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Abstract— Control of mobile networks raises fundamental and
novel problems in controlling the structure of the resulting
dynamic graphs. In particular, in applications involving mobile
sensor networks and multi-agent systems, a great new challenge is
the development of distributed motion algorithms that guarantee
connectivity of the overall network. Motivated by the inherently
discrete nature of graphs as combinatorial objects, we address
this challenge using a key control decomposition. First, connectiv-
ity control of the network structure is performed in the discrete
space of graphs and relies on local estimates of the network
topology used, along with algebraic graph theory, to verify
link deletions with respect to connectivity. Tie breaking when
multiple such link deletions can violate connectivity is achieved
by means of gossip algorithms and distributed market-based
control. Second, motion control is performed in the continuous
configuration space, where nearest neighbor potential fields are
used to maintain existing links in the network. Integration of the
above controllers results in a distributed, multi-agent, hybrid
system, for which we show that the resulting motion always
ensures connectivity of the network, while it reconfigures towards
certain secondary objectives. Our approach can also account for
communication time delays as well as collision avoidance, and is
illustrated in nontrivial computer simulations.

Index Terms— Dynamic networks, distributed control, hybrid
systems, graph connectivity.

I. INTRODUCTION

RECENT advances in communication and computation
have given rise to distributed control of multi-agent sys-

tems which, compared to classical control, provides increased
efficiency, performance, scalability and robustness. A great
challenge in this new field is achieving a global coordinated
objective while using only local information [1]–[14]. The
objective investigated in this paper is that of maintaining
connectivity of a dynamic network consisting of multiple
mobile agents [15]–[26].

Due to their frequent appearance in multi-agent systems,
dynamic networks have already received considerable atten-
tion. In [15], a controllability framework for state-dependent
dynamic graphs is introduced. A measure of local connect-
edness of a network that under certain conditions is sufficient
for global connectedness is proposed in [16], while distributed
maintenance of nearest neighbor links in formation stabiliza-
tion is addressed in [17]. In [18], the problem of maximizing
the second smallest eigenvalue of a graph Laplacian matrix is
investigated, while a decentralized approach to this problem
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that makes use of a supergradient algorithm and distributed
eigenvector computation is considered in [19]. Network con-
nectivity for double integrator agents is investigated in [20],
where existential as well as optimal controller design results
are discussed. Closely related to the topics discussed in this
paper, is also work in ad-hoc sensor networks, involving cone-
based topology control [21], [22] and distributed algorithms
that do not assume exact knowledge of agent positions [23],
[24]. This work, however, focuses more on the power con-
sumption and routing problem than the actuation and control.

Unlike centralized [18], [25], [26], distributed open loop
[19], [20], or approaches that essentially restrict connectivity
control to link additions [16]–[20], [25], we propose a dis-
tributed feedback and provably correct control framework that
imposes no restrictions on the network topology other than
the desired connectivity specification. To this end, connectivity
control of the network structure is performed in the discrete
space of graphs and relies on two key ideas. First, local
estimates of the network topology provide every agent with
a rough picture of the network structure used, along with
notions from algebraic graph theory, to verify link deletions
with respect to connectivity. Second, gossip algorithms and
distributed market-based control allow tie breaking whenever
multiple such link deletions can violate connectivity. On the
other hand, motion control of the agents is performed in the
continuous configuration space by means of local potential
fields used to maintain existing links in the network. Inte-
gration of the above controllers is possible due to a novel
representation of the network topology by a class of proximity
graphs that impose a hysteresis in link additions, and results
in a hybrid model for every agent [27]. Under the assumption
that the initial network is connected, the overall hybrid system
is shown to guarantee connectivity of the mobile network
for all time, while it reconfigures towards certain secondary
objectives. Communication time delays in the network as
well as collision avoidance can also be efficiently handled,
while our approach is illustrated through a class of interesting
problems that can be achieved while preserving connectivity.

The rest of this paper is organized as follows. In Section II
we define the problem of controlling connectivity of dynamic
networks and develop a necessary graph theoretic background.
In Section III we discuss the control challenges associated with
a distributed solution to the problem and propose market-based
control to efficiently address them. The resulting distributed
hybrid agent is defined in Section IV, while properties as well
as correctness of the overall system are discussed in Section V.
Integration with agent mobility is considered in Section VI
and, finally, in Section VII, nontrivial connectivity tasks are
discussed that best illustrate our approach.
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II. PROBLEM FORMULATION

A. Dynamic Networks
Consider a network of n agents with integrated wireless

communication capabilities and denote by (i, j) a communi-
cation link between agents i and j. We assume that communi-
cation links between the agents can be enabled and disabled in
time due to power constraints, agent mobility, or networking
specifications such as routing and throughput. This gives rise
to the notion of a dynamic graph G(t) = (V, E(t)), where
V = {1, . . . , n} consists the set of vertices indexed by the set
of agents and E(t) = {(i, j) | i, j ∈ V} denotes a time varying
set of links. We assume bidirectional communication links and
so (i, j) ∈ E(t) if and only if (j, i) ∈ E(t). Such graphs are
called undirected and consist the main focus of this paper. Any
vertices i and j of an undirected graph G(t) that are joined by
a link (i, j) ∈ E(t), are called adjacent or neighbors at time t.
Hence, we can define the set of neighbors of agent i at time t,
by Ni(t) = {j ∈ V | (i, j) ∈ E(t)}. An important topological
invariant of graphs is graph connectivity.

Definition 2.1 (Graph Connectivity): We say that a dy-
namic graph G(t) is connected at time t if there exists a
path, i.e., a sequence of distinct vertices such that consecutive
vertices are adjacent, between any two vertices in G(t).

Although the agents’ primary task is detection of certain
physical changes within their proximity, their communication
capabilities enable them to share the individually collected
data with their peers in order to achieve a global coordinated
objective, such as consensus on their local measurements [1]–
[6]. Consequently, network connectivity becomes a critical
requirement. Motivated by these observations, in this paper
we address the following problem.

Problem 1 (Distributed Connectivity Control): Given an
initially connected network G(t0) consisting of n agents,
determine local control laws that regulate addition and
deletion of links between adjacent agents so that the dynamic
network G(t) is connected for all time.

Note that Problem 1 focuses on the safety specification
associated with control of network connectivity, rather than
satisfaction of possible global coordinated objectives, which,
for the purposes of this work, are considered secondary.
Therefore, our goal is to ensure invariance of the network G(t)
with respect to connectivity. We achieve this goal by choosing
an equivalent formulation, using the algebraic representation
of a dynamic graph. In particular, the structure of any dynamic
graph G(t) = (V, E(t)) can be equivalently represented by a
dynamic laplacian matrix

L(t) = ∆(t)−A(t), (1)

where A(t) = (aij(t)) corresponds to the adjacency matrix of
the graph G(t), which is such that aij(t) = 1 if (i, j) ∈ E(t)
and aij(t) = 0 otherwise and ∆(t) = diag

(∑n
j=1 aij(t)

)
denotes the valency matrix.1 Note that for undirected graphs,
the adjacency matrix is a symmetric matrix and hence, so is
the laplacian matrix. The spectral properties of the laplacian
matrix are closely related to graph connectivity. In particular,
we have the following lemma.

1Since we do not allow self-loops, we define aii(t) = 0 for all i.
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Fig. 1. Drifts capturing convergence to a point (a) or to a unit circle (b).

Lemma 2.2 ( [28]): Let λ1(L(t)) ≤ λ2(L(t)) ≤ · · · ≤
λn(L(t)) be the ordered eigenvalues of the laplacian matrix
L(t). Then, λ1(L(t)) = 0 for all t, with corresponding eigen-
vector 1, i.e., the vector of all entries equal to 1. Moreover,
λ2(L(t)) > 0 if and only if G(t) is connected.

Remark 2.3 (k-Connectivity): Given any graph G, the ver-
tex connectivity κ(G) of G is defined as the minimum number
of vertices that, if deleted from G, increase the number of
connected components of the graph [28]. Similarly, the edge
connectivity η(G) of G can be defined as the minimum number
of edges that, if deleted from G, increase its number of
connected components. For any graph G, its vertex connec-
tivity, edge connectivity and second smallest eigenvalue of
its laplacian matrix satisfy λ2(L(G)) ≤ κ(G) ≤ η(G) [28].
Furthermore, for any k ≤ κ(G) the graph G is called k-
connected. Clearly, if λ2(L(G)) > k − 1, then G is k-
connected. Note that for k = 1 we get λ2(L(G)) > 0 which
corresponds to graph connectivity as in Definition 2.1.

B. Dynamic Mobile Networks

As discussed in Section II-A, dynamic networks are due
to either power constraints, networking specifications or agent
mobility. In this paper, we focus on the latter and attempt
to redefine the notion of a dynamic network G(t) so that
it captures this new specification. In particular, consider n
mobile agents in Rp and denote by xi(t) ∈ Rp the position
of agent i at time t. Assume, further, fully actuated agents i,
such that

ẋi(t) = −∇xifi(t) + ui(t), (2)

where fi(t) ≥ 0 is a global secondary objective (drift) mod-
eled by a twice differentiable, radially unbounded potential
(Fig. 1) and ui(t) ∈ Rp is a control input associated with
the connectivity specification of the network (Problem 1). The
system of agents described in system (2), gives rise to the
following definition of a dynamic graph.

Definition 2.4 (Dynamic Graphs): We call G(t) =
(V, E(t)) a dynamic graph consisting of a set of
vertices V = {1, . . . , n} and a time varying set of links
E(t) = {(i, j) | i, j ∈ V} such that, for any 0 < r < R,
• if (i, j) 6∈ E(t) and 0 < ‖xi(t)− xj(t)‖2 < r then, (i, j)

is a candidate link to be added to E(t),
• if (i, j) ∈ E(t) and r ≤ ‖xi(t)−xj(t)‖2 < R then, (i, j)

is a candidate link to be deleted from E(t),
• if R ≤ ‖xi(t)− xj(t)‖2 then, (i, j) 6∈ E(t).
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Fig. 2. Link (solid line) dynamics according to Definition 2.4. Note the
hysteresis in addition of new links (i, j) due to the proposed partitioning of
agent i’s neighborhood. Note also the imposed proximity condition, necessary
for addition or deletion of links. However, the final decision is controller
dependent, hence, the notion of a candidate link in Definition 2.4.

Definition 2.4 implies that all links in G(t) are essentially
controllable. In particular, the neighborhood of every vertex in
G(t) is partitioned into two disjoint sets in Rp, i.e., an open
ball and an annulus, where addition and deletion of links takes
place, respectively (Fig. 2).2 Note that this partitioning of the
neighborhood of every vertex in G(t), introduces a hysteresis
in addition of new links in G(t), which is critical in integrating
topology control of the network with motion control of the
agents (Section VI). Hence, Problem 1 can be restated as:
determine local motion controllers ui(t) ∈ Rp for all agents
i so that the underlying network G(t) is always connected.

III. DISTRIBUTED TOPOLOGY CONTROL:
CHALLENGES & MACHINERY

Consider a dynamic graph G(t) = (V, E(t)) defined by the
time varying set of edges E(t).3 The goal in this section is
to design local control laws that allow every agent to add or
delete nearest neighbor links without violating connectivity of
G(t). Although addition of links can only increase connectivity
and does not introduce any significant challenge in controlling
the topology of G(t), deletion of links is a nontrivial task.
Since, connectivity is a global graph property, it is necessary
that every agent has sufficient knowledge of the network struc-
ture in order to safely delete a link with a neighbor (Fig. 3).
Such knowledge can be obtained through local estimates of
the network topology (Section III-A), which, along with a tie
breaking mechanism obtained by means of gossip algorithms
and distributed market-based control (Section III-B), ensure
connectivity even when combinations of multiple deletion
requests could possibly violate it (Fig. 4).

2Dynamic graphs G(t) as in Definition 2.4, are also called proximity graphs.
3In what follows, G(t) is treated as a generic combinatorial object as in

Section II-A. Integration with mobility and the underlying configuration space
will be discussed in Section VI.
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Fig. 3. Control challenges requiring knowledge of the network structure.
Without such knowledge, deletion of a link (i, j) can either violate connec-
tivity (right) or not (left).

TABLE I
ELEMENTWISE LINK DYNAMICS.

a
[i]
jk(t) v

[i]
jk(t) a

[i]
jk(t + 1)

1 1 0
1 0 1
0 1 1
0 0 0

A. Local Estimates of the Network Topology

As previously discussed, the goal in this section is to
develop a distributed control framework that allows every
agent i to obtain a local spanning subgraph4 estimate Gi(t) =
(V, Ei(t)) of the global network G(t), using information from
its nearest neighbors Ni(t) = {j ∈ V | (i, j) ∈ E(t)} only.5

For this, let Ai(t) =
(
a
[i]
jk(t)

)
denote the adjacency matrix

associated with the graph Gi(t) at time t. Then, the dynamics
of a link (j, k) can be expressed as (Table I)6

a
[i]
jk(t + 1) = ¬(

a
[i]
jk(t) ↔ v

[i]
jk(t)

)
, (3)

where v
[i]
jk(t) ∈ {0, 1} is such that v

[i]
jk(t) = 1 if a control

action is taken to add or delete link (j, k).7 In matrix form,
the dynamics in equation (3) become

Ai(t + 1) = ¬(
Ai(t) ↔ Vi(t))

)
, (4)

where the control input Vi(t) =
(
v
[i]
jk(t)

)
is a symmetric

matrix ensuring that, if Ai(t0) is symmetric, then Ai(t) is
also symmetric for all time t ≥ t0.

Let Ei = ∨j 6=i(eie
T
j ∨eje

T
i ), where ei is a column vector of

all entries equal to zero but the i-th entry which is equal to one.
Then, the expression Ei ∧ (¬Ai(t)) captures new links (i, j)
that agent i can create with agents j 6∈ Ni(t). Moreover, let
A

[i]
1 (t) , ∨j∈Ni(t)Aj(t) indicate existing links in the network,

available by the 1-hop neighbors Ni(t) of agent i. Then, the
expression (¬Ai(t)) ∧ A

[i]
1 (t) captures existing links in the

network that agent i is not aware of and are available by its
neighbors. Hence, the expression (Table II)

Fi(t) ,
(
(¬Ai(t)) ∧A

[i]
1 (t)

) ∨ (
Ei ∧ (¬Ai(t))

)
(5)

4Given any dynamic graph G(t) = (V, E(t)), we say that a graph Gi(t) =
(Vi, Ei(t)) is a subgraph of G(t), if Vi ⊆ V and Ei(t) ⊆ E(t). If Vi = V ,
we call Gi(t) a spanning subgraph of G(t).

5The requirement that Gi(t) is a spanning subgraph of G(t) is necessary
to guarantee connectivity of the graph G(t) for all t ≥ t0 (Section V).

6See Appendix I for an overview of boolean operations.
7The discrete time semantics in (3) are associated with transition resets in

a resulting hybrid automaton for agent i and will be discussed in detail in
Section IV.
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Fig. 4. Control challenges due to multiple link deletions. In the absence of
an agreement protocol, simultaneous deletion of links (i, j) and (k, l) violates
connectivity.
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TABLE II
LINK DYNAMICS IN MATRIX FORM.

Entry Ai A
[i]
1 ¬Ai (¬Ai) ∧A

[i]
1 Ei Fi

(i, j)

1 1 0 0 1 0
1 0 0 0 1 0
0 1 1 1 1 1
0 0 1 0 1 1

(j, k)
j, k 6= i

1 1 0 0 0 0
1 0 0 0 0 0
0 1 1 1 0 1
0 0 1 0 0 0

captures all new links that agent i can add to Ai(t), consisting
of either existing links that agent i is not aware of, or links
that agent i can create with agents j 6∈ Ni(t). On the other
hand, the adjacency matrix Ai(t) includes all links in Gi(t)
that are candidates to be deleted from the network. Since
Fi(t) ∧ Ai(t) = 0, we can decouple the control input Vi(t)
into a component Fi(t) ∧ V a

i (t) regulating link additions and
a component Ai(t) ∧ V d

i (t) regulating link deletions. Hence,
the control input becomes

Vi(t) ,
(
Fi(t) ∧ V a

i (t)
) ∨ (

Ai(t) ∧ V d
i (t)

)
. (6)

Note that the component Fi(t) ∧ V a
i (t) prevents Ai(t)

from being updated with new links (j, k), where j, k 6= i,
if these are not provided by agent i’s neighbors. On the other
hand, if

(
(¬Ai(t)) ∧ A

(1)
i (t)

) → V a
i (t), then all neighboring

information is used to update Ai(t). The following proposition
shows that the local network dynamics (4)-(6) are essentially
a consensus (with inputs) on the adjacency matrix estimates
Ai(t), providing every agent with a rough picture of the overall
network, as desired.

Proposition 3.1 ( [33]): Assume a fixed network G with
corresponding adjacency matrix A and initialize all network
estimates Ai(t0) with nearest neighbor links, i.e., Ai(t0) =
Ei ∧ A. Let, further, V a

i (t) =
(
(¬Ai(t)) ∧ A

(1)
i (t)

)
and

V d
i (t) = 0 for all time t ≥ t0, so that no new links are

added or deleted in G. Then,

Ai(t + 1) = ∨j∈Ni

(
Ai(t) ∨Aj(t)

)

and Ai(t0 + n− 1) = A for all agents i.

B. Controlling Addition and Deletion of Links

Given the local network dynamics (4), the main challenge
now is to determine control inputs V a

i (t) and V d
i (t) that

ensure connectivity of each estimate Gi(t) for all time t.
If the spanning subgraph requirement Gi(t) ⊆ G(t) holds
(Section V), connectivity of Gi(t) for all i implies connectivity
of the overall network G(t).

Regarding links that agent i can add in Gi(t), we require that
the control V a

i (t) = (v[i]a
jk (t)) satisfies

(
(¬Ai(t))∧A

[i]
1 (t)

) →
V a

i (t), so that Ai(t) is updated with all existing links in the
network that agent i is not aware of. Furthermore, V a

i (t)
should also capture new links that agent i can create with

Algorithm 1 Auction Mechanism for Agent i

1: Compute the set of safe neighbors Si(t) such that if a
link (i, j) with j ∈ Si(t) is deleted from Ei(t), then Gi(t)
remains connected (see Remark 2.3), i.e.,
Si(t) , {j ∈ N d

i (t) | λ2(L(Ei(t)\(i, j))) > k − 1}.
2: Initialize a request ri , [ i g(Si(t)) b ]T ∈ R3 consisting

of the link (i, g(Si(t))) to be deleted and a bid b ∈ R, such
that b > 0 if Si(t) 6= ∅ and b = 0 otherwise, indicating
how “important” this request is.

3: Initialize a set of max-bids Mi(t) , {ri(t)} ∈ 2R
3

and
a binary vector of tokens Ti(t) , [0 . . . 1i . . . 0]T ∈
{0, 1}n indicating the start of an auction.

4: while (∧n
j=1Tij(t)) = 0 do

5: Collect tokens from neighbors only, i.e.,
Ti(t + 1) := Ti(t) ∨

( ∨j∈Ni(t) Tj(t)
)

6: Apply a max-consensus update on Mi(t), i.e.,
Mi(t + 1) :=

{
rj | j = argmax

rk∈∪l∈{Ni(t),i}Ml(t)

{rk3}
}

7: end while
8: Compute the winner link wi(t) of the auction,

wi(t) , {(rj1, rj2) | rj ∈Mi(t)}

agents j 6∈ Ni. These objectives can be achieved by letting

v
[i]a
jk (t) ,

(
(j 6= i) ∧ (k 6= i)

)
︸ ︷︷ ︸

add all existing links
provided by neighbors

∨ (
xk(t) ∈ Br(xj(t))

)
︸ ︷︷ ︸

maintain current neighbors and
add new neighbors

, (7)

where Bρ(x) = { y ∈ Rp | ‖y − x‖2 < ρ } denotes an open
ball of radius ρ > 0 centered at x ∈ Rp, and r > 0 is as
in Definition 2.4.8 Note that

(
(¬Ai(t)) ∧ A

[i]
1 (t)

) → V a
i (t),

hence, Ai(t) is updated with all neighbor information.
Unlike link additions, deletion of nearest neighbor links is a

much more challenging task since, although knowledge of the
estimate Gi(t) allows every agent i to determine adjacent links
that if deleted individually, network connectivity is preserved
(Fig.3), it is not sufficient for dealing with simultaneous link
deletions by multiple non-adjacent agents that may disconnect
G(t) (Fig. 4). For this, we require that at most one link can be
deleted from G(t) at a time9 and employ market-based control
to achieve agreement of all agents regarding the link that is to
be deleted. In particular, let N d

i (t) , Ni(t)\{j ∈ V | xj(t) ∈
Br(xi(t))} denote a subset of neighbors that agent i desires
to delete a link with,10 and define the function g : 2R → R
with

g(X) ,
{

x ∈ X if X 6= ∅
0 otherwise ,

where x ∈ X ⊆ R can be chosen according to any policy,
deterministic or not. Then, the proposed auction algorithm for
agent i is described in Algorithm 1 and with every iteration,
it outputs a winning link wi(t) corresponding to the highest

8Although not necessary to introduce Definition 2.4 of a proximity dynamic
graph yet, we do so to avoid complicating further notations as well as to
achieve a smoother introduction to the case of mobile agents (Section VI).

9Extension to multiple link deletions is considered in [24].
10The set N d

i (t) typically consists of neighbors that due to their distance
from agent i require high communication power.
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bid sent in the network. The control input that regulates link
deletions V d

i (t) =
(
v
[i]d
jk (t)

)
can then be defined as

v
[i]d
jk (t) ,

(
wi(t) = (j, k)

) ∧ (|wi(t)| = 1). (8)

Note that if |wi(t)| > 1, then there is either a tie in the
maximum bids or all bids sent in the network were zero. In
every case, equation (8) implies that V d

i (t) = 0 for all agents i
and no link is deleted from any estimate edge set Ei(t), which
ensures the requirement of at most one link deletion with every
auction. Other deletion requests are considered in subsequent
auctions and so the proposed market-based control framework
consists of a sequence of auctions, each one of which results
in at most one link deletion from the network. Clearly, the
existence of some notion of synchronization of all agents to
the same auction is necessary for correctness of the proposed
approach. This requirement becomes even more important in
the presence of communication time delays (Section IV).

Remark 3.2 (Choosing the Bids): Note that any positive
real numbers can serve as bids in Algorithm 1. However,
letting b ≥ 0 be a function of the distance ‖xi(t)−xg(Si)(t)‖2
or the size of the neighbor set |Ni(t)| is a rather natural
choice that can also be associated with signal strength or power
constraint properties of the overall network.

Remark 3.3 (Convergence of max-Consensus): Note that
the condition (∧n

j=1Tij(t)) = 1 in Algorithm 1, clearly
implies convergence of the max-consensus on sets Mi(t)
to the global maximum over the network. Alternatively,
convergence of the max-consensus algorithm could be
decided after n − 1 updates of the sets Mi(t), where n − 1
corresponds to the worst case diameter of a network on n
agents. The advantage of using the first approach over the
second one is twofold. First, using tokens exploits the network
structure and can result in more efficient updating.11 Second,
the first approach can deal with communication time delays,
where the time required for n − 1 updates of Algorithm 1
can be significantly different for different agents, preventing
convergence of all agents to a common outcome. It is also
worth noting that the memory and communication overhead
for transmitting the binary tokens is minimal (linear in the
number of agents n).

Remark 3.4 (Computational Complexity): Note that com-
putation of the spectrum of a matrix has worst case complexity
O(n3), where n is the size of the matrix [29]. This complexity
can, however, be reduced to O(n) for sparse symmetric ma-
trices [30], as is the laplacian matrix L(t) in the case of large
networks, commonly appearing in the proposed framework.
Consequently, dealing with eigenvalues does not introduce
significant computational overhead, which makes our approach
scalable to large size networks.

IV. MODELING THE AGENTS
IN THE PRESENCE OF TIME DELAYS

The discrete topology control machinery introduced in Sec-
tion III gives rise to a hybrid model for every agent i (Fig. 5),
defined by the composition (or product) Ti×Ai of a topology

11For instance, in the case of a complete graph, one update is sufficient for
convergence of the max-consensus algorithm.

Top. Control
Mi, Ti

Mj, Tj

AuctionV d
i

Ai

Aj

Fig. 5. Hybrid model Ti × Ai for agent i that consists of the composition
of a topology control and an auction automaton, resulting from the analysis
in Section III.

control Ti and an auction automaton Ai, respectively [27].
The topology control automaton of agent i is responsible for
updating its network estimate Ai with addition and deletion of
links (Section III-A). For this, it requires the control input V d

i

that regulates link deletions, as well as the network estimates
Aj of agent i’s neighbors in order to compute the control
input V a

i that regulates link additions (Section III-B). The
control input V d

i is provided by the auction automaton and is
computed using the max-bid sets Mj and tokens Tj of agent
i’s neighbors (Algorithm 1). Note that in the proposed hybrid
system, all variables are considered shared [27], however, the
only variables that are practically needed are the ones provided
by every agent’s neighbors, which guarantees the local nature
of the proposed control framework.

Implementation of the above hybrid system relies on infor-
mation exchange between neighboring agents in the form of
messages

Msg[i] , {Ai,Mi, Ti}
containing their network estimates Ai, max-bid sets Mi and
tokens Ti.12 Clearly, such messages are neither received simul-
taneously nor instantaneously. Instead, they are queued and are
received with a time delay τi > 0 and in an order that may vary
according to the frequency of transmission of each agent.13

To address these challenges, a notion of synchronization is
required among the two individual automata consisting a single
hybrid agent, as well as among all hybrid agents consisting
the overall hybrid multiagent system. In the absence of a
common global clock, the desired synchronization is ideally
event triggered, where by a triggering event we understand the
time instant that a message Msg[j] is received by any of agent
i’s neighbors j ∈ Ni. The rest of this section is devoted in
defining formally the aforementioned automata and discussing
how they can be synchronized into a distributed multiagent
system, in the presence of time delays.

A. The Hybrid Agent

The following notion of a predicate enables us to formally
define the aforementioned automata.

Definition 4.1 (Predicate): Let X = {x1, . . . , xn} be a
finite set of variables. We define a predicate ψ(X) over X to
be a finite conjunction of strict or non-strict inequalities over
X . We denote the set of all predicates over X by Pred(X).

In other words, a predicate is a logical formula. For ex-
ample, the predicate ψ(X) =

(‖x − x0‖2 < r
)

over the set

12The memory and communication cost associated with messages Msg[i]
is O(n2), hence, our approach is scalable to large networks.

13For instance, for a set of neighbors Ni = {1, 2, 3}, the order of the
messages received could be a sequence of the form {1, 1, 2, 1, 3, 2, 2, 1, . . . }.
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Collect Msg.

Update Ai(t) (Eqns. 4 − 8)
Reset t

[i]
1 := 0ṫ

[i]
1 = 1, t

[i]
1 < τi

Fig. 6. Topology control automaton Ti of agent i responsible for updating
its network estimate Ai.

of variables X ∈ Rp returns 1 if x belongs in the open ball
‖x− x0‖2 < r and 0 otherwise. Hence, the topology control
automaton, responsible for updating the network estimate Ai

of agent i, can be defined as follows [27] (Fig. 6).14

Definition 4.2 (Topology Control Automaton): We define
the topology control automaton of agent i by the tuple
Ti , (XTi , VTi , ETi , inv, init, guard, reset, flow), where

• XTi
, {t[i]1 , Ai} denotes the set of owned state variables

with t
[i]
1 ∈ R+ and Ai ∈ {0, 1}n×n.

• VTi
, {C, D} denotes the finite set of control modes.15

• ETi , {(C, C)} denotes the set of control switches.
• inv : VTi → Pred

( ∪n
j=1 (XTj

∪XAj
)
)

with inv(C) ,
{t[i]1 < τi} denotes the invariant conditions.

• init : VTi → Pred(XTi) with init(C) , true denotes
the set of initial conditions.

• guard : ETi → Pred
( ∪n

j=1 (XTj ∪ XAj )
)

with
guard((C, C)) , {t[i]1 = τi} denotes the set of transition
guards.

• reset : ETi → Pred
( ∪n

j=1 (XTj ∪ XAj )
)

with
reset((C,C)) , {t[i]1 := 0, Ai := Eqn. 4} denotes the
set of transition resets.

• flow : VTi → Pred
(
ẊTi ∪n

j=1 (XTj ∪ XAj )
)

with
flow(C) , {ṫ[i]1 = 1}, denotes the flow conditions of the
hybrid automaton that constrain the first time derivatives
of the system variables in mode v ∈ VTi .

As discussed above, transitions in Ti are event triggered,
where the triggering event corresponds to the time instant
when agent i receives messages Msg[j] from its neighbors
j ∈ Ni. The elapsed time between any two such events
is strictly positive and is denoted by τi > 0, while the
information contained in these messages is used to compute
the control input V a

i that regulates link additions. The control
input V d

i responsible for link deletions is provided by the
auction automaton defined as follows (Fig. 7).

Definition 4.3 (Auction Automaton): We define the auction
automaton of agent i by the tuple Ai , (XAi , VAi , EAi ,
inv, init, guard, reset, f low), where

• XAi , {t[i]2 , Ti,Mi} denotes the set of owned state
variables with t

[i]
2 ∈ R+, Ti ∈ Bn and Mi ∈ 2R

3
.

• VAi , {S, B, U,D} denotes the finite set of control
modes.16

14To simplify notation, we hereafter drop the dependence of the state
variables on time t.

15The shorthand notation stands for C , Collect Msg. and D ,
Dummy.

16The shorthand notation stands for S , Start, B , Bid, U , Update
and D , Decide.

ṫ
[i]
2 = 1, t

[i]
2 < τiStart

Bid

Update

Decide

Compute Si(t)
(line 1, Alg.1)

Initialize ri(t),

(lines 2 & 3, Alg.1)

If (∧n
j=1Tij(t)) = 0,

compute V d
i (t) (line 8, Alg.1 & Eqn.8)

update Ti(t) and Mi(t)
(lines 4, 5 & 6, Alg.1)

If (∧n
j=1Tij(t)) = 1,

reset t
[i]
2 := 0

reset t
[i]
2 := 0

Ti(t) and Mi(t)

Fig. 7. Auction automaton Ai of agent i responsible for providing the
topology control automaton with the control input V d

i that regulates link
deletions.

• EAi
, {(S, B), (B,U), (U,U), (U,D), (D, S)} denotes

the set of control switches.
• inv : VAi → Pred

( ∪n
j=1 (XTj ∪XAj )

)
with inv(U) ,

{t[i]2 < τi} and inv(e) , true for all e ∈ VAi
\{U}

denotes the invariant conditions.
• init : VAi → Pred(XAi) with init(S) , true denotes

the set of initial conditions.
• guard : EAi

→ Pred
( ∪n

j=1 (XTj
∪XAj

)
)

with,

– guard((U,U)) , {(∧n
j=1Tij) = 0},

– guard((U,D)) , {(∧n
j=1Tij) = 1},

denotes the set of transition guards.
• reset : EAi → Pred

( ∪n
j=1 (XTj ∪XAj )

)
with,

– reset((S, B)) , {Si := Alg. 1},
– reset((B, U)) , {ri, Ti,Mi := Alg. 1},
– reset((U,U)) , {t[i]2 := 0, Ti,Mi := Alg. 1},
– reset((U,D)) , {t[i]2 := 0, V d

i := Eqn. 8},
– reset((D, S)) , {clear variables for new auction},

denotes the set of transition resets.
• flow : VAi → Pred

(
ẊAi ∪n

j=1 (XTj ∪ XAj )
)

with
flow(U) , {ṫ[i]2 = 1}, denotes the flow conditions of the
hybrid automaton that constrain the first time derivatives
of the system variables in mode v ∈ VAi .

Note that the auction automaton Ai of agent i consists an
implementation of Algorithm 1 that provides Ti with the con-
trol input V d

i that regulates link deletions. As with the topology
control automaton Ti, transitions in the auction automaton
Ai are triggered upon receipt of a message and the elapsed
time between any two such events is τi > 0. This implies
that transitions (C, C)Ti of the topology control automaton
Ti are always synchronized with either transitions (U,U)Ai or
(U,D)Ai of the auction automaton Ai, synchronizing the two
automata, as desired. Composition of the automata Ai and Ti

captures control in the discrete space of graphs.

B. Synchronization of the Hybrid Agents

The presence of time delays in the network, as well as the
network topology which imposes multi-hop communication
patterns between non-neighboring agents, can result in the
agents reaching a decision on an auction asynchronously.
This would imply that initialization of all subsequent auc-
tions would also be asynchronous and could result in mixing
of information between consecutive auctions, preventing all
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Reset V ar(b) := V ar(a) and V ar(c) := {clear}

Auction A

Auction B

Auction C

Decide(a)Update(a)Start(a) Bid(a)

Collect Msg.(a)

Decide(b) Update(b) Start(b)Bid(b)

Collect Msg.(b)

Decide(c)Update(c)Start(c) Bid(c)

Collect Msg.(c)

Reset V ar(a) := V ar(c) and V ar(b) := {clear}

Reset V ar(c) := V ar(b) and V ar(a) := {clear}

Fig. 8. Creating three copies of the same auction guarantees synchronization
of all agents to the same auction and common auction outcomes for all agents.
V ar(z) denotes the set of all variables associated with auction z = a, b, c.

agents from reaching a common outcome for the same auction.
Hence, correctness of the proposed distributed control frame-
work relies on some notion of synchronization of all agents to
the same auction. In the absence of a common global clock,
this synchronization can be achieved by creating three identical
copies of the auction protocol described in Algorithm 1 that
only differ on their labels (Fig. 8). In particular, we create
three copies of all variables in Ai and Ti, label them in the
set {a, b, c} and require that a sequence of auctions is always
of the form {a, b, c, a, b, c, . . . } by imposing the transitions
(Da, Sb)Ai , (Db, Sc)Ai and (Dc, Sa)Ai , according to Fig. 8.

To understand how this scheme ensures synchronization of
all agents on the same auction, consider any agent i and
suppose it is in auction a. Clearly, for agent i to transition
to auction b it is necessary that all other agents are also
in auction a, since otherwise agent i will be missing bids
from the agents that are not in auction a yet (currently in
auction c) and Algorithm 1 will not be able to converge. Once
agent i transitions to auction b, it initializes all variables for
that auction with the latest values from auction a, while it
maintains the variables of auction a for agents that are still
in auction a and it clears all variables of auction c since, no
agent is in this auction any more. In other words, faster agents
are forced to wait for their slower peers before transitioning
to a subsequent auction, which guarantees synchronization of
all agents to the same auction.

V. CORRECTNESS OF THE OVERALL SYSTEM

Composition of all elementary agents Ti×Ai results in the
overall product system

S , ×n
i=1(Ti × Ai),

which captures properties of the whole dynamic network.17

In particular, in Section V-A we show that the proposed

17For a formal definition of the overall system S, see [33].

distributed hybrid system S ensures synchronization of all
agents to the same auction and agreement on the link that is
to be deleted, while in Section V-B we show that the overall
system S guarantees connectivity of the mobile network.

A. Synchronization & Market-Based Control

Let {zk}∞k=1 = {a, b, c, a, b, c, . . . } denote the sequence of
auctions for any agent Ti ×Ai (Fig. 8). Due to possible time
delays, the product system S is not necessarily synchronized
in the same auction for all agents and all time, which can
cause the overall market-based coordination framework to fail.
This section is devoted in studying the auction dynamics in
system S and showing that they guarantee synchronization of
all agents to the same auction for all time. We achieve this goal
by studying the associated token dynamics, which explicitly
indicate the beginning and termination of the corresponding
auction from the perspective of agent i. In particular, let

T zk
∨i , ∨n

j=1T
zk
ij and T zk

∧i , ∧n
j=1T

zk
ij

indicate the existence of at least one token in T zk
i or the

existence of exactly n tokens in T zk
i , respectively. Then, we

have the following results.
Proposition 5.1 ( [33]): For any time t, suppose there ex-

ists an agent i such that T zk
∧i (t) = 1 for any auction zk. Then,

T zk
∨j (t) = 1 for all agents j with j 6= i.
Proposition 5.2 ( [33]): For any time t, suppose there ex-

ists an agent i such that T zk
∨i (t) = 1 and T zk

∧i (t) = 0, while
T

zk+1
∨j (t) = 1 for all agents j with j 6= i and any consecutive

auctions zk and zk+1. Then, T
zk+1
∧j (t) = 0 and T zk

∧j (t) = 1 for
all j 6= i.

Proposition 5.2 equivalently states that faster agents peri-
odically wait for their slower peers, which implies a form of
synchronization among all agents. Now, let

T zk∨ (t) , ∨n
i=1T

zk
ii (t) and T zk∧ (t) , ∧n

i=1T
zk
ii (t)

denote the existence of at least one token or exactly n tokens
in auction zk, respectively, from the perspective of a global
observer. Clearly, if T zk∨ (t) = 1 there exists at least one agent
i with T zk

∨i (t) = 1, while if T zk∨ (t) = 0, then T zk
∨i (t) = 0 for

all agents i. Denote, further, by tIk
the time instant that the

first token for auction zk has just been sent and by tBk
the

time instant that the last token for auction zk has just been
sent. Similarly, let tFk

denote the time instant that the last
token for auction zk has just been cleared (Fig. 8). In terms of
the global variables T zk∨ (t) and T zk∧ (t) for auction zk, these
time instants can be expressed as tIk

, min{t | T zk∨ (t) = 1},
tBk

, min{t | T zk∧ (t) = 1} and tFk
, max{t | T zk∨ (t) = 1},

respectively. Then, Proposition 5.2 results in:
Proposition 5.3 ( [33]): Let zk−2, zk−1, zk and zk+1 be

any sequence of auctions. Then, tFk−2 < tBk
< tIk+1 < tFk−1 .

Hence, the sequence of auctions {zk}∞k=1 is according to

tIk
≤ tFk−2 ≤ tBk

≤ tIk+1 ≤ tFk−1 ≤ tBk+1 ≤ tIk+2 ≤ tFk
,

which, since tFk−2 < tIk+1 , implies that no contributions from
past auctions can be made in updating the variables of current
auctions, despite recycling of the auction labels according
to zk−2 = zk+1 (mod3). This observation can be used to
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show correctness of the proposed market-based coordination
framework. In particular, we have the following result.

Proposition 5.4 ( [33]): For any agent i and any auction
zk, eventually T zk

∧i (t) = 1. Moreover, all agents i with
T zk
∧i (t) = 1 share identical max-bid sets Mzk

i (t).
Proposition 5.4 equivalently implies that the max-consensus

algorithm (Algorithm 1) on the max-bid sets Mzk
i (t) con-

verges to a common link for all agents i and every auction
zk (Eqn. 8). Hence, synchronization guarantees correctness of
market-based control, even in the presence of time delays.

B. Correctness of Connectivity Control

As in Section V-A, observe that the transition resets
reset((Dzk

, Szk+1)Ai
) that clear all variables of auction zk−1

(Fig. 8), combined with synchronization of the transitions
(Czk

, Czk
)Ti

and (Uzk
, Dzk

)Ai
in agent i, result in Azk

i (t) = 0
for all agents i and all time t > tFk

. Hence, although
zk−3 = zk(mod3), the network estimates Azk

i (t) are updated
exclusively from auction zk, as desired. The following result
shows that the outcome of every auction zk is at most one
link w

[i]
zk(ts) in Ezz

i (ts) that is deleted from the network
estimate Ezk+1

i (ts+1) of the subsequent auction, i.e., w
[i]
zk(ts) 6∈

Ezk+1
i (ts+1).
Proposition 5.5 ( [33]): For any time ts and any agent i,

consider the transition (vs
S, v

s+1
S ) that is due to (Dzk

, Szk+1)Ai .
Then, V

[i]d
zk (ts) → (¬A

zk+1
i (ts+1)).

We next provide a relation between the edge sets Ezk
i (ts)

and Ezk
i (ts+1) after any transition (vs

S, v
s+1
S ) that is due to a

self-transition (Czk
, Czk

)Ti .
Proposition 5.6 ( [33]): For any time ts and any agent i,

consider the transition (vs
S, v

s+1
S ) that is due to (Czk

, Czk
)Ti .

Then, Azk
i (ts) →

(
Azk

i (ts+1) ∨ V
[i]d
zk (ts)

)
.

Proposition 5.6 equivalently implies that with every transi-
tion (vs

S, v
s+1
S ) of the product system S that is due to a transi-

tion (Czk
, Czk

)Ti , we have Ezk
i (ts) ⊆ Ezk

i (ts+1)∪{w[i]
zk(ts)}.

This result can be used to derive similar results for the global
edge set E(t). For this, we need to introduce some further
notation. In particular, for all time t ∈ [tBk

, tBk+1) we can
define the global winning link of auction zk by

wzk
(t) ,

{
(ri1, ri2) | i = argmax

1≤j≤n
{rj3 | rj ∈ ∪n

l=1Mzk

l (t)}}

and, as in equation (8), denote by Qzk
(t) = (qzk

jk(t)), where
qzk

jk(t) , (wzk
(t) = (j, k)) ∧ (|wzk

(t)| = 1), the boolean
matrix indicating the existence of a winning link for auction
zk. By Propositions 5.3 and 5.4, the set ∪n

l=1Mzk

l (t) is
fixed for all time t ∈ [tBk

, tFk
] and hence, for all time

t ∈ [tBk
, tBk+1), since [tBk

, tBk+1) ⊆ [tBk
, tFk

]. Thus, the
winning link wzk

(t) and matrix Qzk
(t) are also fixed for

all time t ∈ [tBk
, tBk+1) and exclusively associated with

the outcome of auction zk. Furthermore, V
[i]d
zk (t) → Qzk

(t)
for all time t ∈ [tBk

, tBk+1) and any agent i. Finally, let
A(t) , ∨n

i=1(Ei ∧ Azk
i (t)) denote the adjacency matrix of

the global graph. Then, we have the following result.
Proposition 5.7 ( [33]): For any ts ∈ [tBk

, tBk+1) and
any agent i, consider the transition (vs

S, v
s+1
S ) that is due to

(Czk
, Czk

)Ti . Then, A(ts) →
(
A(ts+1) ∨Qzk

(ts)
)
.
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Fig. 9. Plot of the potential ϕij(xij) for R = 1.

Proposition 5.7 implies that any transition (vs
S, v

s+1
S ) of the

product system S that is due to a transition (Czk
, Czk

)Ti at
time ts ∈ [tBk

, tBk+1), results in E(ts) ⊆ E(ts+1)∪{wzk
(ts)}.

This leads to the following result.
Proposition 5.8 ( [33]): For any ts ∈ [tBk

, tBk+1) and
any agent i, consider the transition (vs

S, v
s+1
S ) that is due

to (Czk
, Czk

)Ti
. Then, Azk

i (ts+1) →
(
A(ts+1) ∨ Qzk

(ts)
)
.

Moreover, if t = ts+1 is such that vs+1
Ai

= Szk
, then

Azk
i (ts+1) → A(ts+1).
Proposition 5.8 equivalently implies that Ezk

i (ts) ⊆ E(ts)
for any time instant ts ∈ [tBk

, tBk+1) such that vs
Ai

= Szk
. In

other words, when agent i selects a link (i, j) to delete from
Ei(ts), the estimate Gi(ts) is a spanning subgraph of G(ts).
This leads to our main result.

Theorem 5.9: Assuming that all changes in the network
topology G(t) are controllable (due to S) as well as that
G(t0) is initially connected, the product system S guarantees
connectivity of the dynamic network G(t) for all time t ≥ t0.

Proof: See Appendix II.

VI. INTEGRATION WITH AGENT MOBILITY

A critical requirement for correctness of the discrete topol-
ogy controller S (Section V) is that the network structure
does not change between consecutive updates in the network
topology. In the case of stationary agents, this assumption
translates to the absence of random link additions or failures,
while in the presence of agent mobility and proximity net-
works as in Definition 2.4, supplementary motion constraints
should be introduced that constrain the pairwise distances
between the agents and maintain all links created by the
discrete topology controller S. In particular, in the presence
of communication time delays τi > 0, a positive dwell time
is introduced between consecutive updates in the network
topology that allows us to define continuous agent motion
during these intervals that maintains the underlying network
structure. We achieve this goal, as well as the dual interagent
collision avoidance objective, using potential fields that blow
up whenever the state of the system tends to violate any of
these specifications.

As before, let G = (V, E) indicate a fixed topology of the
network between any two consecutive switches and denote by
Ni = {j ∈ V | (i, j) ∈ E} the set of neighbors of agent i.
Define further the stack vectors x , [. . . xT

i . . . ]T ∈ Rpn and
x̂ , [. . . xT

ij . . . ]T ∈ Rpn(n−1), where xij , xi − xj , and for



MICHAEL M. ZAVLANOS AND GEORGE J. PAPPAS 9

Top. Control

Navigation

Mi, Ti

xi

Mj, Tj

AuctionV d
i

xj

Ai

Aj

Fig. 10. Illustration of the hybrid automaton Ti × Ai × Ni of a mobile
agent i that consists of the composition of a topology control Ti, an auction
Ai and a navigation automaton Ni.

every agent i let ϕi ,
∑

j∈Ni
ϕij , where (Fig. 9)

ϕij(xij) , 1
‖xij‖22

+
1

R2 − ‖xij‖22
.

Then, we have the following result.
Theorem 6.1: For all agents i, assume secondary objec-

tives described by C2 potentials fi : Rp → R+ such that
lim‖xi‖2→∞ fi(xi) = ∞ (radially unbounded).18 Then, the
closed loop system defined by equation (2) and the control

ui(t) , −K∇xiϕi(t) (9)

guarantees that all links in G are maintained, collisions are
avoided and all agent velocities are bounded.

Proof: See Appendix II.
Introducing mobile agents gives rise to the notion of a

navigation automaton Ni for every agent i, which coordinates
with the associated topology control and auction automaton
to obtain the agent’s set of neighbors Ni, which it uses,
along with their positions xj for j ∈ Ni, to update its own
position xi (Eqns. 2 and 9). The updated agent positions are
then provided to the topology control automaton that further
updates agent i’s network estimate Ai and the resulting set
of neighbors Ni. Composition of all three automata Ti, Ai

and Ni results in the hybrid model Ti×Ai×Ni for a mobile
agent i, shown in Fig. 10. Formally, the navigation automaton
of agent i can be defined as follows (Fig. 11).

Definition 6.2 (Navigation Automaton): We define the nav-
igation automaton of agent i by the tuple Ni ,
(XNi , VNi , ENi , inv, init, guard, reset, f low), where,
• XNi , {xi, t

[i]
3 } denotes the set of owned state variables

with xi ∈ Rp and t
[i]
3 ∈ R+.

• VNi , {N} denotes the finite set of control modes.19

18We denote by R+ the set [0,∞).
19The shorthand notation stands for N := Navigate.

Navigate

ẋi = −∇xi
fi(xi) − K∇xi

ϕi(x)

Reset t
[i]
3 := 0

ṫ
[i]
3 = 1, t

[i]
3 < τi

Fig. 11. Navigation automaton for agent i responsible for agent motion
without violating the network structure.

• ENi , {(N, N)}, denotes the set of control switches.
• inv : VNi

→ Pred
( ∪n

j=1 (XTj
∪ XAj

∪ XNj
)
)

with
inv(N) , {t[i]3 < τi} denotes the invariant conditions of
the hybrid automaton.

• init : VNi → Pred(XNi) with init(N) , true denotes
the set of initial conditions.

• guard : ENi → Pred
( ∪n

j=1 (XTj
∪ XAj

∪ XNj
)
)

with
guard((N,N)) , {t[i]3 = τi} denotes the set of transition
guards.

• reset : ENi
→ Pred

( ∪n
j=1 (XTj

∪ XAj
∪ XNj

)
)

with
reset((N, N)) , {t[i]3 := 0} denotes the set of transition
resets.

• flow : VNi
→ Pred

(
ẊNi

∪n
j=1 (XTj

∪XAj
∪XNj

)
)

with
flow(N) , {ẋi = −∇xi

fi(xi)−K∇xi
ϕi(x), ṫ[i]3 = 1},

denotes the flow conditions of the hybrid automaton that
constrain the first time derivatives of the system variables
in mode v ∈ VNi

.
Observe that the navigation automaton Ni consists of a

single mode including agent i’s dynamics as in Theorem 6.1,
while self-transitions in Ni are associated with updates in the
agent’s set of neighbors Ni and are message triggered and syn-
chronized with transitions of Ti and Ai, as before.20 Correct-
ness of the resulting mobile multiagent system S , ×n

i=1(Ti×
Ai × Ni) follows directly from Theorems 5.9 and 6.1. In
particular, we have the result.

Theorem 6.3: Assuming that G(t0) is initially connected,
the product system S guarantees connectivity of the mobile
network G(t) for all time t ≥ t0.

VII. CONNECTIVITY TASKS

In this section we illustrate the proposed distributed topol-
ogy control algorithm in nontrivial connectivity tasks involving
both stationary and mobile agents and show that it has the
desired connectivity maintenance, collision avoidance and
scalability properties. In particular, we first consider n = 50
stationary agents (dots), randomly distributed in a square of
unit area, such that the distance between any two of them is
greater than r = .05, and define a link (line) between any
two such agents if their pairwise distance is less than R = .2
(Fig. 12(a)). According to Definition 2.4, this implies that no
new links can be added in the network, while all existing
links are candidates for deletion, i.e., N d

i (t) = Ni(t) for
all agents i, as in Section III-B. Observe that the distributed
topology control algorithm succeeds in deleting links while
maintaining connectivity of the network, captured by a positive
second smallest eigenvalue of the graph laplacian matrix
λ2 > 0 (Fig. 12(d)). The algorithm terminates when the final
network corresponds to a minimally connected tree structure
(Fig. 12(b)), while the number of links in the network as a
function of time is illustrated in Fig. 12(c).

In our next connectivity scenario, we consider n = 12
mobile agents in R3 and compare k-connectivity control

20To define the continuous motion dynamics, we make the simplifying
assumption that the neighbor positions xj for j ∈ Ni are transmitted in
much higher frequencies than the messages Msg[j] so that they can be
approximated by a continuous signal. In practice, this assumption can be
relaxed by discrediting the motion dynamics. Details can be found in [31],
where the proposed algorithm is implemented on a real robotic platform.
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(a) Initial network topology. (b) Final network topology.
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Fig. 12. Dynamic network consisting of 50 stationary agents. Distributed
topology control guarantees link deletions while maintaining connectivity. The
final network topology corresponds to a minimally connected tree structure.

for k = 1, 2 and for the same initial configuration of the
agents. We classify the agents into a set of so called leaders
L = {1, 2} labeled by the letter “L” and having a nontrivial
secondary objective and a set of followers {1, . . . , n}\L
having no secondary objective. In particular, for all leaders
i ∈ L we assume secondary objectives as in Fig. 1(b), with
an additional unit angular velocity term (slightly abusing the
secondary objective specifications in equation (2)), designed
to stretch the network and observe whether it can reconfigure
while maintaining connectivity. Interagent links that are within
r = .25 are denoted by solid lines, while candidate links for
deletion, i.e., links that are within R = .4, are denoted by
dotted lines (Definition 2.4). Solid curves attached to every
agent indicate the recently traveled paths and give an idea
of the agents’ motion. Figs. 13 compare the evolution of the
system at four consecutive time instants for k = 1, 2. Note
that, under the proposed connectivity control laws, the overall
network remains k-connected, while the leaders do their best
to achieve their secondary objectives.

VIII. CONCLUSIONS

In this paper, we considered the problem of controlling a
group of agents so that the resulting motion always preserves
the connectivity property of the underlying network. For this,
we proposed a distributed feedback and provably correct
control framework that, unlike most prior work, imposed no
restrictions on the network topology other than the desired
connectivity specification. Our approach was based on a key
control decomposition, where connectivity control of the net-
work structure was performed in the discrete space of graphs
and relied on local estimates of the network topology, algebraic
graph theory and market-based control, while motion control
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Fig. 13. k-Connectivity control for n = 12 agents with 2 leaders. Compare
figures (a,b), (c,d), (e,f) and (g,h).
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TABLE III
BOOLEAN OPERATIONS

x y ¬x x ∧ y x ∨ y x → y x ↔ y

1 1 0 1 1 1 1
1 0 0 0 1 0 0
0 1 1 0 1 1 0
0 0 1 0 0 1 1

of the agents was performed in the continuous configuration
space by means of local potential fields used to maintain
nearest neighbor links. Integration of the above controllers
resulted in a hybrid model for every agent, which was shown to
always guarantee connectivity of the network, while it recon-
figures towards certain secondary objectives. Communication
time delays in the network as well as collision avoidance
among adjacent agents were also efficiently handled, while
our approach was illustrated through a class of interesting
problems that could be achieved while preserving connectivity.

APPENDIX I

A. Boolean Operations

Definition 1.1 (Boolean Operations on Scalars): Given
boolean variables x, y ∈ {0, 1}, we define the operations ¬x,
x ∧ y, x ∨ y, x → y and x ↔ y as in Table III, where the
symbols ¬, ∧, ∨, → and ↔ stand for not, and, or, if, then
and if and only if, respectively.

Similarly, we can define boolean operations on boolean
matrices X,Y ∈ {0, 1}n×n.

Definition 1.2 (Boolean Operations on Matrices): Let
X = (xij) and Y = (yij) be n × n boolean matrices. Then,
the boolean operations ¬, ∧, ∨, → and ↔ on the matrices X
and Y are defined elementwise on their entries.

Hence, the boolean matrix X ∧ Y is defined as X ∧ Y ,
(xij∧yij) and in a similar way we can define any other boolean
operation on matrices.

APPENDIX II

A. Proof of Theorem 5.9

Since all changes in the topology of G(t) are due to S
(no random link additions or failures), we only need to show
that connectivity is maintained at the transition time instants
of S, when the network structure is updated. However, since
addition of links does not endanger network connectivity, we
only need to show that connectivity is not violated when a
link is deleted from G(t).

Note first that Propositions 5.4 and 5.5 imply that the
outcome of every auction is common for all agents i and
is at most one link that is eventually deleted from all edge
sets Ei(t). Hence, we need to show that the selection of this
link is safe with respect to connectivity. For this, consider any
agent i such that vs

Ai
= Szk

for t = ts. Then, at t = ts+1

the transition (vs
Ai

, vs+1
Ai

) results in vs+1
Ai

= Bzk
and the

corresponding reset initializes a set of candidate neighbors
Si(ts+1) with which agent i can safely delete a link. Since the
network estimates Gi(t) are updated with information from the

same auction and Gi(ts) is a spanning subgraph of G(ts), i.e.,
Ei(ts) ⊆ E(ts) by Proposition 5.8, any deletion of a link (i, j)
with j ∈ Si(ts+1) 6= ∅ does not violate connectivity of the
local network estimate Gi(ts+1) = (V, Ei(ts+1)) and, hence,
neither does it violate connectivity of the overall network
G(ts+1) = (V, E(ts+1)).

B. Proof of Theorem 6.3

Consider the potential function ϕG : DG ×Rpn → R+ such
that

ϕG ,
n∑

i=1

fi +
K

2

n∑

i=1

ϕi, (10)

where DG , {x̂ ∈ Rpn(n−1) | ‖xij‖2 ∈ (0, R), ∀ (i, j) ∈ E}
and for any c > 0, define the set ΩG , {(x̂,x) ∈ DG ×
Rpn | ϕG ≤ c}. Observe, further, that

ΩG ⊆
( ∩n

i=1 f−1
i ([0, c])

) ∩ ( ∩(i,j)∈E ϕ−1
ij ([0, c])

)
, Ω.

The sets f−1
i ([0, c]) are closed by continuity of the poten-

tials fi in Rp. They are also bounded; to see this, suppose that
there exists an i for which f−1

i ([0, c]) is unbounded. Then,
for any choice of N > 0, there exists an xi ∈ f−1

i ([0, c])
such that ‖xi‖2 > N . Allowing N → ∞ and given that
lim‖xi‖2→∞ fi(xi) = ∞, it follows that for any M > 0, there
is an N > 0 such that fi(xi) > M . If we pick M > c we
reach a contradiction, since by definition xi ∈ f−1

i ([0, c]) =
{xi | fi(xi) ≤ c}. Thus, all sets f−1

i ([0, c]) are bounded
and hence, compact. Similarly, for all (i, j) ∈ E the sets
V −1

ij ([0, c]) are closed by continuity of Vij in the interval
(0, R). They are also bounded; to see this, suppose there exist
indices i and j for which V −1

ij ([0, c]) is unbounded. Then, for
any choice of N ∈ (0, R), there exists an xij ∈ V −1

ij ([0, c])
such that ‖xij‖2 > N . Allowing N → R, and given that
lim‖xij‖2→R Vij = ∞, it follows that for any M > 0, there
is a N > 0 such that Vij > M . If we pick M > c we
reach a contradiction, since by definition xij ∈ V −1

ij ([0, c]) =
{xij | Vij(xij) ≤ c}. Thus, all sets ϕ−1

ij ([0, c]) are bounded
and hence, compact. Therefore, the set Ω is compact as a
finite intersection of compact sets. It follows that ΩG is also
compact, as a closed subset of a compact set.

The time derivative of ϕG in the set ΩG becomes ϕ̇G =∑n
i=1 ḟi + K

2

∑n
i=1 ϕ̇i, where

n∑

i=1

V̇i =
n∑

i=1

∑

j∈Ni

ẋT
ij∇xij ϕij

=
n∑

i=1

∑

j∈Ni

(
ẋT

i ∇xiϕij + ẋT
j ∇xj ϕij

)

= 2
n∑

i=1

∑

j∈Ni

ẋT
i ∇xiϕij = 2

n∑

i=1

ẋT
i ∇xiϕi

by symmetry of the functions ϕij . Thus,

ϕ̇G =
n∑

i=1

ẋT
i ∇xifi + K

n∑

i=1

ẋT
i ∇xiϕi

= −
n∑

i=1

∥∥∇xifi + K∇xiϕi

∥∥2

2
≤ 0,
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which implies that the level sets ΩG of ϕG are also positively
invariant. The invariance of ΩG implies that all links in the
network are maintained and that no collisions between agents
occur. On the other hand, compactness and positive invariance
of ΩG also implies that (x̂,x) ∈ DG × Rpn remains bounded
for all time t between any two consecutive switches in G.
Moreover, since ϕG ∈ C2 inside DG × Rpn, the right-hand-
side of the closed loop system defined in equations (2) and (9)
is is locally Lipschitz, which implies that ẋ is bounded. Hence,
all agent velocities are bounded. Note, that the hysteresis in
Definition 2.4 ensures that if a link (i, j) 6∈ E is added to
E , then the associated potential ϕij is bounded and hence, so
is the new potential ϕG . This observation allows us to define
level sets of the potentials ϕG .
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