(ENVRON 329)

Description: Content will vary depending on student interests but will include topics such as: discrete sampling issues, data rejection and interpolation, coordinate rotations and principal axes, curve fits, regression, error and propagation of uncertainty, bootstrapping, filtering, spectral analysis, harmonic analysis, EOFs, wavelets. Course structured as mix of lectures and workshops applying methods to environmental data sets. Homework will use data provided by instructor. Each student will complete a final project, applying methods covered in class to datasets chosen them, hopefully as part of (or at least related to) their research.

Instructor:	Jim Hench
	Office: Room 309, Bookhout Research Lab
	jim.hench@duke.edu

Meets: TBD, but equivalent to Lecture: MW 10:00-11:00 (Repass classroom) Data workshop: F 10:00-11:00 (computer lab) Office hrs: MTW 2:15-3:15

Texts:

Emery, W. J., and R. E. Thomson. <u>Data Analysis Methods in Physical Oceanography</u>, 2nd <u>Edition</u>, Elsevier, 2001.

Taylor, J. R. Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (2nd ed.), University Sciences Books, 1996.

Software: Course will use MATLAB extensively

Grading: 70% Homework (roughly bi-weekly) 30% Final project

Honor code: See http://www.nicholas.duke.edu/people/students/advising/honorcode.html

Supplemental references for this class:

Kattan, P. I. <u>MATLAB for Beginners: A Gentle Approach</u>. CreateSpace, 2008.

Pratap, R. <u>Getting Started with MATLAB: A Quick Introduction for Scientists and</u> <u>Engineers</u>. Oxford University Press, 2009.

Some other useful books:

Efron, B., and R. J. Tibshirani. <u>An Introduction to the Bootstrap</u>. Chapman and Hall, 1994. Percival, D. B., and A. T. Walden. <u>Spectral Analysis for Physical Applications</u>. Cambridge Press, 1993.

- Preisendorfer, R. W. <u>Principal Component Analysis in Meteorology and Oceanography</u>. Elsevier, 1988.
- Press, W. H., S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. <u>Numerical Recipies 3rd Edition:</u> <u>The Art of Scientific Computing</u>. Cambridge Press, 2007.

(ENVRON 329)

Syllabus (approximate/intended)

	Date	Торіс	Assignments
mon	30-Aug	Sampling issues (Nyquist freq., Rayleigh criterion, aliasing)	
wed	1-Sep	cont.	
fri	3-Sep	data workshop	
mon	6-Sep	Data quality (outliers, despiking, interpolation)	
wed	8-Sep	cont.	
fri	10-Sep	data workshop	HW1 due
mon	13-Sep	Coordinate rotations and principal axes	
wed	15-Sep	cont.	
fri	17-Sep	data workshop	
mon	20-Sep	Curve fits and regression	
wed	22-Sep	cont.	
fri	24-Sep	data workshop	HW2 due
mon	27-Sep	Error and propagation of uncertainties	
wed	29-Sep	cont.	
fri	1-Oct	data workshop	
mon	4-Oct	Bootstrap / Monte Carlo methods	
wed	6-Oct	cont.	
fri	8-Oct	data workshop	HW3 due
mon	11-Oct	Fall break, no class	
wed	13-Oct	Filters (design, low-, high-, and band-pass)	
fri	15-Oct	data workshop	
mon	18-Oct	cont.	
wed	20-Oct	Spectral analysis (windowing, WOSA, multitaper)	
fri	22-Oct	data workshop	HW4 due
mon	25-Oct	cont.	
wed	27-Oct	cont.	
fri	29-Oct	data workshop	
mon	1-Nov	cont.	
wed	3-Nov	cont.	
fri	5-Nov	data workshop	HW5 due
mon	8-Nov	Harmonic analysis	
wed	10-Nov	cont.	
fri	12-Nov	data workshop	

Data and time series analysis in marine sciences

(ENVRON 329)

mon	15-Nov	EOFs	
wed	17-Nov	cont.	
fri	19-Nov	data workshop	HW6 due
mon	22-Nov	Wavelets	
wed	24-Nov	Thanksgiving break, no class	
fri	26-Nov	Thanksgiving break, no class	
mon	28-Nov	Final project presentations	
wed	01-Dec	Final project presentations	
fri	03-Dec	Final project presentations	Projects due