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ABSTRACT
The radial, lateral, and tangential stiffness of spoked bicycle wheels depends upon the rim’s bending inertia,

torsional inertia, the spoke sizes, and the spoke geometry. The spokes of three rear bicycle wheels of different
spoke patterns were instrumented with strain gauges in order to investigate the effect of the spoke pattern on the
spoke strain and fatigue resistance properties of the wheels. Spoke strains due to radial loads were measured in
the laboratory. Time-records of the strain of a right pulling spoke were collected from each of the wheels under
actual riding conditions. Analytical, numerical, laboratory, and field studies show that spoke strains due to radial
loads and in service conditions are insensitive to the spoke pattern. Small variations in the spoke strains between
the wheels in the road tests can be attributed to variations in the loads, but do not significantly affect the fatigue life
of the wheels.

INTRODUCTION
Spoked bicycle wheels are efficient, highly evolved, structural systems. A useful analogy for a bi-

cycle wheel supporting vertical loads is that of a circular beam on a prestressed elastic foundation, fixed
at the center and loaded radially at the circumference. To apply this analogy, the system of interlacing
spokes can be modeled as a disk of uniform stiffness per length of circumference. Spokes of varying
lengths may be laced into wheels of fixed dimensions, by modifying the interlacing geometry of the
spokes. The connection of the spoke to the hub is accomplished via a cold-worked right angle elbow
in the spoke and a flanging of the spoke material. Most spoke failures occur at this fatigue critical de-
tail. Upon the failure of one spoke, ensuing unbalanced lateral forces on the rim result in large lateral
deformations of the rim, which may precipitate lateral buckling of the wheel, or failure of other spokes.
A loose spoke can interfere with the smooth operation of the chain, which may result in a lost race, a
collision, or an injury.

Variations in radial stiffness due to the spoke pattern, calculated using the theory of circular beams
on elastic foundations, agree with those using a three-dimensional elastic frame analysis. While the
spoke lacing pattern influences the over-all stiffness of the wheel, the strains in spokes at the loading
point on the rim are not as sensitive to the spoke pattern. Static tests on three identical rear wheels,
with different spoke lengths, also show that spoke strains are not strongly affected by the spoke pattern.
Strain time-histories collected during road tests also show only small differences between the wheel
types. The fatigue life of the spokes of a rear wheel supporting radial loads is therefore not significantly
influenced by the spoke pattern. Spoke strain time histories, collected under actual road conditions, are
used to evaluate the fatigue reliability of the three wheels. This study shows that spoked bicycle wheels
have high reliability against fatigue failure.

PROPERTIES OF WHEELS USED IN EXPERIMENTS
Asymmetry about a plane through the rim of most rear bicycle wheels provides clearance for the

free-wheel on the right side of the wheel. The right flange of the hub is closer to the plane through the

1ASCE Journal of Engineering Mechanics, vol 122, no. 8, (August 1996) pp. 736–742.
2Assistant Professor, Department of Civil Engineering, Duke University, Durham, NC 27708–0287 Tel: (919) 660–5201



rim than is the left flange. The pre-tensioning stresses of the right spokes can be up to three times the
pre-tensioning stresses of the left spokes to balance the lateral forces on the rim.

The pattern in which spokes are laced into a wheel affects performance measures such as stiffness,
mass, and energy absorption. Wheels with a greater number of spoke crossings have longer spokes
which are more tangential to the hub. Figure 1 shows the spokes connected to one hub flange. Wheels
are distinguished by the number of times a spoke crosses other spokes: 2X, 3X, and 4X. Radially spoked
wheels are designated: 0X. In this study, 2X, 3X, and 4X wheels are compared. These wheels have

(a) 2X (b) 3X (c) 4X

FIG. 1. Spoke lacing geometries: (a) 2X; (b) 3X; (c) 4X

equal numbers of “pulling” spokes (which increase in tension under torsional pedaling loads applied at
the hub) and “pushing” spokes (which lose tension under torsional pedaling loads).

Bicycle rims are not prismatic, but are periodically perforated by reinforced holes used for the spoke
connections. To assess the effective moments of inertia of the rim used in this study, analytical force-
deflection relationships of the bare rim were fit in a least-squares sense to experimental force-deflection
data. To evaluate the effective bending moment of inertia about the axis parallel to the axle, Izz , the
bare rim was loaded in diametric compression. The radial deflection, ∆r of a slender circular beam of
radius Rr due to a diametric point load, Pr was derived as

∆r =
2PrR
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where Er is the elastic modulus of the rim. The stiffness of the rim due to out-of-plane loads determined
the torsional moment of inertia, J , and the moment of inertia for bending about the radial axis, Irr. The
rim was loaded with different boundary conditions to give an over-determined set of equations for Irr

and J . Specifically, the rim was rigidly fixed at two points and loaded in the z direction at mid-span as
shown in Figure 2. For the case of a semi-circular arch, (θ = π/2 in Figure 2), the principle of virtual
work was used to derive the deflection at mid-span, ∆z , due to a out-of-plane load at mid-span, Pz ,
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which is a linear combination of 1/(ErIrr) and 1/(GJ). For circular arches of other geometries (θ 6=
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FIG. 2. Geometry of the out-of-plane rim tests.

π/2), the derivation of the deflection due to a mid-span, out-of-plane, point load was carried out using
the principle of virtual work via a symbolic mathematics manipulator, and resulted in cubics in ErIrrGJ
in the numerator and quartics in ErIrrGJ in the denominator. This non-linear relation was used to
determine coefficients g(θ) and h(θ) of the linearized approximation:

∆z = PzR
3
r

[
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ErIrr
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GJ

]

, (3)

over a representative range of ErIrr and GJ . For 70 Nm2 ≤ ErIrr ≤ 90 Nm2 and 10 Nm2 ≤ GJ ≤

50 Nm2, values of g(θ) and h(θ) are given in Table 1. The relative error is defined as unity minus the

TABLE 1. Coefficients for equation 3

θ g(θ) h(θ) rel. error
(1) (2) (3) (4)

π/6 0.00638 0.000107 0.003
π/4 0.02322 0.000641 0.004
π/3 0.05980 0.002391 0.003
π/2 0.23354 0.018942 10−7

2π/3 0.6005 0.0987 0.004
3π/4 0.853 0.202 0.007
5π/6 1.121 0.387 0.01

ratio of the linearized approximation to the principle of virtual work solution. The coefficients given in
Table 1 result in a uniform approximation over the specified range.

Experiments as described by Figure 2 and diametrical compression experiments were carried out to
determine the flexibilities ∆/(PR3). Figure 3 shows the test data and linear fits for the diametrical case,
and cases θ = π/3, θ = π/2, and θ = 2π/3. The rim was rotated between each of the six tests for each
of the four configurations. Stiffnesses were taken as the slopes of the straight-line fits, and are given
in Figure 3. This data, Table 1, and Equation (3), lead to least-squares approximations for 1/(ErIzz),
1/(ErIrr), and 1/(GJ), which give ErIzz = 54.5 Nm2, ErIrr = 82.7 Nm2, and GJ = 29.5 Nm2 with
a coefficient of determination greater than 99%.

The three wheels tested have all properties in common, except the spoke pattern (see Table 2). The
spokes are made of 304 stainless steel wire and the rims are made of extruded aluminum.

COMPARISON OF ANALYTIC MODELS FOR RIM-SPOKE-HUB SYSTEMS
Assuming negligible lateral rim deflections under a radial load, the radial deflection of the rim, ∆r,

is related to spoke strain, ε, by ∆r = εLeff/ cos α. The effective (deformable) length of the spoke,
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FIG. 3. Force-deflection data for the rim tests.

TABLE 2. Common Properties of Wheels

Property Symbol Value
(1) (2) (3)

Rim Radius Rr 309.5 mm
Bending Moment of Inertia Izz 795 mm4

Bending Moment of Inertia Irr 1200 mm4

Torsional Moment of Inertia J 1139 mm4

Hub Flange Radius Rh 22.2 mm
Plane of Rim to Left Flange HL 36.7 mm

Plane of Rim to Right Flange HR 14.1 mm
Spoke Diameter Ds 1.83 mm
Spoke Modulus Es 206 GPa
Rim Modulus Er 69 GPa

Rim Shear Modulus G 26 GPa
Number of Spokes Ns 36 spokes

Leff , is 14.4 mm less than the length of the spoke to the neutral axis of the rim, L, due to the rigid
threaded connection between the spoke and the rim. The angle α is the inclination of the spoke to the
radius of the wheel. For spokes on the right side of the wheel,

cosαR =
L2

R − H2
R + R2

r − R2
h

2RrLR
. (4)

Likewise, for spokes on the left side of the wheel, cos αL can be evaluated by replacing LR and HR

with LL and HL in Equation 4. The subscripts R and L indicate the right and left sides of the wheel.
The angle α reflects an inclination of the spoke both within and out of the plane through the rim. The
geometry of a single spoke in relation to the hub and the rim is illustrated in Figure 4.

The theory of circular beams on an elastic foundations has been shown to accurately model the in-
plane behavior of spoked bicycle wheels (Burgoyne and Dilmaghanian 1993). In the present study, the
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FIG. 4. Geometry of a spoke in relation to the rim and the hub, in three-dimensions.

foundation stiffness per unit length of rim circumference, k, is approximated by

k =
NsEsD

2
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)

. (5)

The analytic solution adopted in this study for the in-plane deformation of a flexural beam on an elastic
foundation, fixed at the center and loaded with a radial point load, is described by M.I. Hetenyi (1956).
In Hetenyi’s solution, the maximum radial deflection of the rim is:

∆r =
PrR

3
r

4αβErIzz

(

2αβ

πη2
−

β sinh απ cosh απ + α sin βπ cosβπ

η(sinh2 απ + sin2 βπ)

)

, (6)

where

η =

√

R4
rk

ErIzz
+ 1, (7)

α =

√

η − 1

2
, (8)

and

β =

√

η + 1

2
. (9)

The key parameter in Hetenyi’s analysis is the ratio of the foundation stiffness to the beam stiffness,
R4

rk/(ErIzz). Hetenyi’s solution is somewhat more simple to evaluate than an analysis presented by
Pippard (1931, 1932) that was adopted in a previous study (Burgoyne and Dilmaghanian 1993). Pip-
pard’s analysis is useful in analyzing sparsely spoked wheels, or when computational structural analysis
methods are not available. Both analyses approximate the spoke system as an elastic foundation of
uniform stiffness per unit length.

To evaluate the approximation given by Equations (4), (5) and Hetenyi’s equations, radial wheel
stiffnesses from the elastic foundation approximation were compared to those calculated by a three-
dimensional frame analysis of the rim-spoke-hub system. The first-order elastic frame analysis in-
cluded out-of-plane bending, axial, and torsional deformation of the rim, and bending deformation of
the spokes, since pre-tensioning of the spokes leads to high-friction connections at the rim and hub. In
fact, after a period of use, spokes become embedded in the hub flange. Calculated spoke moments were
always less than 1% of the rim moments. Torsional, axial, and out-of-plane bending of the rim are not
included in the elastic foundation analysis. Different spoke sizes, inertias Izz , and lacing patters were
analyzed. All other wheel parameters were held at the values given in Table 2.

The frame analysis gave 5% to 7% lower radial stiffnesses than did the elastic foundation analysis,
as shown in Figure 5. The effect of the spoke pattern is similar in the two analysis methods. For both
methods, the 2X wheel is 1.7% more stiff than the 3X wheel, and the 4X wheel is 1.8% less stiff than
the 3X wheel. The spoke pattern affects the over-all stiffness more than it affects the spoke strains. For
both methods, the spoke strains of the 2X wheel and the 4X wheel are within 1% of the 3X wheel.
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Deflections due to lateral point loads and tangential point loads on the rim were computed using the
three-dimensional frame model. The resulting stiffnesses are given in Figures 6 and 7. Wheels with
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longer spokes (4X) are more flexible to radial and lateral loads. The 4X wheel is most stiff to tangential
(braking and accelerating) loads on the rim. Careful experiments on wheels that were identical except
for the spoke pattern, gave similar variations in radial, lateral, and tangential stiffness due to changes in
the spoke pattern (Price and Akers 1985).

The strains in spokes adjacent to the loading point do not follow the same trends as do the wheel
stiffnesses. The strains in a right pulling spoke were calculated using the three-dimensional elastic
model with radial, lateral, and tangential loads applied at the rim-spoke node. The strain sensitivities
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are given in Table 3. Wheel properties are those given in Table 2. Wheels with shorter spokes (2X) have

TABLE 3. Spoke strains in a right pulling spoke due to radial, lateral, and tangential
loads to the rim, via an elastic frame analysis

Load 2X 3X 4X

Type (µε/N) (µε/N) (µε/N)
(1) (2) (3) (4)

radial 0.975 0.989 0.988
lateral 1.128 0.887 0.811

tangential 3.124 3.151 3.183

significantly higher spoke strains when lateral loads are applied to the rim. Under radial and tangential
loads, wheels with shorter spokes have somewhat lower spoke strains.

STATIC SPOKE STRAIN MEASUREMENTS
Strains in a right pulling spoke from each wheel were measured by a pair of 120Ω strain gauges

occupying a single 240Ω arm of a Wheatstone bridge, which included a similarly gauged temperature
compensation arm. The gages used were Micro-Measurements EA-13-23005-120 gages, with gage grid
dimensions of 5.84 mm by 0.56 mm. The temperature compensation gauges were placed on a 10 cm
length of spoke which remained unstressed during testing. This gauge configuration was insensitive to
bending strains and decreased the resistive heating of the gauges (Gavin 1986). The measurement circuit
exhibited micro-volt stability and measurements were accurate to within ±2µε. The circuit sensitivity
was determined by the shunt calibration method. The sensitivity was confirmed by a test for the elastic
modulus of the compensation arm of the bridge, which resulted in a modulus of 210 GPa (Gavin 1986).

Tests to evaluate the effect of a radial load on the spoke strains were limited to static service load
levels. A single radial load applied to the axle ranged from 200 N to 450 N. The gauged spoke was
located between the hub and the ground and tests were carried out using wheels with tires inflated to
700 kPa. Figure 8 illustrates the results of the static tests and a linear curve-fit for each wheel type.
Each curve-fit was constrained to pass through the origin. The slope of each curve-fit is tabulated in
the legend of Figure 8. Spoke lengths are as follows: 2X: 295.4 mm & 293.2 mm; 3X: 301.4 mm
& 299.4 mm; 4X: 308.4 mm & 306.8 mm. Only minor variations in the spoke-strain sensitivity are
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observed among the three wheel types. Strains in the 2X wheel are somewhat less than strains in the
4X wheel. The tire transfers forces from the rim to the ground through deformation of, and loss of
pre-tension in, the tire walls (Burgoyne and Dilmaghanian 1993). The load-distributing effect of the
inflated tire resulted in measured spoke strains that were lower than those given in Table 3. A slight
non-linearity is illustrated in Figure 8. Similar non-linear behavior in another study was attributed
to slackening of the spokes (Burgoyne and Dilmaghanian 1993). At higher radial loads, spokes lose
tension at a decreasing rate per unit radial load. As spokes lose tension, loads are carried to a greater
extent by moments in the rim. While these experiments show a slight increase in spoke-strain with
spoke length, the analytical methods show a slight reverse trend. Therefore, from laboratory, three-
dimensional analyses, and analytical solutions, it may only be concluded that static spoke strain due
to radial loads are roughly independent of the spoke pattern, for the wheels in this study. Static spoke
strains are, however, influenced by the spoke pattern when lateral loads are applied to the rim. In this
case, wheels with the shortest spokes have the highest spoke strains.

ROAD TESTS
Under service conditions, spoke strains respond to lateral (cornering), tangential (accelerating and

braking), as well as radial (gravity) loads on the rim. The variability of loading conditions introduces
variability in the spoke strain. To collect road test spoke strain records, the strain signal was balanced
and amplified by a custom, wheel-borne circuit prior to transmission through carbon/silver slip-rings,
in order to mitigate the effects of slip-ring noise. Figure 9 shows the test assembly. The road test
circuit was comprised of a 2-arm, 4-gauge Wheatstone bridge, two 240 Ω precision resistors for bridge
completion, an integrated circuit instrumentation amplifier to improve the signal to noise ratio, two
micro-potentiometers to balance the Wheatstone bridge and zero the amplifier bias error, a precision
shunt calibration resistor, two 9 volt batteries for the amplifier, a 1.3 volt battery for the strain gauges, and
micro dip-switches to turn on power to the bridge, amplifier, to select amplifier gains, and to insert the
shunt calibration resistor in parallel with the measurement arm of the bridge. Bending of the pedal crank-
arm was also measured during the road tests with a similar circuit. Shunt calibration was performed
before and after collecting data from each wheel. The strain data was transmitted to an instrumentation
vehicle via cable, and was recorded in FM on magnetic tape in three 10 minute segments, one for
each wheel. The data was subsequently digitized at 500 samples per second for analysis. The same
4 km loop, which included a variety of road conditions, was covered three times for each wheel. In an



FIG. 9. Wheel-borne road test circuit, showing instrumentation amplifier, slip-rings, and
battery supply.

effort to record the largest reasonable variation in spoke strains, obstacles, such as potholes, were not
avoided. Figure 10 illustrates the nature of the spoke strain under actual riding conditions. Negative
strain indicates a prestress loss. The total weight of the bicycle and rider was 930 N.
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DATA REDUCTION
Due to the random nature of the strain records, segments of the records corresponding to a single

wheel revolution were averaged for each wheel. Only portions of the digitized records that contained
smooth and periodic spoke strains were averaged. Bias errors were subtracted before averaging. The
average strain over a single revolution is plotted in Figure 11. The small oscillations with a 40◦ period
are attributed to the four-spoke grouping, which is characteristic of 36-spoke wheels. Also shown in
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Figure 11 is the result of Hetenyi’s analysis for a distributed load applied to the rim (to account for the
effect of the tire).

To simulate the transfer of load between the ground and the rim (through the deformed tire) in
Hetenyi’s analytic model, five (fictitious) point loads were applied symmetrically over a twenty degree
arc of the rim. Since the load distributing effect of the tire, through deformation of the tire side-walls,
could not be measured easily during road tests, the three interior loads, Pi, were assumed to be equal,
with two smaller out-lying point loads, Po, equal to each other. For a given total load, 3Pi + 2Po,
the maximum rim deflection depends on the ratio (Po/Pi). This ratio was selected to reproduce the
measured spoke strains of the 3X wheel from the static laboratory experiments (1.439 N/µε), which
resulted in (Po/Pi) ≈ 0.77.

The weak dependence of strain on the spoke pattern is predicted by both linear analytical solutions
and the low-level static tests. Changes in spoke length and spoke pattern (in the range of values in this
study) do not influence Hetenyi’s results or a elastic frame analysis significantly. Pippard’s studies on
spoked wheels with high foundation to rim stiffness ratio (R4

rk/(ErIzz) ≈ 2000), and nearly radial
spokes (α < 10◦) show that spoke tensions are significantly sensitive (> 5%) to α only under loads
tangential to the rim (accelerating and braking) (Pippard and Francis 1932; Pippard and White 1932).
Spoke strains decrease with increasing α under tangential loads (Table 3, Pippard and White 1932) and
lateral and torsional loads are typically low under steady pedaling in a straight line. Laboratory tests and
analysis show that changes in the spoke strain sensitivity to radial loads are 15µε/kN from one wheel to
another. Similar variations shown in Figure 11 are probably due to variations in the loading conditions.
Lateral and tangential static loads on the rim are typically small during steady cycling.

SPOKE STRAIN STATISTICS AND FATIGUE LIFE ASSESSMENT
To evaluate the cumulative probability distribution (CDF) of spoke strain cycles, Fε(εi), the mag-

nitude of the maximum strain cycle, ε, was extracted for each wheel revolution, i, (i = 1 . . . Ntest),
and sorted in order of increasing ε (ε1 < . . . < εi < . . . < εNtest

). The CDF of the spoke strain is
Fε(εi) = i/(Ntest + 1), and is illustrated in Figure 12. The averages and sample standard deviations
(std. dev.) of these distributions are given in Table 4. The extreme measured spoke strains were about
600 µε, which corresponds to a spoke stress range of 150 MPa. These stress cycles were probably due
to traversing a pothole, which were not avoided in the road tests.

The number of cycles to fatigue failure, N , for a constant stress range, S, is assumed to be a log-
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TABLE 4. Statistics of the Spoke Strain CDF.

Wheel Ntest average ε std. dev. ε
Type (cycles) (µε) (µε)
(1) (2) (3) (4)
2X 1087 342 82
3X 901 349 76
4X 551 317 74

normally distributed random variable (Fuchs and Stephens 1980, Pope 1959), which satisfies the relation

log S = a log N + b. (10)

In other words, N = 10b/aS1/a. Equation 10 presumes that there is no threshold stress range below
which no fatigue accumulates. This assumption is conservative since very low stress cycles usually do
not contribute to the accumulation of fatigue damage. In 1984 and 1985, fatigue tests on stainless steel
bicycle spokes were carried out for Wheelsmith, Inc. at Stanford University. Constant cycle tests were
conducted with pre-tensioning stresses of 174 MPa, 250 MPa, 343 MPa, 347 MPa, 424 MPa, and 501
MPa. Any correlation between the cycles to failure, N , and the pre-tensioning stress was obscured by
random variations in N . The parameters a and b were determined from a least squares fit of fatigue data
from 76 stainless steel bicycle spokes, shown in Figure 13 (using N as the dependent variable (Rice
1985)). Variations in the (dependent) variable N due to stress cycles of a constant amplitude, S, are
modeled by the normally distributed random variable b, with average b̄, and coefficient of variation Vb.
For the data shown in Figure 13, a=-0.30 log(MPa)/log(cycle), b̄=4.12 log(MPa), Vb=0.017. Using this
data, the coefficient of variation of N is 0.74, for any constant value of S. This data is unique to the
spoke material, the spoke geometry, and the spoke’s particular stress concentrations. In 68 spokes the
failure occurred at the cold-worked elbow; in the remaining 8 spokes the failure occurred at the threads.

The smallest stress cycle in the fatigue tests was 174 MPa, whereas the stress range from the road test
data was 20 MPa to 150 MPa. Hence, the fatigue data was extrapolated to the low stress range. (To have
tested a single sample at 40 MPa would have required over a year of continuous testing at 10 cycles per
second, and an unwarranted use of facilities.) Assuming a linear fatigue damage accumulation model,
each stress cycle of stress range S contributes 1/N(S) to fatigue failure. For example, each cycle at
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the largest spoke stress cycle (150 MPa) shortens the remaining fatigue life by about one one-millionth
of the total fatigue life, on average. The linear fatigue damage accumulation model neglects interaction
between cycles of different stress levels in complex loading histories (Yen 1969). Because the fatigue
loading cycles are regular and of a roughly uniform amplitude, a linear fatigue damage accumulation
model is applicable to spoke fatigue (Fuchs and Stephens 1980). In Nlife wheel revolutions, the number
of cycles of stress in the interval [Si, Si+1] is given by ni = Nlife/(Ntest + 1), where Si = Esεi and
εi is the ith element of the set of ordered spoke strains. A damage index, D, is defined by

D =

Ntest
∑

i=1

ni

N(Si)
, (11)

which can be expressed as

D = 10b/aE−1/a
s

Nlife

Ntest + 1

Ntest
∑

i=1

ε
−1/a
i , (12)

and is a log-normally distributed random variable. The probability of fatigue failure, Pf , is the prob-
ability that D exceeds Df , Pf = Φ((logDf − E[logD])/σlogD), where Φ represents the standard
normal CDF , E is the expectation operator, and σlogD is the standard deviation of D, which follows
directly from Equation 12. For fatigue stress cycles of constant amplitude Df = 1.0. In fatigue tests
with ascending stress amplitudes, failure is often observed when Df > 1, and with descending stress
amplitudes Df < 1 (Pope 1959). A conservative value of Df of 0.3 has been recommended for random
in-service fatigue loadings (Leve 1969).

Cycles with the largest spoke strain have the largest contribution to Pf . The CDF of spoke strain
for the wheels entire life, (Fε(εi) for Nlife cycles) is assumed to be equal to the measured Fε(εi) for
Ntest cycles. This assumption leads to an underestimate for Pf , but extrapolation of irregular measured
CDF’s is tenuous. Figure 14 illustrates the sensitivity of the likelihood of spoke fatigue failure with
respect to service life. Relationships for Df = 0.3 and Df = 1.0 are shown. In evaluating Equation 12
for Figure 14, the measured spoke strains for all three wheels were combined. For a standard bicycle
wheel, 472 cycles corresponds to 1 km. Riding across the continental United States corresponds to 3.8
million cycles. Riding 50 km every day for one year corresponds to 8.6 million cycles. This study shows
that bicycle wheels intended for mileage comperable to a cross-country excursion are very reliable with
respect to radial fatigue loads.
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FIG. 14. Increase in the probability of spoke failure with service life.

Since the failure of one spoke renders the wheel un-serviceable, the spoke system is considered to
be a series system of Ns elements with identically distributed fatigue resistances. If the spoke fatigue
resistances are perfectly correlated, then the probability of fatigue failure for the wheel is Pf for a
spoke. If the spoke fatigue resistances are uncorrelated, then probability of fatigue failure for the wheel
is 1− (1−Pf )Ns . If Pf for a spoke is 0.001 then the failure probability for a 36 spoke wheel is between
0.001 and 0.035.

CONCLUSIONS
Requirements of strength, stiffness, and low weight are satisfied in bicycle wheels by combining

a light-weight rigid rim with pre-tensioned wire spokes. In many rear wheels very high pre-tension
stresses in half the spokes are required to maintain an asymmetrical shape. The radial, lateral, and tan-
gential stiffness of wheels with various spoke sizes, spoke geometries and rim stiffnesses is presented.
The behavior of bicycle wheels subjected to static radial loads can be accurately modeled by idealizing
the system of interlacing spokes as a linear elastic foundation of uniform stiffness per length of circum-
ference. The spoke pattern affects the over-all radial stiffness of the wheel more than it affects the spoke
strains. From a theoretical analysis, a numerical analysis, static experimental analysis, and in-service
measurements, the spoke strains appear to be insensitive to the pattern of the spoke lacing. From a
numerical analysis, the spoking pattern has the greatest impact on the spoke strains when the wheel is
subjected to large lateral loads, such as during cornering. In this case, wheels with longer spokes have
lower strains than do wheels with shorter spokes. Small variations in measured spoke strains between
the wheel types under actual riding conditions, are attributed to variations in un-measured loads. The
extreme spoke stress cycles in the road test experiments were on the order of 150 MPa. Each cycle at
this stress level shortens the remaining fatigue life by one one-millionth of the total fatigue life. Larger
stress cycles, due to large lateral loads, for instance, could shorten the fatigue life considerably. Future
work could therefore be directed toward:

• Measurements of spoke strains due to high lateral loads, and,
• Non-linear modeling of spoked wheels subjected to spoke-slackening loads.

The fatigue resistance of the spokes, the spoke diameter, the arrangement of the spokes, and the
stiffness of the rim influence wheel stiffness and fatigue life. Wheels with 2X, 3X, and 4X spoke
patterns all have similar spoke strains when subjected to radial loads. The fatigue resistance of spoked
wheels to steady cycling loads is very high for most typical service conditions.
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APPENDIX II. NOTATION
The following symbols are used in this paper:
a, b = empirical coefficients for fatigue life prediction;

b̄ = average value of b;
D = damage index;
Df = value of D at failure;
Ds = spoke diameter (1.6 mm, 1.8 mm, 2.0 mm);
Er = rim modulus of elasticity;
Es = spoke modulus of elasticity;

Fε(εi) = probability that ε ≤ εi;
G = shear modulus of the rim;

g, h = coefficients in a linearized model for lateral arch deflections;
HL = distance from a plane through the rim to the left side of the hub;
HR = distance from a plane through the rim to the right (gear) side of the hub;
Irr = bending moment of inertia of the rim about its neutral axis parallel to the radius;
Izz = bending moment of inertia of the rim about its neutral axis parallel to the axle;
J = torsional moment of inertia of the rim;
k = foundation stiffness of the system of interlacing spokes;

LL = length of a spoke on the left side of the hub to the neutral axis of the rim;
LR = length of a spoke on the right (gear) side of the hub to the neutral axis of the rim;

LLeff
= effective length of a spoke on the left side of the hub (LL − 14.4mm);

LReff
= effective length of a spoke on the right side of the hub (LR − 14.4mm);

N = number of stress cycles to fatigue failure;
Nlife = service life of a wheel (cycles);
Ntest = number of wheel revolutions in a measured record of spoke strains;

ni = number of measured cycles of stress in the range [Si, Si+1];
Ns = number of spokes in the wheel;
Pf = probability of fatigue failure, probability that D ≥ 1;

Pr, Pz = radial and lateral point loads applied to the rim;
Rr = radius to the neutral axis of the rim;
Rh = radius to the spoke holes in the flange of the hub;
S = stress range of a fatigue stress cycle;
Vb = coefficient of variation of b;

σlogD = standard deviation of logD;
αR = angle of a spoke on the right side of the wheel to the wheel’s radius;
αL = angle of a spoke on the left side of the wheel to the wheel’s radius;
∆r = radial rim deflection due to a radial point load;
∆z = lateral rim deflection due to a lateral point load;

ε = strain in a spoke;
θ = half the angle subtended by a circular arch;
Φ = the standard normal cumulative distribution function;
Ω = ohm, unit of electrical resistance.


