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Computation of Unsteady Nonlinear Flows in Cascades
Using a Harmonic Balance Technique

Kenneth C. Hall,¤ Jeffrey P. Thomas,† and W. S. Clark‡

Duke University, Durham, North Carolina 27708-0300

A harmonic balance technique for modeling unsteady nonlinear � ows in turbomachinery is presented. The
analysis exploits the fact that many unsteady � ows of interest in turbomachinery are periodic in time. Thus,
the unsteady � ow conservation variables may be represented by a Fourier series in time with spatially varying
coef� cients. This assumption leads to a harmonic balance form of the Euler or Navier–Stokes equations, which,
in turn, can be solved ef� ciently as a steady problem using conventional computational � uid dynamic (CFD)
methods, including pseudotime time marching with local time stepping and multigrid acceleration. Thus, the
method is computationally ef� cient, at least one to two orders of magnitude faster than conventional nonlinear
time-domainCFD simulations. Computationalresults for unsteady, transonic, viscous � ow in the front stage rotor
of a high-pressure compressor demonstrate that even strongly nonlinear � ows can be modeled to engineering
accuracy with a small number of terms retained in the Fourier series representation of the � ow. Furthermore, in
some cases, � uid nonlinearities are found to be important for surprisingly small blade vibrations.

Introduction

U NTIL recently, most aerodynamic analyses of unsteady � ows
in turbomachineryblade rows havebeenoneof two types:non-

linear time-domain analyses or time-linearized frequency-domain
analyses.In the time-domainapproach(see, for example,Refs. 1–6),
one discretizes the � uid equations of motion on a computational
grid. The � ow solution is then marched from one time level to the
next using conventional computational � uid dynamic (CFD) tech-
niques, subject to appropriate unsteady boundary conditions, for
example, arising from the prescribed motion of the airfoil. The ad-
vantages of this approach are that it is relatively straightforward to
implement and can model nonlinear as well as linear disturbances.
However, because of the need for such schemes to be both time
accurate and stable, the size of the time step will generally be quite
small, especially for explicit schemes, leading to excessively large
computational times.

Using the frequency-domain or time-linearized technique (see,
for example,Refs. 7–13), one � rst computes the time-mean (steady)
� ow by solving the steady � ow equations using conventionalCFD
techniques. One then assumes that any unsteadiness in the � ow is
small and harmonic in time (e j!t ). The governing � uid equationsof
motion and the associated boundary conditions are then linearized
about the mean � ow solution to arriveat a set of linear variable coef-
� cient equations that describe the small disturbance � ow. The time
derivatives@=@t are replacedby j!, where ! is the frequencyof the
unsteadydisturbance,so that time does not appearexplicitly.The re-
sulting time-linearized equations can be solved very inexpensively,
but unfortunatelycannot model dynamic nonlinearities.

In this paper, a novel harmonic balance technique for computing
unsteady nonlinear � ows in turbomachinery cascades is presented.
The unsteady � ow is represented by a Fourier series in time with
frequencies that are integer multiples of the fundamental excitation
frequency, blade passing frequency in the case of wake/rotor inter-
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action, or the blade vibratory frequency in the case of � utter. We
then use a harmonic balance technique to write a set of coupled
partial differential equations for the unknown Fourier coef� cients
of the � ow� eld. A pseudotime term is introducedinto the harmonic
balance equations so that the equations can be solved using con-
ventional time-marching CFD techniques. The present harmonic
balance method has some similarities to the SLiQ approach pro-
posed by Giles14 and the harmonic analysis approach proposed by
He and Ning15 and Ning and He16 but is more general than either of
the latter two methods.

Governing Equations
In strong conservation law form, the two-dimensionalReynolds-

averaged Navier–Stokes equations are given by
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where D is a deforming control volume bounded by the control
surface @ D. The quantities @ f=@t and @g=@t are the x and y com-
ponents of the velocity of the control surface @D. The vector of
conservation variables U, the � ux vectors F and G, and the source
term vector S are given by
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The � rst four equations are the conservationof mass, axial and cir-
cumferentialmomentum, and energy, respectively.In the preceding
equations, ½ is the density; u and v are the velocity components in
the x and y directions,respectively;e is the total internalenergy;h is
the total enthalpy; and p is the static pressure. For an ideal gas with
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constant speci� c heats, the pressure and enthalpy may be expressed
in terms of the conservationvariables, that is,

h D .½e C p/=½ (3)

p D .° ¡ 1/f½e ¡ .1=2½/[.½u/2 C .½v/2]g (4)

The shear stresses ¿x x ; ¿x y , and ¿yy are given by
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where ¹; ¹t , and º are the molecular viscosity, the turbulentviscos-
ity, and the kinematic viscosity, respectively.The terms ¿hx and ¿hy

in the energy equation are given by

¿hx D u¿x x C v¿xy ¡ qx (8)

¿hy D u¿x y C v¿yy ¡ qy (9)

where qx and qy are the x and y components of the heat � ux,
respectively, and can be written as

qx D ¡
³

¹cp

Pr
C

¹t cp

Prt

´
@T

@x
(10)

qy D ¡
³

¹cp

Pr
C

¹t cp

Prt

´
@T

@y
(11)

where cp is the speci� c heat at constant pressure, T is the tempera-
ture, and Pr and Prt are the laminar and turbulent Prandtl numbers,
respectively.

In the present study, the laminar coef� cient of viscosity is de-
termined from Sutherland’s law. The turbulent viscosity is mod-
eled using the one-equation turbulence model due to Spalart and
Allmaras17; the � fth equation in Eqs. (1) and (2) is the Spalart–
Allmaras turbulence model written in strong conservation form. It
describes the convection, production, and destruction of the turbu-
lent viscosity ¹t in terms of Qº, the working conservation variable.
In the present study, the � ow is assumed to be fully turbulent, that
is, no transition model is used.

Harmonic Balance Analysis
To motivate the development of the harmonic balance analysis,

and for simplicity, we assume for the moment that the � ow in a
blade row is two dimensional, inviscid, and nonheat conducting,
with constant speci� c heats. Thus, the � ow may be modeled by the
two-dimensionalEuler equations, that is,
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where now the vector of conservation variables U and the � ux
vectors F and G are given by
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In this paper, we consider unsteady � ows that are temporally and
spatially periodic. In particular, temporal periodicity requires that

U.x; y; t/ D U.x; y; t C T / (14)

where T is the temporal period of the unsteadiness. Similarly, for
cascade � ow problems arising from vibration of the airfoils with
� xed interblade phase angles ¾ , or incident gusts that are spatially
periodic, spatial periodicity requires that

U.x; y C G; t/ D U.x; y; t C 1T / (15)

where G is the blade-to-bladegap and 1T is the time lag associated
with the interbladephase lag. As an example, consider a cascade of
airfoils where the source of aerodynamic excitation is blade vibra-
tion with a prescribed interblade phase angle ¾ and frequency !.
Then T D 2¼=! and 1T D ¾=!.

Because the � ow is temporally periodic, the � ow variables may
be representedas a Fourier series in time with spatiallyvaryingcoef-
� cients. For example, the conservation variables may be expressed
as
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where, in principle, the summations are taken over all integer values
of n. In practice, these series are truncated to a � nite number of
terms, ¡N · n · CN . Note that, in Eqs. (3), (4), and (13), the only
conservationvariable to appear in the denominatorof any term is ½ .
To motivate the development of one possible form of the harmonic
balance analysis, it will be convenient to represent 1=½ in a Fourier
series. Therefore, we let

1
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To determine the coef� cients 0n in terms of the coef� cients Rn , we
require that
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We require all of the terms in the resulting Fourier series be zero,
except the zero-frequency terms, that is, m C n D 0, which should
sum to unity. If Rn is known, then using this harmonic balance, one
can solve a linear system of equationsfor 0m . For example, suppose
that in our harmonic balance analysis we retain frequencies up to
twice the fundamental forcing frequency !. Then the solution to
Eq. (18) is given approximately by
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This result is approximate because the product of the two truncated
Fourier series producesa Fourier series with frequenciesup to twice
those in the original series. With the harmonic balance technique,
Eq. (18) is only satis� ed up to the highest frequency in the original
series.

Next, we substitute the series expansionsfor 1=½; ½; ½u; ½v, and
½e into the Euler equations. For example, the conservationof axial
momentum is given by
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Similar expressionscan be derived for the conservationof mass and
energy.

Next, we group the terms in Eq. (20) by frequency and require
each frequency component to satisfy Eq. (20) individually, at least
for each frequency in the original series. Collecting the resulting
equations together, including the equivalentmass and energy equa-
tions, into one vector equation gives
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where, for example,
X

0mUnU0 ¡ m ¡ n

means the sum of all of the terms resulting from the original triple
summation that multiply exp. j0!t/.

Finally, we note the conservationvariables are real quantities, so
that

U¡n D NU n (24)

where NU n is the complex conjugate of Un . Thus, we only need
to store Fourier coef� cients for nonnegative n. If N harmonics are
retained in the Fourier series representationof the � ow, then 2N C 1
coef� cients are stored for each � ow variable (one for the zeroth
harmonic or mean � ow and 2N for the real and imaginary parts of
the remaining harmonics).

The authors originally developed their computionalmodel based
on the form of the harmonic balance equations just given. The
method produces accurate unsteady � ow solutions. However, the
computationof the harmonic � uxes is dif� cult and computationally
expensive; on the order of N 3 operations are required, so that the
cost of the harmonic balance analysis grows rapidly with the num-
ber of harmonics. Also, this approach is not readily applicable to
viscous � ows because turbulence models tend to be quite complex
and not readily expressed in simple algebraic forms.

To alleviate these problems, we note that, alternatively, one can
reconstruct the Fourier coef� cients of the conservationvariables QU
and the � ux vectors QF and QG from a knowledge of the temporal
behavior of U; F, and G at 2N C 1 equally spaced points over one
temporal period. In other words,

QU D EU¤ (25)

where U¤ is the vector of conservationvariables at 2N C 1 equally
spaced points in time over one temporal period and E is matrix that
is the discrete Fourier transform operator. Conversely,

U¤ D E¡1 QU (26)

where E¡1 is the correspondinginverse Fourier transform operator.
Similar expressions hold for the � ux vectors.

Substitution of Eq. (25) into Eq. (21) gives
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where N is a diagonal matrix with n in the entries correspondingto
the nth harmonic. Premultiplying Eq. (27) by E¡1 gives
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The product j!E¡1NE is just the spectral operator that approxi-
mates @=@t . The advantageof Eq. (28) over the original form of the
harmonic balance equations, Eq. (21), is that the � uxes in Eq. (28)

are much easier to compute. The � uxes are simply computed at each
of the 2N C 1 time levels in the usual way, using Eq. (13). Also,
the alternate form of the harmonic balance equations can easily be
applied to more complex � ow equations,such as the Navier–Stokes
equations, whereas the original form, Eq. (21), cannot.

Numerical Solution Technique
To solve the harmonic balance equations,we introducea pseudo-

time term so that the equations may be marched to a steady-state
condition using a conventional CFD scheme. Using the harmonic
balance form of the Euler equations as an example, we let

@U¤

@¿
C @F¤

@x
C @G¤

@y
C S¤ D 0 (30)

where ¿ is a � ctitious time, used only to march Eq. (30) to steady
state, driving the pseudotime term to zero. Note that pseudotime



882 HALL, THOMAS, AND CLARK

harmonic balance equations, Eq. (30), are similar in form to the
original time-domain form of the Euler equations, Eq. (12).

In Eq. (30), we use a spectral operator to compute the time
S¤ term, as described in the preceding section. As presented, this
operator requires O.N 2/ operations to compute. However, the cal-
culationof the � ux vector terms is greatly simpli� ed, requiringonly
O.N / computations. As a practical matter, the � ux calculations,
and other calculations requiring O.N / computations, require much
more computational time than the relatively simple time derivative
term.Thus, the computationaltime scales like the numberof Fourier
terms retained in the solution.

The method has some similarities to the dual time step method,
usedbyDavis et al.,18 Sayma et al.,19 andothersto computeunsteady
� ows in the time domain. Our approach, however, has a number
of important differences. First, in the dual time-step method, one
marches from one time level to the next time accurately,using pseu-
dotime to drive the residual of the time-accurate equations to zero.
The process is repeated over many time steps for several periods
T until a periodic solution has been reached. In our approach, we
store the solution at just a few points over a single period, and the
solutions at all temporal points are advanced simultaneously using
pseudotimemarching until the solutionconverges.Second, because
we solve for the solution over one complete period, a spectral op-
erator may be used to compute the physical time derivative @=@t
[see Eq. (29)]. The spectral time derivative is much more accurate
than � nite differenceoperators,which are used in the dual time-step
approach. Therefore, many fewer physical time levels are required
using the present method. In fact, in the limit of small-amplitude
disturbances, only 2N C 1 time levels per period are required to
obtain exact temporal derivatives.

The computationaldomain may be reduced to a single blade pas-
sage, with complex periodicity conditions applied along periodic
boundaries. Consider, for example, the density. Spatial periodicity
requires that

½.x; y C G; t/ D ½.x; y; t C 1t/ (31)

Substitution of the boundary condition into the Fourier series for ½
gives
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Dividing Eq. (32) by exp. j!nt/, making use of the relation
1t D ¾=!, and comparing the two series term by term gives the
desired periodic boundary conditions

Rn.x; y C G/ D Rn.x; y/e j¾n (33)

Similar conditions exist for the remaining conservationvariables.
In the present investigation, we solve the Navier–Stokes equiva-

lent to Eq. (30) with modi� cations required for deformingcomputa-
tionalgrids. The general numericalsolutionprocedure is as follows.
First, 2N C 1 computational grids are generated, one for each time
level, using an elliptic grid generator.20 Here, we use an H–O–H
grid topology (Fig. 1). At each node of these 2N C 1 grids, we store
the conservation variables U. The vector U¤ is the vector of these
2N C 1 subvectors.

Next, the pseudotimeharmonic balance equationsare discretized
using standard CFD techniques. In the present investigation, we
use a two-step Lax–Wendroff scheme to discretize the harmonic
balance equations. The Lax–Wendroff scheme is a node-centered
conservative � nite volume scheme. A combination of second and
fourthdifferencesmoothingis used to captureshocks.Also, because
only steady-state solutions are desired, we use local time stepping
and multiple-grid acceleration techniques to speed convergence.

At each iteration,boundaryconditionsmust be appliedto the solu-
tion U¤. On the airfoil surface,no-slipand isothermalwall boundary
conditions are applied.

To apply the periodicity conditions, the solution U¤ along the
periodic boundary is Fourier transformed using Eq. (25), and the
resulting Fourier coef� cients QU are modi� ed so that the complex
periodicity conditions are satis� ed [Eq. (33)]. The resulting modi-

Fig. 1 Computationalgrid for front stage transonic compressor rotor;
two passages are shown for clarity.

� ed Fourier coef� cients along the computationalboundary are then
inverse Fourier transformed using Eq. (26), and the results loaded
back onto the boundary of the individual grids.

The far-� eld boundary conditions are also applied in the fre-
quency domain because essentially exact nonre� ecting far-� eld
boundary conditions are available, greatly improving the accuracy
of themethod.21;22 Again, the solutionalongthe upstreamanddown-
stream boundariesis Fourier transformed.Conventionalsteady � ow
boundary conditions are applied to the mean � ow Fourier coef� -
cients (n D 0). Upstream, we specify total pressure and density and
circumferential velocity. Downstream, we specify the static pres-
sure. Nonre� ecting boundary conditions are applied to each of the
Fourier coef� cients with nonzero frequency (n 6D 0/. Finally, the
Fourier coef� cients are inverse Fourier transformed,and the results
are loaded onto the individual grids. We note that the solutions at
the 2N C 1 time levels are only coupled through the spectral time
derivative term and the far-� eld boundary conditions.

The method described in this section is similar to the nonlin-
ear harmonic Euler method described by He and Ning15 but has
two fundamental differences. First, He and Ning use only a single
harmonic. Our results demonstrate that solutions computed using a
single harmonic may be inaccurate, especially for � ows with large
shockmotions.Second,He andNing do notmake the transformation
from the frequency domain to the time domain (the dual time-step
approach) described in the preceding section. The dual time step
greatly reduces the computational time when multiple harmonics
are retained in the model, and greatly simpli� es the incorporation
of viscous terms and turbulencemodelswhen applied to the Navier–
Stokes equations.

Computational Results
In this section,we apply the harmonic balance technique to a rep-

resentative � utter problem. We consider the front stage transonic
rotor of a modern high-pressure compressor. Shown in Fig. 1 is a
typical computational grid used to compute the two-dimensional
� ow near the tip of the rotor. At this spanwise station, the in� ow
Mach number M is 1.27, the in� ow angle 2, measured from the
axial direction, is 59.3 deg, and the Reynolds number Re is about
1:35 £ 106. The computational grid used is an H–O–H grid, which
has good resolution near the airfoil surface for resolving viscous
boundary layers, as well as good resolution in the far � eld for
modeling outgoing waves.

Shown in Fig. 2 is the steady � ow, that is, no unsteady distur-
bances, in the blade row computedusing a grid with 193 £ 33 nodes
in the O-grid section. Note the fairly complex shock structure, with
a shock extending from the leading edge both above and below the
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Computed steady pressure

Mach number contours

Fig. 2 Transonic viscous � ow through front stage compressor rotor.

airfoil. This shock impinges on the suction surface of the airfoil,
causing a local strong adverse pressure gradient, which in turn
causes the boundary layer to separate. The rapid growth of the
boundary layer results in an oblique shock forming just upstream
of the separation point. Also, the � ow accelerates over the front
portion of the pressure surface, resulting in a weak normal shock
at about 40% of the chord on the pressure surface. The pressure
distribution on the airfoil surface is shown in Fig. 3, computed us-
ing several different grids, with 97 £ 17, 145 £ 25, 193 £ 33, and
241 £ 41 computationalnodes in the O-grid region. As the grid res-
olution increases, the computed shock becomes somewhat sharper.
However, away from the shock, all four solutionsare virtually iden-
tical. In all subsequent computations, the grid with 193 £ 33 nodes
in the O-grid region is used.

Next, we consider the unsteady aerodynamic response of the ro-
tor for the case where the airfoils vibrate harmonically in pitch
about their midchords with a reduced frequency N! equal to 1.0
(based on chord and upstream velocity), an interblade phase angle
¾ equal to 30 deg, and amplitude N®. Shown in Fig. 4 is the mean
pressure distribution (the zeroth Fourier component) computed for
two different pitching amplitudes, N® D 0:01 and 1:0 deg. In each
case, the harmonic balance solutionwas computedusing one, three,
� ve, and seven harmonics (N D 1; 3; 5; and 7). Note that, in the
small-amplitudecase ( N® D 0:01 deg), the solutions computed using
differentnumbers of harmonics are nearly identical. In this case, the

Fig. 3 Steady pressure distribution on surface of front stage compres-
sor rotor airfoils computed using several different grids, with 97 £ £ 17,
145 £ £ 25, 193 £ £ 33, and 241 £ £ 41 computational nodes in the O-grid
region of an H–O–H grid.

Fig. 4 Zeroth harmonic (mean � ow) of unsteady pressure distribution
for front stage compressor rotor airfoils vibrating in pitch with Å! = 1.0
and ¾ = 30 deg: top, small-amplitude motion ( Å® = 0.01 deg); bottom,
large-amplitude motion ( Å® = 1.0 deg).

unsteadiness is so small that nonlinear effects are unimportant and,
therefore, the mean � ow is unaffected by the unsteadiness. In other
words, the mean � ow is equal to the steady � ow computed with no
airfoil motion. For the larger-amplitude motion ( N® D 1:0 deg), the
mean pressuredistributionscomputedwith various numbers of har-
monics are now different. However, the solutions converge rapidly
as the number of harmonics is increased.

Next, we consider the � rst harmonicof the unsteadypressuredis-
tributionon the airfoilsurface.This componentis importantbecause
it is the only component that contributes to aerodynamic damping
for harmonic pitching motion of the airfoil. Shown in Fig. 5 is the
� rst harmonic of the unsteadypressure on the airfoil surface, scaled
by the amplitude of the pitching amplitude, again shown for both
a small and larger pitch amplitude. As in the case of the mean
� ow, the computed � rst harmonic pressure distributions are nearly
independent of the number of harmonics retained in the computa-
tion. For small-amplitudedisturbances,the � rst and higher harmon-
ics are independentof one another.In fact, the � rst harmonicsolution
is the same as one would obtain from a time-linearizedsolution.For
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Small-amplitudemotion ( N® = 0.01 deg)

Large-amplitude motion ( N® = 1.0 deg)

Fig. 5 First harmonic of unsteady pressure distribution for front stage compressor rotor airfoils vibrating in pitch with Å! = 1.0 and ¾ = 30 deg.

Zeroth harmonic

First harmonic

Fig. 6 Unsteady pressure distribution for front stage compressor rotor airfoils vibrating in pitch with Å! = 1.0 and ¾ = 30 deg.
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the larger-amplitude pitching motion, on the other hand, the pres-
sure distributionscomputed with variousnumbers of harmonics are
different, but again the solutions converge rapidly as the number of
harmonics is increased.

To demonstrate the in� uence of nonlinearities on the unsteady
� ow, we again plot the zeroth and � rst harmonics of the unsteady
� ow in Fig. 6. In these results, the larger-amplitude motion solu-
tions are computed using � ve harmonics so that the results are con-
verged in the harmonic balance sense. The pressure distributions
are plotted for several pitching amplitudes. The pressure distribu-
tions associated with the larger amplitude pitching motion is seen
to be substantially different from the small-amplitude case. In the
small-amplitudecase, the mean pressuredistributionshows signsof
very sharp shocks. For the larger-amplitudemotion, the shocks get
smeared out. Physically, this is because the shocks oscillate, and,
when temporally averaged, the shocks appear smeared. Of course,
whenviewedat any instant in time, the shocksare sharp.Also shown
are the real and imaginaryparts of the � rst harmonic of the unsteady
pressure. In the small-amplitude case, very large and narrow peaks
of pressure are seen. These are the so-called shock impulses as-
sociated with the unsteady motion of the shock. As the amplitude
of the pitching vibration is increased, these peaks are reduced and
spread out, because the shock motion is larger and the resulting
shock impulse is spread over a larger chordwise extent.

By appropriate integration of the � rst harmonic of the unsteady
pressure distribution,one can obtain the � rst harmonic of the pitch-
ing moment. The imaginarypart determines the aeroelasticstability
of the rotor. In the absence of mechanical damping, the rotor is sta-
ble only if the imaginary moment is less than zero for all interblade
phase angles. Shown in Fig. 7 is the pitching moment as a func-
tion of interblade phase angle for several pitching amplitudes. For
small-amplitude motions, the rotor is unstable for interblade phase
angles ¾ between ¡10 and C60 deg. Thus, the amplitude of an
initially in� nitesimal motion will grow. As the motion grows, how-
ever, the aerodynamic damping of the least stable interblade phase
angle goes to zero. This is seen more clearly in Fig. 8. Shown is
the pitching moment for ¾ D C30 deg as a function of pitch ampli-
tude computed using one, three, � ve and seven harmonics. Clearly,

Fig. 7 First harmonic of unsteady pitching moment for front stage
compressor rotor airfoils vibrating in pitch with Å! = 1.0.

Fig. 8 First harmonic of unsteady pitching moment for front stage
compressor rotor airfoils vibrating in pitch with ¾ = 30 deg.

the solution computed with just one harmonic is not converged (ex-
cept at very small amplitudes) and giveserroneousresults.However,
with three or � ve harmonics, the solution is converged to engineer-
ing accuracy. Note that the imaginarymoment is positive (unstable)
for small-amplitude motions, but goes to zero at a pitching ampli-
tude of about 0.7 deg. Thus, the blade will vibrate in a stable limit
cycle with this pitch amplitude.It is also remarkable that the nonlin-
ear � uid dynamics effects are important at such a small geometric
displacement.

We next consider the computational ef� ciency of the present
method. Shown in Fig. 9 are the convergencehistories for the steady
� ow and harmonicbalancecalculations.Note that, exceptfor N D 7,
the steady � ow solver and harmonic balance � ow solver converge
in about the same number of iterations. For the N D 7 case, the
harmonic balance solution does not converge.

The authors believe the nonconvergence is due to an instabil-
ity pointed out by Giles (personal communication) some years ago
when working on time-linearized Euler solvers based on the Lax–

Wendroff scheme. A simple Fourier stability analysis reveals that,
in principle, such schemes are unconditionallyunstable for nonzero
frequencies. However, unlike most CFD instabilities, which tend
to involve short wavelength disturbances, the instability here is as-
sociated with the longest wavelengths. For this reason, a Fourier
analysis is not appropriatebecause it does not include the in� uence
of the far-� eld boundaries. We have found by analysis and by nu-
mericalexperimentthat the far-� eldboundariesprovidea stabilizing
in� uence. However, if the frequency is too large, as in the case of
the higher harmonics, the stabilizing in� uence of the boundaries
is not suf� cient to suppress this instability. This is not a serious
limitation for two reasons.First, it makes no sense to retain harmon-
ics as high as N D 7 because the wavelengthsof the disturbancesat
these high frequencies are too short to be accurately modeled with
grid resolutions typically used in unsteady � ow calculations. (This
limitation also applies to time-domain solution techniques, that is,
the high-frequencycomponent of a time-domain solution is unreli-
able.) Second, we have found that three to � ve harmonics are more
than adequate to obtain mode converged solutions of the zeroth and
� rst harmonic components of the unsteady � ow, and the harmonic
balance solver usually converges for this number of harmonics.
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a)

b)

Fig. 9 Convergence history for a) steady � ow solver and b) harmonic
balance � ow solver with ¾ = 30 deg, Å! = 1.0, and Å® = 1.0 deg.

Finally, the CPU time per iteration of the harmonic balance � ow
solverfor one, three,� ve, and sevenharmonicswas foundto be 2.15,
4.62, 7.45, and 10.29 times the cost per iteration of the steady � ow
solver. Even using seven harmonics, the cost to compute the fully
nonlinear,viscous, transonic� ow abouta vibratingbladerow is only
about ten times the cost of a comparable steady � ow calculation.

Summary
In this paper, a harmonic balance analysis for modeling unsteady

nonlinear � ows in turbomachinerywas presented.The time-domain
Euler or Navier–Stokes equations were recast in the frequency do-
main usingharmonicbalanceconcepts.The resultingcomputational
method is computationally ef� cient, at least one to two orders of
magnitude faster than conventional nonlinear time-domain CFD
simulations. Furthermore, the method is relatively easy to imple-
ment. In this paper,we applied the techniqueto the two-dimensional
Navier–Stokesequations.In unpublishedwork,we havealso applied
the technique to the three-dimensionalEuler equations.

Computational results demonstrate that even strongly nonlinear
� ows can be modeled to engineeringaccuracy with a small number
of harmonics and, furthermore, that nonlinear � uid dynamic effects
can have a strong in� uence on the aeroelastic behavior of a blade
row. In the example presented in this paper, a transonic front stage
rotor of a high-pressurecomppressorwas found to � utter in torsion,
but reaches a stable limited cycle with an amplitude of just 0.7 deg.

Finally, we note that although only applied to the � utter problem
in this paper, the method can be used to model a wide variety of
important unsteady � ow phenomena in turbomachinery. These in-
clude the effect of unsteadinesson the time-averaged aerodynamic
performance and heat transfer, the aerodynamic forcing resulting
from rotor interactions with strong shocks from neighboring blade
rows, and rotating stall.
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