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This article describes a Bayesian statistical analysis of long-term changes in the depth of the ocean’s mixed layer. The data are thermal
profiles recorded by ships. For these data, there is no good sampling model and thus no obvious likelihood function. Our approach is to
elicit posterior distributions for training data directly from the expert. We then infer the likelihood function and use it on large datasets.
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1. INTRODUCTION

The typical Bayesian analysis posits data from a parametric
family of sampling distributions, as in

y ∼ p(y | θ). (1)

After y has been observed, it is treated as fixed, and the likeli-
hood function is defined to be �(θ) ≡ p(y | θ), a function of θ .
The interpretation is that likelihood ratios �(θ1)/�(θ2) quan-
tify y’s evidence for θ1 as opposed to θ2.

For our dataset, there is no believable sampling model p(y |
θ), so we cannot assign �(θ) ≡ p(y | θ). We take a different
approach, wherein lies the statistical novelty of this article. For
several values of i (about a dozen), we show the expert yi and
directly elicit his or her posterior distribution p(θ | yi ). Elici-
tation is done under conditions in which the expert has an ap-
proximately uniform prior for θ . After elicitation, we know the
prior and posterior and thus can infer the likelihood function.

After examining the dozen or so elicited posteriors and con-
ferring with the expert, we constructed an algorithm that ac-
cepts a y as input and yields a likelihood function �(θ) as out-
put. After constructing the algorithm, we checked that it gave
sensible results on several hundred more y’s. We then applied
the algorithm to our full collection of data {yi}Ti=1, which, when
combined with our real prior, yields the posterior that we use for
inference. We call � a likelihood function because it approxi-
mately summarizes the expert’s weight of evidence and, when
multiplied by the uniform prior, yields the posterior.

The data arise in a study of the ocean’s climate. The situation
is more complicated than described in this introduction because
the data are a time series and our model must account for an
annual cycle. Section 2 provides the scientific background and
Section 3 describes the data. Section 4 describes our subjective
likelihood, how it was elicited, and how it is modeled. It con-
tains whatever statistical novelty is in this article. Section 5 de-
scribes our full model, prior, and posterior inference, account-
ing for the annual cycle, year-to-year variation, heteroscedas-
ticity, and a possible secular trend. Finally, Section 6 presents a
discussion.
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2. THE OCEAN’S MIXED LAYER

Recent evidence that the world’s oceans have warmed over
the past 50 years (Levitus, Antonov, Boyer, and Stephens 2000)
and that the attendant increase in the ocean’s heat content is an
order of magnitude larger than the increase in the atmospheric
and cryospheric heat content (Levitus et al. 2001) have made
it abundantly clear that a determination of how our global cli-
mate is changing in response to long-term natural and/or an-
thropogenic forcing depends on the effectiveness of the ocean
as a heat reservoir. However, the effectiveness of the ocean as a
reservoir is curtailed by increasing thermal stratification, which
limits the extent to which surface signals can be transmitted to
depth. Thus interest has focused on the upper ocean.

To a first approximation, oceanographers regard the ocean
as having two layers, a mixed layer from the surface down to
as much as several hundred meters, and a stratified layer be-
neath. The mixed layer is that part of the surface ocean that
displays uniformity in such properties as temperature, salinity,
and density. The mixed layer forms because the upper waters of
the ocean are mixed through waves and wind and also through
thermal convection when the surface waters overturn on losing
heat, and thus buoyancy, to the atmosphere. Such overturning
creates a mixed layer. The depth M of the mixed layer evolves
through an annual cycle and depends on geographic location.
Because M depends crucially on heat exchange with the at-
mosphere, long-term changes in heat exchange may result in
long-term changes in M . Essentially, in this application we ad-
dress the question as to whether or not there has been a secular
trend in M in the North Atlantic subtropical gyre. Such an eval-
uation will increase our understanding of potential physical and
biological consequences of global warming.

3. DATA

Hydrographic data such as temperature salinity and pressure,
are collected from ships, sent to the National Oceanographic
Data Center (NODC) where it is quality controlled, and then
made publicly available (www.nodc.noaa.gov). This article re-
ports on an analysis of NODC historical hydrographic data
recorded over a small spatial region near Bermuda. We chose
a sufficiently small region for our study so we can safely ignore
spatial variability. We will give an analysis of data from a wide
region of the North Atlantic elsewhere. A map of the data is
provided in Figure 1; the data’s temporal distribution is shown
in Figure 2.
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Figure 1. Data locations over the study domain, centered near
Bermuda.

The ith data point yi is recorded at time ti and consists
of temperatures yi = (yi1, . . . , yini

) measured at depths di =
(di1, . . . , dini

). (Other properties are also measured but are not
of interest here.) The first depth is always sufficiently close to
the surface so that (a) we can assume that yi1 is approximately
equal to the surface temperature and (b) we can take di1 = 0
without serious error. Often, but not always, the last depth is
near the ocean floor. Almost always, this last depth is well be-
low any plausible value for M ; we eliminate the few yi ’s for
which it is not. Temperature as a function of depth is called a
temperature profile. Figure 3 shows one example profile. Mea-

surement depths are not the same from one profile to another,
and, unlike the example in Figure 3, distances between succes-
sive measurements need not be constant within a profile.

Generally speaking, the upper layer of the ocean, because it
is vertically mixed, should have a uniform temperature, whereas
the stratified layer should have a monotonically decreasing tem-
perature. Figure 3 exemplifies these characteristics. Locating
the bottom of the mixed layer is fairly straightforward in such
profiles. In Figure 3, we can say with confidence that M is
somewhere near 50 meters. But not all profiles present such
a clear delineation of M , for examples, see Figure 4. Each of
the profiles in Figure 4 has several depths that might plausibly
be the bottom of the mixed layer. A key question is: What do
profiles such as those in Figure 4 tell us about M?

If we had a physical model that predicted the spatial and tem-
poral distribution of temperature with depth (i.e., a temperature
profile) then we could fit the model to the data, and the likeli-
hood function would quantify the information for the parame-
ter M . However, one of the remaining fundamental problems
in oceanography is a complete theoretical description of the
thermocline, which expresses the horizontal and vertical change
in the temperature field. In the absence of a complete descrip-
tion, simplifications have been offered. One such simplification
of the nonlinear physics that governs the thermocline yields a
prediction that the temperature should decrease exponentially
from M to the ocean floor (Mellor 1996), where it is about 2◦C
throughout the world. If such a simplification were generally
valid, then a changepoint model with three parameters—surface
temperature, M , and decay rate—would fit the data well. But
the data in our region of interest do not exhibit exponential de-
cay, as illustrated in Figure 5, which shows the same profile dis-
played in Figure 3 along with several exponential decay curves.
Overall, our understanding of the physics of the thermocline
has not advanced to the point at which we could offer a model

(a) (b)

Figure 2. Temporal distribution of data used in this study: (a) monthly; (b) yearly.
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Figure 3. A sample thermal profile: Temperature as a function of depth measured at 10-m intervals. M appears to be between 40 and
60 meters.

to which to fit the data. In such a void, we instead turn to the
methods described in Section 4.

4. SUBJECTIVE LIKELIHOOD

In this section we consider what can be learned from a single
profile y sampled at depths d. The parameter of interest is M .

From either a likelihood or Bayesian perspective, what is
needed is a sampling model p(y | M). But in Section 3 we ar-
gued that no reliable sampling model exists. So how can we
describe what is learned from y? Our approach was to ask an
oceanographer directly.

We showed the oceanographer a profile (y,d ) and asked
what she could tell us about M , based on that profile. Her re-

Figure 4. Three more sample profiles. Unlike the profile in Figure 3, none of these indicates M with clarity.
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Figure 5. The same profile as in Figure 3 with several exponential
decay curves. None fits the data well.

sponse was to tell us that Pr[M ∈ Ij ] for j = 1, . . . , n where
Ij is the interval from dj to dj+1. (Here d1 = 0 is the ocean
surface; dn+1 is the floor, about 4,000 meters; the dj ’s need not
be evenly spaced, so the Ij ’s need not be equal in length.) The
process was repeated for several profiles, about a dozen. Fig-
ure 3 shows an example. For this profile, the oceanographer’s
assessments were

Pr[M ∈ I6] ≈ 10 Pr[M ∈ I5]
(2)

Pr[M ∈ some other interval] ≈ very small.

The next step was to ask the oceanographer how she makes
her assessments. She told us that for an interval Ij = [dj , dj+1],
she considers two quantities: y1 −yj , the temperature drop from
the surface to the top of Ij , and (yj − yj+1)/(dj+1 − dj ), the

rate of temperature drop within Ij . Small values of y1 − yj and
large values of (yj − yj+1)/(dj+1 − dj ) imply that Ij is likely
to contain M . She also said these are the only quantities that
matter; other aspects of the profile carry so little information as
to be ignorable. To formalize, define

�1 = (�11, . . . ,�1n) = (0, y1 − y2, . . . , y1 − yn)

and

�2 = (�21, . . . ,�2n) =
(

y1 − y2

d2 − d1
, . . . ,

yn − 2

dn+1 − dn

)
.

Then, according to the oceanographer, the probabilities
{Pr[M ∈ Ij ]}nj=1 are some function g(�1,�2).

The reasoning behind this is as follows. If interval Ij con-
tains M , then the temperature above Ij should be roughly uni-
form, and y1 −yj should be small. Thus g(�1,�2) should be a
decreasing function of �1. Similarly, if Ij contains M , then the
rate of temperature decrease in Ij should be large, so g(�1,�2)

should be an increasing function of �2.
In addition, the oceanographer tells us that g(�1,�2) can be

written as g1(�1) × g2(�2), at least approximately, so our task
is to find the functions g1 and g2. The following paragraphs de-
scribe our elicitation and how we arrived at the particular func-
tions g1 and g2 that we used in our analysis.

Our strategy is to elicit the oceanographer’s posteriors for
artificially constructed profiles designed to yield information
about g1 and g2. We illustrate this with the profile in Figure 3. In
that figure there are only two intervals, I5 and I6, with substan-
tial posterior mass; they are separated by the datum (d6, y6). We
created a sequence of temperatures y∗

1 = y7 < · · · < y∗
J = y5,

showed the oceanographer profiles in which (d6, y6) had been
replaced by (d6, y

∗
j ), and asked for her posteriors. Figure 6 il-

lustrates this idea.

Figure 6. Artificial profiles for elicitation. The open circles are the profile from Figure 3. The shaded circles are a sequence of points meant
to replace the point near (50, 19.5). We showed the oceanographer profiles containing each shaded circle in turn and elicited her posterior for
each.
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Figure 7. The profile of Figure 3 with unnormalized probabilities corresponding to three values of a, two values of b, and two values of θ

from (3). Among these panels, those with a = 2 or a = 7.5, b = 1, and θ = .3 provide the best fit to the oceanographer’s assessments in (2).

By varying only one point in the profile, we were able to
learn about the shapes of g1 and g2. We quickly found that the
oceanographer assigns small probabilities to intervals whose
�1 is more than just a few tenths of a degree. Therefore, we
want g1 to decrease rapidly for small values of �1; this consid-
eration suggests a convex form for g1. After conferring with the
oceanographer, we decided to try the functional form g1(�1) =
exp{−a�1}. Similarly, we learned that g2 should be concave
and decided to try the form g2(�2) = [1 − exp{−�2/θ}]b; that
is, after studying variants of the profile in Figure 6 and others,
we decided to see whether for some (a, b, θ), the functional
form

g(�1,�2) = exp{−a�1} × [1 − exp{−�2/θ}]b (3)

could be made to fit the rest of the oceanographer’s assessments
reasonably well. The left side of (3) is a vector with one com-
ponent for each interval. The right side is also a vector; notation
such as exp{−a�1} means elementwise multiplication and ex-
ponentiation.

No single combination (a, b, θ) fit best in all profiles. There-
fore, our goal was to find a combination of (a, b, θ) that fit rea-
sonably well in as many profiles as possible and do not make
egregious errors. From our work with training data, we knew
sensible ranges for the parameters. We selected several val-
ues of (a, b, θ) from their respective ranges and enlisted the
oceanographer to help us choose the best combination. For each
of several real profiles, we prepared a single sheet of paper with
graphs of that profile overlaid with g(�1,�2) for each combi-
nation of (a, b, θ); see Figure 7 for an example. Unnormalized
posterior probabilities calculated according to (3) are plotted as

horizontal bars over their respective intervals. Looking at all of
the profiles together, we asked the oceanographer to choose the
best-fitting (a, b, θ) and also to tell us whether the overall fit
was acceptable.

After considering multiple profiles—some real and some ar-
tificially constructed—we settled on a = 2, b = 1, and θ = .3,
that is,

Pr[M ∈ Ij | y,d]n1 ∝ g(�1,�2)

≈ exp{−2�1} × [1 − exp{−�2/.3}], (4)

as providing sufficiently close approximations to the oceanog-
rapher’s posterior probabilities for the profiles in the training
data. The third panel in the first row of Figure 7 shows the re-
sult of applying (4) to the profile of Figure 3. The main thing
to note is the relative heights of the bars in that panel and how
they compare with (2).

Next, we wanted to check whether (4) would fit well to other
profiles. So we created many (on the order of 100) plots sim-
ilar to Figure 7, all with (a, b, θ) = (2,1, .3) but each plot for
a different profile, and asked the oceanographer whether she
agreed reasonably well with the probabilities assigned by g and
whether there was any systematic way in which g was making
errors. From the results of these approximately 100 profiles, we
introduced the following three modifications to g:

1. Of all the measurements in a temperature profile, the sur-
face measurement is the most noisy. The surface measure-
ment can be influenced by daytime warming; changes on
such a small time scale are not of interest in our study of
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Figure 8. The three profiles of Figure 4. The horizontal bars show unnormalized posterior probabilities of intervals calculated according
to (5). The oceanographer agreed that the horizontal bars approximately matched her subjective evaluation.

changes over years and decades. The key to recognizing
such a situation is y1 > y2 ≈ y3.

When this happens, �1 = (0, y1 − y2, . . . , y1 − yn) is
not a good reflection of the information in the profile.
Thus for profiles where y1 = maxyi and |y2 − y3| < .05,
we set �1 = (0, y2 − y2, . . . , y2 − yn).

2. The idea behind �2j = (yj − yj+1)/(dj+1 − dj ) is, ob-
viously, that an interval containing M is likely to have
a large temperature drop. But the oceanographer’s judg-
ment is that temperature drops greater than about .3◦C are
not more indicative of M than drops of about .3◦C. There-
fore, we set �2j = min((yj − yj+1), .3)/(dj+1 − dj ).

3. Equation (4) was constructed to mimic the oceanogra-
pher’s assessments of high probability intervals. For low
probability intervals, it accurately captures the fact that
they have low probability but might misstate their proba-
bility ratios by several orders of magnitude. In addition, it
is widely believed that subjective probability assessments
are often too sharp and understate the true amount of un-
certainty. The result in our analysis could be oversensitiv-
ity to outliers or intervals with low probabilities. There-
fore, we modify (4) and set

Pr[M ∈ Ij | y,d]n1
∝ g∗(�1,�2)

≡ max

[
g(�1,�2),

maxg(�1,�2)

100

]
. (5)

After again going through about 100 new profiles and the
probabilities implied by (5), we were satisfied that we could

reproduce the oceanographer’s assessments to a reasonable de-
gree of accuracy.

Figure 8 shows how (5) works for the profiles in Figure 4.
The main point to note is the fact that the probability distribu-
tions in Figure 8 are bimodal.

Two more facts are needed to complete the specification of
the likelihood:

1. Because we did not tell the oceanographer the time of year
or physical location of the profiles, her prior for M was
approximately uniform. (She agreed.)

2. Her posterior for M is approximately uniform within each
interval. (She agreed.)

Equation (5) and fact 2 specify the posterior density of M . It
is piecewise constant on the intervals Ij ; its value on Ij is

p(m | y) = g∗(�1,�2)j

(dj+1 − dj )
∑

(g∗(�1,�2))
(6)

for m ∈ Ij . And because the prior was uniform, (6) is also pro-
portional to the likelihood function.

More formally, for any depth m, let j (m) be the interval con-
taining m, that is, m ∈ Ij (m). Then we define the subjective like-
lihood function �(m) by

�(m) ∝ g∗(�1,�2)j (m)

dj (m)+1 − dj (m)

. (7)

Equation (7) is a rule for computing the likelihood function
for any profile. In subsequent sections we apply the rule to a
large collection of profiles, more than the oceanographer can
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assess individually, and with a prior designed for the substantive
investigation, not for elicitation.

5. APPLICATION TO THE MIXED LAYER

Section 4 described what we learn from a single profile. This
section describes how we combine information from many pro-
files y1, . . . ,yT (Fig. 1) running over a time index t = t1, . . . , tT
that spans multiple years (Fig. 2) to reach a conclusion about
long-term trend in M .

Figure 9 shows the result of applying (7) to each profile sep-
arately. Each gray vertical bar is the maximum likelihood in-
terval of some profile; its depth is indicated on the ordinate. Its
abscissa is the day of year when that profile was recorded. (The
curve is a posterior mean and is discussed later.) There are two
features of note, an annual cycle with deeper mixed layers in the
winter and greater variability in the winter. Our model accom-
modates both features, as well as a possible long-term trend.

5.1 Mean Annual Cycle

Let M(t) be the mixed layer depth at time t . It is apparent
that M(t) undergoes an annual cycle. The mixed layer deep-
ens in the fall as atmospheric temperatures decrease. Colder air
means colder sea surface temperatures, which in turn means
that surface waters become dense and sink. The sinking causes
surface waters to mix with deeper waters. The process contin-
ues through the winter, leading to deeper mixing and increased
values of M . The effect is reversed in the spring as surface wa-
ters warm. Spring heat is conveyed downward through diffu-
sion, a much slower process than fall’s convection. Thus the
annual cycle is asymmetric, and the summer mixed layer is rel-
atively shallow and stable.

We use μ to denote the mean annual cycle. Thus, for any
time t ,

μ(t) = μ(t mod 365).

We model μ with a process convolution (see Higdon 1998 for
details) as follows. Let 0 ≤ v1 < v2 < · · · < v12 ≤ 365 be an
equally spaced sequence of points (mod 365), let x1, . . . , x12,
be values “at” those points, and let k be a kernel. (We use a
Gaussian kernel with standard deviation of 40 days.) Our model
is

μ(t) =
12∑

�=1

x�k(t − v�).

The x�’s are modeled as unknowns to be fit from the data. A pri-
ori,

x1, . . . , x12 ∼ iid N(0, σ 2
x ).

The posterior means of the x�’s yields the estimate μ̂(t) =∑
x̂�k(t − v�) plotted in Figure 9.

5.2 Deviations From μ

Because atmospheric conditions vary from year to year, the
actual cycle for M in a particular year may differ from μ, espe-
cially in the winter. To account for such systematic differences,
we allow each winter (November–April) to have its own ran-
dom effect. The random effect for the winter ending in year t is
denoted by bw(t) and modeled as Gaussian.

To account for M’s greater variability in winter than in sum-
mer, we use a piecewise constant variance: σ 2 in the summer
and 3σ 2 in the winter. Modeling the variance as piecewise con-
stant is crude but, we believe, effective.

Figure 9. Maximum likelihood intervals of individual profiles (vertical bars) plotted against day of year. The curve is the posterior mean
of μ(t).
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Figure 10. Maximum likelihood interval from (7) versus posterior mean of νi .

5.3 Linear Trend

In addition to annual variations, we are interested in a possi-
ble secular trend. We account for that in our model with a linear
regression term βt . The focus of our inference is the posterior
distribution of β .

The complete model, including the prior and the subjective
likelihood, is given by

σ 2
x , σ 2

b , σ 2
β , σ 2 ∼ iid InvGam(.001, .001)

mutually independent,

x1, . . . , x12 | σ 2
x , σ 2

b , σ 2
β , σ 2 ∼ iid N(0, σ 2

x ),

μ(t) =
12∑

�=1

x�k(t − v�),

{
bw(t)

} | σ 2
x , σ 2

b , σ 2
β , σ 2,x ∼ iid N(0, σ 2

b ),

β | σ 2
x , σ 2

b , σ 2
β , σ 2,x,

{
bw(t)

} ∼ N(0, σ 2
β ),

(8)
ν(t) = μ(t) + bw(t) + βt,

τ (t) =
{

σ 2 if t is in summer
3σ 2 if t is in winter,

Mti | σ 2
x , σ 2

b , σ 2
β , σ 2,x,b, β ∼ N(ν(ti), τ (ti ))

mutually independent,

y | σ 2
x , σ 2

b , σ 2
β , σ 2,x,b, β,M ∼ eq. (7),

mutually independent.

The full conditional distributions are available for all parame-
ters except the Mti ’s. Therefore, one efficient method for sam-
pling from the posterior distribution is a Gibbs sampler with
Metropolis–Hasting steps for the Mti ’s.

Conditionally on current values of ν(ti), we propose a new
move, M∗

ti
∼ U[0,ocean floor], and accept the move with prob-

ability

min

{
1,

�(M∗
ti
) exp{−(M∗

i − ν(ti))
2/(2τ(ti)

2)}
�(Mti ) exp{−(Mi − ν(ti))2/(2τ(ti)2)}

}
.

The grey curve in Figure 9 shows μ̂(t) = ∑
x̂�k(t − v�),

the estimate of μ calculated from the posterior means x̂�. Note
that it is asymmetric, as expected from our understanding of
the physical process. The asymmetry is partial justification for
modeling μ as a process convolution rather than a summation of
sinusoids. Figure 10 is another way to view the fit of the model.
For each profile, it shows the posterior mean of νi on the ab-
scissa and the maximum likelihood interval according to (7) on
the ordinate. Figure 10 indicates an overall reasonably good fit
and heteroscedasticity associated with the deeper mixed layers
of winter.

The posterior distribution of β is shown in Figure 11. The
posterior mean corresponds to a slight shoaling (or upward)
trend in M of approximately .06 meters per year, which trans-
lates to about 2.4 m over 40 years. But there is high posterior
uncertainty, and our analysis does not give clear support to a
secular trend in either direction of the depth of the winter mixed
layer near Bermuda over the past 50 years. Further study on the
response of the mixed layer depth to interannual and decadal
climate variability is ongoing.

6. DISCUSSION

6.1 Foundations

We like our subjective likelihood approach in this analysis
because it incorporates expert judgment in the most direct way
that we can imagine. We find it an elegant and practical solution
to a difficult modeling problem. Of course, it does not have the
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Figure 11. Posterior distribution of β: draws from the MCMC sampler.

usual philosophical underpinnings of the customary Bayesian
analysis. It also raises the following question: If the oceanog-
rapher can give her posterior for Mti after seeing one profile,
then why cannot she give her posterior for β after seeing them
all? We think the answer is obvious. First, studying hundreds
of profiles in detail (thousands when we analyze the entire At-
lantic Ocean) is too difficult, and second, carefully assimilating
information from all of the profiles into an opinion about β is
far removed from oceanographers’ experience.

We could have analyzed the data with a nonparametric
changepoint model in which temperature is roughly constant
down to a depth M , then decreases monotonically but otherwise
nonparametrically to the ocean floor. We tried and rejected such
an approach for two reasons: (a) it yields results for single pro-
files that disagree with the expert’s opinions, and (b) it is a more
circuitous use of expert opinion than the subjective likelihood
function. Details of this approach will be presented elsewhere.

One troubling aspect of subjective likelihood is the strength
of its reliance on expert judgment. Although traditional sub-
jective Bayesian analysis relies on expert judgment for the
prior, the influence of that judgment diminishes as more data
are collected. But with subjective likelihood, the expert’s judg-
ment enters anew with each new data point. Therefore, sen-
sitivity analysis becomes that much more incumbent on the
analyst. We note here that the posterior for β does not de-
pend strongly on (a, b, θ). Similarly, our agreement that g∗ =
max(g, .01g) ensures that the posterior will not be too heav-
ily influenced by a small number of profiles. Nonetheless, more
thorough model diagnostics are useful and will be reported else-
where.

One pleasing aspect of subjective likelihood is the strength
of its reliance on expert judgment. Many statistical analyses

treat the sampling distribution p(data | parameters) and thus
the likelihood without much comment, others assess sensitiv-
ity, and still others rely on the central limit theorem to confer
robustness. In contrast, subjective likelihood places subjective
assessment of the likelihood front and center where it can be
critiqued, analyzed, and reanalyzed. This is akin to the usual
subjective Bayesian treatment of the prior, which subjective
Bayesians claim to be desirable. (For another explicit treatment
of Bayesian sensitivity to the sampling distribution, see Lavine
1991.)

6.2 Modeling

In modeling the trend and temporal dependencies, we made
simplifying choices, believing that more sophistication would
not change the analysis very much. We acknowledge that im-
provements are possible.

Our model treats the profiles as conditionally independent
given M. This is a questionable choice, however. Our expert
says that the temporal decorrelation scale of the mixed layer,
at least for this purpose, can be considered the time scale as-
sociated with synoptic-scale weather patterns, approximately 5
days. Profiles taken on consecutive days are likely created and
influenced by almost the same physical forces and are certainly
dependent. Whether they are conditionally dependent given M

is another matter. In any case, there are few profiles in our data
set at time intervals of less than a week, so we are willing to
treat them as conditionally independent. A possible model en-
hancement is to use a temporal covariance function with a range
on the order of about 5 days.

Our model for variance is rather crude: σ 2 in the summer
and 3σ in the winter. We tried a smoother model in which σ 2
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changes linearly from summer to winter and back again. The
smoother model makes little difference to the posterior distribu-
tion of β . Nonetheless more sophisticated modeling is possible
although we do not believe it will change the result.

Another way to improve the model is to include more co-
variates. Because M is related to air temperature, we might try
including covariates, such as a running mean monthly temper-
ature. But temperature covariates will be highly correlated with
time of year, so the potential for improved fit might be only
minor. M is also thought to be related to the NAO (North At-
lantic oscillation) index, which might be another good covariate
to try.

6.3 Diagnostics and Robustness

Figures 9 and 10 show overall goodness of fit. Deviations
from the fitted curves are somewhat difficult to interpret, be-
cause the likelihood function is not symmetric and need not
even be unimodal. For example, Figures 9 and 10 both show
three profiles in which the interval of highest probability is
deeper than 300 m, but yet the fitted value for one is around
80 m and those for the other two are around 120 m. The model
appears not to fit those profiles well. What Figures 9 and 10 do
not reveal is that each of those profiles has a secondary prob-
ability mode, according to (4), so the apparent misfit is not so
severe after all. Other profiles taken around the same dates as
these three have only shallower modes; thus the model favors
the shallower modes in its posterior mean.

Determination of M can sometimes be complicated by daily
warming of surface waters. During a hot, sunny day, surface
waters can warm as much as perhaps a couple of degrees down
to a depth of perhaps 20 m or so, then cool again during the
night. Consequently, a profile taken in mid-afternoon might in-
correctly indicate that M appears to be <20 m. Our expert
oceanographer was aware of this possibility when assessing the
profiles that we showed her. The coefficient of �1 in (5) (i.e.,
a = 2) reflects her belief that temperature drops in the upper
ocean are probably due to mixed layers, not to daily warming.
But perhaps she is overly confident on this point. As a robust-
ness check, we recalculated our posterior using a coefficient of

a = .15 and found that it made little difference to the inference
regarding trend.

6.4 More Oceanographers

The analysis presented here relies on the judgment of a sin-
gle oceanographer. (“Single” is not strictly true; we relied on
two oceanographers, one of whom is the doctoral student of the
other.) But of course the world contains multiple oceanogra-
phers with potentially different interpretations of thermal pro-
files. What are we to do with them? The answer depends on
our purpose. If our purpose is to produce this oceanographer’s
posterior, then we ignore the others.

But if (as is actually the case) our purpose is to contribute
persuasively to scientific and public discourse on ocean strati-
fication and global warming, then we cannot ignore the others.
At the very least, we should reveal this oceanographer’s judg-
ments more fully so they can be assessed by others. We hope
to do this elsewhere. In addition, we could perform parallel
analyses with other oceanographers’ judgments to see whether
conclusions about β change, or we could work with a team of
oceanographers to create either a single consensus analysis or
a suite of analyses to represent the range of judgments in the
wider oceanographic community. In any case, these issues are
well known to Bayesian statisticians who elicit priors. We do
not believe that subjective likelihood raises new philosophical
issues related to the existence of multiple experts.

[Received March 2006. Revised October 2006.]
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Comment
Robert N. MILLER

First, I commend the authors for their original approach to
an important problem. I agree with their premise that diagnos-
tic study of long-term changes in the mixed-layer depth M will
increase our understanding of potential physical and biologi-
cal consequences of global warming. This is very interesting
work with very interesting results obtained by methods not of-
ten found in the physical oceanography literature. These meth-
ods should be applicable to other data sets gathered in oceans
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and other parts of the world. This work is most welcome and
deserves exposure in the physical oceanography community.

The authors point out correctly that the mixed layer is not al-
ways so clearly defined as it is in figure 3. They illustrate this
with the examples in figure 4. In fact, there are examples that are
even worse: temperature inversions (i.e., cases in which warmer
water lies below cooler water) are not unknown, and thus tem-
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