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The need to fit a curve to measured data arises in all branches of science, engineering,
and economics. This hand-out addresses the ordinary least-squares method of fitting a curve
to data in situations in which the curve-fit must satisfy certain criteria.

1 Unconstrained Ordinary Linear Least Squares

The fitting of an equation to data reduces to the estimation of unknown parameters in
the equation from a set of data. If the parameters are multiplicative coefficients, e.g.,

ŷ(x; a1, a2, a3, a4, a5, a6) = a1 + a2x+ a3 sin(πx) + a4 cos(πx) + a5 exp(−x) + a6x
p (1)

then the equation is linear in the coefficients, a = [a1,. . . ,an]. Given a set of m data points
(x1, y1), . . . , (xm, ym) (in which yi is a measured response to the precise input xi) the curve-
fit equation can be evaluated m times, for each value of xi, and in terms of the as-of-yet
unknown coefficients: (x1, ŷ(x1; a)), . . . , (xm, ŷ(xm; a)). For curve-fit equations which are
linear in the coefficients, the m equations can be written in matrix form, for example,

ŷ1
...
ŷm

 =


1 x1 sin(πx1) cos(πx1) exp(−x1) xp

1
... ... ... ... ... ...
1 xm sin(πxm) cos(πxm) exp(−xm) xp

m



a1
...
a6


or, in matrix-notation short hand, ŷ = Xa. Note that the matrix X depends only on the
precisely-known values of the independent variables, xi. The columns of X can be linear in
x or non-linear in x. This matrix can not contain values of the measured dependent variable
yi, nor can it contain any coefficient, ai. In most curve-fitting problems, there are more data
points than curve-fit coefficients (m > n) so there are more equations than unknown; the
matrix equation ŷ = Xa represents an over-determined system of linear equations.

Using the least-squares approach to estimating the curve-fit coefficients, a, the objective
function to be minimized is the sum of the squares of the differences between the curve-fit
equation, ŷi and the associated measured data yi,

J(a) =
m∑

i=1
[ ŷ(xi; a)− yi ]2 (2)
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This sum-of-squares-of-errors (“SSE”) criterion can be written with matrix notation

J(a) = (ŷ− y)T (ŷ− y)
= (Xa − y)T (Xa − y)
= (aTXT − yT) (Xa − y)
= aTXTXa − aTXTy− yTXa + yTy (3)

Note that the matrix XTX is the Hessian matrix of this quadratic objective function. As long
as more than n columns of X are linearly independent, this Hessian matrix is guaranteed to
be positive-definite (aTXTXa > 0 ∀ a 6= 0) and, therefore, invertible. The necessary criterion
for minimizing J with respect to the set of curve-fit coefficients, a, is that the gradient of J
with respect to the unknown coefficients, a, must be zero.

∂J

∂a
= 0⇐⇒ 0 = aTXTX + (XTXa)T − (yTX)− (XTy)T ⇐⇒ XTXa = XTy

and the ordinary least-squares estimates for the curve-fit coefficients can be computed from

a∗ = [XTX]−1 XTy. (4)

2 Constrained Ordinary Linear Least Squares

Now, suppose that in addition to minimizing the sum-of-squares-of-errors, the curve-fit
must also satisfy other criteria. For example, suppose that the curve-fit must pass through
a particular point (xc, yc), or that the slope of the curve at a particular location, xs, must be
exactly a given value, y′s. Satisfying such constraints is a natural application of the method
of Lagrange multipliers. Using the example started above, these two criteria can be written,

yc = ŷ(xc; a) = a1 + a2xc + a3 sin(πxc) + a4 cos(πxc) + a5 exp(−xc) + a6x
p
c

and

y′s = ŷ′(xc; a) = 0a1 + a2 + a3π cos(πxs)− a4π cos(πxs)− a5 exp(−xs) + a6px
p−1
c ,

or, in matrix form,

[
yc

y′s

]
=

[
1 xc sin(πxc) cos(πxc) exp(−xc) xp

c

0 1 π cos(πxs) −π sin(πxs) − exp(−xs) pxp−1
s

] 
a1
...
a6


or, in short hand, b = Aa. So now the problem is to minimize J(a) (equation (3)) such
that Aa = b. This is a linearly-constrained quadratic minimization . . . an ideal problem for
Lagrange multipliers. The augmented objective function (the Lagrangian) is then,

JA(a,λ) = aTXTXa − aTXTy− yTXa + yTy + λT(Aa − b) (5)
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Minimizing JA with respect to a and maximizing JA with respect to λ results in a system of
linear equations for the optimum coefficients a∗ and Lagrange multipliers λ∗.

[
2XTX AT

A 0

] [
a∗

λ∗

]
=

[
2XTy

b

]
(6)

If the curve-fit problem has n coefficients and c constraint equations, then the matrix is
square and of size (n+ c)× (n+ c).

3 Example

As an example, consider fitting equation (1) to a set of data points. An assumption
implicit to the least-squares error criterion (equation (2)) is that the independent variables
xi have no error, and that all the error is in the yi values. To illustrate the method, the
curve-fit equation is fit to m noisy data points. The data points are generated numerically
by evaluating the fit equation at m values of xi with a set of “true” pre-selected coefficients,
and subsequently adding random numbers to the data. A set of coefficients can then be
estimated from the noisy data and compared to the “true” coefficient values.

In this example, xi ∈ [0.0, 0.1, 0.2, · · · , 5]; the “true” (pre-selected) coefficient values
are given in the table below. The exponent value is given as p = 2.5. Note that including
this exponent as a curve-fit coefficient would make the problem non-linear in the coefficients,
and it could not be solved using linear least squares methods. The measurement errors are
simulated as being normally-distributed with a mean of zero and a standard deviation of 1.

For the constrained fit, ŷ(5) is constrained to have a value of 11, and ŷ′(0) is constrained
to have a value of 0.

The unconstrained curve-fit is found from equation (4) and the constrained curve-fit is
found from equation (6). The resulting parameter values are shown in the table below, and
the related data and curves are shown in the figure. Note that the estimated parameters
depend on both the underlying trend (the pre-selected coefficient values) and the random
errors that are added-in.

coefficient pre-selected unconstrained constrained
“true” estimate estimate

a1 5.00 5.46 3.06
a2 0.10 -0.62 0.02
a3 -4.00 -4.32 -4.91
a4 2.00 2.26 1.87
a5 -20.00 -19.53 -15.40
a6 0.10 0.16 0.18
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The coefficient estimates (a∗1, · · · , a∗6) are computed from 51 data points (black points).
The data are generated by adding normally-distributed random values to a baseline curve
(dashed red). The unconstrained fit is plotted with a blue line and the constrained fit
is plotted with a green line. Note that the constrained fit satisfies the criteria ŷ′(0) = 0
and ŷ(5) = 11. Otherwise, both fits minimize the sum-of-the-squares-of-the-errors (“SSE”)
criterion.

For smaller levels of measurement error, and for data sets with more data points,
the estimated unconstrained fit coefficients would match the “true” values more precisely.
However, the estimated constrained fit coefficients should not match the “true” values, no
matter how small the measurement error or how many data points, since the fit function with
the “true” values do not satisfy the constraints.
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