ENERGY METHODS AND CASTIGLIANO’S THEOREMS
CEE 421L. Matrix Structural Analysis
Fall, 2012

- Strain Energy: \[U = \frac{1}{2} \int_V \{\sigma\}^T \{\varepsilon\} \, dV \]
- External Work: \[W = \int F \, dD \]; Complementary Work: \[W^* = \int D \, dF \]
- Superposition: \[N = N_o + \sum n_i F_i; \quad M = M_o + \sum m_i F_i; \quad V = V_o + \sum v_i F_i; \text{ etc.} \]
- Castigliano’s First Theorem: \[F_i = \frac{\partial U}{\partial D_i} \]
- Castigliano’s Second Theorem: \[D_i = \frac{\partial U^*}{\partial F_i} \]
- Linear Elastic Systems: \[U = U^* \]

Mechanical Loads

Axial \[U = \frac{1}{2} \int \frac{N^2}{EA} \, dl = \frac{1}{2} \sum \frac{N_i^2 L}{EA} \quad n_i = \frac{\partial N}{\partial F_i} \quad D_i = \int \frac{N n_i}{EA} \, dl = \sum \frac{N n_i L}{EA} \]
Bending \[U = \frac{1}{2} \int \frac{M^2}{EI} \, dl \quad m_i = \frac{\partial M}{\partial F_i} \quad D_i = \int \frac{M m_i}{EI} \, dl \]
Shear \[U = \frac{1}{2} \int \frac{V^2}{G(A/\alpha)} \, dl \quad v_i = \frac{\partial V}{\partial F_i} \quad D_i = \int \frac{V v_i}{G(A/\alpha)} \, dl \]
Torsion \[U = \frac{1}{2} \int \frac{T^2}{GJ} \, dl \quad t_i = \frac{\partial T}{\partial F_i} \quad D_i = \int \frac{T t_i}{GJ} \, dl \]

Temperature Loads

Axial \[U = \sum N \alpha \Delta TL \quad \frac{\partial U}{\partial F_i} = \sum \frac{\partial N}{\partial F_i} \alpha \Delta TL \]
Bending \[U = \int M \alpha \left[\frac{\Delta T_b - \Delta T_t}{h} \right] \, dl \quad \frac{\partial U}{\partial F_i} = \int \frac{\partial M}{\partial F_i} \alpha \left[\frac{\Delta T_b - \Delta T_t}{h} \right] \, dl \]

Statically Indeterminate Structures and Superposition

1. Remove \(I \) redundant forces, \(R_i, \quad i = 1, \ldots, I \), where \(I \) is the degree of indeterminacy.
2. Solve for the internal forces, \(M_o, N_o, V_o \), in the resulting statically determinate structure (without the redundant forces), due to the real applied loads.
3. Now, remove all of the real applied loads, and apply \(I \) unit loads to the structure, collocated with the redundant forces, one at a time.
4. Solve for \(I \) sets of internal forces, \(m_i, n_i, v_i \), in each of the \(I \) different statically determinate systems.
5. Apply superposition for bending moments, axial forces, and shear forces.
 \[M = M_o + \sum_{i=1}^I R_i m_i \quad N = N_o + \sum_{i=1}^I R_i n_i \quad V = V_o + \sum_{i=1}^I R_i v_i \]
6. Write \(I \) statements of Castigliano’s Second Theorem, one for each virtual system, enforce compatibility with respect to support settlement and relative positions, and solve for the redundant forces, \(R_i \).