values of A are normalized to the values of JTW J.
4.1 Numerical Implementation

Many variations of the Levenberg-Marquardt have been published in papers and in
code, e.g., [4, 6, 10, 11]. This document borrows from some of these. In iteration ¢, the
step h is evaluated by comparing x%(p) to x*(p + h). The step is accepted if the metric
pi 9] is greater than a user-specified threshold, €4 > 0. This metric is a measure of the
actual improvement in y? as compared to the improvement of an LM update assuming the
approximation (8) were exact.

(14)
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X*(p) = X*(p + hyy)
Al (Aibim + JTW (y — 9(p)))
X*(p) = X*(p + hyy)

- if usi n (13) for hym(16
hl, (\idiag(JTW ) hym + JTW (y — 9(p))) if using eq'n (13) for hym(16)

if using eq’'n (12) for hy, (15)
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If in an iteration p;(h) > €, then p + h is sufficiently better than p, p is replaced by p + h,
and A is reduced by a factor. Otherwise A is increased by a factor, and the algorithm proceeds
to the next iteration.

4.1.1 Initialization and update of the L-M parameter, A\, and the parameters p

In 1m.m users may select one of three methods for initializing and updating A and p.

1. Mg = Ao; Ao is user-specified [8].
use eq'n (13) for hy, and eq’'n (16) for p
if p;(h) > €42 p < p+ h; \ij1 = max([)\;/L;,1077];
otherwise: ;41 = min [\; L4, 107];

2. Ao = A\, max [diag[JTWJ]}; Ao is user-specified.
use eq'n (12) for h), and eq’'n (15) for p
T N T 9 : T R T
o= (T W= 9m))" k) /((C@+h) - @) /2+2(TTW(y - ) h);
if pi(ah) > eq: p <+ p+ ah; Ny = max [\;/(1+ ), 1077];
otherwise: A1 = A + [X*(p + ah) — x*(p)|/(20);
3. Ao = Ao max [diag[JTWJ]}; Ao is user-specified [9].
use eq'n (12) for h, and eq’'n (15) for p

if pi(h) >e: p+p+h; N\ = \max [1/3,1— (2p; — 1)%] ;v = 2;
otherwise: A\jy1 = \ivy; v = 2

For the examples in section 4.4, method 1 [8] with Ly ~ 11 and L; ~ 9 exhibits good
convergence properties.

4.1.2 Computation and rank-1 update of the Jacobian, [0y /Op]

In the first iteration, in every 2n iterations, and in iterations where x%(p + h) > x2(p),
the Jacobian (J € R™*") is numerically approximated using forward differences,
09 Y(tsp+op;) — 9(ti p)

Ty = 22 =
7 op, 11|

, (17)

or central differences (default)

_ 09 _ gt p+0p;) — §(ti; p — 0p;)
Op; 2[[0p;| ’

where the j-th element of 0p; is the only non-zero element and is set to A;(1 4+ |p;|). In all

other iterations, the Jacobian is updated using the Broyden rank-1 update formula,

J=J+(@p+h)—9p) - Jh)RT)/(hTh) . (19)
For problems with many parameters, a finite differences Jacobian is computationally ex-
pensive. Convergence can be achieved with fewer function evaluations if the Jacobian is

re-computed using finite differences only occasionally. The rank-1 Jacobian update equation
(19) requires no additional function evaluations.

@ BY-NC-ND | H.P. Gavin January 10, 2019


http://creativecommons.org/licenses/by-nc-nd/3.0/

H.P. Gavin 5)
4.1.3 Convergence criteria

Convergence is achieved when one of the following three criteria is satisfied,

e Convergence in the gradient: max ‘JTW(y — Q)‘ < €q;
e Convergence in parameters: max |h;/p;| < €; or

e Convergence in x?: uses the value of the reduced x?, x2 = x*/(m —n+1) < es.
Otherwise, iterations terminate when the iteration count exceeds a pre-specified limit.

4.2 Error Analysis

Once the optimal curve-fit parameters pg; are determined, parameter statistics are
computed for the converged solution. If the measurement error covariance matrix V,,, or
its diagonal, ai, is known a priori, (prior to the curve-fit), the weighting matrix should be
set to the inverse of the measurement error covariance, W = ‘/2;17 in estimating the model
parameters and in the following error analysis. Note that if the actual measurement errors
vary significantly across the measurement points (i.e., max;(o,,)/ min,;(o,,) > 10), any error

analysis that presumes equal measurement errors will be incorrect.

The reduced x? error criterion,

Y m-n+1 m-n+1

(y — 9(pst)) "W (y — 9(psir)) (20)

is a measure of the quality of the fit. Large values, x> > 1, indicate a poor fit, x? ~ 1
indicates that the fit error is of the same order as the measurement error (as desired), and
X2 < 1 indicates that the model is over-fitting the data; that is, the model is fitting the
measurement noise.

The parameter covariance matrix is computed from
T -1
V,=[JTWJ] (21)

The asymptotic standard parameter errors,

o, — \/diag (W), (22)

give a measure of how unexplained variability in the data propagates to variability in the
parameters, and is essentially an error measure for the parameters.

The asymptotic standard error of the fit,

oy = \/diag (JITTWI T (23)
indicates how variability in the parameters affects the variability in the curve-fit.
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The asymptotic standard prediction error,

o5, = \/diag (V,+J[TTW I 1T (24)

reflects the standard error of the fit as well as the measurement error.

If the measurement error covariance, or individual measurement errors are not known in
advance of the analysis, the error analysis can be carried out assuming the same measurement
error for every measurement point, as estimated from the fit,

1

= m(y — ()" (¥ — 9(pre)) - (25)

o

In this case V, is set to 6,1 and W is set to I/67 in equations (21) to (24). Note also, that
it W = I/&;, then % = 1, by definition.
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5 Matlab code: Im.m

The MATLAB function 1m.m implements the Levenberg-Marquardt method for curve-

fitting problems. The code with examples are available here:

e http://www.duke.edu/~hpgavin/Im.m
o http://www.duke.edu/~hpgavin/Im_examp.m
e http://www.duke.edu/~hpgavin/Im_func.m

e http://www.duke.edu/~hpgavin/Im_plots.m

function [p,redX2,sigma_p,sigma_y,corr_p,R_sq,cvg_hst] = 1lm(func,p,t,y_dat,weight ,dp,p_min,p_
% [p,redX2,sigma_p , sigma_-y, corr_p ,R_sq, cvg_hst] = Ilm(func,p,t,y-dat,weight,dp,p-min,p-maz,c, o

INPUT VARIABLES

2: Quadratic update

OUTPUT VARIABLES

3: Nielsen ’s lambda update equations

D = least—squares optimal estimate of the parameter values
redX2 = reduced Chi squared error criteria — should be close to 1
sigma_p = asymptotic standard error of the parameters

sigma_-y = asymptotic standard error of the curve—fit

corr_p = correlation matriz of the parameters

R_sq = R-squared cofficient of multiple determination

cvg-hst = convergence history ... see Ilm_plots.m

Levenberg Marquardt curve—fitting: minimize sum of weighted squared residuals

%

%

%

% func = function of n independent wvariables, ’t’, and m parameters, ’'p’,

% returning the simulated model: y_-hat = func(t,p,c)

% p = initial guess of parameter values (n z 1)
% t = independent variables (used as arg to func) (m z 1)
% y-dat = data to be fit by func(t,p) (m z 1)
% weight = weights or a scalar weight value ( weight >= 0 ) (m z 1)
% inverse of the standard measurement errors

% Default: (1 / ( y_dat’ % y_dat ))

% dp = fractional increment of ’p’ for numerical derivatives

% dp(j)>0 central differences calculated

% dp(j)<0 one sided ’backwards’ differences calculated

% dp(j)=0 sets corresponding partials to zero; i.e. holds p(j) fized

% Default: 0.001;

% p-min = lower bounds for parameter values (n z 1)
% p-maxr = upper bounds for parameter values (n z 1)
% c = an optional matriz of values passed to func(t,p,c)

% opts = vector of algorithmic parameters

% parameter defaults meaning

% opts(1) = prnt 3 >1 intermediate results; >2 plots

% opts(2) = Maxlter 10« Npar mazximum number of iterations

% opts(3) = epsilon_1 le—3 convergence tolerance for gradient

% opts(4) = epsilon_2 le—3 convergence tolerance for parameters

% opts(5) = epsilon_-8 le—1 convergence tolerance for red. Chi—square
% opts(6) = epsilon_/ le—1 determines acceptance of a L-M step

% opts(7) = lambda-0 le—2 initial value of L-M paramter

% opts(8) = lambda_UP_fac 11 factor for increasing lambda

% opts(9) = lambda-DN_fac 9 factor for decreasing lambda

% opts(10) = Update_Type 1 1: Levenberg—Marquardt lambda update

%

%

%

%

%

%

%

%

%

%

%

max ,c,opts)
pts)
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8 The Levenberg-Marquardt algorithm for nonlinear least squares

The .m-file to solve a least-squares curve-fit problem with 1m.m can be as simple as:

my_data = load(’my_data_file’); % load the data

t = my_data(:,1); % if the independent wvariable is in column 1
y_dat = my_data(:,2); % if the dependent variable is in column 2
p.min = [ -10 ; 0.1 ; 5 ; 0.1 1; % minimum ezpected parameter values

p_max = [ 10 ; 5.0 ; 15 ; 0.5 1; % mazimum expected parameter values

p_init = [ 3 ; 2.0 ; 10 ; 0.2 1; % initial guess for parameter values

[ p_fit, X2, sigma_p, sigma_y, corr, R_sq, cvg_hst ] = ..
Im ( ’1lm_func’, p_init, t, y_dat, 1, -0.01, p_min, p_max )

where the user-supplied function 1m_func.m could be, for example,

function y_hat = 1lm_func(t,p,c)
y_hat = p(1) * t .* exp(-t/p(2)) .* cos(2*pi*x( p(3)*t - p(4) ));

It is common and desirable to repeat the same experiment two or more times and to estimate
a single set of curve-fit parameters from all the experiments. In such cases the data file may
arranged as follows:

%  t—wvariable y (1st ezperiment) y (2nd exzperiemnt) vy (8rd experiemnt)

0.50000 3.5986 3.60192 3.58293
0.80000 8.1233 8.01231 8.16234
0.90000 12.2342 12.29523 12.01823
etc. etc. etc. etc.

If your data is arranged as above you may prepare the data for 1m.m using the following lines.

my_data = load(’my_data_file’); % load the data

t_column = 1; % column of the independent variable
y_columns = [ 2 3 4 1; % columns of the measured dependent wvariables
y_dat = my_data(:,y_columns); % the measured data

y_dat = y_dat(:); % a single column wvector

t = my_data(:,t_column); % the independent wvariable

t = t*ones(1,length(y_columns)); % a column of t for each column of y

t = t(:); % a single column wvector

Note that the arguments t and y_dat to 1m.m may be matrices as long as the dimensions of
t match the dimensions of y_dat. The columns of t need not be identical.

Tips for successful use of Im.m:

e The data vector t should be a column vector, or columns of t must correspond to
columns of y_dat.

e The data vector y_dat should be a column vector.
e Your .m-function 1m func.m must return the vector y_hat as a column vector.
e The vectors p_init, p-min, and p_max must be column vectors.

e Parameter values should be scaled to values in a compact range, for example, such that
absolute parameters values are between 1 and 100.
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Results may be plotted with Im_plots.m:

function 1lm_plots ( t, y_dat, y_fit, sigma_y, cvg_hst, filename )

% Im_plots ( t, y-dat, y_fit, sigma-y, cvg_hst, filename )

% Plot statistics of the results of a Levenberg—Marquardt least squares
% analysis with Im.m

% Henri Gavin, Dept. Civil & Environ. Engineering, Duke Univ. 2 May 2016

dkgrn = [ 0.0 , 0.4 , 0.0 1;

y_dat = y_dat(:);
y_fit = y_fit(:);
[max_it ,n] = size(cvg_hst); n = n-3;

figure (101); % plot convergence history of parameters, reduced chi 2, lambda
clf
subplot (211)
plot( cvg_hst(:,1), cvg_hst(:,2:n+1), ’-o0’,’linewidth’ ,4);
for i=1:n
text (1.02*cvg_hst (max_it,1),cvg_hst(max_it ,1+i), sprintf(’%d’,i) );
end
ylabel (’parameter values’)
subplot (212)
semilogy ( cvg_hst(:,1) , [ cvg_hst(:,n+2) cvg_hst(:,n+3)], ’-o0’,’linewidth’,4)
text(cvg_hst(1,1),cvg_hst(1,n+2), ’\chi”"2_\nu’,’FontSize’,16,’color’,’k’);
text(cvg_hst(1,1),cvg_hst(1,n+3), ’\lambda’, ’FontSize’,16, ’color’,’k’);
text (cvg_hst(max_it ,1),cvg_hst(max_it,n+2), ’\chi”2_\nu’,’FontSize’,16,’color’,’k’);
text (cvg_hst(max_it ,1),cvg_hst(max_it ,n+3), ’\lambda’, ’FontSize’,16, ’color’,’k’);
% legend (’\chi " 2/(m-n+1)}’, \lambda’, 3);
ylabel (’\chi“2_\nu and \lambda’)
xlabel (’function calls’)

figure (102); % ——————— plot data, fit, and confidence interval of fit
confidence_level = 0.99; % confidence level for error confidence interval;
z = norminv( (l1+confidence_level)/2);

clf

plot(t,y_dat,’og’, t,y_fit,’-b’,
t,y_fit+zx*sigma_y,’.k’, t,y_fit-z*sigma_y,’.k’);
legend (’y_{datal}’,’y_{£fit}’>,’99% c.i.’,?’,0);
ylabel (’y(t) )
xlabel (’t?)
% subplot(212)
% semilogy(t,sigma-y,’—r’, linewidth ’,4);
% ylabel (°\ sigma_y(t)’)

figure (103); % ———————— plot histogram of residuals, are they Gaussean?
clf
hist (real(y_dat - y_fit))
title (*histogram of residuals’)
axis(’tight’)
xlabel (’y_{data} - y_{fit}’)
ylabel (’count ’)
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6 Examples

In this section, the use of 1m.m is illustrated in three curve-fitting examples in which
experimental measurements are numerically simulated. Noisy experimental measurements
y are simulated by adding random measurement noise to the curve-fit function evaluated
with a set of “true” parameter values §(t; pyue). The random measurement noise is normally
distributed with a mean of zero and a standard deviation of 0.50.

Y = g(ti;ptrue) +N(0, 050) (26)

The convergence of the parameters from an erroneous initial guess pinir to values closer to
Prrue 1S then examined.

Each numerical example below has four parameters (n = 4) and one-hundred mea-
surements (m = 100). Each numerical example has a different curve-fit function g(¢; p), a
different “true” parameter vector pi.e, and a different vector of initial parameters pinit.

For several values of p, and py, the log of the reduced x? error criterion is calculated
and is plotted as a surface over the ps — ps plane. The “bowl-shaped” nature of the objective
function is clearly evident in each example. In some cases, the objective function is not
quadratic in the parameters or the objective function has multiple minima. The presence of
measurement noise does not affect the smoothness of the objective function.

The gradient descent method endeavors to move parameter values in a down-hill direc-
tion to minimize x*(p). This often requires small step sizes but is required when the objec-
tive function is not quadratic. The Gauss-Newton method approximates the bowl shape as
a quadratic and endeavors to move parameter values to the minimum in a small number of
steps. This method works well when the parameters are close to their optimal values. The
Levenberg-Marquardt method retains the best features of both the gradient-descent method
and the Gauss-Newton method.

The evolution of the parameter values, the evolution of 2, and the evolution of A from
iteration to iteration is plotted for each example.

The simulated experimental data, the curve fit, and the 99-percent confidence interval
of the fit are plotted, the standard error of the fit, and a histogram of the fit errors are also
plotted.

The initial parameter values pj.:, the true parameter values pyue, the fit parameter
values psi, the standard error of the fit parameters o,, and the correlation matrix of the
fit parameters are tabulated. The true parameter values lie within the confidence interval
piit — 2.580), < Prrue < pric + 2.580, with a confidence level of 99 percent.
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6.1 Example 1
Consider fitting the following function to a set of measured data.
§(t; p) = prexp(—t/p2) + pst exp(—t/ps) (27)

The .m-function to be used with 1m.m is simply:

function y_hat = 1lm_func(t,p,c)
y_hat = p(1)*xexp(-t/p(2)) + p(3)*t.*xexp(-t/p(4));

The “true” parameter values pie, the initial parameter values pi,ii, resulting curve-fit pa-
rameter values ps: and standard errors of the fit parameters o, are shown in Table 1. The
R? fit criterion is 89 percent and the reduced x? = 1.004. The standard parameter errors
are one to five percent of the parameter values. The parameter correlation matrix is given in
Table 2. Parameters p3 and p4 are the most correlated at -96 percent. Parameters p; and ps3
are the least correlated at +27 percent.

The bowl-shaped nature of the x? objective function is shown in Figure 1(a). This
shape is nearly quadratic and has a single minimum.

The convergence of the parameters and the evolution of x? and \ are shown in Fig-
ure 1(b).

The data points, the curve fit, and the curve fit confidence band are plotted in Fig-
ure 1(c). Note that the standard error of the fit is smaller near the center of the fit domain
and is larger at the edges of the domain.

A histogram of the difference between the data values and the curve-fit is shown in
Figure 1(d). Ideally these curve-fit errors should be normally distributed.
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Table 1. Parameter values and standard errors.

The Levenberg-Marquardt algorithm for nonlinear least squares

’ Pinit ‘ DPtrue ‘ Drit ‘ Op ‘ Up/pfit (%) ‘
5.0 | 20.0 | 19.375 | 0.389 2.01
2.0 | 10.0 | 10.367 | 0.377 3.64
0.2 1.0 0.991 | 0.015 1.56
10.0 | 50.0 | 50.472 | 0.540 1.06

19

18

17

y(t)

16
15
14

13

(c)

Table 2. Parameter correlation matrix.

P1 b2 P3 Pa
P1 1.00 -0.68 0.27 -0.34
p2 || -0.68  1.00 -0.78 0.80
D3 0.27 -0.78 1.00 -0.96
ps || -0.34  0.80 -0.96 1.00

Ydata|
Yfiy
99% c.i/|

function calls

histogram of residuals

40

60

80

100

-0.5

0 0.5 1

Ydata - Yfit

Figure 1. (a) The sum of the squared errors as a function of p2 and p4. (b) Top: the convergence
of the parameters with each iteration, (b) Bottom: values of 2 and \ each iteration. (c) Top:
data y, curve-fit §(¢; pfir), curve-fitt+error, and curve-fit-error; (d) Histogram of the errors
between the data and the fit.
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6.2 Example 2
Consider fitting the following function to a set of measured data.
§(t; p) = p1(t/ max(t)) + pao(t/ max(t))? + ps(t/ max(t))® + pa(t/ max(t))* (28)

This function is linear in the parameters and may be fit using methods of linear least squares.
The .m-function to be used with 1m.m is simply:

function y_hat = 1lm_func(t,p,c)
mt = max(t);
y_hat = p(1)*(t/mt) + p(2)*(t/mt). 2 + p(3)*(t/mt). "3 + p(4)*x(t/mt)."4;

The “true” parameter values pi.e, the initial parameter values pin, resulting curve-fit pa-
rameter values ps; and standard errors of the fit parameters o, are shown in Table 3. The R?
fit criterion is 99.9 percent and x? = 1.025. In this example, the standard parameter errors
are larger than in example 1. The standard error for p; is 8 percent and the standard error
of ps is 47 percent of the estimated value. Note that a very high value of the R? coefficient of
determination does not necessarily mean that parameter values have been found with great
accuracy. The high value of R? merely indicates that the fit is highly correlated with the data.
In this example the high R? value is a result of relatively low measurement noise (compared
to the data values) and a fit that passes through the data points. The parameter correla-
tion matrix is given in Table 4. These parameters are highly correlated with one another,
meaning that a change in one parameter will almost certainly result in changes in the other
parameters. The high values of parameter standard errors, parameter correlations, and x?
indicate that §(¢; p) is over-parameterized.

The bowl-shaped nature of the y? objective function is shown in Figure 2(a). This
shape is nearly quadratic and has a single minimum. The correlation of parameters ps and
P4, for example, is easily seen from this figure.

The convergence of the parameters and the evolution of y? and A are shown in Fig-
ure 2(b). The parameters converge monotonically to their final values.

The data points, the curve fit, and the curve fit confidence band are plotted in Fig-
ure 2(c). Note that the standard error of the fit approaches zero at ¢ = 0 and is largest at
t = 100. This is because §(0; p) = 0, regardless of the values in p.

A histogram of the difference between the data values and the curve-fit is shown in
Figure 1(d). Ideally these curve-fit errors should be normally distributed, and they appear
to be so in this example.
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Table 3. Parameter values and standard errors. Table 4. Parameter correlation matrix.
’ Pinit ‘ Ptrue ‘ Drit ‘ Op ‘ Jp/pfit (%) ‘ P1 P2 P3 P4
4.0 | 20.0 | 19.769 1.741 8.80 P1 1.00 -0.97 0.92 -0.87
-5.0 | -24.0 | -24.364 9.394 38.55 pe || -0.97  1.00 -0.99 0.95
6.0 | 30.0 | 33.379 | 15.801 47.33 D3 0.92 -0.99 1.00 -0.99
10.0 | -40.0 | -42.843 8.321 19.42 ps || -0.87  0.95 -0.99 1.00
» 40 \ \ \ \ 3
S 20 P e
g 0 _
g 20 \\‘ >
S -40 - 4 -
2 60 ! ! ! !
6 8 10 12 14 16
100
107 F G
<10“ g
310—3 [
G107t E
=105 F
ig:: E | | \)\ L 7’
6 8 10 12 14 16
(b) function calls

histogram of residuals

99% c.i,

y(t)

-10

-15 ! ! ! ! -1 -0.5 0 0.5 1
(c) t (d)

Figure 2. (a) The sum of the squared errors as a function of p2 and p4. (b) Top: the convergence
of the parameters with each iteration, (b) Bottom: values of 2 and \ each iteration. (c) Top:
data y, curve-fit §(¢; pfir), curve-fitt+error, and curve-fit-error; (d) Histogram of the errors
between the data and the fit.

Ydata - Yfit
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6.3 Example 3
Consider fitting the following function to a set of measured data.
§(t;p) = prexp(—t/p2) + pssin(t/ps) (29)

This function is linear in the parameters and may be fit using methods of linear least squares.
The .m-function to be used with 1m.m is simply:

function y_hat = 1lm_func(t,p,c)
y_hat = p(1)*exp(-t/p(2)) + p(3)*sin(t/p(4));

The “true” parameter values piue, the initial parameter values pi.i, resulting curve-fit pa-
rameter values ps; and standard errors of the fit parameters o, are shown in Table 5. The R?
fit criterion is 93 percent and x2 = 0.921. In this example, the standard parameter errors are
all less than ten percent. The parameter correlation matrix is given in Table 6. Parameters
P4 is not correlated with the other parameters. Parameters p; and py are most correlated at
73 percent.

The bowl-shaped nature of the y? objective function is shown in Figure 3(a). This
shape is clearly not quadratic and has multiple minima. In this example, the initial guess
for parameter p4, the period of the oscillatory component, has to be within ten percent of
the true value, otherwise the algorithm in 1m.m will converge to a very small value of the
amplitude of oscillation p3 and an erroneous value for p;. When such an occurrence arises,
the standard errors o, of the fit parameters p; and p, are quite large and the histogram of
curve-fit errors (Figure 3(d)) is not normally distributed.

The convergence of the parameters and the evolution of y? and A are shown in Fig-
ure 3(b). The parameters converge monotonically to their final values.

The data points, the curve fit, and the curve fit confidence band are plotted in Fig-
ure 3(c).

A histogram of the difference between the data values and the curve-fit is shown in
Figure 1(d). Ideally these curve-fit errors should be normally distributed, and they appear
to be so in this example.
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Table 5. Parameter values and standard errors. Table 6. Parameter correlation matrix.
’ Pinit ‘ Ptrue ‘ Drit ‘ Op ‘ Up/pfit (%) ‘ P1 P2 P3 P4
10.0 6.0 5.486 | 0.230 4.20 D1 1.00 -0.73 -0.28 -0.01
50.0 | 20.0 | 21.995 | 1.286 5.85 pe || -0.73  1.00 0.20 0.01
6.0 1.0 1.120 | 0.074 6.57 ps || -0.28 0.20 1.00 -0.03
5.7 5.0 5.016 | 0.027 0.53 ps || -0.01  0.01 -0.03 1.00
w 33 \ \ \ \ \ \
¢ 301
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Figure 3. (a) The sum of the squared errors as a function of p2 and p4. (b) Top: the convergence
of the parameters with each iteration, (b) Bottom: values of 2 and \ each iteration. (c) Top:
data y, curve-fit §(¢; pfir), curve-fitt+error, and curve-fit-error; (d) Histogram of the errors
between the data and the fit.
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6.4 Fitting in Multiple Dimensions

The code 1m.m can carry out fitting in multiple dimensions. For example, the function

2(z,y) = (pa?? + (1 — py)y??)'/?

may be fit to data points z;(z;,v;), (i = 1,--- ,m), using lm.m with a .m-file such as

load the data

if the independent wvariable x is in column 1
if the independent wvariable y is in column 2
if the dependent wvariable z is in column 3

my_data = load(’my_data_file’);
x_dat = my_data(:,1);
y_dat = my_data(:,2);

%
%
%
z_dat = my_data(:,3); %

p.min = [ 0.1 0.1 1; % minimum expected parameter values
p.max = [ 0.9 2.0 1; % mazimum expected parameter wvalues
p_init = [ 0.5 1.0 1; % initial guess for parameter wvalues
t = [ x_dat y_dat 1; % x and y are column vectors of independent wvariables

[p_fit ,Chi_sq,sigma_p,sigma_y,corr,R2,cvg_hst] =
Im(’1m_func2d’,p_init,t,z_dat,weight ,0.01,p_min,p_max);

and with the .m-function 1lm_func2d.m

function z_hat = 1lm_func2d(t,p)

% example function used for nonlinear least squares curve—fitting
% to demonstrate the Levenberg—Marquardt function , Ilm.m,

% in two fitting dimensions

x_dat = t(:,1);
y_dat = t(:,2);
z_hat = ( p(1)*x_dat. p(2) + (1-p(1))*y_dat. p(2) ). (1/p(2));
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7 Remarks

This text and 1m.m were written in an attempt to understand and explain methods of
nonlinear least squares for curve-fitting applications.

Statistical methods for data analysis are applied to compute values of parameter esti-
mates and their standard errors. Reasonable parameter estimates can often be found using
non-statistical minimization algorithms, such as random search methods, the Nelder-Mead
simplex method, or simply griding the parameter space and finding the best combination of
parameter values.

Nonlinear least squares problems can have objective functions with multiple local min-
ima. Fitting algorithms will converge to different local minima depending upon values of the
initial guess, the measurement noise, and algorithmic parameters. It is perfectly appropriate
and good to use the best available estimate of the desired parameters as the initial guess. In
the absence of physical insight into a curve-fitting problem, a reasonable initial guess may be
found by coarsely griding the parameter space and finding the best combination of parameter
values. There is no sense in forcing any iterative curve-fitting algorithm to work too hard
by initializing it with a random or otherwise intentionally poor initial guess. In most ap-
plications, parameters identified from neighboring initial guesses (£5%) should converge to
similar parameter estimates (+0.1%). The fit statistics of these converged parameters should
be the same, within two or three significant figures.
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