
131

Security-Aware Scheduling of Embedded Control Tasks

VUK LESI, Duke University

ILIJA JOVANOV, Duke University

MIROSLAV PAJIC, Duke University

In this work, we focus on securing cyber-physical systems (CPS) in the presence of network-based attacks, such

asMan-in-the-Middle (MitM) attacks, where a stealthy attacker is able to compromise communication between

system sensors and controllers. Standard methods for this type of attacks rely on the use of cryptographic

mechanisms, such as Message Authentication Codes (MACs) to ensure data integrity. However, this approach

incurs significant computation overhead, limiting its use in resource constrained systems. Consequently, we

consider the problem of scheduling multiple control tasks on a shared processor while providing a suitable

level of security guarantees. Specifically, by security guarantees we refer to control performance, i.e., Quality-

of-Control (QoC), in the presence of attacks. We start by mapping requirements for QoC under attack into

constraints for security-aware control tasks that, besides standard control operations, intermittently perform

data authentication. This allows for the analysis of the impact that security-related computation overhead

has on both schedulability of control tasks and QoC. Building on this analysis, we introduce a mixed-integer

linear programming-based technique to obtain a schedulable task set with predefined QoC requirements.

Also, to facilitate optimal resource allocation, we provide a method to analyze interplay between available

computational resources and the overall QoC under attack, and show how to obtain a schedulable task set

that maximizes the overall QoC guarantees. Finally, we prove usability of our approach on a case study with

multiple automotive control components.

CCS Concepts: • Software and its engineering→Real-time schedulability; •Computer systems orga-
nization→ Embedded and cyber-physical systems; Embedded systems; Embedded software; • Security
and privacy→ Distributed systems security; Intrusion detection systems; • Theory of computation→

Linear programming;

Additional Key Words and Phrases: CPS security, real-time scheduling, quality-of-control, mixed integer linear

programming

ACM Reference format:
Vuk Lesi, Ilija Jovanov, and Miroslav Pajic. 2017. Security-Aware Scheduling of Embedded Control Tasks. ACM
Trans. Embedd. Comput. Syst. 9, 4, Article 131 (October 2017), 21 pages.
https://doi.org/nn.nnn/nnn_n

This work was supported in part by the NSF CNS-1652544 and CNS-1505701 grants, and the Intel-NSF Partnership for Cyber-

Physical Systems Security and Privacy. This material is also based on research sponsored by the ONR under agreements

number N00014-17-1-2012 and N00014-17-1-2504.

Authors’ addresses: V. Lesi, I. Jovanov, and M. Pajic, Department of Electrical and Computer Engineering, Duke University,

100 Science Drive, Durham, NC 27708, USA; emails: {vuk.lesi, ilija.jovanov, miroslav.pajic}@duke.edu.

This article was presented in the International Conference on Embedded Software (EMSOFT) 2017 and appears as part of

the ESWEEK-TECS special issue.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.

1539-9087/2017/10-ART131 $15.00

https://doi.org/nn.nnn/nnn_n

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 131. Publication date: October 2017.

https://doi.org/nn.nnn/nnn_n
https://doi.org/nn.nnn/nnn_n

131:2 Vuk Lesi, Ilija Jovanov, and Miroslav Pajic

1 INTRODUCTION
Security of embedded control systems and, recently, cyber-physical systems (CPS) has usually been

an afterthought. Yet, with the increase in network connectivity and system design complexity these

systems have become more susceptible to various types of attacks. This was illustrated in several

high-profile incidents including the Stuxnet [12] and automotive (e.g., [11, 13]) attacks. In many

cases, such as in automotive industry, these systems rely on perimeter security where internal

networks and ECUs are resource constrained, mostly depending on security of the gateway and

external communication channels. Yet, when attackers circumvent classical perimeter security

barriers, they can have a significant effect on systems’ operation [11, 13]. Also, some of the internal

system components may be tampered with, allowing the attacker direct access to the internal

network [11]. These network-based attacks present a major threat because they enable a remote
attacker to modify safety-critical messages (e.g., sensor measurements and actuator commands as

in [11, 12]) communicated over the low-level network.

In this work, we focus on securing CPS in the presence of network-based attacks, such as Man-
in-the-Middle (MitM) attacks, where the attacker is able to compromise all or some of the links

between the sensors/actuators and controllers; thus, the information delivered to and from the

controller may differ from the actual sensor measurements and actuator commands. In addition,

as most of these systems are safety-critical, with predefined procedures in case when a fault or

intrusion is detected, we consider stealthy attacks where the attacker wants to remain undetected

until his objective is achieved. As recently shown for a large number of systems, by changing

messages from a subset of sensors, a stealthy attacker can force the plant into any (potentially)

unsafe state through the actions of the controller [18, 24]. Even for systems for which the set

of states where the attacker could force the system is bounded, the attacker could easily move

the plant far from the desired reference point; that way, he would significantly degrade control

performance and even endanger system safety while remaining stealthy [27, 28].

These results introduce very conservative constraints on the number of sensors that if compro-

mised could cause unsafe system operation or at least significant control degradation. They are

also obtained on the assumption that once the communication channel between a sensor and the

controller is compromised, the attacker can inject attack signals in all measurements obtained from

the sensor. On one hand, some of these network-based attacks can be avoided by ensuring data

integrity and authentication with the use of standard cryptographic tools, such as adding message

authentication codes (MACs) to communicated measurements. On the other hand, authenticat-

ing all measurements from a suitable number of sensors (e.g., based on the design frameworks

from [21, 33]), incurs a significant computational overhead, making it unsuitable for these usually

resource-constrained systems. For instance, computing only a scalar PID controller update takes

an order of magnitude less time than computation of a 32-bit MAC — e.g., 12 µs for PID update on

96MHz 32-bit Cortex-M3, and ~100 µs for the MAC computation. Thus, this common approach to

‘adding security’ into existing and new CPS could prevent schedulability of a number of control

tasks that always have to inspect integrity of the incoming data.

Consequently, in this work we consider the problem of scheduling multiple control tasks on a

shared processor, while providing a suitable level of security guarantees in the presence of attacks

on sensor data delivered to the controllers. Specifically, by security guarantees we refer to control

performance, i.e., Quality-of-Control (QoC), in the presence of attacks. While our results can be

extended for scenarios where actuator commands can also be compromised, in this paper we

focus on defense against false-data injection attacks into sensor measurements only; this is caused

by the fact that attacks on commands sent to actuators cannot in general remain stealthy while

significantly degrading system performance [18].

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 131. Publication date: October 2017.

Security-Aware Scheduling of Embedded Control Tasks 131:3

We exploit recent results showing that attacker’s impact can be significantly limited even when

sensor data integrity is only intermittently enforced, for instance by occasionally adding MACs

to transmitted sensor measurements [15, 16]. Thus, we start by mapping requirements for QoC

in the presence of attacks for each control loop, into constraints for security-aware control tasks;

these tasks, in addition to the standard control-related operation, intermittently perform data

authentication as part of the controller’s execution. This, in turn, enables us to analyze the impact

of security-related computation overhead on both schedulability of control tasks and QoC in the

presence of attacks.

To achieve this, we transform the problem of scheduling of security-aware control tasks into

scheduling of specific multiframe tasks (relaxation of the model presented in [4, 25]). We then

introduce a technique to perform schedulability analysis for the task model and show how synthesis

of such feasible control task set can be formulated as a mixed-integer linear programming (MILP)

problem. In addition, to facilitate optimal allocation of system resources we provide a method to

analyze interplay between available computational resources and the overall QoC under attack

(i.e., for all control loops). For underutilized systems where the CPU has additional available

computation time, we show how QoC under attack can be improved by increasing the integrity

enforcement rate for control tasks that maximize the overall QoC. Similarly, if adding new tasks

would result in an overutilized (i.e., unschedulable) system, the presented method can be used

to optimally reduce the overall QoC under attack, while ensuring task schedulability. Finally, we

illustrate the applicability of the proposed techniques both on generic test-cases as well as a realistic

automotive case-study.

This paper is organized as follows. In Section 2, we define the problem considered in this work.

In Section 3, we present a framework to evaluate QoC in systems with intermittent integrity

enforcements. Furthermore, in Section 4 we present our approach to modeling security-aware tasks

in these systems, followed by methods for schedule synthesis with predefined QoC requirements

(Section 5). Section 6 introduces a technique for synthesis of feasible schedules that maximize QoC

guarantees in the presence of attacks. Finally, in Section 7, we evaluate our approach on generic

workloads as well as a realistic case study, before providing an overview of related work (Section 8)

and concluding remarks (Section 9).

2 MOTIVATION AND PROBLEM STATEMENT
Consider the problem of controlling N discrete-time control systems Σi , i = 1, ...,N , of the form

xi [k + 1] = Aixi [k] + Biui [k] +wi [k]

yi [k] = Cixi [k] + vi [k]

where xi [k] ∈ Rn , ui [k] ∈ Rm , and yi [k] ∈ Rp denote state, input and output vectors of the

ith plant at time k , respectively. Also, wi ∈ R
n
and vi ∈ Rp denote the process and measure-

ment noise, distributed as independent identically distributed Gaussian random variables, with

covariances Qi and Ri , respectively. Since each of the discrete-time plant models is obtained by

discretizing the corresponding continuous plant with the sampling time Tsi , we denote the plants
as Σi (Ai ,Bi ,Ci ,Qi ,Ri ,Tsi).
Each system Σi is to be controlled by a feedback controller in the general form (e.g., capturing

observer-based state feedback)

x̂i [k + 1] = fi
(
x̂i [k], yneti [k]

)
ui [k] = gi

(
x̂i [k], yneti [k]

)
,

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 131. Publication date: October 2017.

131:4 Vuk Lesi, Ilija Jovanov, and Miroslav Pajic

ui[k]

Plant Σi

yi
net[k]

SensorsActuators

Network

Controller
fi , gi

yi[k]

ui[k]

Fig. 1. System architecture for each control-loop.

Estimator
Feedback
Controller

ALARM

Intrusion Detector

Controller

ui[k] yi
net[k]

xi[k]̂

Fig. 2. General controller design.

where fi (·) and gi (·) denote any linear mappings, x̂i [k] is the state of the controller (e.g., estimated

plant state) and yneti [k] denotes sensor measurements received by the controller in step k over a

communication channel/network, as shown in Fig. 1. In general, the controller can be designed

using various techniques to ensure, for example, system stability or optimal performance. Finally,

each controller is executed as a periodic task T ctr l
i (cctr li ,pi ,di) on a shared processor, with periods

pi = Tsi and worst-case execution time (WCET) cctr li ; to simplify our notation we assume that each

task’s deadline di = pi and denote the tasks as T ctr l
i (cctr li ,pi).

Without attacks on communication between sensors and the controller, it follows that yneti [k] =

yi [k]. However, with MitM attacks, the controller receives values that could potentially differ

from the actual sensor measurements, which would cause control performance degradation and

potentially unsafe control. To differentiate between system evolution with and without attacks, we

add superscript a to the variables affected by the attacker’s influence. For instance, the plant’s state

and outputs in the presence of attacks are denoted as xai [k] and yai [k], respectively. Now, attacks

on sensor measurements delivered to the controller can be modeled as

ynet,ai [k] = yai [k] + ai [k] = Cxai [k] + vai [k] + ai [k],

where ai [k] represents a sparse vector of values injected by the attacker. Sparsity of the vector

depends on the set of compromised sensor flows — if communication from a sensor to the controller

is not corrupted then the corresponding value in ai [k] has to be zero, for all k . This allows us
to capture any assumptions about the set of compromised sensor flows (e.g., the number of the

flows). However, to simplify our presentation, unless otherwise stated in this paper we present

the worst-case scenario, where the attacker can compromise all sensor flows — i.e., measurements

from all sensors.
Furthermore, in this work, we assume that the attacker can inject any false measurements to

be received by the controller (i.e., ai [k] can have any value), except at times when data integrity

is enforced with the use of standard cryptographic mechanisms (e.g., MACs). Our assumption is

that the attacker does not posses shared secret keys used to generate the MACs and thus cannot

corrupt those packets,
1
meaning that at these times ai [k] = 0. We also assume that the attacker

has full knowledge of the system, system dynamics and architecture, which would allow him to

manipulate the controller to force the system into a desired state, by carefully changing delivered

sensor measurements. In addition, the attacker knows the times when the MACs are to be used,

and can use the knowledge to plan ahead. Finally, the attacker’s goals are: (1) to maximally reduce

control performance (i.e., QoC) by manipulating the system into a state that differs from the

desired reference point/trajectory, and (2) to remain stealthy — i.e., undetected by the system;

hence, in addition to not inserting false data packets in time-frames when MACs are checked, the

1
In this case, the attacker could potentially prevent these messages from being delivered. However, since Denial-of-Service

attacks are easier to detect in these systems that utilize low-level networks with reliable communication protocols, in this

work we do not consider such attacks.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 131. Publication date: October 2017.

Security-Aware Scheduling of Embedded Control Tasks 131:5

t
12 16

T1 computation

T2 authentication

0 4 8

T1 authentication

T2 computation
…

Fig. 3. Scheduling two security-aware control tasks – otherwise infeasible task set {T ctr l
′

1
(2, 4),T ctr l

′

2
(3, 4)}

becomes schedulable if authentication computations are required in every other period.

falsified sensor measurements should not trigger alarm in the controller’s Intrusion Detection

System (IDS).

Note that the common practice of enforcing integrity of all communication packets could become

infeasible due to additional computation costs. For instance, consider two control tasks T ctr l
1

(1, 4)

andT ctr l
2

(2, 4) which can be scheduled on a shared CPU. If for each task, authentication of received

sensor measurements required to update the controller, results in an increase of the execution

time by 1 time unit in every period, the equivalent tasks set with T ctr l ′
1

(2, 4) and T ctr l ′
2

(3, 4)
becomes infeasible. On the other hand, as recently shown in [15, 16], even intermittent data

integrity enforcement can significantly limit the attackers impact on the system. Therefore, from

the perspective of QoC under attack, it may be enough for each of the considered systems to

guarantee data integrity for every other control task execution, which would result in a schedulable

task set, with a schedule illustrated in Fig. 3.

Consequently, in this paper we focus on tradeoffs between the QoC in the presence of attacks and

integrity enforcement overhead for security-aware control tasks, in systems with hard real-time

tasks. Specifically, we address the following problems:

• In order to facilitate security-aware scheduling that considers computation overhead due to

integrity enforcements, how can we map requirements for QoC in the presence of attacks

into constraints for security-aware control tasks?

• How to schedule security-aware control tasks, while ensuring the desired control performance

for each of the control loops even in the presence of attacks?

• Is it possible to allocate available resources (i.e., computation time) to each security-aware

control task such that the overall (i.e., for all tasks) security guarantees, in terms of control

performance under attacks, are maximized?

We start with the recently introduced framework for security-aware control with intermittent

data-integrity enforcements.

3 RELAXING INTEGRITY REQUIREMENTS FOR SECURE CONTROL
Common controller architecture, illustrated in Fig. 2, contains a state estimator, feedback controller

and, if security is a concern, an IDS. The IDS exploits physical properties of the system (i.e., model of

the plant Σi and controller (fi , gi)) to raise alarm in the case of attack. Depending on the considered

control architecture and noise model, some controllers employ security-aware estimators (e.g., [28])

and set-based IDSs, or standard Kalman filter-based estimators with statistical IDSs (e.g., the χ 2

detector as in [16, 18, 24] or the Sequential Probability Ratio Test (SPRT) detectors as in [15]).

On one hand, by compromising a sufficient number of sensor flows,
2
an intelligent stealthy

attacker can use shortcomings of such detectors and system dynamics to force the system away

from the desired reference point and significantly reduce control performance. This is achieved by

introducing a state estimation error that deceives the controller into applying unsuitable actuation

2
The exact number depends on the utilized control architecture and noise model. More details can be found in [18, 28] and

references therein.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 131. Publication date: October 2017.

131:6 Vuk Lesi, Ilija Jovanov, and Miroslav Pajic

System Model
Σ𝑖 , (𝐟𝑖 , 𝐠𝑖)

QoC Guarantees 𝒥𝑖(𝑙)

Reachability Analysis ℛ𝑙[𝑘]

Integrity Enforcement
Policy 𝜇(𝑙)

Attack Model

Fig. 4. Design-time framework to evaluate effects of integrity enforcement policies on QoC guarantees in the
presence of attacks.

inputs. On the other hand, for each of these IDSs, a stealthy attacker cannot immediately insert

any error in the state estimation; to avoid detection, the attacker rather has to craft attack signals

that slowly increase estimation error. Furthermore, no actuation inputs would immediately move

the system from the desired operating point due to intrinsic inertia present in all systems (which

is effectively captured by the plant model Σi). Thus, some time has to pass after the attack starts

before it significantly reduces QoC; the actual time depends on physics of the system and the

compromised sensor flows.

As recently shown in [15, 16] the system (i.e., plant dynamics Σi and employed IDS) and attack

models can be used to compute tight regionsR[k] capturing evolution in time of the state estimation

error due to any stealthy attack. Formally, the reachable region R[k] of the state estimation error

under attack (i.e., ea[k]) is defined as

R[k] =

{
e ∈ Rn

ee⊺ ≼ E[ea[k]]E[ea[k]]
⊺ + γCov (eak),

ea[k] = eak (a1..k), a1..k ∈ Ak

}
,

where a1..k = [a[1]
⊺ ...a[k]

⊺
]
⊺
, Ak is the set of all stealthy attacks, and eak (a1..k) is the estimation

error evolution due to the attack a1..k . Furthermore, the global reachable region R of the state

estimation error ea[k] is the set R =
⋃∞

k=0
R[k]. Note that here, the attack model from Section 2 can

be extendedwith additional available information, such as the bound on the number of compromised

sensor flows; if no such information is given, it is assumed that measurements from all sensors can

be compromised. Furthermore, these techniques allow us to capture effects of data points in which

data integrity is enforced, specified by the integrity enforcement policy µ, which can be formally

defined as follows.

Definition 3.1. Intermittent data integrity enforcement policy (µ, l), where µ = {tk }
∞
k=0

, with

tk−1 < tk for all k > 0 and l = supk>0
tk − tk−1, ensures that atk = 0, for all k ≥ 0.

Note that the definition of intermittent integrity enforcement policies imposes a maximum time

between integrity enforcements; this is the main difference compared to the standard sporadic

tasks from the real-time systems literature (e.g., [8]) that can arrive at arbitrary points in time but

with predefined minimum inter-arrival times. The definition also captures periodic enforcements

when l = tk − tk−1 for all k > 0, and continuous integrity enforcements (with l = 1). Since our goal

is to reduce the computation overhead associated with integrity enforcement, in this work we will

focus on policies where enforcements are maximally spread apart, i.e., for which l = tk − tk−1 for

all k > 0.

We argue that the evolution of state-estimation error due to attack can be used as a performance

metric for QoC in the presence of attacks. This is caused by the fact that increase in the state

estimation error would, through the actions of state-feedback controller, result in QoC degradation.

Consequently, we obtain a design-time reachability-based framework, presented in Fig. 4. Since the

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 131. Publication date: October 2017.

Security-Aware Scheduling of Embedded Control Tasks 131:7

−0.01 −0.005 0 0.005 0.01

−1

−0.5

0

0.5

1

Error on first state

E
r
r
o
r
o
n
s
e
c
o
n
d
s
t
a
t
e

k=1

k=2

k=3

k=4 without

integrity enforcement

k=4 with

integrity enforcement

Fig. 5. Evolution of the state estimation error regions R[k] due to attacks, with and without data integrity
enforcement at k = 4.

system and attack models are fixed for a control-loop under consideration, the presented framework

allows for capturing the impact of the integrity enforcement parameter l on the attack-induced

state estimation error (and thus QoC), through J (l) functions defined as

J (l) = supp{∥ea ∥2 | ea ∈ Rl }, where Rl = ∪∞k=0
Rl [k].

Here, Rl [k] denotes R[k] computed for all integrity policies with parameter l . Functions Ji (l) for
three automotive closed-loop systems are presented in Fig. 9. Thus, by facilitating computation

of Ji (l) functions, the presented framework provides foundation to analyze tradeoffs between

QoC guarantees in the presence of attacks and required computation resources used for data

authentication. Also, QoC requirements for plant Σi , such as a bound on Ji (l), can be mapped into

requirements for li — i.e., the number of controller invocations between consecutive data integrity

enforcements.

To illustrate the effects of integrity enforcement, in Fig. 5, we show R[k] for a two-state vehicle

model from [24], with compromised position sensor and valid velocity sensor. As can be seen,

without integrity enforcements the attacker is increasing the state estimation error in each step.

However, if we enforce integrity on sensor data at time k = 4, the estimation error significantly

reduces (but does not have to go to zero).

4 MODELING OF SECURITY-AWARE CONTROL TASKS
Consider our example of two control tasks T ctr l

1
(1, 4) and T ctr l

2
(2, 4), and let us assume that to

satisfy requirements for QoC under attack, l1 = l2 = 3 has to hold for both tasks. This results in

every third task invocation, referred to as peak, having extended execution time by 1 time unit (as

shown in Fig. 6(a), (b)). Standard real-time task model Ti (ci ,pi ,di), where ci is the WCET, could be

used to capture these security-aware tasks. However, the effective resource utilization would be

low, since the WCET of these tasks varies greatly among individual jobs. In [25] and subsequently

in [4], the multiframe task model was introduced and generalized. While this model allows us to

capture tasks with different execution times for different task activations, it is overly general for

our current discussion, and pessimistic in the sense of task start times. Due to restrictions in the

task model regarding references to any absolute time scale (in this case to the zeroth instant where

the schedule begins), adding start times of jobs to the multiframe task model is non-trivial as it

violates the fundamental task independence assumption [4]. Thus, a slightly modified approach

is needed, where task execution times are allowed to differ over individual invocations given a

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 131. Publication date: October 2017.

131:8 Vuk Lesi, Ilija Jovanov, and Miroslav Pajic

t
T1

t
T2

t
0 4 128 16 20 24

s1=0 s2=1

EDF

(a)

(b)

(c)

T1 authentication

T1 computation

T2 computation

T2 authentication

Fig. 6. Two task scheduling example: (a) and (b) show processor demand for T1 and T2 respectively; the task
set is unschedulable if tasks were synchronous (total processor demand in the first period/frame of 4 time
units is 5). However, if peak frames are asynchronous, task set is schedulable with the Earliest Deadline First
(EDF) scheduler for s1 = 0, s2 = 1 as shown in (c).

limited pattern, but also the start time of the first peak frame
3
needs to be a controlled variable, to

allow a degree of freedom during scheduling. Fig. 6(c) shows a feasible task schedule under Earliest

Deadline First (EDF) scheduler when start frames s1 and s2 of jobs with peak execution times (peak

frames) are adjusted.

Thus, we modify the multiframe task model so that the array of execution times supports exactly

two parameters. The first one equals the WCET of a normal control frame (i.e., initial control task).

The other is the WCET of an extended (peak) frame. Finally, we allow specification of the start time

of the first peak job. Consequently, we model security-aware control tasks as a set T = {T1, ...,TN },
where each taskTi , 1 ≤ i ≤ N is a two-frame asynchronous task defined as a 4-tupleTi (Ci ,pi , li , si)
such that

• Ci = [cctr li , c
peak
i] contains the WCET of two frame types, normal control and peak, charac-

terizing task workload with and without MAC computation, respectively,

• pi is the frame period — i.e., time between consecutive task activations,

• li captures inter-peak frame distance — i.e., every li consecutive frames contain exactly one

peak frame,

• si is the peak frame offset that satisfies 0 ≤ si ≤ li − 1, i.e., the start time of the first peak

frame is sipi .

In this task definition, we assume that deadlines of all normal and peak frames are equal to pi , and
are therefore omitted from the notation to simplify our presentation.

4
However, the approach used

in this work can be easily extended to cover the general case when individual job deadlines differ

from the corresponding task’s period, and there could exist job activation offsets within each period

(i.e., frame). This general case allows for direct capturing of effects such as worst-case network

delay and jitter.

Now, for each task Ti ([c
ctr l
i , c

peak
i],pi , li , si) and the task set T , we define the task (Ui) and

task-set (UT) utilizations, respectively, as

Ui =
cctr li

pi
+
c
peak
i − cctr li

lipi
, UT =

N∑
i=1

Ui .

3
We will refer to task invocations (or jobs) as frames, similarly as proposed in [4, 25].

4
Note that the two-frame task with peak frame offset provides the same modeling expressiveness as the composition of two

standard tasks one of which has offset sipi and period lipi , as long as precedence constraints are established among them.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 131. Publication date: October 2017.

Security-Aware Scheduling of Embedded Control Tasks 131:9

This definition allows us to obtain a schedulability condition that can be simply verified; the lemma’s

proof directly follows from [25].

Lemma 4.1. The task set T is not schedulable under any scheduling policy ifUT > 1.

Recall our example task set consisting of two tasks (see Fig. 6). These tasks can now be specified

as: T1 ([1, 2], 4, 3, s1),T2 ([2, 3], 4, 3, s2). AlthoughUT = 0.92, this task set is not schedulable under

EDF for some values of start times si . However, for example, for s1 = 0 and s2 = 1, EDF can schedule

the tasks as illustrated in Fig. 6(c). Thus, the presented task set T is incomplete, in the sense that

peak frame offsets s1, ..., sN are not specified. Given such an incomplete task set, first and foremost

we are interested in determining a set of peak frame offsets that makes this task set schedulable

under EDF, if that is at all possible; we consider EDF as it is known to be optimal non-idle scheduler.

Secondly, we wish to maximize utilization of available resources for feasible task sets, i.e., maximize

the overall QoC under attack while ensuring that the task set is still schedulable. As described

in Section 3, since for each control loop i , degradation of QoC in the presence of attacks can be

captured as a function of the times between consecutive integrity enforcements li (i.e., Ji (li)), we
specify the overall QoC degradation as

∑N
i=1

ωiJi (li) for some positive weights ωi , i = 1, ...,N ,

which are used to ‘emphasize’ QoC for some tasks compared to others.

Therefore, we can formally define the two problems as follows:

Problem 1. For a task set T with l1, ..., lN capturing prespecified QoC requirements, find feasible

peak frame offsets s1, ..., sN such that the obtained task set T is schedulable under EDF.

Problem 2. For a task set T and a set of associated cost functions Ji (li), i = 1, ...,N , find peak
frames’ offset values s1, ..., sN and optimal peak frame periods l1, ..., lN such that the resulting task
set T is schedulable under EDF and objective

∑N
i=1

ωiJi (li) is minimized.

5 SCHEDULINGWITH QOC REQUIREMENTS
In this section, we provide a method to find a set of feasible peak frame offsets s1, ..., sN based on

the processor demand criterion [5, 8].

Definition 5.1. [5] The demand function d fi of a standard task Ti on an interval [t1, t2] is

d fi (t1, t2) =
∑

ai, j ≥t1, di, j ≤t2

ci , (1)

where ci is the WCET of the ith task, while ai, j represents time of the jth job arrival, and di, j its
respective deadline.

In other words, the demand function is equal to the sum of processor demand for all jobs of

the task that have both their activation time and deadline in the time period [t1, t2]. Intuitively,

it quantifies the amount of work the processor will be presented with during the interval [t1, t2].

For example, the demand function d f1 (0, t) for task T1 from our running example, with s1 = 0, is

shown in Fig. 7.

The following theorem formulates the necessary and sufficient condition for feasibility of asyn-

chronous task set.

Theorem 5.2. [5] A task set T is schedulable by EDF if and only if
∑

i d fi (t1, t2) ≤ t2 − t1, for all
t1, t2 such that t1 < t2.

Note that the condition from the above theorem can be significantly simplified for synchronous

tasks (for which start times of all tasks are fixed to the zeroth instant) with a feasibility test based

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 131. Publication date: October 2017.

131:10 Vuk Lesi, Ilija Jovanov, and Miroslav Pajic

t
T1

t

df1 (0,t)

0 4 128 16 20 24

(a)

(b)

2
3

4

6
7

8

T1 authentication

T1 computation

Fig. 7. Demand function example: (a) Graphical representation of a two-frame taskT1 ([1, 2], 4, 3, 0), and (b) a
demand function d f1 (0, t) for task T1, as defined in (1) for varying t and start (t1) at 0.

on the demand bound function db fi (t) = maxt d fi (t
′, t ′ + t) = d fi (0, t),∀t

′ ≥ 0. However, this

does not apply for our task model due to the asynchronicity involved in the peak frame start time.

Given the piecewise constant nature of the demand function and task periodicity, the schedulabil-

ity condition from Theorem 5.2 has to be evaluated only in a finite number of points corresponding

to task arrivals and deadlines [8]. We will refer to this set of time instants as the time-testing set.
Given that absolute deadlines of jobs in our task set are always exactly pi away from their activation,

the time-testing set can be obtained as

TS =
N⋃
i=1

{ t | t = kpi ∧ t ≤ PH ∧ k ∈ N0},

where PH = lcm{l1 · p1, l2 · p2, ..., lN · pN } is the hyperperiod of the schedule and lcm(.) is the least
common multiple. For our running example (see Fig. 6(c) for schedule), hyperperiod and the time

testing set are PH = 12, TS = {0, 4, 8, 12}. It is worth noting that we only have to check up to PH
since our start times are constrained — i.e., absolute start time of the peak frame may not exceed

sipi . Otherwise, for general start times, the result from [20] applies — the time bound up to which

the processor demand test should be conducted is maxi ϕi + 2PH , where ϕi are absolute task start

times.

To devise the analytical expression for the demand function, we obtain the number of normal

control and peak jobs of our task activated and required to complete in an interval [tk1
, tk2

] as

η
c&p
i (tk1

, tk2
) =max

{
0,

⌊
tk2
− pi

pi

⌋
−max

{
0,

⌈
tk1

pi

⌉}
+ 1

}
.

Similarly, it can be calculated that the number of peak jobs contributing to the demand during the

same interval is

η
peak
i (tk1

, tk2
) =max

{
0,

⌊
tk2
− (si + 1)pi

lipi

⌋
−max

{
0,

⌈
tk1
− sipi

lipi

⌉}
+ 1

}
.

Therefore, the processor demand function over [tk1
, tk2

] can be compactly captured as

d fi (tk1
, tk2

) = cctr li η
c&p
i (tk1

, tk2
) + ∆ciη

peak
i (tk1

, tk2
),

where ∆ci = (c
peak
i −cctr li). Finally, for a task set T it follows from Theorem 5.2 and the discreteness

of the time testing set TS that a necessary and sufficient feasibility test can be formulated as

N∑
i=1

d fi (tk1
, tk2

) ≤ tk2
− tk1
, ∀tk1

, tk2
∈ TS, tk1

< tk2
. (2)

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 131. Publication date: October 2017.

Security-Aware Scheduling of Embedded Control Tasks 131:11

In the following subsection we analyze the transformation of the demand function to a set of

linear constraints, which will provide basis for our MILP-based scheduling with QoC requirements.

5.1 Mixed Integer Linear Programming Formulation for Schedule Synthesis
In Problem 1, our goal is to derive feasible peak frame offsets for all tasks in the task set such that

none of the deadlines are missed when the EDF scheduler is used. Note that at every instant from

the time testing set TS , the demand function d fi is a function of the start time si since all other
values are specified. Hence, the problem of testing feasibility of a task set under dynamic-priority

scheduling policies can be directly mapped into an MILP as follows.

Let aik, j be binary variables indicating that by the k th instant from the time testing set, the j-th

peak frame of task Ti has been scheduled to complete execution, where 1 ≤ i ≤ N , 1 ≤ j ≤ PH
lipi

,

2 ≤ k ≤ |TS |; note that here k ≥ 2, since it must hold that ai
1, j = 0, and thus it is not necessary

to have a set of variables at the first point of time-testing set (i.e., for k = 1). The dependency of

variables aik, j to the task parameters can be formally captured as

aik, j = 1⇔ tk ≥ (si + 1)pi + (j − 1)lipi . (3)

For instance, for the schedule shown in Fig. 6(c), corresponding variables are a1

2,1 = 1,a1

3,1 = 1,a1

4,1 =

1 forT1 and a
2

2,1 = 0,a2

3,1 = 1,a1

4,2 = 1 for taskT2, given that peak frame offsets were chosen as s1 = 0,

s1 = 1. Hence, from the definition of η
peak
i (tk1

, tk2
) it follows that η

peak
i (tk1

, tk2
) =

PH
li pi∑
j=1

(
aik2, j

− aik1, j

)
.

This implies that for any tk1
and tk2

(tk2
≥ tk1

) from the time-testing set TS , the demand function

for task Ti can be expressed as a function of only binary variables aik, j in the form

d fi (tk1
, tk2

) =cctr li η
c&p
i (tk1

, tk2
) + ∆ci

PH
li pi∑
j=1

(
aik2, j

− aik1, j

)
. (4)

Consequently, there exist feasible peak frame offsets s1, ..., sN , such that task set T is schedulable

with EDF, if and only if the following set of mixed-integer linear constraints has a feasible solution

N∑
i=1

d fi (tk1
, tk2

) ≤ tk2
− tk1
, ∀tk2

, tk1
∈ TS (5)

(si + 1)pi + (j − 1)lipi ≤ tk +M (1 − aik, j) (6)

(si + 1)pi + (j − 1)lipi > tk −Maik, j (7)

0 ≤ si ≤ li − 1. (8)

Here, d fi is defined as in (4), the variable indices satisfy

1 ≤ i ≤ N , 1 ≤ j ≤
PH
lipi
, 2 ≤ k ≤ |TS |,

andM is a large constant. Constraints (6) and (7) capture the logical condition specified in (3) using

the standard “Big M” method to capture indicator constraints [6].

Remark 1. Most available MILP solvers require the set of constraints to be specified as non-strict
inequalities (i.e., in the form Ax ≤ b). Thus, we can express constraint (7) as a non-strict inequality by
adding a small ε > 0 to every tk – i.e., as

(si + 1)pi + (j − 1)lipi ≥ tk −Maik, j + ε (9)

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 131. Publication date: October 2017.

131:12 Vuk Lesi, Ilija Jovanov, and Miroslav Pajic

Yet,M and ε have to be carefully chosen to avoid potential errors due to finite precision implementations
of MILP solvers. Consider that (9) expresses peak frame timing conditions when aik, j = 0. Thus,M and
ε should be chosen so that the following inequalities are not violated

Mδint + δconstr < ε < 1 −Mδint − δconstr ,

where δint and δconstr are tolerances of MILP solvers. Specifically, δint is the maximum deviation
from an integer value a variable can have while still being considered an integer, and δconstr is the
maximum discrepancy that can be involved in a linear constraint while it is still being considered
satisfied. Similarly, M has to be set sufficiently large so that for large tk -s from TS , (6)-(7) are still
satisfied when tolerances are taken into account.

Note that we do not specify an objective function since solely feasibility is of interest here, i.e.,

we want to determine feasible peak frame offsets. If the given task set is schedulable, solving this

MILP problem will result in a concrete set of values for s1, ..., sN , which complete our task set. If

the feasible set of the MILP problem is empty, the task set under consideration is not feasible.

The schedulability constraints specified in (4)-(8) feature (|TS | − 1)
∑N

i=1

PH
lipi

binary (i.e., aik, j)

and N integer variables (i.e., si). Furthermore, (5) results in

(
|TS |

2

)
constraints, while (6) and (7) each

add |TS |
∑N

i=1

PH
lipi

constraints. For our simple running example, there are 6 binary and 2 integer

variables, and a total of 18 constraints (not including variable bound constraints). As shown in Sec. 7,

the MILP problem’s size does not impose stringent limitations for realistic systems and workloads.

6 SYNTHESIS OF QOC-OPTIMAL SCHEDULES
The previous section presents a set of mixed-integer linear constraints that specify necessary and

sufficient schedulability conditions for predefined QoC requirements, which are captured as the

values of li task parameters. On the other hand, to optimally use available resources, overall QoC

guarantees can be improved by increasing the rate of integrity enforcements for underutilized

systems or by decreasing QoC guarantees if the initial task set is infeasible. Thus, in this section

we present a MILP-based approach to solve Problem 2 which requires minimization of the overall

QoC degradation in the presence of attacks — i.e.,

∑N
i=1

ωiJi (li) objective.
We start by noting that the set of schedulability constraints remains linear if l1, ..., lN become

variables, instead of predefined QoC parameters. Still, several challenges need to be addressed. First,

the time-testing set and thus the number of binary variables depend on the size of hyperperiod PH
and hence the values of li , which in this case are variables. Since we assume that for each control

task, minimal QoC under attack requirements are specified in the form of the maximal allowed

inter-peak frame distance lmax
i , it is possible to provide an upper bound on the size of hyperperiod

PH = max

li ∈{1, ...,lmax
i }

i ∈{1, ...,N }

lcm(l1p1, ..., lNpN),

which can be precomputed. Note that this could potentially result in a larger than necessary

time-testing set TS , but would still guarantee schedulability if conditions from (2) are satisfied.

The second challenge is that the functions Ji (li) are obtained only through the use of the

presented reachability framework from Fig. 4 and thus no analytic solutions are available in the

general case. To address this, we start by noting that for realistic control systems the aforementioned

functions Ji (li) can be well-approximated using piecewise linear functions
ˆJi (li). Examples of

these cost functions and their approximations are shown in Fig. 9. Let Fi denote the number of

linear segments used to approximate the experimentally obtained QoC degradation function Ji (li)
for the ith task. For example, for the cost function shown in Fig. 9(a) there are F1 = 2 segments:

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 131. Publication date: October 2017.

Security-Aware Scheduling of Embedded Control Tasks 131:13

[

¯

l1

1
= 1, ¯l1

1
= 2] and [

¯

l2

1
= 2, ¯l2

1
= 5], respectively. Then, the QoC degradation function can be

approximated as

ˆJi (li) =
Fi∑
r=1

(
(α ir li + β

i
r)b

i
r

)
, (10)

where α ir li + β
i
r is the r

th
linear segment [

¯

lri ,
¯lri], out of Fi , such that [1, lmax

i] =
⋃Fi

r=1
[

¯

lri ,
¯lri], and

bir are binary variables that select the corresponding linear segment based on the value of li . This
is captured through a set of logical conditions

bir = 1 ⇒
¯

lri ≤ li ≤ ¯lri , 1 ≤ r ≤ Fi .

Similarly as before, using the “Big M” method, the above logical condition can be specified as a set

of the following linear constraints

¯

lri −M (1 − bir) ≤ li ≤
¯

lri +Mbir ,

¯lri −Mbir ≤ li ≤ ¯lri +M (1 − bir),
(11)

where M is a large constant. Additionally, a constraint limiting that only one linear segment is

active per task is needed — i.e.,

Fi∑
r=1

bir = 1, 1 ≤ i ≤ N . (12)

Finally, in the objective function in (10), the only nonlinearities are the multiplications of variables

lib
i
r . These can be linearized by introducing a new set of variables cir = lib

i
r , which can be expressed

using the “Big M” method as the following linear constraints

cir ≤ birM, cir ≥ li − (1 − bir)M, 0 ≤ cir ≤ li . (13)

The first constraint in (13) guarantees that cir = 0 when bir = 0, i.e., when the r th segment is not

selected. The second constraint sets cir = li when corresponding segment is selected, i.e., when

bir = 1. Therefore, the complete MILP formulation for QoC-optimal task set synthesis can be

specified as

min

N∑
i=1

ωi

Fi∑
r=1

(α irc
i
r + β

i
rb

i
r)

subject to: (4)-(8), (11)-(13)

1 ≤ i ≤N , 1 ≤ ji ≤
PH
pi
, 2 ≤ k ≤ |TS |.

(14)

In addition to (|TS | − 1)
∑N

i=1

PH
pi

binary (aik, ji -s) and N integer variables (si -s), this MILP formu-

lation adds N +
∑N

i=1
Fi integer variables (li -s and c

i
r -s), and

∑N
i=1

Fi binary variables (cost function

segment selector variables bir -s). In addition to

(
|TS |

2

)
+ 2 · |TS |

∑N
i=1

PH
pi

constraints that exist in

the schedulable task set synthesis formulation, N restrictions for single linear segment selection

(expressed in (12)) and 4 ·
∑N

i=1
Fi constraints covering (11) and (13) that constrain linearization

variables (cir -s) have to be added. For our running example, there are 76 binary and 8 integer

variables, and a total of 185 constraints, if two-segment linear curves are combined to form an

objective function. Trivial variable bound constraints are not included in this count.

Finally, let us revisit our introductory two-task example:

T1 ([1, 2], 4, 3, s1), T2 ([2, 3], 4, 3, s2). (15)

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 131. Publication date: October 2017.

131:14 Vuk Lesi, Ilija Jovanov, and Miroslav Pajic

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.01

0.02

0.03

0.04

0.05

Processor utilization

S
o
l
v
e
r

e
x
e
c
u
t
i
o
n
t
i
m
e

[
s]

(a) Schedule synthesis with predefined QoC requirements

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

50

100

150

200

Processor utilization

O
p
t
i
m
i
z
e
r

e
x
e
c
u
t
i
o
n
t
i
m
e

[
s]

(b) QoC-optimal schedule synthesis

Fig. 8. Execution times of Gurobi MILP solver with 95% confidence intervals for the task set in (16).

As we mentioned in previous sections, this task set is feasible under EDF for peak frame offset

assignment s1 = 0, s2 = 1. Consider the case when, for example, integrity enforcement for the

process loop controlled by task T1 is required every five periods instead of three, (i.e., l1 = 5).

If schedulable task set synthesis formulation from Section 5.1 is applied, even though effective

processor utilization is lower, this task set becomes infeasible for any start time assignment. This

is indeed the case since peak frame periods are such that, under any assignment of peak frame

start times, peak frames of the two tasks will eventually align and cause the processor demand test

to fail (processor demand over a period of 4 time units will be 5). This is due to the fact that the

formulation specified in (5)-(8) only tests feasibility of the given task set and determines feasible

peak frame offsets if possible. However, if QoC-optimal scheduling formulation, as specified in

(14), is applied for lmax
1

= 3, lmax
2

= 5, the result of optimization will be a feasible and optimal

assignment for variables li and si , that minimizes the QoC objective. In this case, l1 = l2 = 2 and

s1 = 0, s2 = 1 is the output of the QoC-optimization, if standard QoC degradation functions are

used as objectives.

7 EVALUATION
To analyze scalability and performance of our approach, we evaluate the proposed framework both

on random workloads and a realistic automotive case-study.

7.1 General Evaluation and Limitations
We start our evaluation by considering execution times of Gurobi MILP solver [26] for generic task

sets. All execution times are measured on a platform with a 5
th

generation 3.0GHz Intel i7 CPU
and 16GB of memory.

We construct generic task sets by varying overall processor utilization, and randomly generating

workloads according to the current utilization set point, while keeping the task periods fixed. It

is important to highlight that task sets that are constructed fully randomly do not give us full

insight about performance of our framework; this is caused by the fact that the size of our MILP

formulation is dominated by the size of the time-testing set (|TS |) and the number of tasks’ peak

frames during the scheduling hyperperiod (

∑N
i=1

PH
lipi

), and is less affected by the number of tasks.

To illustrate this, consider a task set consisting of four tasks

T1 ([0.1, 0.2], 4, 4, s1), T2 ([0.1, 0.3], 4, 4, s2),

T3 ([0.1, 0.4], 12, 6, s3), T4 ([0.1, 0.3], 12, 2, s4).

Due to relatively low processor demand with U < 0.1, this task set is schedulable. The MILP

formulation features a total of 936 binary and 4 integer variables, while cardinality of the time

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 131. Publication date: October 2017.

Security-Aware Scheduling of Embedded Control Tasks 131:15

1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.005

0.01

0.015

0.02

Inter-enforcement distance l1

M
a
x
.
i
n
t
r
o
d
u
c
e
d

e
r
r
o
r
em

ax
1 Original

Approx.

(a) Fuel injection

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0

0.5

1

1.5

Inter-enforcement distance l2

M
a
x
.
i
n
t
r
o
d
u
c
e
d

e
r
r
o
r
em

ax
2 Original

Approx.

(b) Driveline management

5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5

Inter-enforcement distance l3

M
a
x
.
i
n
t
r
o
d
u
c
e
d

e
r
r
o
r
em

ax
3 Original

Approx.

(c) Trajectory tracking

Fig. 9. Change in the maximal state estimation error with respect to integrity enforcement period for fuel
injection, driveline management and trajectory tracking systems. The estimation error for fuel injection
increases quickly, making integrity enforcement at all times inevitable, while state estimation errors for
driveline management and trajectory tracking systems reach unsafe levels for l2 > 10 and l3 > 5, respectively.
Finally, without integrity enforcements, the trajectory tracking system is a perfectly attackable system [18, 24],
meaning that the attacker can introduce unbounded estimation error.

testing set is 37. There is a total of 2538 constraints (not including variable bound constraints).

Note that task periods pi -s and the number of frames between two consecutive peak frames li -s are
valued such that the size of the problem is relatively small. To obtain a schedulable task-set, Gurobi

MILP solver takes 8.3ms . However, if task periods are such that the processor demand condition

(5) requires evaluation in a larger number of time instants, this results in a significant increase in

the problem size. This occurs when periods and peak frame distances are not harmonically related.

For instance, ifT3’s periodicity is 13 time units instead of 12, the total number of variables becomes

21508, while the time testing set’s size is 193. The total number of constraints is 61540, and Gurobi

execution time increases to 535.4ms .
On the other hand, in most control applications, periods of control tasks are multiples of a small

set of numbers (e.g., 10 ms and 20 ms in most automotive control applications), which enables

construction of reasonably sized problems that can be efficiently solved. Additionally, the described

interleaving of peak frames that is inevitable for certain combinations of task parameters (illustrated

with example in (15)) is much less likely to occur in real systems where the integrity enforcement

policy can be adjusted to avoid this. As a result, most realistic task sets can be efficiently scheduled

using our approach.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 131. Publication date: October 2017.

131:16 Vuk Lesi, Ilija Jovanov, and Miroslav Pajic

Table 1. Automotive case-study task set with fuel injection (T1), driveline management (T2), and trajectory
tracking (T3) tasks, as well as additional logging and supervision tasks; Shaded columns are results of QoC-
optimal schedule synthesis. Light shaded columns show optimization results for T1 = {T1, ...,T6} (UT1 = 0.82);
dark shaded cells mark additional tasks and show optimization results for T2 = {T1, ...,T8} (UT2 = 0.87).

Task

pi
[ms]

cctr li
[ms]

c
peak
i
[ms]

lmax
i s∗i l∗i s∗i l∗i

T1 10 1.6068 2.7012 1 0 1 0 1

T2 20 2.6172 5.3346 10 0 2 0 2

T3 20 1.6068 2.7012 5 1 2 1 4

T4 100 1.8258 − − − − − −

T5 100 7.8652 − − − − − −

T6 200 5.5587 − − − − − −

T7 40 1.4427 − − − − − −

T8 50 0.8562 − − − − − −

Fig. 8 presents execution times of Gurobi MILP solver for both schedulable task set synthesis

with predefined QoC requirements and QoC-optimal schedule synthesis. We analyzed how Gurobi

execution times depend on utilization for task set

T1 ([c
ctr l
1
, c

peak
1

],p1 = 10, l (max)
1

= 1, s1), T2 ([c
ctr l
2
, c

peak
2

],p2 = 20, l (max)
2

= 8, s2),

T3 ([c
ctr l
3
, c

peak
3

],p3 = 40, l (max)
3

= 4, s3), T4 ([c
ctr l
4
, c

peak
4

],p4 = 120, l (max)
4

= 2, s4).
(16)

Here, for synthesis of schedulable task sets with predefined QoC requirements we use li = l
max
i

from (16). While randomly generating task sets, normal and peak frame execution times were

chosen randomly 100 times so that utilization of a task is proportional to its period. Intuitively,

for higher utilizations, the optimizer explores a larger space in search for a feasible solution. In

the limit, a task set with utilization U = 1 is very unlikely to be feasible. Hence, an MILP solver

implementing branch and bound algorithm can easily prune out large portions of the variable space,

resulting in a decrease in execution time as shown in Fig. 8(b). Note that for schedule synthesis

(Fig. 8(a)), the variable space is relatively small and thus the solver execution time is very low

(57.3ms for worst run).

7.2 Automotive Case Study
We demonstrate the usability of our approach on a realistic case study involving three automotive

control components. Here, we consider control tasks for fuel injection, driveline management, and

trajectory tracking (additional use of intermittent integrity enforcements on different platforms,

e.g., vehicle-to-vehicle/infrastructure (V2V/I) can be found in [15]). Modeling methodology for

these systems is thoroughly described in [31], [30], and [17], respectively. As described in Section 3,

we use the models of these systems to quantify QoC degradation in the presence of attacks using

cost functions Ji (li). These functions along with their piecewise-linear approximations (
ˆJi (li) as

captured by (10)) are shown in Fig. 9.

We abstract the computational workload of controlling these systems with tasks T1,T2, and T3,

respectively. Task set parameters are given in Table 1. For the fuel injection system, we observe

that relatively small error in state estimation results in significant changes in air-to-fuel ratio

(AFR), which is one of the main controlled states in this system. Small changes in AFR can have

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 131. Publication date: October 2017.

Security-Aware Scheduling of Embedded Control Tasks 131:17

-100 -50 0 50 100
x position [m]

-100

-50

0

50

100

150

y
po

si
ti

on
 [

m
]

Aack start

Reference trajectory

Actual position without
integrity enforcements

Actual position when
integrity is enforced on every
fourth sample

Fig. 10. Reference trajectory and obtained position under attack with and without integrity enforcement are
shown. Simulation duration is 200 s and the attack starts at 100 s .

significant impact on engine performance (increased emissions, poor power output, and overheat-

ing). Therefore, we choose to enforce integrity on every data point (i.e., lmax
1
= 1). The driveline

management system features drive-shaft torsion, engine speed, and wheel speed as its states. Given

that significant change in torsion leads to increased wear of mechanical components of driveline

and potential permanent damage, we choose to limit the maximum allowed state estimation error

to 0.02 rad (or 1.15
◦
) for drive-shaft torsion. Since engine speed is typically significantly larger

than wheel speed, we set the limits on the remaining states’ estimation errors to 1
rad
s and 0.25

rad
s

respectively. These constraints result in maximal allowed state estimation error of emax
2
= 1.12. By

mapping this value through the QoC degradation function in Fig. 9(b), we obtain the maximum

inter-enforcement period of lmax
2
= 10 control periods. For trajectory tracking, we allow additional

error induced by the attacker to be very small, precisely no more than 0.35
m
s in estimated speed,

and 0.3 m in position. This gives us the maximum state estimation error of emax
3
= 0.461. Mapping

through Fig. 9(c) gives us the maximum sample distance between two integrity enforcements of

lmax
3
= 5.

To capture realistic scenarios where ECUs are shared between control- and non-control tasks, we

also add tasksT4-T6 specified in Table 1 as standard real time tasks which have no QoC degradation

function associated with them. These tasks execute additional logging and supervision functions

(e.g., gearbox oil temperature checking and logging with period 200ms). Notice that no changes

in our formulation are necessary to allow admission of such tasks (simple declaration c
peak
i = 0,

li = 1 suffices). Utilization for task set T1 = {T1, ...,T6} isUT1 = 0.82.

For the aforementioned task set, Gurobi takes 3.9 ms to find a feasible set of peak frame offsets

s1, ..., s6. For QoC-optimal task synthesis the MILP solver’s execution time is 764.3 s , and the results
are shown in the light shaded columns of Table 1 (optimal s∗i and l

∗
i). For these values, to illustrate

QoC under attack, we simulate the vehicle motion with a figure eight-shaped reference trajectory

that fits inside a 100× 100m square. Simulation duration is 200 s , and attack start time is set to 100 s .
Fig. 10 shows the difference between reference and obtained vehicle trajectories during simulation

time. As can be seen, integrity enforcement prevents the attacker from significantly diverting the

system away from the desired trajectory.

To examine system scalability and evaluate performance degradation due to increase in task

set utilization, we add two more tasks to our task set, namely T7 and T8. Task parameters and the

result of the new optimization problem based on the extended task set T2 = {T1, ...,T8} are shown

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 131. Publication date: October 2017.

131:18 Vuk Lesi, Ilija Jovanov, and Miroslav Pajic

0 50 100 150 200
Time [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

Tr
ac

ki
ng

 e
rr

or
 [

m
]

l
3
=2

l
3
=4

Aack start

No aack

Tracking error without aack

Tracking error under aack
for l

3
=2

Tracking error under aack
for l

3
=4

QoC requirement

QoC limit on tracking error

Fig. 11. Tracking error over the course of the simulation. The error is presented in the case without and with
the presence of attack for l3 = 2, and l3 = 4. Note that design-time performance requirements are satisfied in
all cases.

in darker shaded cells of Table 1. Utilization for this task set is UT2 = 0.87. Schedule synthesis with

predefined QoC requirements for this task set takes 4.2ms to execute, while Gurobi execution time

for QoC-optimal task synthesis is 729.6 s . As a result of higher processor utilization and specific

task periods, task T3 authenticate sensor data only as often as every fourth control period, instead

of every other.

A typical QoC metric for trajectory tracking systems is the tracking error, i.e., the difference

between the obtained and desired trajectories. As can be seen from Fig. 11, the decrease in integrity

enforcement rate increases potential influence of the attacker. Nevertheless, the tracking error is

still maintained under design requirements.

Finally, when we increase the utilization up to 0.9936 by adding more tasks, we observer that

the values for l1, l2 and l3 obtained from the optimization are equal to design-time limits, i.e., l∗
1
= 1,

l∗
2
= 10, l∗

3
= 5, meaning that even with this utilization our task set is still schedulable while QoC

requirements are satisfied. It is worth noting that in this case data integrity is enforced in only 15%

of time steps for controllers implemented in tasks T2 and T3, allowing for execution of additional

tasks on the shared CPU.

8 RELATEDWORK
Security challenges due to the tight interaction of cyber and physical components in CPS have

attracted a lot of attention in recent years. One focus has been on the use of control theory to

develop attack-resilient algorithms and architectures (e.g., see a recent study [23] and references

therein). While some of existing works consider implementation issues such as jitter [28], to the

best of our knowledge, this work is the first to address closed-loop performance (i.e., QoC), data

integrity, and schedulability guarantees within an integrated resource-aware design and analysis

framework.

Intermittent use of integrity enforcements for embedded control systems is similar in spirit to

event- and self-triggered control [1, 2] control. In addition, adding security mechanisms to resource

constrained embedded and CPS, and effects on real-time scheduling of existing tasks was addressed

in [14, 22, 32]. In [14], opportunistic execution of security tasks in legacy systems is proposed,

by optimizing their execution parameters while ensuring feasibility of existing tasks. Also, [32]

presents a scheduling policy that takes into account security requirements together with real-time

requirements for embedded systems. In [22], active security services are optimally chosen with

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 131. Publication date: October 2017.

Security-Aware Scheduling of Embedded Control Tasks 131:19

respect to schedulability conditions, while simultaneously guaranteeing schedulability through

modified conditions for EDF. Yet, in all these works, security guarantees are captured with the use of

abstract security levels; there is no connection between the available resources and performance of

the main system functionalities (e.g., QoC for control tasks) in the presence of attacks. On the other

hand, the proposed framework based on intermittent integrity enforcements facilitates tradeoff

analysis between system resources and QoC guarantees.

Some of these problems can be framed as task adaptation in overutilized systems. In [9], an

elastic task model is presented that adapts Quality-of-Service (QoS) in control applications where

relaxation of timing constraints is allowed. Similarly, QoC captured as a standard quadratic control

cost, is used in [10] for adaptation of task periods in order to track a predefined utilization setpoint.

These methods cannot be directly applied to adaptation of multiframe security-aware real-time

control tasks, since they are based on the standard task model, for which they alter control tasks’

periods, while we assume that periods of existing control tasks cannot be changed and focus on

optimal inclusion of integrity enforcements.

Finally, MILP is used in real-time systems for multiprocessor sporadic task partitioning [3] and

to find feasible deadlines under EDF for a given performance index [7]. In [29], task parameter

adaption for multiframe tasks is solved via MILP; still, only the worst case alignment of frames is

considered, and unlike our approach to finding feasible offsets, the focus is on period and deadline

optimization.

9 CONCLUSION
We have presented a method to add security guarantees, in terms of Quality-of-Control in the

presence of attacks on sensor measurements, to control tasks executed on a shared processor. We

have exploited the fact that even intermittent data integrity enforcements significantly limit the

attacker’s impact on the system and shown how to obtain the relationship between the integrity

enforcement rate and QoC under attack. This has allowed us to map the problem into scheduling of

security-aware multiframe tasks, for which we have presented an MILP formulation. Furthermore,

we have introduced a MILP-based approach for optimal resource (i.e., CPU time) allocation, which

allows for the maximization of the overall QoC while ensuring task system schedulability. Finally,

the usability of our approach has been illustrated on an automotive case study.

Note that the proposed approach results in periodic data integrity enforcements, though with a

significantly reduced rate and thus significantly reduced overhead. For instance, we have shown

that we can have satisfiable QoC under attack with as low as 15% of controller executions for which

data integrity is guaranteed. An avenue for future work is the use of fully intermittent integrity

enforcement policies, which could potentially allow for QoC improvements for desired utilization

levels. We will also combine the presented framework with our recent work on scheduling of

authenticated network packets [19], to provide a holistic approach for security-aware scheduling

in distributed embedded control.

REFERENCES
[1] A. Anta and P. Tabuada. 2009. On the Benefits of Relaxing the Periodicity Assumption for Networked Control Systems

over CAN. In 2009 30th IEEE Real-Time Systems Symposium. 3–12. https://doi.org/10.1109/RTSS.2009.39

[2] A. Anta and P. Tabuada. 2010. To Sample or not to Sample: Self-Triggered Control for Nonlinear Systems. IEEE Trans.
Automat. Control 55, 9 (Sept 2010), 2030–2042. https://doi.org/10.1109/TAC.2010.2042980

[3] Sanjoy Baruah and Enrico Bini. 2008. Partitioned scheduling of sporadic task systems: an ILP-based approach.

Proceedings of the International Conference on Design and Architectures for Signal and Image Processing (DASIP) (2008).
[4] Sanjoy Baruah, Deji Chen, Sergey Gorinsky, and Aloysius Mok. 1999. Generalized Multiframe Tasks. Real-Time Systems

17, 1 (01 Jul 1999), 5–22. https://doi.org/10.1023/A:1008030427220

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 131. Publication date: October 2017.

https://doi.org/10.1109/RTSS.2009.39
https://doi.org/10.1109/TAC.2010.2042980
https://doi.org/10.1023/A:1008030427220

131:20 Vuk Lesi, Ilija Jovanov, and Miroslav Pajic

[5] Sanjoy K. Baruah, Louis E. Rosier, and Rodney R. Howell. 1990. Algorithms and complexity concerning the preemptive

scheduling of periodic, real-time tasks on one processor. Real-Time Systems 2, 4 (01 Nov 1990), 301–324. https:

//doi.org/10.1007/BF01995675

[6] Pietro Belotti, Pierre Bonami, Matteo Fischetti, Andrea Lodi, Michele Monaci, Amaya Nogales-Gómez, and Domenico

Salvagnin. 2016. On handling indicator constraints in mixed integer programming. Computational Optimization and
Applications 65, 3 (01 Dec 2016), 545–566. https://doi.org/10.1007/s10589-016-9847-8

[7] Enrico Bini and Giorgio Buttazzo. 2009. The space of EDF deadlines: the exact region and a convex approximation.

Real-Time Systems 41, 1 (01 Jan 2009), 27–51. https://doi.org/10.1007/s11241-008-9060-7

[8] G. C. Buttazzo. 2011. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications (3rd ed.).

Springer, 110–114. https://doi.org/10.1007/978-1-4614-0676-1

[9] Giorgio C. Buttazzo, Giuseppe Lipari, Marco Caccamo, and Luca Abeni. 2002. Elastic Scheduling for Flexible Workload

Management. IEEE Trans. Comput. 51, 3 (March 2002), 289–302. https://doi.org/10.1109/12.990127

[10] Anton Cervin, Johan Eker, Bo Bernhardsson, and Karl-Erik Årzén. 2002. Feedback–Feedforward Scheduling of Control

Tasks. Real-Time Systems 23, 1 (01 Jul 2002), 25–53. https://doi.org/10.1023/A:1015394302429
[11] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham, Stefan Savage, Karl Koscher,

Alexei Czeskis, Franziska Roesner, and Tadayoshi Kohno. 2011. Comprehensive Experimental Analyses of Automotive

Attack Surfaces. In Proceedings of the 20th USENIX Conference on Security (SEC’11). USENIX Association, Berkeley, CA,

USA, 6–6. http://dl.acm.org/citation.cfm?id=2028067.2028073

[12] T. M. Chen and S. Abu-Nimeh. 2011. Lessons from Stuxnet. Computer 44, 4 (April 2011), 91–93. https://doi.org/10.
1109/MC.2011.115

[13] A. Greenberg. 2015. Hackers Remotely Kill a Jeep on the Highway, Wired Magazine. (2015).

[14] M. Hasan, S. Mohan, R. B. Bobba, and R. Pellizzoni. 2016. Exploring Opportunistic Execution for Integrating Security

into Legacy Hard Real-Time Systems. In 2016 IEEE Real-Time Systems Symposium (RTSS). 123–134. https://doi.org/10.
1109/RTSS.2016.021

[15] I. Jovanov and M. Pajic. 2017. Relaxing Integrity Requirements for Resilient Control Systems. CoRR abs/1707.02950

(2017). https://arxiv.org/abs/1707.02950

[16] I. Jovanov and M. Pajic. 2017. Sporadic Data Integrity for Secure State Estimation. In 55th IEEE Conference on Decision
and Control (CDC).

[17] Andrew J. Kerns, Daniel P. Shepard, Jahshan A. Bhatti, and Todd E. Humphreys. 2014. Unmanned Aircraft Capture

and Control Via GPS Spoofing. J. Field Robot. 31, 4 (July 2014), 617–636. https://doi.org/10.1002/rob.21513

[18] C. Kwon, W. Liu, and I. Hwang. 2014. Analysis and Design of Stealthy Cyber Attacks on Unmanned Aerial Systems.

Journal of Aerospace Information Systems 11, 8 (2014), 525–539. https://doi.org/10.2514/1.I010201
[19] V. Lesi, I. Jovanov, and M. Pajic. 2017. Network Scheduling for Secure Cyber-Physical Systems. In 38th IEEE Real-Time

Systems Symposium (RTSS).
[20] Joseph Y.-T. Leung and M.L. Merrill. 1980. A note on preemptive scheduling of periodic, real-time tasks. Inform. Process.

Lett. 11, 3 (1980), 115 – 118. https://doi.org/10.1016/0020-0190(80)90123-4

[21] Chung-Wei Lin, Bowen Zheng, Qi Zhu, and Alberto Sangiovanni-Vincentelli. 2015. Security-Aware DesignMethodology

and Optimization for Automotive Systems. ACM Trans. Des. Autom. Electron. Syst. 21, 1, Article 18 (Dec. 2015), 26 pages.
https://doi.org/10.1145/2803174

[22] M. Lin, L. Xu, L. T. Yang, X. Qin, N. Zheng, Z. Wu, and M. Qiu. 2009. Static Security Optimization for Real-Time

Systems. IEEE Transactions on Industrial Informatics 5, 1 (Feb 2009), 22–37. https://doi.org/10.1109/TII.2009.2014055
[23] Yuriy Zacchia Lun, Alessandro D’Innocenzo, Ivano Malavolta, and Maria Domenica Di Benedetto. 2016. Cyber-Physical

Systems Security: a Systematic Mapping Study. CoRR abs/1605.09641 (2016). http://arxiv.org/abs/1605.09641

[24] Y. Mo, E. Garone, A. Casavola, and B. Sinopoli. 2010. False data injection attacks against state estimation in wireless

sensor networks. In 49th IEEE Conference on Decision and Control (CDC). 5967–5972. https://doi.org/10.1109/CDC.2010.
5718158

[25] A. K. Mok and D. Chen. 1996. A multiframe model for real-time tasks. (Dec 1996), 22–29. https://doi.org/10.1109/

REAL.1996.563696

[26] Gurobi Optimization Inc. 2014. Gurobi optimizer reference manual. (2014). http://www.gurobi.com

[27] M. Pajic, I. Lee, and G. J. Pappas. 2017. Attack-Resilient State Estimation for Noisy Dynamical Systems. IEEE Transactions
on Control of Network Systems 4, 1 (March 2017), 82–92. https://doi.org/10.1109/TCNS.2016.2607420

[28] M. Pajic, J. Weimer, N. Bezzo, P. Tabuada, O. Sokolsky, I. Lee, and G. J. Pappas. 2014. Robustness of attack-resilient

state estimators. In 2014 ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS). 163–174. https:

//doi.org/10.1109/ICCPS.2014.6843720

[29] B. Peng and N. Fisher. 2016. Parameter Adaption for Generalized Multiframe Tasks and Applications to Self-Suspending

Tasks. In 2016 IEEE 22nd International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA). 49–58. https://doi.org/10.1109/RTCSA.2016.15

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 131. Publication date: October 2017.

https://doi.org/10.1007/BF01995675
https://doi.org/10.1007/BF01995675
https://doi.org/10.1007/s10589-016-9847-8
https://doi.org/10.1007/s11241-008-9060-7
https://doi.org/10.1007/978-1-4614-0676-1
https://doi.org/10.1109/12.990127
https://doi.org/10.1023/A:1015394302429
http://dl.acm.org/citation.cfm?id=2028067.2028073
https://doi.org/10.1109/MC.2011.115
https://doi.org/10.1109/MC.2011.115
https://doi.org/10.1109/RTSS.2016.021
https://doi.org/10.1109/RTSS.2016.021
https://arxiv.org/abs/1707.02950
https://doi.org/10.1002/rob.21513
https://doi.org/10.2514/1.I010201
https://doi.org/10.1016/0020-0190(80)90123-4
https://doi.org/10.1145/2803174
https://doi.org/10.1109/TII.2009.2014055
http://arxiv.org/abs/1605.09641
https://doi.org/10.1109/CDC.2010.5718158
https://doi.org/10.1109/CDC.2010.5718158
https://doi.org/10.1109/REAL.1996.563696
https://doi.org/10.1109/REAL.1996.563696
http://www.gurobi.com
https://doi.org/10.1109/TCNS.2016.2607420
https://doi.org/10.1109/ICCPS.2014.6843720
https://doi.org/10.1109/ICCPS.2014.6843720
https://doi.org/10.1109/RTCSA.2016.15

Security-Aware Scheduling of Embedded Control Tasks 131:21

[30] M. Pettersson. 1997. Driveline modeling and control. Ph.D. Dissertation. Department of Electrical Engineering, Linköping

University.

[31] C. T. Wei. 2009. Modeling and control of an engine fuel injection system. Master’s thesis.

[32] Tao Xie and Xiao Qin. 2007. Improving Security for Periodic Tasks in Embedded Systems Through Scheduling. ACM
Trans. Embed. Comput. Syst. 6, 3, Article 20 (July 2007). https://doi.org/10.1145/1275986.1275992

[33] B. Zheng, P. Deng, R. Anguluri, Q. Zhu, and F. Pasqualetti. 2016. Cross-Layer Codesign for Secure Cyber-Physical

Systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 35, 5 (May 2016), 699–711.

https://doi.org/10.1109/TCAD.2016.2523937

Received April 2017; revised May 2017; accepted June 2017

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 131. Publication date: October 2017.

https://doi.org/10.1145/1275986.1275992
https://doi.org/10.1109/TCAD.2016.2523937

	Abstract
	1 Introduction
	2 Motivation and Problem Statement
	3 Relaxing Integrity Requirements for Secure Control
	4 Modeling of Security-Aware Control Tasks
	5 Scheduling with QoC Requirements
	5.1 Mixed Integer Linear Programming Formulation for Schedule Synthesis

	6 Synthesis of QoC-Optimal Schedules
	7 Evaluation
	7.1 General Evaluation and Limitations
	7.2 Automotive Case Study

	8 Related Work
	9 Conclusion
	References

