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Abstract— This paper considers a method of coding the
sensor outputs in order to detect stealthy false data injection
attacks. An intelligent attacker can design a sequence of data
injection to sensors that pass the state estimator and statistical
fault detector, based on knowledge of the system parameters.
To stay undetected, the injected data should increase the state
estimation errors while keep the estimation residues in a small
range. We employ a coding matrix to the original sensor outputs
to increase the estimation residues, such that the alarm will be
triggered by the detector even under intelligent data injection
attacks. This is a low cost method compared with encryption
over sensor communication networks. We prove the conditions
the coding matrix should satisfy under the assumption that the
attacker does not know the coding matrix yet. An iterative
optimization algorithm is developed to compute a feasible
coding matrix, and, we show that in general, multiple feasible
coding matrices exist.

I. INTRODUCTION

Cyber-physical systems (CPSs) integrate computation and
communications to interact with physical processes. Many
applications are considered as CPSs, including high confi-
dence medical devices, energy conservation, environmental
control, and safety critical infrastructures–such as water sup-
ply systems, electric power, and communication systems [1].
Therefore, security is a critical aspect of these systems, and
CPSs involve additional challenges in control layer. The
problem of secure control is defined, and defenses from
information security, sensor network security are analyzed
in [2]. However, due to the interaction of cyber systems with
physical world, these mechanisms alone are not sufficient for
the security of CPSs [2].

The reasons that CPSs are vulnerable to cyber attacks and
key challenges are summarized in [3]. Novel attack-detection
algorithms besides existing information protection methods
in cyber security area can be designed, by understanding
how attacks affect state estimation and control of the system.
Stealthy attacks from an intelligent attacker that can access
a partial model of the system are synthesized in [4], and
tools to protect state-estimation components in CPSs are de-
veloped. Since large numbers of measurements are sent over
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unencrypted communication channels in power grids [5], the
authors developed two algorithms to maximize the utility of
encrypted devices placed to increase system security.

Fault detection, isolation and reconfiguration (FDIR)
methods have been explored to ensure system safety require-
ments and robustness [6]. Although active techniques have
been designed to tackle various types of attacks, fundamental
limitations still exist, as characterized in [7]. Fawzi et al.
propose estimation and control schemes of noise free linear
systems, when some of the sensors or actuators are corrupted
in [8]. Pajic et al. present a robust state estimation method
in presence of attacks to no more than half of the sensors
for systems with noise and modeling errors [9]. In contrast,
we assume a different case where the attacker can inject an
arbitrary vector to the communication between sensors and
the estimator/detector/controller block, thus no element of
the injection vector is constrained to be zero.

In this work, we consider a type of deceptive cyber attack–
false data injection attacks to sensor outputs. We assume
that there is no physical attack on individual measurements
or sensors. The monitoring system can detect malicious
behaviors in general. Miao et al. design a stochastic game
approach for replay attacks detection when the system is
equipped with an active controller, a filter and a statistical
detector [10]. However, with knowledge of the system model,
an intelligent cyber attacker is able to carefully design
a data injection sequence, such that the state estimation
error increases without triggering the alarm of the moni-
tor [11], [12]. It is also shown that by only compromising
actuators, attackers can never introduce infinite estimation
errors that passing a monitor like χ2 detector [12]. Therefore,
we focus on intelligent sensor false data injection attacks
and assume actuators are secure in this paper. Regarding
the computational overhead of encryptions on embedded
architectures [13], we propose an alternative low cost method
to code the sensor measurements for detection.

The main contribution of this work is a low cost method
of coding sensor outputs to detect stealth sensor false data
injection attacks. We assume that the coding matrix is
secured, sent to sensors by a side channel before the coding
starts. We show that even if the attacker knows the system
model without the coding scheme, the system can detect
the original stealthy sensor injections by coding the sensor
outputs according to certain conditions. We also design an
iterative optimization algorithm to compute such coding
matrices, and show that in general, multiple feasible coding
matrices exist. By encrypting only the coding matrix channel
once, the coding approach saves encryption cost compared
with encrypting all sensor outputs. Results presented in this



work also provide a basis for the analysis of situations where
the attacker can learn the coding scheme in some steps. In
this case, the system can either change a new coding matrix
or randomly use a set of coding matrices to fool the attacker.

The paper is organized as follows. In Section II we
describe the system and attack models. The conditions that
a feasible coding matrix should satisfy are presented in Sec-
tion III, with a proof in Appendix. An iterative optimization
algorithm to find a feasible coding matrix is developed in
Section IV. Section V shows illustrative examples. Conclu-
sions are given in Section VI.

II. SYSTEM AND ATTACK MODEL

We will introduce the normal system model and deception
attack model in this section. The system architecture with
a discrete-time linear time-invariant (LTI) system and false
data injection attack to sensors is shown in Figure 1.

A. Linear system model

Assume the CPS is a discrete time LTI system with the
following form:

xk+1 = Axk +Buk + wk,

yk = Cxk + vk,
(1)

where xk ∈ Rn is the system state vector at time k, uk ∈ Rm
is the control input at time k, and yk ∈ Rp is the sensor
observation vector. We do not have specific restrictions for
the linear control input uk here, and we will illustrate why the
controller does not affect the detection of false data injection
later. We assume wk ∼ N(0, Q) and vk ∼ N(0, R), are
identical independent Gaussian noises and initial state of the
system satisfies x0 ∼ N(0,Θ).

The optimal Kalman filter used to estimate state x̂k|k is:

x̂0|−1 = 0, P0|−1 = Θ, x̂k+1|k = Ax̂k +Buk,

Pk+1|k = APkA
T +Q,

Kk+1 = Pk+1|kC
T (CPk+1|kC

T +R)−1,

Pk+1 = (I −Kk+1C)Pk+1|k,

zk+1 = yk+1 − C(Ax̂k +Buk), x̂k+1 = x̂k+1|k +Kkzk+1.

Under the assumption that (A,B) is stabilizable, (A,C) is
detectable, we get a steady state Kalman filter, with the error
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Fig. 1. System diagram, assume the attacker can inject arbitrary false data
vector yak to sensor outputs.

covariance matrix P and Kalman gain matrix K:

P , lim
k→∞

Pk|k−1,K , PCT (CPCT +R)−1.

By the property of Kalman filter, matrix (A−KCA) is stable.
Here zk+1 is the estimation residue. Without attacks, residue
zk follows a Gaussian distribution N ∼ (0, CPCT +R).

Define the quantities gk as: gk = zTk P
−1zk, where P−1 is

the error covariance matrix of Kalman filter, then gk satisfies
a χ2 distribution with p degrees of freedom. By using gk,
we consider the standardized residue sequence ηk = P−

1
2 zk

for a monitoring system–a χ2 failure detector, and assume
there exists a δη such that limk→∞ ‖Eηk‖ ≤ δη . We denote
α as the threshold for the alarm, meaning that the alarm is
triggered when gk > α.

B. False data injection attack model

In this paper, we assume that actuators are secure and
only consider the case of sensor attacks. It has been shown
that by only compromising actuators, attackers can never
induce infinite estimation error without being detected under
monitoring systems like a χ2 detector [12]. Therefore, we
focus on intelligent sensor false data injection in this paper.
The system model under attack is described as:

x′k+1 = Ax′k +Bu′k + wk, y
′
k = Cx′k + yak + vk, (2)

where yak ∈ Rm is an arbitrary vector injected by the attacker
at time k. Assume the adversary has knowledge of the system
model described in Section II-A, and the ability to inject
data over communication network between sensors and the
estimator/detector/controller.

C. The difference between normal and compromised systems

To illustrate how the sensor injection sequence yak will
affect the estimation and monitoring system, we examine
how the estimation error and residue will change with yak .
Let x̂′k be the state estimation of the compromised system,
z′k = y′k+1 − C(Ax̂′k + Bu′k) be the estimation residue of
the compromised system. Then, the difference between the
normal and the compromised systems can be captured by:

ek , xk − x̂k, e′k , x′k − x̂′k,
∆ek , e′k − ek,∆zk , z′k − zk.

(3)

The dynamics of the above difference vectors satisfy:

∆ek+1 = (A−KCA)∆ek −Kyak+1,

∆zk+1 = CA∆ek + yak ,
(4)

Hence the difference vectors between normal and compro-
mised systems – ∆zk(ya),∆ek(ya) – are functions of the
attack sequence ya , (ya0 , y

a
1 , . . . ). To simplify notations,

we concisely denote these vectors as ∆zk,∆ek.
The objectives of the attacker include maximizing the

estimation error e′k without triggering the alarm, while
increasing x′k to infinity. When the system is secured,
limk→∞E[ek] → 0, and zk is in a small range. Thus the
attacker’s objective is equivalent to increasing ‖∆ek‖2 (the
difference between estimation error of the normal and com-
promised systems) without increasing ‖∆zk‖2 much. The



probability that yak is detected is Pr(g′k = (z′k)
′TP−1z′k >

α). Since computing g′k is integrating Gaussian on an el-
lipsoid, the stealthy requirement can be approximated by
keeping ‖z′k‖2 small. Residues of the normal system zk is
bounded, and the attacker should keep the change of residues
bounded make the injection stealthy. It means the following
inequality should hold

‖∆zk‖2 ≤M, (5)

where M is a residue norm change threshold designed by
the attacker. The compromised estimation residue should be
close to that of the normal system, to fool the monitoring
system. 1 When yak can be an arbitrary vector, a necessary and
sufficient condition for a stealth yak that can increase ‖e′k‖2,
‖x′k‖2 to infinity while keep ‖z′k‖2, ‖∆zk‖2 bounded is de-
rived in [12], [11]. One of the conditions that Cv ∈ span(I),
i.e., there exists y∗ satisfying y∗ = Cv is always satisfied by
the attack model (2). Hence, we have the following corollary.

Corollary 1: There exists a stealth sequence yak , k =
0, 1, . . . , given the attacked system model (2), if and only
if matrix A has an unstable eigenvalue λ and the corre-
sponding eigenvector v, such that v ∈ span(Qoa), where
Qoa is the controllability matrix associated with the pair
(A−KCA,K).

III. CODING SENSOR OUTPUTS FOR DETECTING
STEALTH SENSOR DATA INJECTION

Existing active monitor schemes (design some additive
control input udk) and fault detection filters have limitations,
that even with secured actuators, they can not detect stealthy
data injection attacks. It is necessary to design some inex-
pensive techniques to compensate for the vulnerability of the
system under intelligent sensor data injection attacks.

A. Limitations of existing approaches

The limitation of active monitor approach: Under the
assumption that actuators work appropriately for the attacked
system (2), the challenge here is whether adding udk to
the pre-designed linear control input uk (like optimal LQG
control) can detect stealthy sensor data injections. It is
worth noting that active monitor approaches does not help
given sensor data injection attacks satisfying Theorem 1. For
model (2), the control input does not affect the estimation
residue change quantity ∆zk+1 according to (4), which
means there exists no ũk = uk + udk, ũ

′
k = u′k + udk that can

increase ‖∆zk+1‖2 under yak . This is because any additional
control input will be eliminated by the deduction of zk+1 and
z′k+1 to get ∆zk+1. The limitations of active monitors for a
unified LTI model are proved in Theorem 4.7 of [7]. 2 In this
perspective, different linear controllers are equivalent under
stealth sensor data injection attacks, and we do not restrict
the controller model for designing our detection techniques.

1The relation between the scale or norm of the injection sequence and
the alarm trigger threshold α is shown in Theorem 1 in [12].

2A different case when adding exogenous Gaussian distribution control
input can detect replay attacks is discussed in [14].

The limitation of fault detection filter: Besides Kalman
filter, observer-based fault detection filters for LTI systems
with unknown error have been developed. The design re-
quirements usually include robustness to unknown inputs
and sensitivity to faults. Such filters generate a different
residue from zk of Kalman filter. Consider the following
form of residual generator and residual evaluator (including a
threshold and a decision logic unit, see [15] for details) [15]:

x̂k+1 = Ax̂k +Buk +H(yk − ŷk),

ŷk = Cx̂k, rk = V (yk − ŷk),
(6)

where x̂k ∈ Rn and ŷk ∈ Rp represent the state and
output estimation vectors, respectively, and rk is the residual
signal. This fault detector shares the same limitation with
Kalman filter, i.e., the intelligent sensor data injection attack
is stealth for the filter described as (6), since the residue is
still observer based difference between yk and ŷk.

B. Coding sensor outputs to detect stealth data injection

Since existing monitoring system can not detect intelligent
false data injection attacks, and encryption method has a
constraint of significant computation overhead, we propose
a design of coding the sensor outputs to detect stealth
sensor data injection attacks. An intelligent attacker designs
the sequence yak carefully to keep the change of residue
‖∆zk‖2 ≤M , where M is a constant. Thus the objective of
a detection approach is equivalent to increasing ‖∆zk‖2 to
infinity as time goes to infinity.

The necessary and sufficient conditions for stealth false
sensor data injection in Corollary 1 assume that the attacker
knows (A,B,C,K). Parameters A and B are related to
physical dynamics that may not be altered, while C is
related to the sensor measurements, corresponding specific
physical states. Without changing the physical setup, we still
can manipulate the sensor outputs. To violate the attacker’s
design, we consider the method of transforming sensor
outputs as shown in Figure 2–instead of sending the output
vector yk = Cxk + vk to the estimator/controller/detector,
sensors are transmitting the value:

Yk = Σ(Cxk + vk), C ∈ Rp×n, (7)

where Σ ∈ Rp×p is an invertible matrix. One can think of Σ
as an inexpensive code. We assume that the attacker does not
know the matrix Σ, and designed a sequence of stealth attack
signal yak with parameters (A,B,C,K). One can compare
Σ with a secured key. By encrypting only the coding matrix
channel once, the coding approach saves encryption cost

Fig. 2. System diagram when coding sensor outputs with a matrix Σ
that satisfies the conditions of Theorem 1. Assume the attacker can inject
arbitrary false data vector yak to sensor outputs.



compared with encrypting all sensor outputs. In this case,
the false sensor value after transforming changes to:

Y ′k = ΣCxk + yak + Σvk. (8)

Assume the corresponding Kalman filter with sensor output
Yk has a steady state estimation error covariance matrix P ′

and a Kalman gain matrix K ′ that satisfy

K ′ = P ′CTΣT (ΣCP ′CTΣT + ΣR)−1.

Similarly as (4), define ∆e′k,∆z
′
k as the change of state

estimation and residue for the sensor output (7), (8). With
Σ, a stealth data injection designed for (1) (with parameters
(A,B,C,K)), ‖∆z′k‖2 increases to infinity as k →∞ under
certain conditions. In the following theorem, we show the
sufficient conditions that Σ should satisfy for any stealth
sequence of yak , k = 0, 1, . . . that satisfies Theorem 1.

Theorem 1: Given an attacked system model (2), assume
that the attacker designs a sequence of sensor data injection
yak , k = 0, 1, . . . , based on one unstable eigenvector v of A
that satisfies Corollary 1. If there exists an invertible matrix
Σ such that (A,ΣC) is detectable, and the direction of ΣCv
is not the same with that of Cv, i.e.,

(Cv)′ΣCv

‖ΣCv‖2‖Cv‖2
6= 1, (9)

then after injecting yak the estimation residue change ‖∆z′k‖2
is increased , by coding sensor outputs (7) with Σ.

Proof: See Appendix.
We call a matrix Σ that satisfies the conditions of Theorem 1
a feasible coding matrix. Theorem 1 proves that even the
attacker knows system parameters (A,B,C,K), without
changing the physical structure or altering A,B, we can
utilize the sensor data to get different residues for detecting.
Leveraging sensor outputs is the key reason to detect a
stealth sensor data injection. It is worth noting that here we
do not constrain specific structure of the matrix Σ besides
conditions in Theorem 1. For an LTI system, ΣC is simply
a linear transform of the original sensor measurement. When
A has several unstable eigenvectors satisfying Corollary 1,
the following lemma extends the result of Theorem 1.

Lemma 1: Given an attacked system (2) with a set of
unstable eigenvectors v1, . . . , vu satisfying Corollary 1, if Σ
is an invertible matrix such that (A,ΣC) is detectable, and

(Cṽ)′ΣCṽ

‖ΣCṽ‖2‖Cṽ‖2
6= 1, (10)

for any linear combination of v1, . . . , vu – ṽ, then Σ is a
feasible coding matrix to increase ‖∆z′k‖2 for any stealth
data injection to attacked system (2).

Remark 1: When the attacker is able to learn Σ by analyz-
ing sensor outputs and actuator inputs, the system can send
a new Σ before the attacker figures out the current applied
coding matrix. This will be an avenue for future work.

IV. ALGORITHM TO COMPUTE A CODING MATRIX

To compute a set of feasible coding matrices, we first
analyze requirements of an optimal coding matrix, and then

decouple the requirements to an approximate optimization
problem and a corresponding system parameter design prob-
lem. The constraints are relaxed step by step to achieve
an iterative algorithm, such that each iteration step of the
algorithm is a convex optimization problem.

The transformed observer data should maximize the dif-
ference between estimation residue of the normal and at-
tacked system – ‖∆z′k‖2, which is equivalent to maximizing
‖ΣCv − Cv‖2 (or ṽ), by the proof of Theorem 1. We do
not want to sacrifice the state estimation performance of the
coded the system, and ∆e′k should not increase fast compared
with ∆ek, thus we require that (A,ΣC) is detectable for a
steady state Kalman filter. With transformed sensor values
Yk in (7), we compute a new gain matrix K ′ for the steady
state Kalman filter, such that Ã = A − K ′ΣCA is stable.
Hence the estimation error of the normal system with sensor
output Yk = ΣCxk + vk satisfies

lim
k→∞

E[ẽk+1] = (A−K ′ΣCA)E[ẽk]→ 0. (11)

The norm of Σ should be bounded, because computable
values of the estimator, controller, and detector are bounded.
These requirements and objective are described as

maximize ‖ΣCv − Cv‖2
subject to ‖Σ‖2 ≤ γ,Σ invertible,

(A,ΣC) detectable,
(A−K ′ΣCA) stable.

(12)

The above problem (12) is not convex, since maximizing a
norm is a concave function of Σ. There is no closed form
equation between K ′ and Σ for the constraint related to K ′.
To decouple the design process, we ignore the constraint
related to K ′ and detectability of (A,ΣC), compute an
optimal Σ satisfying other constraints first, and check the
ignored constraints later.

Given the system parameter matrices C, A, ignoring the
requirement about K ′, the objective of (12) is approximately
to find an invertible, bounded Σ that maximizes ‖ΣCv −
Cv‖2. In general, when Σ is unbounded, ‖ΣCv − Cv‖2 →
∞. Considering the direction change of vector Cv after
transformed by ΣCv, the optimal direction to maximize the
difference between ΣCv and Cv is the orthogonal direction.
Thus, we have the following Lemma 2.

Lemma 2: Assume the attacker designs a sequence of
injections that satisfies Corollary 1, based on an unstable
eigenvector v. If there exists a feasible solution of Σ that
satisfies the following constraints (13),

(Cv)′ΣCv = 0, ‖Σ‖2 ≤ γ, Σ is invertible, (13)

and (A,ΣC) is detectable, then we have an optimal direction
coding matrix Σ that satisfies Theorem 1.

Remark 2: When Σ should work for any linear combi-
nation of multiple unstable eigenvectors ṽ, we start from an
invertible orthogonal rotation matrix Σ that rotates any vector
through π

2 angle. Then check other constraints, if they are
violated, we will find a heuristic algorithm. This will be an
avenue for future work.



For system with only one unstable eigenvector that satis-
fies Corollary 1, solving (13) directly may not return a feasi-
ble Σ satisfying Theorem 1. The following convex optimiza-
tion formulation presents a relaxed problem as one iteration.
When Σ = 0, Σ is not invertible, though (Cv)′ΣCv = 0.
So we use a conservative constraint Σ � 0 to replace the
invertible constraint. Log determinant function of Σ � 0
will drive Σ away from an all zero elements matrix, and the
objective function is concave. There always exists a solution
for (13) (an orthogonal rotation matrix), however, when
we restrict the solution space to be positive-semidefinite
(SDP), and (A,ΣC) to be detectable, (Cv)′ΣCv = 0 is
a strict constraint. When this is the case, we relax (13) to an
inequality constraint with a small ε, and get the formulation:

maximize log det Σ

subject to |(Cv)′ΣCv| ≤ ε‖Cv‖22,
‖Σ‖2 ≤ γ,Σ � 0.

(14)

Thus, we have the following iteration algorithm. Algorithm 1
starts from the constraint that (Cv)′ΣCv = 0, i.e., the
orthogonal transform. During each iteration, the algorithm
relaxes the constraint, increases ε, till there is a feasible
Σ satisfying (A,ΣC) is detectable. With such a Σ and
a corresponding K ′, (11) is guaranteed. The change of
estimation error of the coded system under a data injection
attack– ∆e′k should not increase too fast compared with
∆ek. It means we do not need to sacrifice the estimation
performance to detect stealth data injection attacks. This
result is also shown in Section V.

Algorithm 1 : Compute a feasible coding matrix Σ

Input: System model parameters A,B,C,K, an unstable
eigenvalue and eigenvector λ, v of A, and a stealth sensor
data injection sequence yak .
Initialization: Set the total iteration step number T , ε = 0,
and ∆ε–the increase step size of ε.
Iteration: For t = 1, 2 . . . , T , compute problem (14):
If there is no feasible Σ, let ε = ε+ ∆ε, t = t+ 1.
If there exists a Σ, check the detectability of (A,ΣC):
if (A,ΣC) is not detectable, let ε = ε + ∆ε, t = t + 1;
else if (A,ΣC) is detectable, compute a steady state Kalman
filter gain matrix K ′ corresponding to the new sensor outputs
Yk = ΣCxk + vk, and stop the iteration, return the result.
Return: A feasible transform matrix Σ and a corresponding
steady state kalman filter gain matrix K ′.

Algorithm 1 is terminated once a feasible Σ is computed.In
the worst case, when ε → γ, solution Σ = γI satisfies all
the constraints, and (A, γIC) is detectable, Algorithm 1 will
terminate. It is worth noting that Theorem 1 is a sufficient
condition. Even the direction of ΣCv is the same with that
of Cv, with ΣCv 6= Cv we still increase ‖∆z‖′2. The norm
increasing speed is relatively slow though. This is explained
in the proof of Theorem 1.

V. ILLUSTRATIVE EXAMPLES

We show the effects of coding sensor outputs by examples
of two-dimensional LTI systems. Consider a detectable 2-
dimensional linear system with parameters:

A =

[
0.8 0
0.5 1

]
,B =

[
1

0.5

]
,C =

[
2 0.5
0 1

]
,D = 0,

where A has an unstable eigenvalue λ = 1 and eigen-
vector v = [0 1]T . One stealth attack sequence is: ya0 =
[0.0588 0.0588]T , ya1 = [0.1286 − 0.9706]T , yk = yak−2 −
ya0 , k ≥ 2. By Algorithm 1, we get a feasible coding matrix
Σ1. Note that Theorem 1 does not require Σ to be an SDP
matrix. Another feasible matrix Σ2 that satisfies Theorem 1,
but not an SDP calculated by Algorithm 1 is shown.

Σ1 =

[
2 −0.5
−0.5 1

]
,Σ2 =

[
1 −1
2 0

]
.

Figure 3 shows the comparison result of ∆zk, ∆z′k, and
∆z′k increases with time k after coded by Σ1, while without
coding ∆zk is bounded. Figure 4 shows that for the sensor
outputs transformed by Σ2, ∆z′k increases with time k, while
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Fig. 3. Comparison of norms of ∆zk , ∆z′k for Σ1

0 50 100 150 2000

5

10

15

20

Time

no
rm

 o
f r

es
id

ue
 c

ha
ng

e

Comparison of estimation residue change under attack  

 

 

norm of residue change of the original system
norm of residue change of coded system

Fig. 4. Comparison of norm of residue change between the original system
and coded system, ∆zk and ∆z′k , for Σ2 that satisfies Theorem 1 but is
not an SDP matrix.
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the original system ∆zk stays inside a bounded range. For the
transformed sensor outputs, change of the estimation error
∆e′k increases even slower than ∆ek under data injection
attack as shown in Figure 5. By comparing the change of
estimation error ∆ek and ∆e′k, we show that estimation error
of a coded system does not necessarily increase faster than
the original system.

VI. CONCLUSION

In this work, we have proposed a method of coding
sensor outputs to detect stealth sensor data injection at-
tacks, designed by an intelligent attacker with system model
knowledge. Without changing physical setup, we transform
the sensor outputs and provide conditions when a linear
combination of original sensor outputs can help to detect
a stealthy injection sequence. An iterative optimization algo-
rithm is developed to compute a feasible transform matrix
efficiently, and examples show detection effects after coding
sensor values. In the future, we will explore scenarios where
the attacker is capable to learn the coding matrix.

APPENDIX

Proof of Theorem 1
Proof: Given a system under data injection attacks

as (2), we assume that the system has one unstable eigen-
vector v with corresponding eigenvalue λ. According to the
definition in equation (3), the dynamics of ∆ek,∆zk satisfy

∆ek+1 = (A−KCA)∆ek −Kyak+1,

∆zk+1 = CA∆ek + yak .
(15)

Similarly, for coded sensor outputs (8),

∆e′k+1 = (A−K ′ΣCA)∆e′k −K ′yak+1,

∆z′k+1 = ΣCA∆e′k + yak ,
(16)

Based on the proof of Theorem 1 in [12], the only component
of ∆ek that goes to infinity eventually is

ckv, lim
k→∞

ck =∞, (17)

and ∆ek can be decomposed as

∆ek = ckv + ε1k, ‖ε1k‖2 ≤M1. (18)

To keep ∆zk bounded as k → ∞, any stealth injection
sequence yak must satisfy

yak = −ckλCv + ε2k, ‖ε2k‖2 ≤M2, k = 0, 1, 2, . . . , (19)

where M2 is a constant such that ‖∆zk‖2 ≤M for all k.
We assume that the attacker does not know Σ, and designs

a injection sequence for the original system (1) as described
in (19). Similarly as ∆ek, the only component of ∆e′k that
can goes to infinity is ckλ, since matrix A is not changed
by the coding matrix Σ. However, with any yak in (19), ∆z′k
can be decomposed as

∆z′k = ckλ(ΣCv − Cv) + ε3k, k = 0, 1, 2, . . . , (20)

where ε3k is a bounded vector components of ∆z′k. When
Σ satisfies equation (9), ΣCv − Cv 6= 0. With ck → ∞,
‖∆z′k‖ → ∞ as k →∞.

When there are a set of unstable eigenvectors v1, . . . , vu
and eigenvalues λ1, . . . , λu, the above proof still holds after
replacing ckv with

∑u
i=1 cikvi, ckλCv with

∑u
i=1 cikλiCvi.

When (A,ΣC) is detectable, there exists a steady state
Kalman filter with parameter K ′ for the coded system, and
the corresponding fault detector. Hence, when the attacker
designs a stealth injection sequence without knowledge of
Σ, the system can detect it by increasing ‖∆z′k‖2 with Σ.
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