Pulse Response As A Free Response

CEE 541. Structural Dynamics
Department of Civil and Environmental Engineering
Duke University
Henri P. Gavin
Fall, 2014

1 A pulse “wavelet” equation

The response of a linear time-invariant (LTI) dynamic system to a pulse with a characteristic pulse period, pulse amplitude, and having a number of cycles of pulse motion, may be computed as the free response of two cascaded LTI systems. In this presentation the input will be represented as an acceleration, \ddot{x}_g, which could be applied to the base of a viscously-damped elastic oscillator. Such a pulse may be represented by a function

$$\ddot{x}_g(t; T, \tau, n) = \left(\frac{t}{\tau}\right)^n \exp\left[-\frac{t}{\tau}\right] \cos\left(2\pi\frac{t}{T} - \phi\right),$$

where the parameters are the envelope decay time τ, a positive exponent n that governs the rise-time, and the period of oscillation T. For a given value of the exponent, n, the number of cycles in the pulse is roughly $4\tau/T$. Equation (1) may be written in terms of the sum of a pair of complex-conjugate exponentials

$$\ddot{x}_g(t; T, \tau, n) = \left(\frac{t}{\tau}\right)^n \exp\left[-\frac{t}{\tau}\right] \cos\left(2\pi\frac{t}{T} - \phi\right)$$

$$= \left(\frac{t}{\tau}\right)^n e^{-t/\tau} \left(\cos(\omega t) \cos(\phi) + \sin(\omega t) \sin(\phi)\right)$$

$$= \left(\frac{t}{\tau}\right)^n e^{-t/\tau} \left(a \cos(\omega t) + b \sin(\omega t)\right)$$

$$= \left(\frac{t}{\tau}\right)^n \left(X_g e^{i\omega t} + X_g^* e^{-i\omega t}\right)$$

where $\omega = 2\pi/T$, $a = \cos \phi$, $b = \sin \phi$, $X_g = (a - ib)/2$, and $\lambda = -1/\tau + i\omega$.

2 Zero terminal velocity

A realistic base acceleration pulse will have a corresponding velocity, $\dot{x}_g(t)$, that is zero for $t \gg \tau$. This pulse equation can be made to satisfy the zero final velocity condition by adjusting the phase angle, ϕ, and it will be shown that the phase angle that satisfies the zero terminal velocity condition depends only on τ/T.

Integrating the two terms in equation (6), for $n = 2$,

$$\frac{X_g}{\tau^2} \int_0^{t_f} t^2 e^{\lambda t} dt = \frac{X_g}{\tau^2} \left(\frac{1}{\lambda} (t_f^2 - 2t_f/\lambda + 2/\lambda^2) e^{\lambda t_f} - \frac{2}{\lambda^2}\right)$$

$$\frac{X_g^*}{\tau^2} \int_0^{t_f} t^2 e^{\lambda^* t} dt = \frac{X_g^*}{\tau^2} \left(\frac{1}{\lambda^*} (t_f^2 - 2t_f/\lambda^* + 2/\lambda^* + 2) e^{\lambda^* t_f} - \frac{2}{\lambda^{*2}}\right)$$
summing, and taking the limit as \(t_f \to \infty \), and setting this final velocity to zero,

\[
\lim_{t_f \to \infty} \left[\frac{X_g}{\tau^2} \int_0^{t_f} t^2 e^{\lambda t} dt + \frac{X^*_g}{\tau^2} \int_0^{t_f} t^2 e^{\lambda^* t} dt \right] = -\frac{2}{\tau^2} \left(\frac{X_g}{\lambda^3} + \frac{X^*_g}{\lambda^*_3} \right) = 0 \quad (9)
\]

leads to

\[
\frac{X_g}{X^*_g} + \left(\frac{\lambda}{\lambda^*} \right)^3 = 0 \quad (10)
\]

\[
\frac{a - ib}{a + ib} + \left(\frac{-1/\tau + i\omega}{-1/\tau - i\omega} \right)^3 = 0 \quad (11)
\]

\[
\frac{1 - i \tan \phi}{1 + i \tan \phi} + \left(\frac{-1 + i2\pi \tau/T}{-1 - i2\pi \tau/T} \right)^3 = 0, \quad (12)
\]

Taking another approach, equation (9) leads to

\[
\Re \left(\frac{X_g}{\lambda^3} \right) = 0 \quad (13)
\]

\[
\Re \left(\frac{\tau^3 (\cos \phi - i \sin \phi)}{(i\omega \tau - 1)^3} \right) = 0 \quad (14)
\]

\[
\frac{\tau^3}{(\omega^2 \tau^2 + 1)^3} \left(\cos \phi (3\omega^2 \tau^2 - 1) - \sin \phi (3\omega \tau - \omega^3 \tau^3) \right) = 0 \quad (15)
\]

\[
\tan \phi = \frac{3(2\pi \tau/T)^2 - 1}{3(2\pi \tau/T) - (2\pi \tau/T)^3} \quad (16)
\]

So, the condition that \(\dot{x}_g(t_f) = 0 \) for \(t_f \gg \tau \) implies a functional relationship between the phase shift, \(\phi \), and the number of cycles in the pulse, \((4\tau/T)\). The solution, equation (16) may be checked by computing the phase angles that minimize the absolute terminal velocity for a range of values for \(\tau/T \), and comparing to the values of \(\phi \) from equation (16).

3 Peak velocity amplitude

The peak velocity amplitude of the pulse scales linearly with \(T \) and is a function of \(\tau/T \). The peak velocity can be approximated as:

\[
V_{\text{max}} = T \max \left[10.00(\tau/T)^2 \exp(-7.4\tau/T), \right.
\]

\[
2.02(\tau/T)^2 \exp(-3.5\tau/T), \quad 0.93(\tau/T)^2 \exp(-2.4\tau/T), 0.085 \right] \quad (17)
\]

For \(\tau/T > 1 \) use \(V_{\text{max}} = 0.085T \). The spectrum of peak velocities, as a function of \(\tau/T \) along with the approximation of equation (17) are plotted in figure The two models are virtually identical.
Pulse Response as a Free Response

4 Linear Time-Invariant Model

If the exponent n is an integer, the acceleration pulse may be modeled as the output of a finite dimensional LTI. Equation (6) separates the pulse expression into a sum of complex conjugates. Repeatedly differentiating the first term in the sum, for $n = 2$, and denoting $u(t) = \ddot{x}_g(t)$,

\begin{align*}
u(t) &= (t/\tau)^2 e^{\lambda t} \\
\dot{u}(t) &= (t/\tau)^2 \lambda e^{\lambda t} + 2t/\tau^2 e^{\lambda t} \\
\ddot{u}(t) &= (t/\tau)^2 \lambda^2 e^{\lambda t} + 4t/\tau^2 \lambda e^{\lambda t} + 2/\tau^2 e^{\lambda t} \\
\dddot{u}(t) &= (t/\tau)^2 \lambda^3 e^{\lambda t} + 6t/\tau^2 \lambda^2 e^{\lambda t} + 6/\tau^2 \lambda e^{\lambda t}
\end{align*}

The highest order derivative can be expressed in terms of the lower order derivatives.

\begin{align*}
\dddot{u} - 3\lambda \ddot{u} &= -2(t/\tau)^2 \lambda^3 e^{\lambda t} - 6t/\tau^2 \lambda^2 e^{\lambda t} \\
\dddot{u} - 3\lambda \ddot{u} + 3\lambda^2 \dot{u} &= (t/\tau)^2 \lambda^2 e^{\lambda t} \\
\dddot{u} - 3\lambda \ddot{u} + 3\lambda^2 \dot{u} - \lambda^3 u &= 0
\end{align*}

Note that these expressions give only one part of the complex conjugate pair, $u = u_r + iu_i$, and recall $\lambda = -1/\tau + i\omega$. Substituting into the terms of equation (24),

\begin{align*}
\lambda \dddot{u} &= (-1/\tau + i\omega)(\dddot{u}_r + i\dddot{u}_i) \\
&= -1/\tau \dddot{u}_r + i\omega \dddot{u}_r - i/\tau \dddot{u}_i - \omega i \dddot{u}_i \\
\lambda^2 \dddot{u} &= (-1/\tau + i\omega)(-1/\tau + i\omega)(\dddot{u}_r + i\dddot{u}_i) \\
&= (1/\tau^2 - 2i\omega/\tau - \omega^2)(\dddot{u}_r + i\dddot{u}_i) \\
&= 1/\tau^2 \dddot{u}_r - 2i\omega/\tau \dddot{u}_r - \omega^2 \dddot{u}_r + i/\tau^2 \dddot{u}_i + 2\omega/\tau \dddot{u}_i - i\omega^2 \dddot{u}_i \\
\lambda^3 u &= (1/\tau^2 - 2i\omega/\tau - \omega^2)(-1/\tau + i\omega)(u_r + iu_i) \\
&= (-1/\tau^3 + 3i\omega/\tau^2 + 3\omega^2/\tau - i\omega^3)(u_r + iu_i) \\
&= -1/\tau^3 u_r + 3i\omega/\tau^2 u_r + 3\omega^2/\tau u_r - i\omega^3 u_r - i/\tau^3 u_i - 3\omega/\tau^2 u_i + 3i\omega^2/\tau u_i + \omega^3 u_i
\end{align*}
Now, separating the complex-valued o.d.e. of equation (24) into two real valued o.d.e’s for u_r and u_i,

$$\ddot{u}_r + 3\omega\dot{u}_r + 3/\tau\ddot{u}_i + 6\omega/\tau\dot{u}_i + 3(1/\tau^2 - \omega^2)\dot{u}_r + (3\omega/\tau^2 - \omega^3)u_i + (1/\tau^3 - 3\omega^2/\tau)u_i = 0 \quad (28)$$

$$\ddot{u}_i - 3\omega\ddot{u}_r + 3/\tau\ddot{u}_i - 6\omega/\tau\dot{u}_r + 3(1/\tau^2 - \omega^2)\dot{u}_r - (3\omega/\tau^2 - \omega^3)u_r + (1/\tau^3 - 3\omega^2/\tau)u_i = 0 \quad (29)$$

These coupled third order o.d.e’s may be put into state-space form as follows:

$$\frac{d}{dt} \begin{bmatrix} u_r \\ u_i \\ \dot{u}_r \\ \dot{u}_i \\ \ddot{u}_r \\ \ddot{u}_i \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -(1/\tau^3 - 3\omega^2/\tau) & -(3\omega/\tau^2 - \omega^3) & -3(1/\tau^2 - \omega^2) & -6\omega/\tau & -3/\tau & -3\omega \\ -(1/\tau^3 - 3\omega^2/\tau) & -(3\omega/\tau^2 - \omega^3) & -3(1/\tau^2 - \omega^2) & 6\omega/\tau & -3/\tau & -3\omega \end{bmatrix} \begin{bmatrix} u_r \\ u_i \\ \dot{u}_r \\ \dot{u}_i \\ \ddot{u}_r \\ \ddot{u}_i \end{bmatrix} \quad (30)$$

with initial conditions,

$$\begin{bmatrix} u_r \\ u_i \\ \dot{u}_r \\ \dot{u}_i \\ \ddot{u}_r \\ \ddot{u}_i \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 2/\tau^2 \\ 0 \end{bmatrix} \quad (31)$$

and the total solution is given by $\ddot{x}_g(t) = X_g u + X_g^* u^* = \cos(\phi)u_r + \sin(\phi)u_i$,}

$$\ddot{x}_g(t) = \begin{bmatrix} \cos(\phi) & \sin(\phi) & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u_r \\ u_i \\ \dot{u}_r \\ \dot{u}_i \\ \ddot{u}_r \\ \ddot{u}_i \end{bmatrix}. \quad (32)$$

As a comparison of the closed form model of equation (6) and of the state-variable model of equations (30) - (32), pulse acceleration records and corresponding velocity records are plotted on the same axes in Figure 3 The two models are virtually identical.
Given a state variable model that computes a desired pulse function as a free response, the response of a dynamical system to such a pulse may also be computed as a free response. The pulse dynamics are described by a state variable system \(\dot{u}(t) = A_u u(t)\) with an initial state \(u(0) = u_0\) and the output \(y_u(t) = C_u u(t)\). To compute the response of a primary system to such a pulse, the output of the pulse system is the input to the primary system, \(\dot{x}(t) = Ax(t) + By_u(t) = Ax(t) + BC_u u(t)\), giving the cascade system dynamics,

\[
\frac{d}{dt} \begin{bmatrix} u(t) \\ x(t) \end{bmatrix} = \begin{bmatrix} A_u & 0 \\ BC_u & A \end{bmatrix} \begin{bmatrix} u(t) \\ x(t) \end{bmatrix}, \quad \begin{bmatrix} u(0) \\ x(0) \end{bmatrix} = \begin{bmatrix} u_0 \\ 0 \end{bmatrix}
\]

(33)

from which any response of the primary system \(y(t) = Cx(t)\) is

\[
y(t) = C_v e^{A_v t} v_0
\]

(34)

where \(v^T = [u^T \ x^T]\), \(C_v = [0 \ C]\), and

\[
A_v = \begin{bmatrix} A_u & 0 \\ BC_u & A \end{bmatrix}.
\]

(35)

5 Sigmoidal Baseline Correction
function [accel, veloc, displ] = pulseVx (Vp, Tp, Nc, t, t0, fig)

% Computes an earthquake-like acceleration, velocity, and displacement pulse

% INPUT
% Vp - max velocity of pulse 1.0
% Tp - time period of pulse 1.0
% Nc - number of cycles in pulse ... approximate 1.0
% t - time record ... [1:points] * delta_t [1:1000]*0.01
% t0 - time at which the pulse starts 0.25
% fig - figure number for plotting, 0: no plots 1

% OUTPUT
% accel - earthquake ground acceleration
% veloc - earthquake ground velocity
% displ - earthquake ground displacement

if nargin < 1, Vp = 1.0; end
if nargin < 2, Tp = 1.0; end
if nargin < 3, Nc = 1.0; end
if nargin < 4, t = [1:1000]*0.01; end
if nargin < 5, t0 = 0.25 ; end
if nargin < 6, fig = 1; end

points = length(t); % number of points
delta_t = t(2) - t(1); % time step interval
p0 = floor((t0 -t(1))/ delta_t); % number of initial points w/o motion
tau = Nc*Tp/4.0 % decay time constant of pulse
tT = tau/Tp; % Nc / 4
n = 2.0; % rise-time value for pulse

% set phase of pulse such that terminal velocity is zero, or close to it.
phi = atan2((3*(2*pi*tT)^2 -1) , (3*2*pi*tT - (2*pi*tT)^3))
accel = ((t-t0)/tau).^n .* exp((-t-t0)/tau) .* cos(2*pi*(t-t0)/Tp - phi);
accel(1:p0) = 0; % shift the offset

% baseline correction for zero terminal velocity and displacement
z = 0.5; % correction over duration z
ts = (t-n*tau-t0)/(z*tau); % scaled time
exp_ts = exp(-ts);
dc = 1./(1+exp_ts); % sigmoidal displacement correction
vc = exp_ts .* (1+exp_ts).*(-2.0)/(z*tau); % d(dc)/dt
ac = exp_ts .* (1+exp_ts).*(-3.0).* (exp_ts -1)/(z*tau)^2; % d(vc)/dt

maxIter = 50;
velT = zeros(maxIter,1);
dspT = zeros(maxIter,1);
for iter = 1:maxIter
velT(iter) = sum(accel)*delta_t;
dspT(iter) = [points:-1:1]*accel'*delta_t^2;
accel = accel - velT(iter)*vc - dspT(iter)*ac;
if abs(dspT(iter)) < 1e-3*Tp)
break;
end
end
iter
veloc = cumtrapz(accel)*delta_t; % trapezoidal rule for the pulse veloc.

%veloc(find(t>0+12*tau)) = 0.0; % knock-out round-off error

displ = cumtrapz(veloc)*delta_t; % trapezoidal rule for the pulse displ.

if Nc > 5,
 maxV = 0.086 * Tp;
else
 maxV = max([4.063*Nc^-2.165*exp(-4.403/Nc) ;
 2.329*Nc^-1.336*exp(-5.693/Nc)]) * Tp;
end

scale = Vp / maxV;

accel = accel * scale;
veloc = veloc * scale;
displ = displ * scale;

if fig > 0 % plot the pulse data

 figure(fig)
 subplot(3,1,1)
 plot(t,accel,t, scale*dspT*ac);
 axis tight
 ylabel('accel, cm/s^2')
 grid on
 subplot(3,1,2)
 plot(t,veloc,t,vc)
 axis tight
 ylabel('veloc, cm/s')
 grid on
 subplot(3,1,3)
 plot(t,displ,t,scale*dspT*dc);
 axis tight
 ylabel('displ, cm')
 xlabel('time, s')
 grid on

 drawnow

end

% pulseVx 2 Oct 2010; 18 Nov 2010; 24 May 2011; 19 Dec 2011