
1 INTRODUCTION 
 
Desiccation phenomena in soils have been investi-
gated for decades bringing progressively a better 
understanding of the mechanisms and physics in-
volved (Abu-Hajleh & Znidarcic 1995, Kodikara et 
al. 1999, Konrad & Ayad 1997, Miller et al. 1998). 
 Recent desiccation experiments (Peron et al. 
2006) on initially saturated soils near liquid limit 
point out to the conclusion that most of the shrink-
age occurs during saturated phase of the process. 
This is in agreement with a general perception that 
unsaturated soil has a much higher stiffness than 
saturated soil. This is quite a universal behavior in-
dependently of the type of soil and type of pore flu-
id, as shown by Hu et al. 2007 (see Fig. 1). That in-
cludes shrinkage of soil permeated with ethanol 
solution, which has surface tension coefficient that is 
less than a half of that of water. 

When soil becomes unsaturated, shrinkage practi-
cally stops, while the water content is still above 
20%. The remaining drying process occurs with a 
much-reduced deformation. Hu et al. 2007 have also 
shown that the amount of deformation during the 
saturated drying and the shrinkage limit in terms of 
void ratio depend on the compressibility of the solid, 
but seems to be independent of surface tension 
and/or fluid saturation vapor pressure which charac-
terizes evaporation process, or finally, from fluid 
viscosity. However, the rate of fluid loss and rate of 
shrinking are controlled by the evaporative and hy-
draulic conductivity properties, thus, those of the 
fluid. As it is generally agreed that capillary effects 
are caused by the fluid surface tension, it is postulat-
ed that the saturated phase of drying is largely inde-
pendent from capillary effects, and shrinkage is due 

to the fluid removal from the pore space via Darcian 
flow, while fluid-gas interface is confined to the ex-
ternal soil mass boundary, where all the phase tran-
sition takes place.  Furthermore, possible capillary 
effects at the boundary appear to play a minor role in 
deformation, and hence the so-called “skin effect” is 
a negligible factor in deformation analysis. 

A microscopic model of pore system deformation 
and transport is proposed to corroborate this hypoth-
esis in relationship to the actual data on the evolu-
tion of the pore space. 
  A macroscopic counterpart model has been re-
cently developed using Biot and Darcy theories by 
Hu et al. 2007. 

 
Figure. 1 Void ratio evolution during drying versus the volu-
metric fluid content change in clayey silt [Bioley silt] (left) and 
a granite powder  (right) filled with water, water/ethanol 50-50 
mixture and water-ethylene glycol 65-35 mixture (see Peron et 
al. 2007 for details) 
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2 PORE SPACE EVOLUTION 

2.1 Pore size distribution  
Pore size distribution was obtained for Bioley clayey 
silt filled with water using Mercury Intrusion Po-
rosimetry. The measurements were conducted at 
three stages of unconstrained desiccation: at the val-
ue of the water content of 33.1%, 24.8% and at 
0.8%. These instants correspond to the initial state, 
near the shrinkage limit, and after the completion of 
the process. Fig. 2 visualizes the volume fraction for 
each instant. The evolution of the pore space can be 
summarized as follows: (1) the initial pore size is 
visibly bi-modal, with Large Pores (LP), ranging be-
tween 0.6µm and 3µm occupying initially 17% of 
the volumes of the medium, and Small Pores (SP), 
ranging between 0.09µm and 0.6µm occupying ini-
tially 21% of the volume of the medium. There are 
also minor volumes of peripheral size pores outside 
of the range of MIP, including those of clayey frac-
tion (see Peron, 2008 for details).  (2) At near 
shrinkage limit the LP take less than 5% of the vol-
ume of the medium, whereas the SP amount to 29%. 
Finally at near the completion of drying, the LP take 
less than 0.5% of the volume of the medium, where-
as the SP still amount to 27%. 

 
Figure 2. Pore size distribution evolution during drying of Bi-
oley silt 

 
 
2.2 Assessment of the pore space evolution during 
drying 
 
This result is very significant, as it indicates that 
during the entire process the Small Pores do not de-
crease significantly, neither in size nor in total vol-
ume they occupy. To the contrary, at near shrinkage 
limit, they probably include the volume of former 
LP. The LP themselves practically all close during 
the saturated phase of drying and disappear at com-
pletion of the process. Similar results were recently 

obtained by Cuisinier & Laloui (2004) and Koliji et 
al. (2006) during suction induced desaturation pro-
cess. Interestingly, it has been known for sometime 
that in bi-modal porosity soils, the SP remain virtu-
ally unchanged during consolidation process, where-
as all volume changes are accommodated by LP 
(Delage & Lefebre 1984). In reference to the desic-
cation process such evolution of the pore space im-
plies that only the water volume contained in the LP 
is subject to evacuation during the saturated phase, 
and only that water volume produces the observed 
shrinkage. 

3 MICROSCOPIC MODEL OF PORE SPACE 
EVOLUTION 

3.1 Formulation 
The above observations will be framed into a model 
of an evolving microscopic structure, based on the 
following specific postulates. It is recognized that 
the pore system of soil is made of sectors of straight 
tubes of two initial sizes: small (ST) and large (LT), 
with their internal diameters coinciding with the av-
erage values of the pore modes, identified in the pre-
ceding Section as 0.5µm and 1 µm. The total initial 
volumes of the pores are set as equal to the initial 
value of the pore space of the corresponding modal 
volumes. The external radii of the tubes are not con-
nected to any physical currently used characteristics 
of soils, except that the total volume of the solids of 
all the tubes must be representative of the total vol-
ume of the solids. Hence its value is determined as 
2.5µm. The grain size distribution data could pro-
vide some help, but not without a more extensive 
study.  

 
Figure 3.  Schematics of a pore system in a cylindrical REV (a) 
and a BVP for a Small (b) eventually approximated via (d) and 
for a Large Pore (c).   

To begin with we consider a representative ele-
mentary volume (REV) in a form of a single cylin-
drical deformable tube around a single cylindrical 
Large Pore located centrally and a series of parallel 
cylindrical Small Pores, all filled with water, and 
connected at their extremities to the atmosphere with 
which they can exchange gas and fluid. The tube 
representation is shown in Fig. 3a. 



The solid of the tube represents a granular materi-
al, hence deforming irreversibly. The macroscopic 
experiments (see Peron et al. 2006) indicate that dry-
ing shrinkage strain is largely irreversible, while in 
the unsaturated phase the deformation is reversible 
to the state of the onset of desaturation, upon the 
removal of suction or re-wetting. The behavior of 
the solid material surrounding the pores will be con-
sidered as plastic, however it will be approximated 
via a linearly elastic law during loading and consid-
ered as perfectly rigid during an unloading. The 
adoption of a linear deformation law allows one to 
use a principle of superposition and hence represent 
the pore system of Fig. 3a as a superposition of ef-
fects of an LP and multiple SPs. Eventually for the 
reasons of simplicity SP will all be located centrally 
as well. Hence, the problem is reduced to that of a 
single tube with a single cylindrical pore. 

The tube is considered as symmetric along and 
around its axis, loaded with a negative pore fluid 
pressure at the ends. It is assumed that a tube is 
completely filled with water during the considered 
phase (saturated). Water undergoes a viscous 
(Poiseuille) flow, i.e. an incompressible Newtonian 
fluid through a cylindrical tube. For the external 
boundary conditions for the fluid one can envision 
either a known (negative) water pressure history, or 
an imposed flux, resulting from the evaporation flux. 
The removal of water from the tube implies that its 
volume is compensated by the deformation of the 
tube. The time evolution of the negative pressure 
applied is reconstructed from the experiment (Peron 
et al. 2005, 2006) and shown in Fig. 4. At the axis of 
the symmetry at the tube half-length the no-flow 
condition is imposed.  

 
Figure 4. The negative pore pressure function imposed at the 
boundary x=L (from the experimental data) 

Water transport in the tube is a viscous non-
frictional (Poiseuille) flow with the externally ap-
plied negative pressure, which is evaporation-driven. 
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!Q  is the volume-flow rate, F is the volume flux, p is 

water pressure, µ is viscosity and a is the inner radi-
us of the tube. We assume that the flow is solely at-
tributed to the loss of volume of the inner conduit, 
i.e. due to the change in a, thus the volume change 
of an infinitesimal tube element per unit volume is  
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And the mass conservation requires (in 1D) 
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Thus substituting the flux into eq. (3), an approx-
imate Poiseuille’s equation for the collapsing tube is 
obtained 
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 It should be pointed out that a similar equation 
can also be obtained from eq. (1) by replacing the 
volume flow rate with the total volume loss of tube.  
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In reality the tube radius a varies with x because 
of the elastic deformation in response to the variable 
(negative) pressure. A classical tube expan-
sion/compression solution provides such a relation-
ship. To further simplify the mathematical solution 
Fung (1984) expresses the change in radius as a 
function of the inner pressure by ignoring the radial 
strain  
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E is the Young’s modulus, a0 is the initial value of 
the inner radius a, h is the thickness of the tube. 
Fung has shown that the latter approximation is very 
good, especially for low values of Poisson coeffi-
cient. As indicated in the subsequent context, the 
simulated deformation appears to be rather large, 
hence, a finite strain configuration may become a 
better approach. However, as our current priority in 
this paper is to examine the idea of using a deforma-
ble pore model to simulate the shrinkage, the math-
ematical merit of employing large deformation will 
be pursued in the future work.   

Substituting (6) into the original eq. (4) produces 
a partial differential equation for pore pressure p. 
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The initial condition is: at 0=t , 00 == pp . The 
boundary conditions are as follows: 0=x , !p / !x = 0  
and x = ±L , p = p t( ) , see Fig. 4.  

Eq. (7) is a parabolic PDE. Its solution has been 
obtained using Mathlab©.  

3.2 Results 
The solutions are obtained numerically for large and 
small pores separately. The numerical value of the 
deformability modulus E = 50 KPa, and water vis-
cosity chosen the same for the analyses of the LP 
and the SPs. The length of the tubes is 15 cm, taken 
as the length of the macroscopic experiments (see 
Peron et al. 2005). Both types of pores are subjected 
to the same external negative pressure evolution, as 
resulting from the same flux of water vapor (see Hu 
et al. 2007). The most significant difference between 
the two types of pores is in the amount of closure of 
the inner cavity: in 5 hours needed for reaching the 
shrinkage limit, the SP closes over 0.08 µm from the 
original 0.5 µm at the external boundary, whereas 
the LP closure amounts to 0.33 µm from 1 µm. This 
reflects correctly the porosimetry observation that 
the Large Pores convert into 0.6 µm (or nearly Small 
Pore types) in that period of time.  

The evolution of radii for selected cross sections 
of the tube proceeds similarly, but with a small but 
marked delay, as seen in Fig. 6a and b. 

 
Figure.6a. Evolution of radii in LP at x=L, x = L/2, and x = L/4 

 
Figure.6b. Evolution of radii in SP at x=L, x = L/2, and x = L/4 

 
Figure 7. Radius profile for small and large pore after 5 hours 
of drying    

The profiles of the opening along the axis for 
each pore type are shown in Fig. 7. 

The results also indicate a different efficiency of 
SPs and LPs in transport of water toward the evapo-
rating boundary. Fig. 8 shows water flux evolution 
at the boundary for both types of pore relative to 
their cross section surface area. A single LP pro-
vides more than twice of water than a SP after 5 
hours. 

 
Figure 8. Water flux evolution at the external boundary for in-
dividual LP and SP 



 
Figure 9.  Volume flow rate evolution per single tube 

Notably, as the areas of the individual tubes de-
crease in a significantly different manner, the vol-
ume flow rates per single tube yield a different pic-
ture (Fig. 9). Indeed, because of a large reduction of 
the cross section area of the large pore tube it ap-
pears that the latter reaches a maximum of the water 
output at about two hours from the onset of the pro-
cess of drying. It may be expected that the small 
tubes reach a similar maximum at a later moment. 
Hence, the outflow from the system stabilizes and 
then gradually decreases, driven by the tube con-
striction. Whether this remains within the range of 
validity of the presented model remains an open 
question. 

The cumulative volume loss via single LP and SP 
from the onset of evaporation is shown in Fig. 10. 

 
Figure 10.  Cumulative volume output per single tube 

On the mechanics side of the problem it is inter-
esting to note that because of the common value of 
the externally applied negative pressure, both types 
of tubes are exposed to very similar pressure 
throughout almost the entire history of the drying 
process in the saturated range. Figures 11 and 12 
present the evolution of such pressure along respec-
tively LP and SP, indicating indeed very limited dif-
ferences. It has to be realized however, that the two 
types of tubes have drastically different stiffness be-
cause of the differences in their thickness. This in-
deed produces such a dramatically different response 
in terms of the deformation of the tubes.  

 
Figure 11. Small pore tube: evolution of the pressure profile 
along the tube axis 

 
Figure 12. Large pore tube: evolution of the pressure profile 
along the tube axis 

 
Figure 13. Evolution of pressure in LP at x = L/2 and x = L/4. 
For comparison also the boundary pressure is shown 

Finally, it is also seen that for selected cross sections 
of the tube the negative pressure evolves similarly, 
but with a marked delay, as visible in Fig. 13. In fact 
the pressure evolution mimics that of the radius of 



the pore as may be expected from the form of eq. 
(6). 

4 DISCUSSION AND CONCLUSIONS 

The presented microscopic model and numerical 
simulations of the drying process in its saturation 
phase indicate that the evolution of the highly ideal-
ized physical model reveals a series of characteris-
tics that agree qualitatively with the experimental 
findings. The centerpiece of the model is transport 
of water toward the perimeter of the drying body 
producing the collapsing of the vessels. The model 
is largely based on the evolution of the pore system, 
idealized as bimodal. In particular, a significant re-
duction in diameter of large pores is seen, compared 
to that of smaller mode pores that is attributed to the 
difference in their deformability due to size differ-
ence.  

Transport of water is characterized by an initial 
phase (two hours) when the discharge increases via 
large pores to stabilize at start to gently decrease af-
ter about four hours. An open question remains 
whether the aforementioned decrease remains within 
the range of the model validity. 

Several simplifications and assumptions require 
further investigations, to start with the deformation 
modulus of the medium that comprises (only) small-
er pores. An obvious limit of the validity of the 
model is the air entry moment. However, a micro-
scopic criterion for this occurrence is still a point of 
discussion. 
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