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In many plants, damage by herbivores causes changes in the chemical, physi-
cal, and/or nutritional composition of the foliage (Fowler and Lawton 1985). Such
inducible changes in plant quality, often termed inducible defenses, have been
shown to affect growth or reproduction in individual herbivores adversely (see,
e.g., Bryant 1981; Schultz and Baldwin 1982; Karban 1983; Rhoades 1983a;
Karban and Carey 1984; Haukioja and Neuvonen 1985; Tallamy 1985; Faeth 1986;
Rossiter et al. 1988). These observations have led several workers to suggest that
inducible defenses may often greatly influence the dynamics of herbivore popula-
tions (but see Fowler and Lawton 1985). In particular, it has been argued that
inducible defenses cause crashes in some herbivore populations (Bryant 1981;
Rhoades 1985; Smith 1985) and cyclic fluctuations in others (Benz 1974; Fischlin
and Baltensweiler 1979; Fox and Bryant 1984).

Many of these arguments are based on models describing predator-prey inter-
actions in which it is assumed that changes in vegetation (prey) abundance are
responsible for changes in herbivore (predator) abundance (Rosenzweig and
MacArthur 1963; Hassell and May 1973; May 1973, 1974; Noy-Meir 1975; Caugh-
ley 1976; see also Crawley 1983). These models are not strictly appropriate,
however, since arguments about the role of inducible defenses in herbivore
population dynamics postulate that changes in plant quality, rather than in plant
abundance, are responsible for herbivore population fluctuations. Nevertheless,
this reliance on inappropriate models is understandable, since there has been
little quantitative examination of how, and under what circumstances, induc-
ible changes in plant quality influence the long-term dynamics of herbivore pop-
ulations (but see Fischlin and Baltensweiler 1979).

A general mathematical framework helps us understand how changes in plant
quality influence herbivore population dynamics (Edelstein-Keshet 1986). In this
paper we specifically focus on inducible plant defenses and address the following
questions. (1) Under what circumstances can inducible defenses by themselves
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regulate populations of herbivores? (2) How do inducible defenses interact with
other density-dependent agents to affect herbivore populations? (3) Can inducible
defenses by themselves cause populations of herbivores to fluctuate or cycle?
If so, under what conditions? (4) What influence can herbivores have on hetero-
geneity in the levels of inducible defenses within plant populations?

Two characteristics of an herbivore are of prime importance in determining the
type of model that is appropriate for a given system: mobility and selectivity.
Mobility determines the degree to which an individual herbivore can feed on
foliage from a large number of plants. Selectivity governs the degree to which an
herbivore preferentially feeds on plants of high quality. Mobility affects the way in
which herbivores perceive the vegetation (as a collection of plants with individual
traits or as a single population with average or aggregate attributes). Selectivity
influences the impact of herbivores on plants. (Low selectivity produces a uniform
impact on all plants, regardless of their quality, whereas high selectivity implies
that undefended plants suffer disproportionately from herbivory.) Although mo-
bility and selectivity are continuous, graded attributes, it is useful conceptually to
consider four extreme herbivore types: mobile and nonselective, mobile and
selective, non-mobile and nonselective, and non-mobile and selective.

Here we limit our analysis to herbivores that are mobile and nonselective.
Various herbivores are mobile in this sense, including snowshoe hares (Reichardt
et al. 1984), ungulates of the African savannas (Pennycuick 1975), various Or-
thoptera (Gangwere 1961; Otte 1975; Otte and Joern 1977), beetles (Kareiva 1982;
Turchin 1986), and even larvae of some Lepidoptera (Rausher 1979, 1980). More-
over, many herbivores are known to be nonselective with respect to plant quality
(Blais 1952; Perron et al. 1960; Perron and Jasmin 1963; Stark 1965; Gould 1978;
Faeth et al. 1981; Morrill 1982; Prestidge and McNeill 1983; Raupp and Denno
1984). We concentrate here on mobile nonselective herbivores because it is
for this group of organisms that a simplification of a previously described gen-
eral mathematical framework (outlined in Edelstein-Keshet 1986) is possible.
This simplification allows a purely analytic treatment and provides a standard
against which the other types of herbivores can be compared. (Examination of
these cases requires more-detailed assumptions and a greater reliance on numeri-
cal analysis.)

FORMULATION OF A MODEL

The model described in this section pertains to plant populations that may
consist of many discrete heterogeneous units. These units, which could be indi-
vidual plants, branches within plants, individual leaves, or other plant compo-
nents, may differ in their amounts of inducible factor. The variables of the model
are q, the level of inducible factor in a single unit of vegetation; ¢, time; p(q,t), the
amount or biomass of vegetation whose level of inducible factor is g at time ¢; Q,
the average value of g in the vegetation; V, the variance of g; h(f), the density of
herbivores per unit of vegetation at time ¢; H(¢), the total herbivore population at
time ¢; and P(¢), the total mass or amount of vegetation at time ¢.

Because the inducible factor and the herbivore density influence one another, a
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Fic. 1.—Top, An example of a hypothetical distribution of plant defenses, p(q,t) at some
time ¢. Bottom, The plant response function f(q, /) (defined by eq. 1a) plays the role of a rate
of motion of individuals along the g-axis. This function thus enters into the equation that
governs changes in the distribution (eq. 2).

single unit of vegetation can be described by two equations (see fig. 1):
dq/dt = f(q,h); (1a)
dhidt = g(q,h). (1b)

The first equation describes the change in the level of defenses of a unit of
vegetation whose current defense level is g and that currently harbors herbivores
at density 4. The second equation describes the change in the numbers of herbi-
vores on that unit.

Equation (1a) implies that, for the entire plant population,

oplot = —a(fp)loqg — op 2)

(Edelstein-Keshet 1986). This equation describes the change in the distribution of
inducible defenses in the vegetation over time. The first term in this equation
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reflects shifts in the units of vegetation along a g-axis, as governed by equation
(1a), and the second term reflects a loss of vegetation due to removal. Here, o =
o(q,h,P) is the removal rate per unit of the vegetation (i.e., from herbivory or
other causes); o can depend on herbivore density, plant defenses, and total plant
density. In the absence of herbivores, o can be nonzero to account for density-
dependent plant growth.

By definition, mobile nonselective herbivores consume foliage randomly with
respect to the vegetation state g. Consequently, it is expected that herbivore
growth rates, survival, and fecundity are determined by the average quality of the
vegetation. Moreover, mobility and nonselectivity of the herbivores implies that
at any given time, the density of herbivores should be roughly the same on all
units of the vegetation; that is, H(t) = P(t)h(t). Equation (1b) may thus be re-
written as

d(HIP)/dt = dhldt = g(O.h) = hR(D,h), 3)

where Q is the average value of g in the vegetation and R is the per capita
herbivore rate of increase.

The coupled equations (2) and (3) constitute a detailed model for the dynamics
of mobile herbivores interacting nonselectively with a heterogeneous vegetation.
The exact forms of the functions fand g depend on the details of particular plant-
herbivore systems. Even when these forms are given, however, numerical analy-
sis is usually needed in order to determine the behavior of this coupled system of
equations for the arbitrary functions o, f, and g. However, with the addition of
four biologically realistic assumptions, a further simplification of the equations
allows analytic solutions.

A. The rate of removal of plants is independent of g; that is,

g =aoh,P). 4)

Herbivores exhibit no preferences for undefended plants over defended plants.
Since we are considering here only nonselective herbivores, this assumption is
valid.

B. Herbivory induces the production of plant defenses, which decay spontane-
ously when herbivory diminishes. This assumption is based on Rhoades’ (1983b)
argument that inducible defenses are costly to a plant and are therefore not likely
to be maintained unless a need for them exists. It implies that the plant response
function f(g, h) has the general form

where § is the induction rate, which depends on herbivore density, and a is the
decay rate. (This expression is linear in the variable q. See the discussion of a
more general linear case, f(h,q) = fi(h) + f2(h)q, in Appendix A.)

C. New plant units are undefended and enter the population at a rate propor-
tional to the total plant biomass. This assumption implies that

birthrate of units = f(0,4)p(0,1) = BP, (6)

where B is the average per capita rate of production of new units of vegetation
(fecundity). (This boundary condition is discussed in greater detail in Edelstein-
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Keshet 1987.) Note that B need not be constant and that it can depend on plant
density, on the distribution of defenses, or on herbivore density.

D. The level of inducible factor cannot exceed some maximum, gmax.

In Appendix A we show that, subject to these conditions, equations (2)—(6) lead
to the following ordinary differential equations for P, Q, and h:

dP/dt = P(B - o), (7a)
dQ/dt = S(h) — Q(a + B), (7b)
dhldt = hR(Q,h). (7¢)

These equations describe, respectively, the dynamics of the total amount of
vegetation (or mass), the average level of inducible factor, and the density of
herbivores per unit of vegetation. Equation (7a) should not be misinterpreted as
exponential growth in plants, since the mortality (o) and the fecundity (B) may in
general be functions of P as well as 4. Moreover, since herbivore growth rate (R)
is independent of P (plant biomass is not a limiting factor to herbivores), equations
(7b) and (7c) can be solved independently of (7a).

It is also possible to determine how the variance of the level of defenses changes
over time. In Appendix A we demonstrate that this change is governed by the
equation

dV/dt = —V(Qa + B) + BO?, (®

where a and B, as defined in equations (5) and (6), are the rate of decay of plant
defenses and the average fecundity, respectively.
From equation (8) it follows that a steady-state variance is given by

Vis = BOL/(B + 2a). &)

One implication of this result is that, if over a period of time there is no
recruitment into the plant population (B = 0), the variance of the level of inducible
defenses decreases to zero; that is, all units in the vegetation eventually have
identical levels of expressed defense.

ANALYSIS OF THE MODEL

In this section we apply the general framework described by equations (7) to
specific cases in which plants have inducible defenses that affect the net herbivore
growth rate. In case 1, inducible plant defenses decrease the herbivore rate of
increase; no other density-dependent factors regulate the herbivore population. In
case 2, inducible defenses complement the effects of other density-dependent
factors. Finally, in case 3, the herbivore growth rate exhibits an Allee effect that is
modified by plant defenses. In all three cases we assume that total plant biomass
never becomes limiting to the herbivores (R is independent of P as in eq. 7c or P is
held fixed). We make this assumption because we are interested primarily in how
plant-herbivore interactions are mediated by the state rather than the amount of
the vegetation.

To use the model described by equations (7), particular forms must be specified
for the functions S and R. The general form of R is dictated by the particular case



792 THE AMERICAN NATURALIST

/rn p

Fi6. 2.—The rate of induction of plant defenses, S(h), is taken to be a saturating function of
herbivore density (see eq. 12). Kax is the maximal rate of induction, and &, is the level of
herbivory (i.e., density of herbivores) that leads to one-half of the maximal induction rate.

under consideration. The function S is determined by the biological properties of
the inducible defense. We make three minimal assumptions about these proper-
ties: first, defenses are not induced in the absence of herbivory; second, the rate of
induction of defenses increases initially as the intensity of herbivory increases;
and third, there is a maximal rate of induction. Some empirical support for the
second assumption (S increases with R) is provided by studies showing that the
level of defenses measured soon after experimental defoliation is proportional to
the amount of defoliation (Rossiter et al. 1988). Together, these three assumptions
imply that S(4) is an increasing function of 4, which levels off to a constant value
for large h:

S0) = 0, ds/dh >0, (10)
lim S(h) = constant. (11)

h—x
For the purposes of illustration we adopt for S(4) the form
Sh) = Knpaxh!(ky + h), (12)

which has the properties given in equations (10) and (11) (see fig. 2). Here K. is
the maximal rate of induction and k, is the level of herbivory that stimulates
induction at one-half the maximal rate. The results of the model depend only on
the properties of S summarized by equations (10) and (11), not on its detailed
functional form (Edelstein-Keshet 1987). For example, a sigmoidal induction
response for S(h) satisfies the same conditions and leads to essentially identical
results.

Case 1: Inducible Defenses Alone

Under what conditions can inducible plant defenses by themselves regulate an
herbivore population, and do persistent cyclic population fluctuations accompany
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such regulation? Consider a situation in which the herbivore population growth
rate is influenced only by the average level of plant defenses and not by any other
factor (R depends only on Q). This situation may be modeled using the following
equation for the per capita herbivore growth rate:

R(Q) = ro(1 — 0lq.), (13)

where rg is the intrinsic rate of increase for the herbivore in the absence of induced
defenses and gq. is the critical level of plant defenses that reduces the herbivore
growth rate to zero.

Substituting equations (12) and (13) into equations (7b) and (7¢) yields

dQldt = Kpaxh!(ky + h) — aQ, (14a)
dhldt = hro(1 — Qlq.). (14b)

As will be described below, the behavior of this coupled system of equations
depends on the values of certain dimensionless parameters: o = aqc./Kmax, Which
is the ratio of the induction time (g./Kmax) to the half-life of the defenses (1/a); and
r = roqe/ Kmax, Which is the ratio of the induction time to the maximal herbivore
doubling time (1/rq) (see Appendix B for a complete dimensional analysis of the
equations). Equations (14) can have one or two steady states; (0,0) is always a
steady state. A second, nontrivial steady state satisfies

hss = astkn/(Kmax - ast)7 (15)
which, together with dh/dt = 0, can be solved to obtain the corresponding value
Oss = 4c- | (16)

Figure 3 summarizes the properties of these equations on a Qh plane. Axes
on this graph are labeled in units of Q/q. and h/k,. The Q axis and the thin-line
curve represent loci for which dQ/dt = 0 (the Q null clines); the horizontal line
at Q/q. = 1 represents the locus for which dh/dt = 0 (the h null cline).

Steady states are located at intersections of the 4 null cline with one of the Q
null clines. There is always an intersection at (0,0). The second, nontrivial steady
state exists if @ < 1 or, in terms of original parameters, if 1/a > g./Knax. This
result implies that a steady state can exist only if the half-life of the defenses is
longer than the induction time.

A linear stability analysis (see Appendix C and Roughgarden 1979 for methods)
indicates that this steady state is always stable when it exists, regardless of the
value of the parameters. Increasing the maximum rate of induction (Ky,.x), de-
creasing the critical defense level (g.), or decreasing the rate of decay of the
defenses (a) each makes it more likely that the steady state will exist and thus
increases the likelihood that an induced defense will regulate the herbivore popu-
lation. Making k, large, or the difference in the denominator of equation (15)
small, tends to increase the absolute magnitude of the steady-state herbivore
density. If a is sufficiently small or, equivalently, if both ry and K. are large, the
populations may be seen to undergo transient (decaying) oscillations as they
approach a steady state. (See Appendix C for details.) However, there is no
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Fi16. 3.—Null clines, directions of motion, and typical solution curves are shown in the
hlko-Qlq. plane for case 1, in which the herbivores are regulated only by inducible defenses
in the vegetation (described by the dimensionless eqs. B1). There is a single steady state,
which is always stable if the null clines intersect in the positive quadrant. Note that for all
(nontrivial) initial starting values of h/k, and Q/q., the system approaches the steady state in
which plant defenses exert a regulating influence on the herbivore population. The approach
to steady state may be accompanied by oscillations of decreasing amplitude.

tendency toward persistent stable cycling given the above assumptions. The
approximate behavior of the solution curves are the thick-line spirals in figure 3.

The general conclusions about existence and stability of the steady state of this
system do not depend on the specific form of R assumed in equation (13). They
apply so long as the per capita herbivore growth rate, R(Q), does not depend on
herbivore density and so long as the equation R(Q) = 0 can be solved to obtain a
single explicit equation for the 4 null cline with O constant (see Edelstein-Keshet
1987).

Case 2: Inducible Defenses Augmenting Other Density-Dependent Factors

The preceding analysis indicates that although inducible defenses can by them-
selves regulate herbivore populations, they do not necessarily cause the regulated
population to fluctuate or cycle. In this section we address a different question:
can inducible defenses lead to persistent population cycles when the herbivore
population is regulated by some other agent? We also ask whether inducible
defenses acting in conjunction with the regulating agent lead to a significantly
lower equilibrium herbivore density than occurs when the regulatory agent acts
alone.

To address these questions, we consider the case of an herbivore population
that exhibits logistic density-dependent growth in the absence of induced de-
fenses. We assume that the carrying capacity of the habitat is negatively related to
the level of defenses of the host plant. This type of relationship might occur, for
example, if carrying capacity is determined by the abundance of predators,
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d@Q/dt = 0
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Fic. 4.—Null clines, directions of motion, and typical solution curves in the model for
logistic herbivores on vegetation with inducible defenses (case 2), given by the (dimen-
sionless) equations (B2). There is always a single stable steady state that the system ap-
proaches. Here, the herbivore population coexists with plants in which a steady level of
defenses is expressed. The herbivore density at this equilibrium is given by Ay, = [-A *
(A% + 4k)"?]/2, where A = k — 1 + l/a.

parasitoids, and/or pathogens whose effectiveness increases as the plant quality
declines (Price et al. 1980; West 1985). This assumption means that in our model,
carrying capacity declines as the average value of g increases. For the equations
of the model, we now use

dQ/dt
dhldt

Kpaxh! (ks + h) — a0, (17a)
hR(Q,h) = hrol(1 — Q/q.) — h/H,], (17b)

Il

where H, is the maximal herbivore carrying capacity (in the absence of plant
defenses, i.e., when Q = 0), q. is the critical level of plant defenses that reduces
the herbivore carrying capacity to zero, and all other parameters have their
previous meanings. A new dimensionless parameter associated with these equa-
tions is k = k,/Hy, which is the ratio of the herbivore density that leads to half the
maximal induction rate to the herbivore carrying capacity.

Figure 4 summarizes the nature of equations (17) on a Qk plane. Axes are scaled
in units of Q/q. and h/H,, and null clines are drawn with thin lines. Again, the
point (0,0) is a steady state of the equations. Note, however, that one of the 4 null
clines is now a straight line that passes through (0, 1) and (1,0). This line always
intersects the Q null cline at a nontrivial steady state (Qss, hs). This steady state
again satisfies equation (15) together with dh/dt = 0. The explicit value of A is
given by a cumbersome quadratic formula (see fig. 4), but the key feature, which
can be seen graphically, is that A is to the left of the value A/H, = 1. This means
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that the equilibrium herbivore density in the presence of plant defenses is lower
than in their absence.

Linear stability analysis indicates that this steady state is always stable, regard-
less of the parameters that appear in equations (17). Consequently, regardless of
the rate of induction or the herbivore growth rate, the system always approaches a
constant state, in which plant defenses are maintained at some elevated level Qg
and a residual herbivore population A coexists with the induced vegetation. The
level h¢ can be increased (i.e., made closer to its equilibrium value # = Hj in the
absence of defenses) by making k or « large (i.e., increasing k,, a, or g. or de-
creasing Knax).

The behavior of solutions to equations (17) is shown by the thick-lined spirals in
figure 4. The approach to a steady state may again be accompanied by decaying
transient fluctuations. Such fluctuations would be most likely if r is large. (See
Appendix D for details.) However, no parameter settings can bring about stable
cycles in this system.

As before, conclusions do not depend on the specific form of R. To obtain
similar results, it is only necessary to assume that the herbivore growth-rate
function R(Q, h) satisfies two realistic conditions, dR/6h < 0 and 6R/30Q < 0, and
to assume that the equation R(Q, ) = 0 can be solved to obtain Q as a continuous

function of 4, that is, O = F(h).

Case 3: Inducible Defenses and the Allee Effect

The preceding analyses might be taken to indicate that inducible defenses
cannot under any circumstance cause persistent (stable) oscillations in continuous
herbivore populations. Such a conclusion would be erroneous, however. Oscilla-
tions driven by the dynamics of inducible defenses can occur when the herbivore
population exhibits an Allee effect. Although such an effect may not be common
among herbivorous insects, cases have been reported. The classic example is bark
beetles, which often undergo large and sometimes cyclic population fluctuations.
In many species of bark beetles, populations must be above a critical density to
reproduce successfully in healthy host trees (Berryman 1976; Wood 1980). Other
examples have been described by Crawley (1983).

To represent an Allee effect, we assume that R increases to a maximal value r
at an optimal herbivore density H, and thereafter decreases for further increments
of h. As before, we assume that R decreases as the levels of expressed chemical
defenses increase in the plants. In mathematical form, these assumptions are
expressed as dR/0h = 0 for h = Hy, 8*R/oh* < 0 for h = H,, and 6R/6Q < 0 for
all 4. For technical reasons it is necessary to add the condition that the equa-
tion R(Q,h) = 0 can be solved to obtain Q as a continuous function of A, that is,
Q = #(h). The above conditions guarantee that the set of points R(Q,h) = 0
(which is the 4 null cline of the system) has the qualitative properties shown in the
humped curves in figure 5. A representative example of equations in which the
herbivore growth rate satisfies these conditions is

dQ/dt = Kpaxh!/(k, + h) — aQ, (18a)
dhldt = hR(Q,h) = hro[(1 — Q/q.) — n(1 — h/Hy)*]. (18b)
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In these equations w is a dimensionless Allee parameter; g, is the critical level of
plant defenses, at which the maximal herbivore reproductive rate is zero; and the
other parameters have the same meanings as in cases 1 and 2.

Equations (18) always have a steady state at Q/q. = 0 and h/H, = 0. The
“hump”’ in each herbivore null cline (fig. 5) means that it may intersect the plant-
quality null cline at up to two points. (See Rosenzweig 1969 for a discussion of a
similar result with an Allee effect in prey populations.) These intersections corre-
spond to additional steady states. It can be shown that all possible configurations
of the null clines fall into one of four subcases. These subcases, which are
characterized by the number and stability of their steady states, are determined by
the relative sizes of the dimensionless parameters as follows (see Appendix E for
stability analyses).

Subcase a. o < 1/(k + 1), » < 1. One intersection occurs to the left of the peak
in the herbivore null cline. This equilibrium is unstable (as is the equilibrium at
(0,0)). Poincaré-Bendixson global-stability theory predicts that a stable limit cycle
surrounds this equilibrium provided that the g null cline is steeper than the /4 null
cline at their intersection point. Herbivore population size and plant quality thus
undergo stable oscillations.

Subcase b. o > 1/(x + 1), » < 1. One intersection occurs to the right of the
peak in the herbivore null cline. This equilibrium is always stable, whereas the
(0,0) equilibrium is unstable. The system thus approaches a steady state charac-
terized by a constant and uniform herbivore density and plant quality.

Subcase c. o > 1/(k + 1), . > 1. Two intersections occur on opposite sides of
the peak. The equilibrium corresponding to the intersection to the left of the peak
is unstable; the right intersection is stable. Thus, depending on the initial state of
the system, either the herbivore population will crash (and the level of inducible
defenses will go to zero), or the system will approach a steady state characterized
by constant herbivore density and plant quality.

Subcase d. a < 1/(x + 1), » > 1. The null clines fail to intersect. In this case,
the only equilibrium of the system (at (0,0)) is stable. Herbivores are eliminated,
and defenses decay to uninduced levels.

This analysis indicates that the existence of an Allee effect coupled with
inducible defenses can produce sustained population cycles in an herbivore,
although it does not necessarily do so. Whether persistent fluctuations occur
depends on the relative magnitudes of various parameters that characterize the
plant-herbivore interaction (i.e., on the herbivore intrinsic rate of increase [r], the
optimal herbivore density [H], the maximal induction rate [K,..], and the level of
herbivory [k,] that produces a half-maximal induction rate) and hence on the
environmental factors that determine these characteristics.

For this case we have also carried out numerical simulations of the full detailed
model using equations (2) and (3) with o = 0, B = 0, and the functions fand R as
given by the right-hand side of equations (18). These simulations allow us to
follow changes in the distribution of inducible defenses in the vegetation. For
parameter choices that lead to a stable limit cycle in the averaged model (subcase
a), we found the behavior shown in the plot of p versus q in figure 6. It is evident
from these numerical results that the mean of the distribution fluctuates cyclically
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FiG. S (facing page and above).—Null clines and typical solution curves in the phase-plane
diagram of equations (B3). An Allee effect in the herbivore reproduction rate, shown here by
the parabolic curves, allows for a variety of null-cline configurations in the 4/Hy-Q/q. plane.
See the text for an explanation of the cases.

(approaching a stable limit cycle) while the variance decreases, as predicted by
equation (8).

DISCUSSION

To examine the dynamics of mobile nonselective herbivores, we have adopted a
general model described in detail elsewhere (Edelstein-Keshet 1986). This model
describes changes in herbivore abundance and in plant quality using a set of
differential equations. Although many temperate-zone herbivores and the plants
on which they feed are seasonal and hence are best modeled using difference
equations, others, as well as many subtropical and tropical species, grow and
reproduce throughout the entire year (Kirkpatrick 1957; Owen and Chanter 1972;
Ehrlich and Gilbert 1973; Wolda 1978, 1980; Karban 1986, 1987). These species,
which often fluctuate markedly in abundance (Kalshoven 1953; Brereton 1957,
Anderson 1961; Gray 1972; Wolda 1978, 1980), may be fairly well described as
populations continuous over time and are hence appropriate for a differential-
equation model.

The analyses presented above lead to several conclusions. While considering
the implications of our models, it should be kept in mind that they apply to
situations in which the herbivores are mobile and nonselective and in which
changes in both the herbivore population and the level of inducible defenses are
reasonably continuous in time.

1. Under a wide range of conditions, inducible defenses by themselves can
regulate herbivore populations. In particular, whenever the half-life of the induc-
ible factor is greater than the induction time, inducible defenses can generate
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Fi6. 6.—Computer-generated plots of the frequency distribution of plant defenses in the
vegetation for 14 successive time intervals. Shown here is p(q,t;) versus g fort; = 0, 1, .. .,
14 dimensionless time units, for the model consisting of equations (2) and (3) with the plant
and herbivore responses f and with R given by the right-hand side of equations (18). The
partial and ordinary differential equations were solved numerically along characteristics using
a predictor-corrector method. The initial distribution, represented by the curve at the right,
was Gaussian. Values of the parameters used were o = 0.2, b = 0.5, k = 2.5, r = 3.0. This
case corresponds to the situation in which a limit cycle exists in the //H,-Q/q. plane (see fig.
Sa). Thus, the mean value of g (Q), located at the peak of each distribution, undergoes
oscillations, first shifting to the right, then to the left, then to the right. The variance of the
distribution continually decreases, as predicted by the model. Eventually, the plant popula-
tion would be homogeneous in its level of defenses, which would continue cycling. The
herbivore density, also cycling between low and high values, is not shown in this graph.

sufficient density-dependent mortality to regulate an herbivore population. In
essence, our model says that increases in herbivore density lead to an increase in
the average level of defenses in the vegetation. This increased level of resistance
in plants in turn lowers the population growth rate of the herbivore, either directly
through toxicity or indirectly by increasing the susceptibility of the herbivores to
other density-independent mortality factors. (We do not imply or suggest that
inducible defenses are necessarily directly toxic, or that predators and parasites
are not important components of the entire regulatory process.)

Several factors influence the steady-state herbivore population density when it
is regulated primarily by inducible defenses. From equation (15) it follows that low
equilibrium herbivore populations tend to occur if the rate of decay of defenses is
low (low a), if the defense is effective or toxic at a relatively low level (low g.), if
the rate of induction of the defense by herbivores is high (high K.x), or if the
“sensitivity’’ of induction is high, that is, if the level of herbivory necessary to
trigger induction at a given rate is low (low k,).

2. Inducible defenses can significantly lower the size at which other density-
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dependent agents regulate the herbivore population. Inspection of figure 4 indi-
cates that the magnitude of this type of effect increases (4, decreases) as the null
cline corresponding to dQ/dt = 0 moves to the left and upward. Examination of
equation (15) in turn reveals that this occurs under the same condition favoring
low herbivore populations when density dependence is provided solely by in-
duced defenses. Equations (15) and (17) indicate that herbivore equilibrium levels
are influenced primarily by characteristics of the inducible defense. They do not
appear to be influenced by characteristics of the herbivore (e.g., intrinsic birth and
death rates, externally imposed carrying capacity [H,]), contrary to the suggestion
of Rhoades (1985).

A long-standing problem in ecology has been that of understanding how herbi-
vore populations, particularly those of insects, are regulated at levels that do not
cause appreciable defoliation of their host plants (i.e., why the world is green;
Hairston et al. 1960; Murdoch 1966; Ehrlich and Birch 1967; Slobodkin et al. 1967,
Crawley 1983; Strong et al. 1984). In general, ecologists have tended to favor the
explanation that predators, parasites, and climatic factors regulate herbivore
populations far below the level at which they may cause significant defoliation
(Southwood 1975; Strong et al. 1984). Some workers, however, have at least
hinted at the possibility that plant defenses may also provide such regulation
(Feeny 1975; Rhoades 1985). Conclusions 1 and 2 provide theoretical support for
such a possibility by indicating that inducible defenses acting alone or in conjunc-
tion with predators and parasites may maintain herbivores at low endemic levels.

3. Fluctuations in continuous herbivore populations caused by induced de-
fenses are rarely stable oscillations. By analogy with the simplest Lotka-Volterra
model of predator-prey population dynamics (Lotka 1925; Volterra 1926; see also
Emlen 1984), it might be expected that inducible defenses alone can lead to
persistent oscillations in both the mean level of inducible defenses and the size of
the herbivore population. In both case 1 and case 2, however, the models predict
convergence to stable equilibrium levels of inducible defenses and herbivore
density. The convergence may be accompanied by transient decaying oscillations,
but no stable cycles occur. In case 3, the persistent stable oscillations depend on
the assumption that the herbivore growth rate exhibits an Allee effect, and even
then, such cycles are found only with a restricted range of parameter values.

It has been proposed (Benz 1974; Fischlin and Baltensweiler 1979; Fox and
Bryant 1984; Rhoades 1985) that inducible defenses are responsible for the fluctu-
ations seen in some herbivore populations. Our model would lead to the conclu-
sion that such systems differ in some basic way from those considered here. Such
factors as seasonal or temporally discrete herbivore generations would certainly
lead to a greater propensity for oscillation whether or not induced defenses are
involved (see May and Oster 1976). Partial or total loss of mobility, increased
selectivity of undefended versus defended plants, or a more unusual induction
response in plants could be additional influences that lead to cycling. These pos-
sibilities bear further investigation.

4. Mobile nonselective herbivores do not maintain heterogeneity in the levels
of induced defenses. It has been suggested that herbivores may maintain hetero-
geneity in the quality of their host plants by causing variation in the expressed
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level of inducible defenses (Haukioja and Niemala 1977; Edwards and Wratten
1983; Schultz 1983). In our models for mobile nonselective herbivores, this is not
the case. Equation (9) indicates that when an equilibrium is reached for herbivore
population size and mean plant quality, the variance of quality also eventually
reaches an equilibrium. At this equilibrium, two forces act to change the variance
of the expressed level of inducible defenses. Plants (units of vegetation) with
relatively low levels of inducible defenses are stimulated by the herbivores to
produce higher levels of defenses (S(4) > aq). Plants with a relatively high initial
level of the inducible factors experience a net reduction in these factors through
the counteracting tendency for spontaneous decay of the defenses (S(h) < aq).
Together, these two processes would tend to reduce the variance of the level of
the defense about its mean value.

In contrast, the addition of new plants, with defenses not yet expressed, into the
population tends to increase the variance. A balance between these two forces
leads to the equilibrium variance given by equation (9). If there is essentially no
turnover in the plant population over a number of herbivore generations (B = 0),
as could occur when the plant is a tree or other long-lived perennial, then this
equilibrium variance is zero. In our models it is apparent that heterogeneity
persists only because it is restored by plant population recruitment. However, our
results depend critically on the assumption that herbivores are mobile and non-
selective (i.e., all parts of the vegetation experience the same level of herbivory).
Furthermore, the force that leads to a decrease in the variance is the spontaneous
rate of decay of the induced defenses (i.e., f/dg = —a < 0). This effect would
not necessarily exist in models for which a different dependence of f on g was
assumed.

From equation (9) it can be seen that increasing the rate of decay of the
inducible defense (a) tends to decrease the heterogeneity in the plant population.
By contrast, increasing the rate of turnover of individuals in the plant population,
as reflected by B, tends to increase the variance of the level of defense. Het-
erogeneity is also increased by any factor that increases the equilibrium mean
level of defense. When herbivore populations are regulated solely by inducible
defenses, the primary factor is the critical toxicity level of the defense (g.): the
higher this value, the higher the equilibrium level of g, and hence the greater the
variance of q. When herbivores are regulated by a combination of inducible
defenses and other factors, increasing heterogeneity in plant quality will be
brought about by decreasing g, the rate of decay of defense (a), or the sensitivity
of the defense (k,) and by increasing the rate at which it is induced (K ,.x).

SUMMARY

Recent empirical evidence suggests that many plants respond to herbivore
damage by producing inducible defenses. Although several workers have sug-
gested that inducible defenses may be responsible for fluctuations in some herbi-
vore populations, little formal justification for this suggestion exists.

We describe here a quantitative framework that may be used for understanding
the effects of inducible plant defenses on herbivore populations. In particular, we
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use procedures for modeling continuous, structured populations to examine the
dynamics of interactions between inducible defenses and mobile herbivores. Our
models indicate that inducible defenses can by themselves regulate herbivore
populations under a wide variety of conditions and that, in conjunction with other
regulatory agents (e.g., predators, parasitoids), they can significantly depress
herbivore populations. However, only under unusual conditions can inducible
defenses cause persistent fluctuations in herbivore populations. Finally, our
model suggests that herbivores cannot maintain heterogeneity in the level of
inducible defenses within a plant population. These conclusions may not apply to
sedentary or selective herbivores or to herbivores with discrete, nonoverlapping
generations.
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APPENDIX A
DERIVATION OF AVERAGED EQUATIONS

Several properties of the population are based on moments of the inducible defense
distribution, p(q,?). Assuming that g can take values only between 0 and some maximum,
Gmax, W€ have

the total plant popula- _ [amex _
tion size, P = A p(g,t)dq;

the average value of g ~ _ 1 [9m= .
in the vegetation, =% L P (q,0dq;
the second moment _ o ([ame
(average value of U=— J q°p(q,0dq;
2) P 0
q b
the variance of g in o_ 1 [T =9 . v)
the vegetation, V= FL (¢ - Orpla.ndg = U~ 0

P, 0, U, and V are_time-dependent variables. Furthermore, the notations Q = PQ,
U = PU, and V = PV denote the cumulative values of Q, U, and V. In the following deri-
vations, all integrals are taken from 0 to gmax and proceed from equation (2).

To find plant biomass, integrate both sides of equation (2):

o, _ _[(fp) , _ .
j'&dq— JTq_dq JU'qu,
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then, since ¢ = o(h, P) is independent of g by assumption A,
dapP _ d = —( Fy\dmax _
= Efpdq = —(fp) UIP'M

Now, if p(gmax,?) = 0 (assumption D) and fp = PB at g = 0 (assumption C),
dP/dt = PB — Po = P[B — o(h,P)],

which is equation (7a).
To find the average value of g, multiply equation (2) by g and then integrate:

o, _ _[,9Up) , _ .
jq;;;dq— Jq—gé—dq chpdq,

then,

d
d—? = dit J apdq = —(qfp)e™ + prdq - o(h,P) J apdq

(by assumption A for o). Below, we deal more generally with f, such that f(q,h) = fi(h) +
f2(h)q. For the case of inducible defenses, fi(h) = S(k) and f>(h) = —a. Then,

49 _ ﬁ(h)jpdq + foth) j apdq — o(h,P) J apda

= fitP + fL(WQ — o(h,P)Q.

Furthermore,

d0 _dQ _1dQ _ Q 4P
dt dt P P dt p? dt

= fith) + L(WQ — o(h,p)Q — (Q/P*)P[B — o(h,P)]
= fith) + £L(WQ - BQ = S(h) — Q(a + B),

which is equation (7b), the desired result.
To find the variance in g, multiply equation (3) by ¢* and then integrate both sides:

20p [ 20(fD) , 2
Jq 7= jq qu oq°pdq.

Then,

gstJ = % J a’pdq = —(q*fp)g™ + Jqupdq — o(h,P) J a’pdq

= 2fi(h)Q + Ul2f2(h) — a(h,P)].
Let U = U/P. Then,
dU _ d U _ 1 dU U dpP

adt At P P dt prdt
= 2fitQ + U2fa(h) — o(h,P)] — (U/P)P[B — a(h,P)]
= 2fi(hQ + Ul2f2(h) — B].

Because V = U — (2,
% = dUldt — 20d0ldt

2fi(h)Q + URf(h) — B] - 20[fi(h) + f2(h)Q — BO]
2Vf,(h) — VB + BQ?,
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which is equation (8). If B = 0 (no new plants enter the population),
dVidt = 2Vfs(h) = —24V.

APPENDIX B
DIMENSIONLESS MODEL EQUATIONS

Consider equations (14). Let 0 = QQ*, h = hh*, t = 1t*, where the asterisks indicate
dimensionless variables and the circumflexes indicate constant scale factors carrying the
dimensions. Equations (14) may then be written

d(QQ*) hh* A
= Kpax —— — aQQ*v
d(rr*) ke + hh*

d(;lh*)=A* 1 — O00%/
—d(‘l’t*) hh r0( QQ qc)~
Multiplying through by the constant factors t/Q and 1/h leads to
dQ*/dt* = L Kpax (———E—> - arQ*,
0 kolh + h*

dh*/dt* = h*rgr[l — (Q/q.)Q*].
Now choose the appropriate scale factors,
T=q/Kma» Q0 =qe =k,
and drop the asterisk notation to obtain
dQ/dt = h/(1 + h) — a0, (Bla)
dhidt = hr(1 — Q), (Blb)

where a = aq¢/Kmax, ' = roqc/Kmax (see eqgs. 14).
Similar methods lead from equations (17) to the dimensionless equations

dQldt = hl(k + h) — a0, (B2a)
dhl/dt = hr[(1 — Q) — h], (B2b)
for k = k,/Hy, and from equations (18) to the dimensionless set
dQ/dt = hl(x + h) — o0, (B3a)
dhldt = hr[(1 — Q) — n(1 — h)?]. (B3b)
APPENDIX C

StaBILITY CALCULATIONS, EQUATIONS (B1)

To avoid carrying numerous parameters, stability calculations are best performed on the
dimensionless equations. Accordingly, the Jacobian of equations (B1) at the nontrivial
steady state, where Q/q. = 1 and h/Hy = hg, is

B 1
J = (1 + hy)* |
—hgr 0
Thus,
B = trace(J) = —a <0,
vy = det(J) = hyr/(1 + hy)> > 0.
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In terms of dimensionless units, it is found that, for equations (B1), h;, = o/(1 — o). Since
B < 0 and v > 0, this steady state is stable. Decaying oscillations are obtained when p? <
4y, that is, when o? < 4ra(l — o). In terms of the original parameters, this inequality is

a < 4ro/(1 + 4roqc/Kmax) -

Making a small increases the likelihood that this inequality is satisfied. For large ry, the
right-hand side of this inequality approaches Kp.x/q.. Thus, making K., large also in-
creases the likelihood that this inequality is satisfied.

APPENDIX D
StaBiLITY CALcULATIONS, EQUATIONS (B2)

The Jacobian of equations (B2) at the nontrivial steady state, O/q. = Qs and h/Hy = hy,
can be expressed as

K
—a e
J = (k + hss) .
—hgr —hgr
Thus,
B =trace(J) = —a — hxr <0
and

v = det(J) = hyrla + k/(k + hg)?]1 >0,

implying stability. Decaying oscillations are obtained when B> < 4v, which, after some
simplification, leads to

(0 — hgr)? < dhgre/(k + hg)?.
As the value of hg approaches one, this inequality becomes
(@ — 1% < 4rel(k + 1)?,
which is most likely satisfied if r is large.

APPENDIX E
StABILITY CALCULATIONS, EQUATIONS (B3)

The Jacobian of equations (B3) is

—a __KkK
J = (k + h) .
—hr (1 — Q) — wh — 1)1 = 2hrp(h — 1)
Thus,
{—a 1/k ]
J(0,0) = ,
0 r(l — )
trace(J) = r(l — p) — a,
det(J) = —ar(l — p).

This implies that (0,0) is a saddle point whenever (I — w) > 0 and that it is stable when
(1 — p) < 0. (In subcases ¢ and d of case 3, the steady state (0,0) is stable.)
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A nontrivial steady state has the Jacobian

K
—a _

J = (x + h)?
—hr —2hrp(h — 1)

Thus,
trace(J) = —[a + 2hrpn(h — 1),
det(J) = hr[2ap(h — 1) + k/(k + h)*].

If h > 1, then clearly trace(J) < 0 and det(J) > 0, implying stability. If 4 < 1, the result
depends on the relative slopes of the two null clines at their point of intersection (i.e., at the
steady state). If the slope of the g null cline is less steep, the steady state is a saddle point.
Otherwise, it is an unstable node or focus. (See Edelstein-Keshet 1987 for proof of these
assertions in a general model with an Allee effect.)
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