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The National Oceanic Data Center (NODC) contains historical records from approximately 144,000

hydrographic stations in the North Atlantic. This data has been used by oceanographers to construct

maps of point estimates of pressure, temperature, salinity and oxygen in the North Atlantic (Levitus

(1994); Lozier et al. (1995)). Because data from any particular year are scarce, the previous maps

have been for time-averaged values only. In addition, the maps have been reported without

uncertainty estimates. This paper presents a Markov random ®eld (MRF) analysis that can generate

maps for speci®c time periods along with associated uncertainties.

To estimate changes in oceanic properties over time previous oceanographic work has focused on

differences between a few time periods each having many observations. Due to data scarcity this

poses a severe restriction for both spatial and temporal coverage of climatic change. The MRF

analysis provides a means for temporal modeling that does not require high data density at each time

period. To demonstrate the usefulness of a MRF analysis of oceanic data we investigate the temporal

variability along 24.5�N in the North Atlantic. Our results are compared to an earlier analysis

(Parrilla et al. (1994)) where data from only three time periods was used. We obtain a more thorough

understanding of the temperature change found by this previous study.

Keywords: Bayesian analysis
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1. Introduction

The National Oceanic Data Center (NODC) collects data from oceanographic expeditions

world-wide. This paper presents an analysis of ocean temperatures in the North Atlantic

Ocean using data collected between 1905 and 1988, the most recent available to us at the

time of writing. Fig. 1 shows the spatial locations of all stations ( places where

measurements have been made by oceanographic ships) in the North Atlantic. Fig. 2

shows the spatial locations and sampling dates of two data sets considered in this paper.

Clearly there is no sampling regularity in either time or space.

Although the data are spatially distributed in three dimensions, a two-dimensional

representation of the data is generally employed because properties in the ocean are, to

®rst order, distributed by the mean ¯ow and mixing processes along surfaces which are
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roughly horizontal. Speci®cally, oceanic ¯ow and its associated properties tend to ¯ow

along surfaces of constant potential density (the density of the water after volumetric and

heat effects due to compression have been removed), termed isopycnals (Lozier et al.
(1994)). Fig. 3 shows a cross section of isopycnals in the North Atlantic at 24.5�N latitude.

Isopycnals are not surfaces of constant depth; the isopycnals in Fig. 3 deviate from a

horizontal plane, with shoaling at the eastern and western boundaries indicating boundary

currents. In addition, isopycnals are not ®xed in space. Each isopycnal may move up and

down over time, re¯ecting changing oceanic conditions. Fig. 3 shows time-averaged

locations of the isopycnals at 24.5�N latitude, averaged over the approximately 80 years

represented in the NODC historical database.

Our work presents an analysis of a single isopycnal, the s1 � 32:00 kg/m3 surface (s is

calculated as s � �rÿ 1�61000, where r is the density of the water in cgs units. s1 is the

designation for potential density referenced to 1000 meters), which lies approximately at a

depth of 1000 meters in the midlatitudes of the North Atlantic. The physical properties of

ocean water at a given latitude and longitude are measured at discrete depths in the water

column. When a temperature ``measurement'' is desired on an isopycnal that was not

measured directly, the raw data are interpolated to that isopycnal. (Density is a function of

pressure, temperature and salinity, which are all measured.) Interpolation error is expected

to be small due to dense vertical sampling of the water column. For the purposes of this

paper, we absorb the interpolation error into our model's error term.

One important task for oceanographers is to estimate, along with a measure of accuracy,

the temperature at locations in space-time for which there are no measurements. One

Figure 1. Data locations in the North Atlantic.
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approach among oceanographers is exempli®ed by Levitus (1994) and Lozier et al. (1995).

The raw data are ®rst subject to quality control in which suspicious data points are deleted.

The remaining data points are then smoothed locally to produce a reconstruction of the

temperature surface which is often displayed as a contour map such as Fig. 4. The

reconstruction takes no account of time and is treated as a ``climatological mean'' despite

being heavily weighted to post 1955, as evident from the histograms in Fig. 2. From this,

and similar reconstructions of pressure, salinity and other physical properties,

oceanographers deduce the climatological ¯ow ®eld. A central improvement that our

Figure 2. Locations and dates of two data sets. (a): near the Mediterranean; (b): 20�±30�N
latitude.
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analysis will provide is a climatological mean for each time period separately and the

ability to construct a climatological mean in which all years receive appropriate weight.

See Section 4.1 for illustration.

Another important task for oceanographers is to characterize temporal changes in the

Figure 3. Isopycnals in the Atlantic Ocean along 24.5�N latitude. The top of the ®gure is

the ocean surface; the black mass at the bottom is the ocean ¯oor; the vertical scale is depth

in meters; the horizontal scale is degrees of longitude.

Figure 4. Ocean temperatures on the s1 � 32:00 isopycnal estimated from post-1974

data, each point equally weighted.
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ocean. Because of data scarcity temporal change is often assessed from repeated

hydrographic sections, a recent example of which is the study by Parrilla et al. (1994). In

this work transects across 24.5�N in the North Atlantic, taken in the years 1957, 1981 and

1992, were examined for changes in the temperature of the ocean waters. Importantly,

their analysis used only the data from these three years and only along this one cross-

section. Our work reanalyzes the temperature change along 24.5�N, incorporating

information from neighboring latitudes and time periods. Our result con®rms the change

found by Parrilla et al. (1994). However, our more detailed modeling allows us to

reconstruct the time series of temperature along 24.5�N and to see the observed

temperature change in the context of the entire time series. Further, by examining

isopycnals as well as isobars (surfaces of constant depth), we can begin to see some of the

physical reasons for the temperature change. These issues are elaborated in Section 4.2.

Our overall goal is to provide estimates of observable ocean properties; this paper

reports on temperature. In essence, we are using a Markov random ®eld analysis to

estimate the ocean's temperature on a regular grid in space and time from irregularly

distributed measurements. Our premise is simple, namely, that our best estimate of an

ocean temperature at a gridpoint derives from temperature measurements taken near that

gridpoint in both space and time. Although our use of isopycnal surfaces involves a priori

knowledge of the ocean state, we otherwise, purposely, use no physical dynamics in our

model. Although it has become common to use observational data in conjunction with

dynamical models to predict the ocean ¯ow ®eld (see, for example, Miller (1986),

Fukumori & Malanotte-Rizzoli (1995) and Cane et al. (1996)), our goal is to provide an

estimate of the temperature ®eld, not the ¯ow ®eld.

A logical physical constraint on our temperature estimates could be a mathematical

statement of the conservation of heat. However, the use of this conservation statement

requires knowledge of the ¯ow ®eld and knowledge of the relative roles of advection (the

transfer of a property by the large-scale ¯ow ®eld) and diffusion, both of which are

imperfect at best. A later extension could be to incorporate conservation principles as a

constraint on the estimated temperatures. But our analysis here is useful as it stands. The

high data density of the North Atlantic makes our analysis more plausible in that there is a

plentitude of data both in space and time in this heavily-sampled basin. In a basin where

data coverage is sparse, such as the South Atlantic or South Paci®c, the use of additional

constraints may not be a choice, but a necessity. In sum, we are essentially creating an

improved climatology which could, in turn, be used in data assimilation schemes to

produce an improved estimate of the ocean ¯ow ®eld. In this paper, however, we con®ne

ourselves to analyzing the temperature ®eld itself.

2. The model

Our aim is to develop a model that accounts for spatial variability and that yields useful

estimates of posterior uncertainty. We adopt a Markov random ®eld (MRF) (Besag (1974))

model. The essence of MRF modeling is embodied in the following ideas.
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(1) Every site i (in our application i is an ordered triple � j; k; l� indexing latitude,

longitude and year), has a set of neighboring sites N�i�. If i0 [N�i� then i [N�i0� and we

write i*i0.

(2) For every site i, let ti be the value of the ®eld (temperature, in our application) at

that site. The conditional ( prior or posterior) distribution of ti given the ti0 's at all other

sites depends only on those in N�i�. That is,

p�tijtÿi� � p�tijfti0 : i*i0g�

where tÿi is the set of all temperatures except the i-th.

(3) The set of conditional distributions in item 2 completely determines (under fairly

general conditions) the joint distribution of t.

A more complete description can be found in Besag (1974), which ®rst set out the MRF

general theory and the conditions mentioned in item 3 above. A discussion of modeling

and computational issues can be found in Besag et al. (1995), which illuminates the close

connection between Markov Chain Monte Carlo (MCMC) computational methods and

MRF spatial modeling and provides an excellent review of the two subjects. There is a

large body of work using Markov random ®elds for spatial modeling. We mention here two

recent papers, Waller et al. (1997) and Sun et al. (1997), which are concerned with spatial

modeling of disease rates.

An apparent disadvantage of Markov random ®eld modeling for data that arises at

arbitrary locations in space and time is that the MRF requires dividing the domain into

bins. An alternative that avoids binning is kriging, or one of its generalizations, which

requires estimating or modeling a covariance function. See, for example, Handcock and

Wallis (1994). But that disadvantage is outweighed, for us, by the advantage of the Markov

propertyÐeach ti is modeled as a function only of its neighbors. But before explaining the

MRF prior in more detail, we examine exploratory plots of the data.

Figs. 5 and 6 are coplots of temperatures on the s1 � 32:00 surface in the Mediterranean

region (Fig. 2a) as a function of longitude for a ®xed range of latitude (Fig. 5) or as a

function of latitude for a ®xed range of longitude (Fig. 6). The main feature in the region is

a ridge of high temperature running roughly west-southwest from the Portuguese coast.

This ridge is the so-called ``Mediterranean tongue'' caused by warmer Mediterranean

waters ¯owing into and mixing with the colder open Atlantic waters. Fig. 4 shows the Med

tongue on a contour plot.

The temperature ®eld in this region can be well approximated as locally linear, except

possibly at the top of the ridge. Even there, if the bins are small enough, a locally linear

approximation will likely work well. A local regression model (loess in Splus)

estimates the residual standard error as 0.4044 in a locally quadratic ®t and 0.4104 in a

locally linear ®t, con®rming that the quadratic ®t offers only modest improvement at best.

Our MRF model corresponds roughly to a locally linear ®t. In addition, none of the

inferences presented in this paper depend crucially on the exact shape or location of the

ridge.

Similar plots of temperatures on the s1 � 32:00 surface in the 24.5�N region (Fig. 2b)

suggest even more strongly that a locally linear model is adequate.
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Temperature measurements are taken at irregularly spaced locations in three

dimensions: latitude, longitude and time. To implement the Markov random ®eld, we

impose a rectangular grid de®ned by J, K and L evenly-spaced bins of latitude, longitude

and time, respectively.

Figure 5. Coplot of temperature by longitude given latitude in the Mediterranean region.

The given panel is at the top; the dependence panels are those in the 263 array. On each

dependence panel, temperature is graphed against longitude for those observations whose

values of latitude lie in one of the intervals shown on the given panel. Moving from left to

right through the given panel corresponds to moving from left to right and then bottom to

top through the dependence panels (Chambers and Hastie (1992)).

A MRF spatio-temporal analysis 255



Let Nj;k;l denote the number of measurements in bin � j; k; l�, yj;k;l;n (for

n [ f1; 2; . . . ;Nj;k;lg) be the n-th such measurement and N:
P

j;k;l Nj;k;l. Let tj;k;l denote

the temperature in bin �j; k; l�, averaged with respect to time and space. In symbols,

Figure 6. Coplot of temperature by latitude given longitude in the Mediterranean region.

The given panel is at the top; the dependence panels are those in the 263 array. On each

dependence panel, temperature is graphed against latitude for those observations whose

values of longitude lie in one of the intervals shown on the given panel. Moving from left

to right through the given panel corresponds to moving from left to right and then bottom

to top through the dependence panels (Chambers and Hastie (1992)).
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tj;k;l �
Z

bin j;k;l

ttrue
x;y;z dx dy dz

where ttrue
x;y;z is the true temperature at location �x; y; z�. Given t:ftj;k;lg and a data standard

deviation sD, we model the data as

yj;k;l;n*N�tj;k;l; �sD�2�

with the yj;k;l;n's being conditionally independent given �t; sD� and where sD accounts for

measurement error, within-bin variation and vertical interpolation error. Based on our

analysis of the historical data it is apparent that measurement and interpolation errors are

ignorable compared to within-bin variation. We take a ¯at prior for the data precision

tD:�sD�ÿ2
, independent of the other parameters, because, with our large sample sizes the

posterior from the ¯at prior will approximate well the posterior from any reasonable

proper prior.

Our belief that temperature varies smoothly from place to place is modeled through a

Gaussian pairwise difference Markov random ®eld prior on t, which can be thought of as

locally linear, or ``the least squares ®t of a plane to the values at the . . . neighbors'' (Besag

and Kooperberg (1995, p. 744)) and having ``appeal if �t� is known to be a smooth surface''

(Besag (1989, p. 398)), as we believe it is. For each pair of neighbors ti and ti0 (i and i0 are

triples in which one coordinate has been incremented or decremented by 1.) we introduce a

``precision'' ti;i0 � ti0;i40 and include in the prior the term

eÿ
1
2
ti;i 0�tiÿti 0�2 :

The prior conditional mean of ti given tÿi and the ti;i0 's is a weighted average of the ti0 's in

N�i�, with weights given by the ti;i0 's.

The usual formulation is that the ti;i0's are either a ``set of speci®ed nonzero weights''

(Besag et al. (1995, p. 11)) or else all the same; i.e., ti;i0 � t for all �i; i0�, as in, for

example, Waller et al. (1997) through their parameter l ( p. 610). But we are not prepared

to specify the weights; we want to give them a prior. And the ``lower-order homogeneous

schemes, . . . , have been speci®cally designed with local stochastic interaction in mind; . . .
it is unreasonable to apply them in situations where there is evidence of gross

heterogeneity over the lattice'' (Besag (1974, p. 205)). In our case, we don't have a priori
evidence of gross heterogeneity, but we do want to allow for its existence by permitting the

ti;i0 's to vary spatially. We accomplish that by including the ti;i0 's in the Markov random

®eld.

The ti;i0's are of three types according to whether i and i0 differ in the latitude, longitude

or time coordinate. Within each type, we model spatial variation of the ti;i0's by adding to

the prior the terms

eÿ�cjti;i 0ÿtj; j 0j

for every neighboring pair �ti;i0 ; tj;j0 � where �c is either �lat, �lon or �time.

Let s be the collection of ti;i0 's. Conditional on n:��lat; �lon; �time�, the prior density is
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p�tD; t; sjn�! k�n�eÿ1
2

P
ti;i 0�tiÿti 0�2

� eÿ�lat

P
jti;i 0ÿtj; j 0j

� eÿ�lon

P
jti;i 0ÿtj; j 0j

� eÿ�time

P
jti;i 0ÿtj; j 0j

where k�n� is a constant that depends on n and where the ®rst summation is over all

neighboring pairs of temperatures and the second, third and fourth summations are over all

neighboring pairs of ``precisions'' in the latitude, longitude and time directions,

respectively. The use of absolute values of the pairwise differences between t's is for

computational convenience, as explained on page 19.

Remark This prior is improper on tD, and also on t because it only addresses pairwise

differences between the ti's and not their overall level. See Besag (1989) for further

comment. For ®xed ti's (with ti ÿ ti0 6� 0), the prior is proper on s because the ®rst term

acts as independent exponential priors for the ti;i0 's.

In the prior, the overall level of s is not well determined. But in the posterior the ti's will

be known approximately and will serve to pin down the overall level of the ti;i0's and their

pairwise differences.

Remark Allowing the t's to vary arbitrarily in �0;?� is, as far as we know, a

methodological innovation.

Remark If bins are of equal length in the latitude and longitude directions then one may

wish to enforce �lat � �lon.

We have described a joint MRF prior for t and s. Each t, except for those on the

boundary, has twelve neighbors: six other t's and the t's that join them. Each t, except for

those on the boundary, has eight neighbors: the two t's that it joins and the six nearest

neighbor t's.

3. Posterior calculations

The posterior is proportional to

p�tD; t; sjy; n�

! k�n��tD�N=2e
ÿ1

2
tD
P
j;k;l;n

�yj;k;l;nÿtj;k;l�2ÿ1
2

P
i*i0

ti;i 0�tiÿti 0�2ÿ
P

c

�c

P
i;i0*j; j0

jti;i 0ÿtj; j 0j
�2�

and can be sampled by Markov Chain Monte Carlo (MCMC) methods. In Equation (2) the

second summation is over all neighboring pairs ti*ti0 ; the third is over all neighboring

pairs ti;i0*tj;j0 . See Besag et al. (1995) for a recent review of the method. We chose the

particular MCMC algorithm known as Gibbs sampling (Gelfand and Smith (1990)) which

Besag et al. (1995) and Sun et al. (1997) agree is well suited to this problem. Gibbs
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sampling requires random variate generation from the so called complete conditional

distributionsÐthe conditional distributions of each variable given all the others. For our

model these are

p�tDjy; n; t; s�: This density is proportional to �tD�N=2eÿ
1
2
tD
P
�yj;k;l;nÿtj;k;l�2 and is therefore

the G�1� N=2; 1
2

P�yj;k;l;n ÿ tj;k;l�2� density.

p�tjy; n; tD; s�: This density is proportional to

eÿ
1
2
tD
P
�yj;k;l;nÿtj;k;l�2ÿ1

2

P
ti;i
0�tiÿti

0�2

and is therefore multivariate normal. Instead of drawing directly from the J6K6L
dimensional density we draw from the univariate conditional distribution of tj;k;l given

all the other temperatures.

p�sjy; n; tD; t�: Here again we draw from the distribution of ti;i0 given all the other t's. The

density is proportional to

eÿ
1
2
ti;i0 �tiÿti0 �2ÿ�c

P
jti;i0ÿtj;j0 j:

Let t1 � t2 � . . . ;� tm be the ordered values of the tj;j0's that are neighbors of ti;i0 .

Then the distribution is piecewise exponential on the intervals

f�0; t1�; �t1; t2�; . . . ; �tm;?�g and hence available for sampling.

The use of absolute values in the second term in the exponent is for computational

convenience. It may appear that other choices are equally convenient but, for example,

the use of squares would give a quadratic exponent ti;i0 �ti ÿ ti0 �2 ÿ �c

P�ti;i0 ÿ tj;j0 �2
and hence a conditional Normal distribution with mean �2�c

P
tj;j0 ÿ �ti ÿ ti0 �2�=2m�c

which may be arbitrarily far below 0. We judge such conditional distributions to be

inappropriate for parameters restricted to �0;?� and so choose the absolute value

alternative. While this choice does have implications for the smoothness of the t ®eld

(see Besag et al. (1995, pp. 11, 12) and references therein for discussion) we expect

them to be unimportant as s is not a parameter of interest.

To assess convergence of the sampler we monitored four parameters of primary

interestÐaverage temperature in each of four time periods along the 24.5� transect from

Africa to the Bahamas (details in Section 4.2)Ðand also, following Waller et al. (1997),

``a representative subset (of size 24) of all the parameters''. In each case we used the

values at every 500th iteration of the Gibbs sampler from the 10,000th through 60,000th.

The run-time on our Digital AlphaStation 200 is about 3 to 4 days. CODA (Convergence

Diagnosis and Output Analysis Software for Gibbs sampling output) (Best et al. (1995))

was used to calculate convergence diagnostics. Of the 4 monitored parameters of interest,

all passed the Geweke test (with an initial bin fraction of 30%) and the Heidelberger and

Welch test. Of the 24 other monitored parameters only one had a Geweke convergence

diagnostic (Geweke (1992)) Z-score larger than 2 and one failed the Heidelberger and

Welch (Heidelberger and Welch (1983)) test.
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4. Inferences

4.1 The Mediterranean tongue

Fig. 7(a) shows a reconstruction of the temperature ®eld on an isopycnal in the Med

region, done using the methodology described in Lozier et al. (1995). The reconstruction

is called a ``climatological mean'' even though it weights all points equally and therefore

overrepresents years with many data points. Unlike the Lozier et al. (1995) methodology,

our analysis yields a posterior for each year separately. Figs. 7(c) and (d) show our

posterior mean reconstructions for two of the L � 17 time periods. With these posteriors in

hand, one can construct climatological means in which time periods are weighted

appropriately, perhaps equally or perhaps inversely by their posterior standard deviations.

Fig. 7(b) shows one such reconstruction. It shows, for each (latitude, longitude) pair, the

Figure 7. Reconstructions of the temperature ®eld near the Mediterranean Sea. The dots

in panels (c) and (d) are measurement locations.
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average over time of the posterior mean temperature in each (latitude, longitude, time) bin,

or, in symbols,X
l

t̂j;k;l=L

where t̂j;k;l is the posterior mean. In this case, there is little change through time, so Fig.

7(b) is similar in most respects to Fig. 7(a).

One difference between our analysis and that of Lozier et al. (1995) is that our

reconstructions of different time periods have different posterior standard deviations. For

example, the posterior standard deviations of the temperatures contoured in Fig. 7(b) is

about 0.2�; for Fig. 7(c) they range from about 0.4� to about 0.6�; and for Fig. 7(d) they

range from about 0.2� to about 0.4�. Another difference between Fig. 7(a) and our

reconstructions is the slope of the eastern end of the 8� contour. The southward slope in our

reconstructions is an edge effect from our model. To make serious inferences in that region

we would modify the model.

4.2 From Africa to the Bahamas

Parrilla et al. (1994) report on data taken along a transect of the Atlantic at latitude 24.5�N
in 1957, 1981 and 1992. They

use the temperatures from all three surveys to show that the waters between 800 and

2,500 m depth have consistently warmed over the past 35 years and that the warming

since 1957 is remarkably uniform across the east-west extent of the North Atlantic. The

maximum warming, found at 1,100 m depth, is occurring at a rate of 1�C per century.

The observed patterns of decadal-scale changes in ocean temperature are thus powerful

signatures that can help us to understand the nature and causes of climate change.

Parrilla et al. (1994) ®nd a warming of just over 0.1�C from 1957 to 1981, at around

1000 m depth, averaged across the transect. The 1957 and 1981 data are displayed in the

®rst and last plots in the middle row of Fig. 12; the 1992 data have not yet been sent to the

NODC and are not available to us. We use the Markov random ®eld model to reanalyze the

temperature change from 1957 to 1981 and address these questions:

(1) Do we observe the same warming as Parrilla et al.?

(2) Do results differ if the temperature is analyzed along an isopycnal rather than an

isobar, as used by Parrilla et al.? (An isobar is a surface of constant pressure, or

equivalently, constant depth).

(3) How do the 1957 and 1981 data ®t into a time series?

Because Parrilla et al. report warming on surfaces of constant depth, we answer the ®rst

question by running our model on data from the isobar at 1000 m depth. Each iteration of

the Gibbs sampler gives a temperature realization in each bin. Within each iteration,

averaging the bins at 24.5�N for 1957 and 1981 separately, and then subtracting, yields a
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realization from our posterior distribution for the average temperature change. Fig. 8(a)

shows the data collected in 1957 and 1981 between 24�N and 25�N. Except for two 1957

outliers, there is an apparent warming in the western basin along this surface. Fig. 8(b)

shows a histogram of 100 realizations from the posterior for the average temperature

increase along the transect. The mean temperature increase is 0.19 degrees; 93 of the

realizations had temperature increases, 7 had decreases. Parrilla et al.'s reported 0.1�C
warming is well supported by our posterior (as is any amount up to about 0.35�C). Thus the

answer to question 1 is that we do see the same warming as Parrilla et al., at least

qualitatively, although not precisely in all details.

As explained in Bindoff and McDougall (1994) and Bryden et al. (1996), there are two

mechanisms to explain a warming (or any property change) at a particular depth in the

ocean. Each mechanism has a different implication for the way in which the ocean is

changing. Recall that the ¯ow (and ¯ow of heat) is along isopycnal surfaces. These

surfaces are not ®xed at a set depth, rather they may shoal or deepen depending on the local

Figure 8. The 24.5�N transect. (a): the data; (b): posterior of temperature change from

1957 to 1981.
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dynamics. If a warming at depth is observed one mechanism that can explain the change is

that the depth of a particular isopycnal remained constant with time but the properties on

the isopycnal changed. For the case at hand, the isopycnal in 1981 might be at the same

depth as in 1957 but, at a given latitude and longitude, it might be warmer and saltier. The

other mechanism is that the temperature of the isopycnal might remain constant but its

depth may change over time. For the case at hand, the isopycnals in the intermediate

depths of the North Atlantic may have become deeper than they were in 1957, thus

bringing warmer waters to any ®xed depth. Of course, these explanations are not mutually

exclusive.

To distinguish between these possibilities we run our analysis on the isopycnal given by

s1 � 32:00, which is approximately at 1000 m depth near 24.5�N. (See Fig. 3.) This

analysis, shown in Fig. 9, paints a different picture.

The posterior mean temperature increase, to two signi®cant digits, is 0 and only 46 of

the 100 realizations show any increase at all, suggesting that much of the warming along

Figure 9. The 24.5�N transect. (a): the data; (b): posterior of temperature change from

1957 to 1981.
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the isobar is explained by a deepening of the isopycnal. Fig. 10(a), a plot of pressure

(equivalently, depth) versus longitude, supports this view, showing that the 1981 isopycnal

tends to be deeper than the 1957 isopycnal, as suggested by Joyce and Robbins (1996) and

Bryden et al. (1996). This phenomenon is in accord with the supposition that the

temperature contours (Fig. 10(b)) tend to meander north and south on time scales of less

than a year. This horizontal meandering is manifest as a vertical meandering of the

isopycnals past a ®xed depth.

Finally, to answer question 3, we plot the posterior mean of the average transect

temperature on both the isobar and the isopycnal in Fig. 11. We see that the average

temperature of the isopycnal is relatively stable compared to the average temperature of

the isobar, further supporting the idea that temperatures on the isopycnals have remained

relatively constant but that the isopycnals meander vertically, causing the apparent

temperature ¯uctuations on the isobar. The ®gure also indicates that Parrilla et al. were a

bit unlucky in analyzing data from 1957, one of the coldest years since 1946. The result is

that a more typical subsequent year, such as 1981, appears to be part of a warming trend.

This illustrates, perhaps, the most important advantage of our analysis over traditional

oceanographic methods: the ability to put the 1957 and 1981 data into a more complete

Figure 10. The 24.5�N transect. (a): pressure on the isopycnal; (b): temperature contours.
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time series and to see that the 1957 to 1981 temperature increase may simply be due to

natural decadal scale variability.

5. Model assessment

5.1 Model adequacy

To check model adequacy we see how well it matches the data. Fig. 12 shows real data and

posterior simulations for three latitudes and three time periods in the region of interest.

The lines indicate the posterior mean and the central 80% of the posterior for the true

temperature. Note in particular that the presence of within-bin variation means that these

lines are not 80% prediction regions. To get prediction regions one must also account for

the data standard deviation sD, whose posterior distribution is concentrated between 0.3

and 0.4�C.

Figure 11. Time series plots of the average temperature along the 24.5�N transect for the

isobar at depth 1000 m and the isopycnal s � 32:00.
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Our model is perhaps overly simplistic in the way it uses local information. Three points

in particular are worth noting.

(1) We specify E�yj;k;l;njt� � tj;k;l. There might be some advantage to considering the

exact location of the jkln-th observation within the jkl-th bin and modeling its mean as a

function of tj;k;l and the neighboring temperatures.

Figure 12. Simulated and measured temperatures as a function of longitude. Lines are

10th, 50th and 90th percentiles of simulations from the posterior.
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(2) We use rectangular bins. There might be some advantage to hexagonal bins.

(3) We use a nearest neighbor scheme, corresponding to a locally linear ®t. There might

be some advantage to using more neighbors to yield a more ¯exible local ®t.

For the Med region, where we used spatially square bins, Fig. 13 displays the absolute

values of the residuals (yj;k;l;n minus the posterior mean of tj;k;l ) as a function of distance

from the spatial center of the bin. The residuals are no larger nearer the edges of the bins

Figure 13. Residuals in the Med. tongue region as a function of distance from bin center.

a) scatterplot. b) boxplots. The groups are quintiles based on distances from the centers of

the bins.

(a)

(b)
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than near the centers. There is no evidence, therefore, that much is to be gained by more

elaborate modeling of the mean.

5.2 Some � considerations

Up to now we have treated n as a ®xed parameter. A full Bayesian analysis would require

solving for k�n�, which is problematic, so we chose instead initially to adopt a reasonable

value for n and then examine sensitivity of inferences to that choice. The value of n
determines the amount of smoothing in the three directions. To get an initial value we

focussed on the data in Fig. 2(a).

Fig. 4 shows a contour plot of temperature in the Mediterranean region calculated from

the post-1974 data in the manner of Lozier et al. (1995). Because of the large number of

points �N � 1638� the contour plot gives a fairly accurate picture. We believe the Med

tongue was also present in the early part of the century and therefore chose an initial value

of n to yield what we believe to be a sensible posterior contour plot for the 1910±1914

temperaturesÐone in which the tongue is present, but slightly less well de®ned (N � 105

in 1910±1914) than in Fig. 4.

Fig. 14 shows contour plots of posterior means for temperature in 1910±1914 each

constructed from a different value of n. In each case, because we use spatially square bins,

we take �lat � �lon. To begin, we note that the ridge of the Med tongue is very similar in all

the reconstructions, running from a maximum of about 11�C to a minimum between 8.5�C
and 9�C. The main differences between the reconstructions lie in the northwest and

southwest corners where reconstructions (a) and (d) are warmer than (b) and (c).

Reconstruction (a) is warm in those corners because �time is large, which allows more

¯exibility in time, which in turn allows more spatial smoothing in the 1910±1914 time bin.

Reconstruction (d) is warm due to the small values of �lat and �lon. Based on the

oceanographic expertise of Lozier, we judge reconstructions (a) and (d) to be too warm in

those corners, whereas reconstructions (b) and (c) appear to us to be sensible posteriors. So

we choose an intermediate initial value of n � �0:5; 0:5; 0:00001�. We emphasize that we

are not performing an empirical Bayes analysis and will not simply choose a single value

of n. Rather, we make a careful analysis using an initial value of n and then check how

sensitive our inferences are to that value. In Section 4.2 the initial value of n is adjusted to

account for a change in bin size.

Since one of the key questions for oceanographers is the amount of warming on the

isopycnal, we direct our sensitivity analysis to the histogram in Fig. 9. Fig. 15 shows

posteriors, similar to Fig. 9(b), from four different analyses. Fig. 15(a) is, in fact, the same

as Fig. 9(b). In each analysis we began with a 10,000 cycle burn in and then kept every

500th cycle of the next 50,000. Our conclusion is that the main result is insensitive to

reasonable values of n and binsize: there is very little evidence of warming on the

isopycnal and the warming on the isobar is due primarily to deepening of the isopycnal.

5.3 Other models

The value of our analysis depends on whether our numerical calculation of the posterior

adequately captures the main features of the data set. It may fail to do so because either our
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model or our calculations have led us astray. As a check on the main features of the

posterior, we have also analyzed the 24.5�N isopycnal data using the local regression

function loess () in S-Plus. We ®t both a locally quadratic model and a locally linear

model. For each model we computed the ®tted temperature and standard error at latitude

24.5�N, at thirteen longitudes from 15�W to 75�W, in 1957 and 1981. We then subtracted

the 1957 temperatures from the 1981 temperatures and averaged across the longitudes. We

computed an approximate standard error by taking the square root of the sum of squares of

the pointwise se's. The average ®tted temperature changes are 0:12�+0:14�, and

0:07�+0:08�, respectively (mean+ se) and should be compared to the histogram in Fig.

9. We also used the two loess ®ts to predict the average transect temperature in 1946, 1948,

. . . , 1984. Those predictions are plotted in Fig. 16 along with the posterior mean from the

Figure 14. Contour plots of the posterior mean temperature in 1910±1914 using different

values of n. The dots are locations of measurements taken between 1910 and 1914.

�lat �lon �time

(a) 0.5 0.5 0.02

(b) 0.5 0.5 0.0001

(c) 0.5 0.5 0.000001

(d) 0.05 0.05 0.000001
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MRF model. While not agreeing in detail, the analyses agree suf®ciently well that we have

no reason to mistrust either the MRF modeling or posterior calculations.

6. Summary

We have presented an analysis of ocean temperatures using a new Markov random ®eld

spatio-temporal model. We believe the model to be well suited to further analyses, either

of temperature in other locations or of other oceanic properties such as salinity, pressure

and oxygen concentration. The analysis makes three contributions to oceanography.

Figure 15. Four posteriors of isopycnal warming.

�lat �lon �time J K L

(a): 0.2 0.7 0.000005 10 15 20

(b): 0.02 0.07 0.000005 10 15 20

(c): 0.2 0.7 0.0005 10 15 20

(d): 0.1 0.4 0.000003 20 30 40
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* It gives reconstructions of the temperature ®eld in time periods of sparse data.
* It facilitates a time series view of aggregate oceanic properties, such as the average

temperature in a speci®ed region.
* It yields what we believe are sensible estimates of the accuracy with which such

reconstructions can be estimated.

Our use of the model for the 24.5�N transect revealed that the previously reported

temperature increase from 1957 to 1981 may be part of natural decadal scale temperature

variability and further, that the temperature variability along an isobar may be due to

vertical movement coupled with temperature stability on isopycnals. Of course such

change in the depths of a given isopycnal could also indicate changes in the climatic state

of the ocean. For example, the depth of the isopycnals could be affected by long term

changes in the surface wind forcing or by long term changes in the water mass structure in

the tropical Atlantic. However, because the temperature changes on an isopycnal are

relatively small, it is expected that the temporal variability of the isopycnal depth is

approximately given by the temporal variability of the temperature on an isobar. The lower

Figure 16. Three ®ts of temperature along 24.5�N at s1 � 32:00. The MRF posterior is

the same as in Fig. 11.
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curves in Fig. 11 suggest that the change from 1957 to 1981 can be as easily explained by

natural decadal scale variablity as by long term trend. This variability can be accounted for

by the horizontal meandering of the thermal front in this locale.

One issue not yet discussed is the presence of ``edge effects''. That is, boundary sites

are treated differently than interior sites by virtue of having fewer neighbors. This point is

treated thoroughly by Besag and Kooperberg (1995). In our analysis of the Med region, we

do not make inferences that involve edge sites critically. In the 24.5�N region, the average

temperature along the transect includes sites on the eastern and western boundaries. To see

whether edge effects might be coloring the inference, we recreated the histogram of Fig.

9(b), but excluding the edge sites. It made negligible visible difference.

Because our model is novel and complex, we have tried to be careful in implementation

and interpretation. We checked convergence both numerically and graphically. We

investigated sensitivity to the choice of the hyperparameter n. And we veri®ed that a more

standard local regression model yielded results similar to ours.

This raises the question, of course, why not simply use the standard model? For us the

answers are ®rst, that we believe posterior distributions are a more useful summary of

uncertainty than are con®dence intervals and second, we like the MRF approach. We

intend, in future work, to continue investigating the ocean by implementing similar

analyses on other ocean property ®elds, by modeling several isopycnals and several

oceanic properties simultaneously and by investigating the possibility of incorporating

conservation constraints into the model.
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