Matlab Indexing Cheat Sheet

John Pearson

Matrix Indexing

1. Matlab uses (row,column) subscripts to label r	matrices	S: $\begin{bmatrix} A(1,1) \\ A(2,1) \\ A(3,1) \\ A(4,1) \end{bmatrix}$	$\begin{array}{c} A(1,2) & A \\ A(2,2) & A \\ A(3,2) & A \\ A(4,2) & A \end{array}$	A(1,3) A(2,3) A(3,3) A(4,3)	$ \left. \begin{array}{c} A(1,4) \\ A(2,4) \\ A(3,4) \\ A(4,4) \end{array} \right] $
2. Matlab numbers down each column in turn:	A(1) A(2) A(3) A(4)	$\begin{array}{lll} A(5) & A(9) \\ A(6) & A(10) \\ A(7) & A(11) \\ A(8) & A(12) \end{array}$	A(13) A(14) A(15) A(16)		
3. Get a single element: $A(2,3) \simeq$					
4. Multiple elements: A([2 5],3) \simeq					
5. Get subrows and subcolumns: $A(2:4,3) \simeq$	-	■ ■],			
$A(2,1:2) \simeq \begin{bmatrix} \bullet & \bullet \\ & \bullet \end{bmatrix}$					

Logical Indexing

 For logical indexing, if L is a logical vector with the same dimensions as A, you can always treat L as being equivalent to the indices returned by find(L):

 $[0\ 1\ 0\ 1\ 1\]\simeq [2\ 4\ 5]$

2. This means that we can replace any expression involving logical indices by the expression involving regular indices:

$$A(L, M) \simeq A(find(L), find(M))$$

3. Example: Let L=[0 1 0 1 1] and M = [0 1 0 1]. What is A(L,M)? From 1, we have

$$\begin{array}{rrr} L &\simeq & [2\;4\;5] \\ \mathbb{M} &\simeq & [2\;4] \end{array}$$

 \mathbf{so}

$$\mathtt{A}(\mathtt{L},\mathtt{M})\simeq \mathtt{A}([\mathtt{2}\;\mathtt{4}\;\mathtt{5}],[\mathtt{2}\;\mathtt{4}])\simeq \left[\begin{array}{ccc} \blacksquare & \blacksquare \\ \blacksquare & \blacksquare \\ \blacksquare & \blacksquare \end{array}\right]\,.$$